
Dear Dr. Radiguet, 
 
We sincerely thank you and the two reviewers for the thorough, professional reviews 
and consideration of our paper.  Our responses to the reviewer comments are shown 
below in blue.  Changes to the main text are also indicated in blue. 
 
Best regards, 
 
Amanda 
 
Reviewer D: 
 
This paper proposes a method for denoising 3-component high resolution GNSS time 
series in presence of an earthquake, using a U-net deep learning model derived from 
the DeepDenoiser developed for seismic waveforms (Zhu and Beroza, 2019). For this, it 
combines real HR-GNSS time series in absence of earthquakes (noise), with a 
simulation of 3-component displacement time series due to a earthquake using the 
FakeQuakes output (signal). This Fourier transform of this combined simulated time 
series is the input of a deep learning model, which in output gives the signal mask of the 
frequency content. 3 variations of this model are proposed and compared. The main 
difference with the DeepDenoiser is that the 3 components are used simultaneously, as 
3 channels, because GNSS data is noiser and the components are highly linked 
together, which will help the network to distinguish the signal. The proposed method is 
tested on simulated noisy data, and then on real HR-GNSS on the Ridgecrest 
earthquakes, and is compared with strong-motion sites (assimilated as a ground truth). 
The results are promising. 
 
The paper is well written and interesting, the method is well designed, different 
architectures are tested and the results are showing interesting properties, both on 
simulated and real data. The problem is of interest, and this kind of method could 
indeed be very useful for the community. I think that this paper is worth publishing, yet 
there are few points that need to be addressed first: 
 
1) I think there is a misunderstanding of what is a sample in machine learning, which 
makes the paper unclear. 'To create an algorithm capable of separating signal from 
noise we need many thousands of samples of both signal (i.e. HR-GNSS displacement 
time series from real earthquakes) and noise', 'Overall our testing dataset includes 
1,458,606 three component records split evenly between signal and noise', These 
sentences are clearly indicating to the reader that there are 2 types of input samples, 
the signal and the noise, as we would do for a classification task. But later on I think that 
what the authors would like to say is that they created samples by combining (adding) 
real noise and synthetic signal waveforms, i.e. the number of samples are 1,458,606/2. 
The problem is a multi-output regression, not a classification. This needs to be clarified, 
as it looks like the authors did not really understand what the machine learning model is 
doing. In particular, a workflow figure would be needed in order to be clear about it. 
 



We did not refer to denoising as a classification problem.  The addition of signal and 
noise to generate network input on is described in the section titled “2.3: Inputs, 
Outputs, and Model variations”.  We used the term sample(s) to refer to signal 
recordings, noise recordings, the combined signal and noise recordings that are input to 
the model, the sampling rate of or number of samples in a timeseries.  We agree this 
can be confusing.  To obviate this confusion we’ve changed any referral to a signal or 
noise recordings to waveform.  This distinguishes the purely signal or noise waveforms 
from their combination, which is the input to the CNN.   
 
Also, there are not 1,458,606/2 samples.  The generator augments the data by 
combining different signal and noise waveforms and shifting them in time, therefore 
there are far more possible combinations of signal, noise, and shift.  To make this clear 
we explicitly state the number of signal and number of noise waveforms we used in 
L183-4.  We also added the text “The combinations of signal and noise and the time-
shifting are data augmentation strategies that significantly increase the size of the 
training dataset.”  to section 2.3.  We keep the term sampling rate since this is common 
nomenclature. 
 
2) Why is there no comparison with traditional denoising techniques? I find it very 
strange, and it is usually a good habit to compare to a baseline. I am pretty sure that 
your model would be best, but this is clearly missing in the paper. 
 
Great question.  Traditional denoising techniques are not applicable or can actually 
worsen SNR at the frequencies present in the short time windows used in this study.  
For example, the most common type of denoising, sidereal filtering, can increase noise 
amplitude in the high-frequency band.  We expanded the background on denoising 
techniques in the second paragraph to make this clear.  
 
For example, sidereal filtering leverages repeating satellite-receiver geometries to 
correct for noise resulting from multipath errors (i.e. when a transmitted signal arrives at 
a receiver via an indirect path).  Simply stated this technique involves taking 
displacements recorded during the previous orbital repeat period (the time since the 
satellite constellation was last in the same configuration), applying a low pass filter (e.g. 
11 s corner frequency), and subtracting the filtered displacement record from the 
displacement recorded at the present time (e.g. Choi et al., 2004).  Spatial filtering 
targets common-mode noise that’s highly correlated across GNSS stations in close 
spatial proximity (Wdowinski et al. 1997).  This technique simply averages detrended 
records on many nearby stations and the resulting average is subtracted from each 
station.  Principal component analysis (e.g. Dong et al. 2006, He et al. 2015) has been 
employed to remove long period noise (0.2-0.1 cycles/year) and various match-filtering 
approaches have also been employed to reduce noise levels (Frank, 2016; Rousset et 
al., 2019).  With respect to HR-GNSS, there are a dearth of denoising techniques that 
are both applicable to high rate data and efficient.  For example, sidereal filtering is one 
of the most commonly employed techniques but, because of the low-pass filtering, it 
does not apply to frequencies higher than the chosen corner frequency.  Additionally, 
Geng et al. (2017) noted that sidereal filtering can also increase noise levels for periods 



between 20 and 33 s (those authors used a 10 s corner frequency).  While data-driven 
denoising strategies are capable of mitigating high-frequency noise (e.g. Li et al. 2018), 
as proposed they involve multiple decompositions using techniques such as empirical 
mode decomposition, which is known to be computationally time consuming. 
 
3) Did you test on only-noise samples? I guess that in a real case scenario, you might 
want to use it on a continuous recording and in that case having waveforms without 
earthquakes would be important in order to not 'create' unexisting signals. Even if you 
will test it only on earthquakes, maybe sometimes the sensor will be too far and in that 
case you could end up in a 'signal free' sample. 
 
Yes, the data augmentation strategy we employed allows for some or all of the windows 
to be noise in both training and the testing data.  To test this explicitly we downloaded 
another 10000 noise waveforms and applied the model to them.  We’ve added this 
figure to the supplement along with the caption. 

 
Figure S13. The false positive rate of Models 1, 2, and 3 applied to unseen noise data 
(N=10000) plotted against a PGD decision threshold.  For comparison we also show the 
PGD of the noise waveforms the models are applied to.  The false positive rate at a 
decision threshold of 1 cm PGD is 2.05%, 2.51%, and 0.16% for Models 1, 2, and 3 
respectively.  The false positive rate at a decision threshold of21 cm PGD is 0.4%, 
0.53%, and 0.06% for Models 1, 2, and 3 respectively.     
 
We also added the following texts to the end of the results section. 
 

Finally, as denoising may be applied to HR-GNSS in real time, we explored the 
false positive rate of models 1, 2, and 3 on additional 10,000 noise waveforms.  The 
results of this exercise is shown in Figure S13.  The false positive rate at a decision 
threshold of 1 cm PGD is 2.05%, 2.51%, and 0.16% for Models 1, 2, and 3 respectively.  
The false positive rate at a decision threshold of 2 cm PGD is 0.4%, 0.53%, and 0.06% 



for Models 1, 2, and 3 respectively.  These values are far smaller than the PGD of the 
noise waveforms themselves.  Additionally, they could be further reduced by 
considering waveform character at multiple stations as all earthquake early warning 
algorithms do.      

 
4) It is not clear at first that your 3.1 and 3.2 sections are the results on synthetic data. If 
I understood correctly, these are the results on the test synthetic dataset (10% of your 
simulated samples).  
 
Both the training and testing dataset contain synthetic signal and real noise records.  
Sections 3.1 and 3.2 do refer to the testing dataset.  We’ve added “from the testing 
dataset” to line 343.  Section 3.2 is titled “model performance on the testing data” and it 
is explicitly stated that we are evaluating performance on the testing dataset in the first 
sentence in this section. 
 
Usually, we use a 3rd set, called sometimes validation set, to select the 
hyperparameters of the model, to determine the best epoch to stop the training, etc. 
This is in order to avoid overfitting on the test set, and to show the results on completely 
unseen data. Did you use a validation data set?  
 
Yes.  Generating the synthetic earthquake waveforms for denoising took several 
iterations and our workflow was to generate a “small” (~10,000) waveform dataset to 
develop the model.  We used this initial suite of synthetic waveforms to develop the 
CNN architectures mainly adjusting inputs and outputs but also evaluating optimal 
values of parameters such as the learning rate and number of epochs. 
 
Also, did you pay attention to group all samples from the same earthquake event 
(registered by the different stations) on either train or test (otherwise it would be too 
easy, as nearby stations might have very similar signals)? 
 
No, this is unnecessary.  Depending on the kinematics of the earthquake there are 
sometimes similar waveforms on nearby stations but they are similar, not identical.  The 
figure below shows an example of waveforms on nearby stations for the same 
earthquake.  The waveforms have similar character but ultimately they have different 
amplitudes and static offsets so they constitute independent examples of earthquake 
waveforms.  Beyond this, synthetic signal waveforms are augmented by adding 
independent noise samples so even if identical signal waveforms were included in 
training and testing data, the noise added to each would be different, as would the time 



shift.  We want an algorithm that can learn these differences.

 
There is also a precedent of not omitting similar waveforms from testing datasets in 
applications of machine learning in seismology.  For example, one of the most highly 
cited papers on earthquake phase detection is Zhu and Beroza (2019).  In that paper 
they obtain earthquake records on NCEDC stations.  They do not omit waveforms 
because of waveform similarity but undoubtedly these exist in the dataset since there 
are many nearby or even repeating earthquakes in northern California. 
 
Smaller remarks: 
 
- 'Finally, we test the models on HR-GNSS records from the Ridgecrest earthquakes 
recorded at stations that have nearly colocated strong-motion sites used ground-truth 
the denoising results.' --> word missing? 
 
Indeed.  We changed this to “Finally, we test the models on HR-GNSS records from the 
Ridgecrest earthquakes recorded at stations that have nearly colocated strong-motion 
sites that can be used ground-truth the denoising results.“ 
 
- l 370 : it would be interesting to see the complex valued masks predicted by models 2 
and 3,  
 
Original versions of Figures 6-11 had the phases and amplitudes of the complex masks.  
We opted for the simpler three panel figure because this ultimately results in an 18 
panel figure and this seems a bit excessive for a typical reader (see below).  If accepted 
for publication we will make all plotting codes available to the reader via Github and 
Zenodo and anyone interested can explore these masks at will. 



 
 
and it would be interesting to see the differences between the 3 models on some 
common examples. 

Figures S1-S10 show the performance of all three models on some common examples. 
 
- Figure 13 L2 distances: did you look at the relative error? 
 
No.  You can design or utilize any number of performance metrics.  We felt that the two 
we explored in the manuscript were sufficient. 
 
- frequency content and amplitude seems to differ between simulated and real signals, 
as well as simulated and real noise. Have you looked at it? 
 
The Ridgecrest waveforms in Figures 14 and 15 are one particular example of an 
earthquake.  We did not tune our kinematic rupture simulations to reproduce the 
Ridgecrest events so given that any given kinematic rupture can have different 
magnitude, duration, rupture direction, speed, etc. there is no reason for the simulated 
waveforms to match the Ridgecrest waveforms identically.  The main difference we 
noticed during the preparation of this manuscript was that the Ridgecrest events had 



more “ringing” (i.e. long period coda) than the waveforms from the kinematic ruptures.  
This prompted us to go back and include soft layers in the Greens functions. 
 
- 545 while we have demonstrated here the models --> word missing 
 
Changed to “While we have demonstrated that the models we developed” 
 
- This HR-GNSS: what about standard GNSS? Do you think your model would work on 
GNSS? If not, what would be needed to be changed? 
 
Standard GNSS has much smaller errors than HR-GNSS so denoising is less critical 
there (though clearly still interesting).  Beyond this, the goal of the paragraph on L564 is 
to say that, while we tried this single station algorithm, this isn’t really the way to do this 
problem.  Noise is spatially and temporally correlated on GNSS stations hence using an 
algorithm that exploits that information is a better method for this problem.  So I don’t 
want to add discussion on how to adapt this model to regular GNSS because I do not 
think that is a useful next step. 
 
- Model 2: please add a figure to better show the model(s). Why does a linear activation 
make it possible to predict a complex value?  
 
We’ve added “the real and imaginary parts” to line 274 to make this clear. 
 
are all layers in your model for complex values (there are some papers specifically on 
CNN for complex values)? 
 
No.   
 
Recommendation: Revisions Required 
 
Reviewer E: 
 
Dear Editor and authors, 
I find your work interesting and there is potential to be a good machine learning based 
denoising method for HR-GNSS data. However, there are several issues that I 
addressed below that are required some attention. I listed them as below: 
 
Major/Moderate comments: 
 
My main question about the paper is what about the ‘traditional’ denoising methods? Is 
any of these three models are better at denoising signals with respect to other machine 
learning models or non machine learning approaches? One can clearly see that the 
models are working. But we cannot see if they can actually provide any improvement on 
the satellite data denoising topic in general. For instance Zhu et al. 2019, compare the 
results with other methods. Is there a way to carry out a similar study? 
 



Great question.  Traditional denoising techniques are not applicable or can actually 
worsen SNR at the frequencies present in the short time windows used in this study.  
For example, the most common type of denoising, sidereal filtering, can increase noise 
amplitude in the high-frequency band.  We expanded the background on denoising 
techniques in the second paragraph to make this clear.  
 
“For example, sidereal filtering leverages repeating satellite-receiver geometries to 
correct for noise resulting from multipath errors (i.e. when a transmitted signal arrives at 
a receiver via an indirect path).  Simply stated this technique involves taking 
displacements recorded during the previous orbital repeat period (the time since the 
satellite constellation was last in the same configuration), applying a low pass filter (e.g. 
11 s corner frequency), and subtracting the filtered displacement record from the 
displacement recorded at the present time (e.g. Choi et al., 2004).  Spatial filtering 
targets common-mode noise that’s highly correlated across GNSS stations in close 
spatial proximity (Wdowinski et al. 1997).  This technique simply averages detrended 
records on many nearby stations and the resulting average is subtracted from each 
station.  Principal component analysis (e.g. Dong et al. 2006, He et al. 2015) has been 
employed to remove long period noise (0.2-0.1 cycles/year) and various match-filtering 
approaches have also been employed to reduce noise levels (Frank, 2016; Rousset et 
al., 2019).  With respect to HR-GNSS, there are a dearth of denoising techniques that 
are both applicable to high rate data and efficient.  For example, sidereal filtering is one 
of the most commonly employed techniques but, because of the low-pass filtering, it 
does not apply to frequencies higher than the chosen corner frequency.  Additionally, 
Geng et al. (2017) noted that sidereal filtering can also increase noise levels for periods 
between 20 and 33 s (those authors used a 10 s corner frequency).  While data-driven 
denoising strategies are capable of mitigating high-frequency noise (e.g. Li et al. 2018), 
as proposed they involve multiple decompositions using techniques such as empirical 
mode decomposition, which is known to be computationally time consuming.” 
 
The second doubt about the study is about the model prediction of the low SNR data 
from Ridgecrest earthquake. As given in supplementary material, the outcomes are 
zeros. However, in Figures like 10C, there are some improvement. Other figures like 
9C, some others examples get almost zeros. In fact in line 503, it is stated that the 
biggest improvement are SNR between 1 to 3. However, for the performance analysis 
of the models (Figure 12 and Lines 417-423) very low SNR values are also included. I 
believe it is more explicitly stated in the conclusion that in very low SNR cases, the 
models fail. 
 
We’re not sure we fully understand the reviewers concern here.  It would be difficult for 
any denoising method, machine learning or not, to recover signals with very low SNR.  
The stations shown in the supplement were the results of the Models applied to the 
waveforms of the smaller M6.4 Ridgecrest earthquake on stations that are 67 and 88 
km away.  The SNR on all channels is below 1 and the Models do not detect the 
earthquake.  We stated this clearly in the Discussion on L550-553. 
 



My last question is which model should we use in the end? In the paper, 3 models are 
compared with each other and their results are discussed. But in the end, we need to 
decide a model to denoise the data we have. In this study, it is not clearly stated which 
models should be preferred. The preferred model can be case specific and/or data 
specific which is fine. Model 2 shows better performance in the metrics that have been 
used. I would assume that Model 2 should be the final product of the study for the future 
studies. But it is not written in the conclusion. Some final thoughts about the model 
performance can be written in the conclusion. 
 
In the discussion on line 536 we state “Models 2 and 3 were motivated by the amplitude 
distortion inherent in Model 1 which was originally developed for seismic data (Zhu et al. 
2019).  After assessing the performance of all models we find that Model 2, simple 
direct amplitude prediction, generally performs better than Models 1 and 3.  It does not 
suffer from the amplitude distortion and is better at predicting both ringing and static 
offsets than the other models.  By both performance metrics utilized here, it performs 
better at all SNRs than Model 1 and Model 3.” 
 
My other moderate to major comments are in below: 
1. In the 2nd paragraph of Introduction, noise sources and noise reducing studies are 
not really matching. Giving some insight about the noise and studies that are dedicated 
to reduce them would be a better approach for the paragraph. 
 
The second paragraph has been significantly modified.  We hope these modifications 
address this concern. 
 
2. In the 3rd paragraph of Introduction, other recent studies about denoising are not 
mentioned. Several examples can be seen below: 
Tibi et al. 2021: 
https://doi.org/10.1785/0120200292 
Even though Tibi et al. 2021 is not cited, it is in the references. However, Tibi et al. 2019 
which is cited in Line 2018 is not in the references. 
Zhang et al. 2021: 
https://doi.org/10.1093/gji/ggab099 
Novoselov et al. 2022: 
https://doi.org/10.1029/2021JB023183 
 
We have corrected the Tibi citation.  
 
There are many, many studies on seismic denoising.  We chose to cite Zhu et al. and 
Tibi et al. because they use a similar ML model to the one applied to GNSS data in this 
study.  The only commonality between the studies mentioned above and this 
manuscript is that they use ML (but different approaches on seismic data) so they do 
not seem particularly relevant to the present work and hence we opt not to cite them. 
 
3. In Line 110-110, it is said that the time range where no earthquake with magnitude 
larger than M4.3 are selected. Is there any reason for the magnitude threshold? Is there 



any possibility of contamination in noise database which may reduce the performance of 
the models? 
 
We’ve added “This magnitude is a conservative lower bound for the size of earthquake 
you may expect to generate an observable signal in GNSS data.” To L127. 
 
4. In section 2.3, it’d be better to see the architecture of the models. Even though they 
are similar, there is no information about what do they look like. It would be nice to see 
how output parameters looks like. It doesn’t necessarily be in the paper too. You may 
provide it in the supplementary, if you believe it will cover unnecessary space in the 
paper. 
 
I will add the figures of the model architecture to the Zenodo/Github repositories.  They 
are so large they cannot fit on a single page and are better viewed digitally (see below).  
We made note that these are available in the supplemental material.  “ Figures 
showing the architectures of Model 1 (v1_plot.h5.svg), Model 2 (v2_plot.h5.svg), and Model 3 
(v3_plot.h5.svg) are available in the Github and Zenodo repositories that accompany the 
manuscript.” 
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5. Line 292- What is the definition of prior to the first arrival? In the end of the paragraph 
it is written that the signal and noise samples be at least ten seconds in duration but it 
the noise is more than 10 seconds, did you use the 10 seconds before the P wave 
arrival or all noise samples before P arrival? 
 
SNR is calculated using all samples prior to the P wave arrival.  We require that this 
time window is a minimum of 10 seconds long so that 2 ∗ 𝜎!"#$% can be robustly 
estimated.  This minimum window duration was determined empirically. 
 
We changed this to “on the time window prior to the P-wave arrival” to make this clear. 
We don’t want to use the word sample because of the first comment of reviewer #1. 
 
6. Line 315-320 – Stations are not defined on any map. It would be nice to see them on 
map. It can be given in the supplementary material as well. 
 
We added these to figure 1A. 
 
7. Line 330 – Types of noises are not presented in the Data section. It may be 
necessary to give insight about the types of noises in the data section (2.1). 
 
We added content on types of noise in the introduction. 
 
8. In Section 3.2, SNR when you talk about the SNR, there is also ΔSNR which is 
mentioned in the figures but not in the text. ΔSNR plays an important role on the 
denoised signals and it needs to be presented in the text. 
 
This is described on L320. 
 
9. CC parameters varies between 0 and 1 which means that it is not susceptible on 
polarity changes. Even though in Figure 3L, CC has a negative value, in Figure 12 it 
varies between 0 and 1. Can you better explain how this process has been carried out? 
 
CC is the normalized cross correlation coefficient that is commonly employed in GNSS 
and seismic studies.  It varies between -1 and 1 so it is susceptible to polarity changes.  
We’ve adjusted the y-axis of figure 12 to make it clear that it can be negative. 
 
We’ve added “First, we employ the normalized cross-correlation coefficient to measure 
the similarity between the signal and the model predicted signal, denoted as CC.  CC 
varies between 1 when two signals are exactly correlated and -1 when they are exactly 
anticorrelated.”  After the definition of CC. 
 
10. Line 573 – “these models” needs to be better explained (briefly) in the conclusion. 
 
We’ve changed “these models” to “three machine learning models” 



 
11. Line 577-579 – there are several exceptions in this part most of which are reducing 
the quality of the models. Maybe you can write a sentence about the limitations or weak 
sides of the models.  
 
We don’t understand the reviewers concern here.  This sentence basically says that 
using three component data is beneficial which is true and one of the things this study 
did that previous studies did not.  Most of the discussion (last three paragraphs) is 
dedicated to describing when the model doesn’t perform and how it could be improved 
and alternative methods for GNSS denoising that may be better suited to the problem.  
 
Minor Comments: 
1. Figure is sometimes written with capital F and sometimes not. Same applies for 
“Model”, “U-Net”. Figures are presented as “Figure X” or “X” without the “Figure”. In Line 
358, “Figure” is not written at all. 
 
We capitalized Figure X in all instances, we added a Figure in line 358, we capitalized 
the word model in all instances when we refer to Model X. 
 
2. HR-GNSS sometimes referred as GNSS as in Line 224. It would be better to stick 
with the same terminology. 
 
GNSS is different than HR-GNSS.  We do use HR-GNSS when that is the type of data 
we are referring to but we also use GNSS generally if it’s more appropriate. 
 
3. In section 2.4, training and testing dataset are divided with 90% to 10% proportions. 
Is there any specific reason to use this proportions? Zhu et al. 2019 also used similar 
proportion without justification. Did you follow the similar proportion by following 
previous studies or do you have any other selection criteria? 
 
This is a design choice; both 80/20 and 90/10 are common. 
 
4. Two name articles are sometime cited as “A and B” and other times “A & B”. 
 
We have changed all &s to ands. 
 
My line by line minor comments are in below: 
Line 39 – instead of >= 1 samples per second, it can be written as sampling rate of >= 
1Hz. Done. 
Line 43 – there can be a citation for the long period recordings.  Added Melgar et al. 
2015. 
Line 50 – citation to a previous study that used HR-GNSS would be good. Done. 
Line 55 – Thomas et al. 2016 is not cited. Corrected. 
Line 70 – He et al. 2015 is not in the references. Corrected 
Line 104 – instead of “we need many thousand of samples of both …” “we need 
extensive amount of both …” can be used.  Extensive is not specific – this could mean 



10s or hundreds.  We will opt to keep the thousands. 
Line 141 – SCEC should be written “Southern California Earthquake Center” in the first 
time it is mentioned. Corrected. 
Line 143 – (GFs) and citation to Zhu & Rivera can be merged into single parenthesis. 
Corrected. 
Line 145 – Trained model is mentioned before providing any information about what 
‘training’ is.  We changed this to “After comparing our kinematic rupture waveforms with 
HR-GNSS data from the Ridgecrest earthquakes we noticed that many waveforms from 
the Ridgecrest earthquakes had significant “ringing” or long duration coda that was not 
present in the synthetic waveforms.” 
Line 151 – An example of these signal can be given in supplementary material.  Done. 
Line 182 – Citation to ReLu would be good ( http://citebay.com/how-to-cite/relu/ ). Done. 
Line 237 – Explicit information about the time and frequency resolution of the data 
would help reader to understand the input data more clearly.  We stated the sample rate 
and duration, the parameters for computing the STFT. 
Line 309 – CA is not defined (even though it is obviously refers to California, it would be 
better to write it). Changed to California 
Line 314 - Melgar et al., 2013 is not cited. Done. 
Line 373 – “Despite this …” can be re-written like “Despite low SNR …”.  Done. 
Line 381 – It’s hard to say which example is “this example” since in the text several 
figures are referred.  Changed to “in this same example (Figure 6C),” 
Line 414 – black line doesn’t refer anything. In the following sentence Figure 12 is 
mentioned and the black line is there but before that sentence black line doesn’t tell 
anything.  We’ve removed this reference to the black line. 
Line 467 – “below” is unnecessary. Removed. 
Line 476 – There is no Figure S3 in the supplementary material. Figure S1 is also not 
defined in the text.  We have heavily modified the supplement and these numbering 
issues are now fixed. 
Line 612 – Last access date for the github link may be necessary.  Zenodo archives a 
snapshot of the repo so a last access date is not necessary and is FAIR compliant. 
Line 648 – Lay 2018 is cited as Lay et al. (2018) in Line 53.  Corrected. 
Line 706 – Wdowinski is misspelled as Widowinski in line 69.  Corrected. 
Line 720 – Zhu and Beroza 2019b is defined as 2019. It also needs to be defined as 
Zhu et al. 2019.  Corrected. 
Figure 1 – Panels are not really separate figures both panel A is partially on top of panel 
B. Hence, I think Figure 1 can be referred without specifying as A and B in the text. 
Moreover, another scale would help to understand magnitudes of the events more 
clearly. Even though events are scaled with magnitude, they all look same. 
We will opt to keep the figure as is since there is value in showing the regional scale 
from which the noise data was taken and the local scale on which the GNSS waveforms 
were computed.  We don’t feel there is a need to add another panel to highlight the 
different event magnitudes since only the M6 and M7 events are used in this study – the 
goal was to show the fault geometries which can be determined from B. 
Figure 12 – It is hard to understand percentiles for different model dataset. What is light 
pink and dark pink (or purple) stand for? We’ve added “and have the same color coding 
as the median CC” 



Figure 14 – Legend can be rearranged to see the waveform more clearly. Done. 
Figure 16 – Label of X axes can be “before and after the origin time”.  Negative seconds 
after the origin time is seconds before the origin time.  We don’t see this as confusing so 
opt to leave it as is. 
 
 
 


