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Abstract The curation of seismic datasets is the cornerstone of seismological research and the start-
ing point of machine-learning applications in seismology. We present a 21-year-long AI-ready dataset of di-
verse seismic event parameters, instrumentation metadata, and waveforms, as curated by the Pacific North-
west Seismic Network and ourselves. The dataset contains about 190,000 three-component (3C) waveform
traces from more than 65,000 earthquake and explosion events, and about 9,200 waveforms from 5,600 ex-
otic events. Themagnitude of the events ranges from0 to 6.4, while the biggest one is 20 December 2022M6.4
Ferndale Earthquake. We include waveforms from high-gain (EH, BH, and HH channels) and strong-motion
(EN channels) seismometers and resample to 100 Hz. We describe the earthquake catalog and the temporal
evolution of the data attributes (e.g., event magnitude type, channel type, waveform polarity, and signal-to-
noise ratio, phase picks) as the network earthquake monitoring system evolved through time. We propose
this AI-ready dataset as a new open-source benchmark dataset.

Non-technical summary AI-ready datasets have been the primary drivers for developingmachine
learning algorithms. The diversity of the data these models are trained from is a leading factor for model
performance and the potential for extrapolation or generalization. This work presents a curated AI-ready
dataset of seismic events that were generated and recorded in the Pacific Northwest of the United States.
The dataset contains metadata curated by the Pacific Northwest Seismic Network and waveforms from typ-
ical earthquakes, but also human-generated quarry blasts and sonic booms, and surface processes such as
snow avalanches.

Introduction

The Pacific Northwest (PNW) region of the United
States is a dynamic tectonic plate boundary between
the North American continental plate and the Juan de
Fuca oceanic plate. The active margin between the two
plates is a subduction zone that hosts a wide variety of
earthquake behaviors: fast and large megathrust earth-
quakes (Witter et al., 2003), intraslab earthquakes (Gene
A. Ichinose, 2004), crustal earthquakes (Gomberg and
Bodin, 2021), slow repeating earthquakes (Rogers and
Dragert, 2003; Wech and Bartlow, 2014; Bartlow, 2020),
tectonic tremor (Wech et al., 2010), and low-frequency
events (A.A.Royer and M.G.Bostock, 2014). The PNW
has over twenty active volcanoes that have experienced
eruptions in the historical record. The PNW has hun-
dreds of glaciers in the Cascades, the Olympic Penin-
sula, and sitting atop the CascadeVolcanoes. Due to the
active tectonics and the particular mid-latitude climate,
the PNWalso experiences hundreds of landslides every
year (Luna and Korup, 2022). Such geohazards gener-
ate seismic waves that are well recorded (Allstadt, 2013;
Allstadt et al., 2018a; Hibert et al., 2019).
The Pacific Northwest Seismic Network (PNSN) is the

∗Corresponding author: niyiyu@uw.edu

authoritative seismic network in the states of Washing-
ton and Oregon as part of the Advanced National Seis-
mic System (ANSS), which is coordinated by the United
States Geological Survey (USGS). PNSN started in 1969
with 5 seismometers and has more than 600 active seis-
mic stations as of 1 November 2022. The authorita-
tive boundaries of the seismic network are geographi-
cal (see Figure 3), but the Cascadia subduction zone is
also active in Northern California and southern British
Columbia (Ducellier and Creager, 2022; Dragert et al.,
2001). The longevity of the seismic records and the rich-
ness of the active geohazards in the PNWform a unique
opportunity to explore a vast range of seismic signa-
tures. Comprehensive investigations that relate seis-
mic signature to specific geohazards (Braun et al., 2020;
Feng, 2012; Allstadt et al., 2018b;Hibert et al., 2019) ben-
efit from curated datasets.
In recent years, machine learning has increasingly

been used for applications in geosciences and seismol-
ogy in particular. The rise of machine learning, espe-
cially deep learning, is largely due to the curation of sev-
eral computer vision (ImageNet, Deng et al., 2009) and
natural language processing (GLUE, Wang et al., 2018)
datasets. There is a clear surge of machine-learning
workflows in seismological research (Kong et al., 2019;
Malfante et al., 2018; Bergen et al., 2019; Mousavi and
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Beroza, 2022) that is driven by the high dimensional-
ity of seismological data, the dramatic growth in data
volumes (Hutko et al., 2017), and the effort by the com-
munity to curate seismic datasets. There exists today
several curated datasets that have become standards
for machine-learning seismological research: STEAD-
a dataset of local and regional earthquakes and high-
frequency noise recorded globally (STanford EArth-
quake Dataset, Mousavi et al., 2019), INSTANCE (Italian
seismic dataset for machine learning, Michelini et al.,
2021), ETHZ (Eidgenössische Technische Hochschule
Zürich, Woollam et al., 2022), SCEDC (Southern Cal-
ifornia Earthquake Data Center, SCEDC, 2013), and
Iquique, a data collection of subduction-zone earth-
quakes and regional recordings (Woollam et al., 2019).
These datasets contain earthquake and noise time se-
ries recorded by various seismometers. The typical
data attributes are basic earthquake source and re-
ceiver characteristics, including locations, magnitudes,
focal mechanisms, and waveforms. The majority of the
earthquake sources in these datasets are of tectonic ori-
gins: transform plate boundaries such as in California,
subduction zone, and intra-continental crustal earth-
quakes (Woollam et al., 2019; Michelini et al., 2021).
Such datasets are considered “AI-ready” since their data
and attributes are packaged in data formats commonly
used by the Machine Learning community.

Surface processes may also generate seismic waves.
Environmental seismology is a blooming field that uti-
lizes seismic waves to understand surface and envi-
ronmental processes. There is a body of research
done on the seismic signatures of landslides events
(Chmiel et al., 2021; Yan et al., 2020; Hibert et al., 2014),
avalanche signals (Braun et al., 2020), and debris flows
(Chmiel et al., 2021), most of which investigate specific
case studies. Catalogs of such events are available in
the Incorporated Research Institutions for Seismology
(IRIS) Exotic Seismic Event Catalog (ESEC) (e.g., Allstadt
et al., 2017; Bahavar et al., 2019; Collins et al., 2022);
these refined and ground-truth catalogs only contain a
few (∼100) events.

Our study provides a novel curated AI-ready dataset
of event and waveform data for a diverse range of short-
duration seismic sources that include tectonic earth-
quakes, explosions, surface events such as ice/rock falls
and avalanches, sonic booms, and thunderstorms. Not
included are phenomena such as non-volcanic tremors
or low amplitude low-frequency earthquakes (LFEs).
We leverage the 21 years of data curation by the PNSN
seismic analysts and researchers to measure the event
P- and S-phase arrival times and other attributes. To
enable optimal re-usability of our dataset for machine
learning studies, we organized the dataset using the
SeisBench data format (Woollam et al., 2022) to improve
accessibility in themachine learning ecosystem. We ac-
knowledge the accompanying human biases that often
pollute AI-ready datasets (Paullada et al., 2021) are well
present in our catalog of event andwaveformattributes.
Some of these identified biases are discussed below and
are obvious topics of future investigations.

Data Selection and Preparation
The PNSN has been monitoring the seismicity in the
PNWsince 1969. However, seismic waveform data from
PNSNwere recorded on film and paper until 1980, when
digital data became available. From 1980 to 2002, event-
triggered waveform data (often with a limited duration)
were saved, but continuous archiving did not start un-
til 2002. For machine-learning applications, long seis-
mic traces as input data are preferred to allow user flex-
ibility when trimming and shifting the data in future in-
vestigations (e.g., data augmentation, Zhu et al., 2020).
The data must also have the same dimensions, i.e., the
same number of samples. To get waveforms that are
long enough (i.e., 150 seconds and longer in this study),
we start the curation when continuous data are avail-
able from IRIS Data Management Center (DMC) since
2002. The drawback of this choice is that it excludes the
largest tectonic earthquakes in the region because they
occurred before 2002 (e.g., Nisqually Earthquake of 28
February 2001). In addition, we require that both a P-
wave arrival time and an S-wave arrival time informa-
tion are available for the same station for each event.
This requirement removes some of the smaller, older
earthquakes for which no S-picks were available. In
the context of AI-ready datasets, the associated meta-
data (labels or attributes) include event-derived param-
eters, station parameters, and waveform parameters.
We use the SeisBenchmetadata format: Table 2 lists the
attributes that we associate with each set of waveforms.

Event Parameters
The detection of new events is both automated and
manually reviewed by the regional seismic network
staff. The PNSN monitors and reports on the seismic-
ity in the region using data from seismic stations (Fig-
ures S1 and S2). A trigger at a station occurs when
the short-term-average-long-time-average of the seis-
mic data (STA/LTA, Allen, 1982) exceeds a threshold.
When a few stations from a designated geospatial group
of seismic stations, called a subnet, experience a trig-
ger, events are automatically saved. The PNSN analysts
review all automatically detected events and remove er-
roneous ones by visual inspection of the event wave-
forms, a process they refer to as “trigger review”. Tele-
seisms are also identified but not further processed.
If the waveform has a clear but emergent signal, does

not contain distinct P and S arrivals, and the frequency
content is relatively low, the PNSN assigns a “surface
event” label (su) to the source type. Most surface events
are “ice”-quakes or avalanches associated with glaciers
in the Cascades and on the volcanoes; however, some
maybe debris flows or rock falls. Other non-earthquake
phenomena occasionally saved by analysts are record-
ings of sonic booms, thunderstorms, and other “inter-
esting” events. Such waveforms are picked at very few
nearby stations (one or two), and we gather the phase
pick information in a catalog that we refer to as the “Ex-
otic Event” catalog.
Once the trigger review identifies an event as an

actual earthquake, the PNSN analysts further process
the data. First, the automated system picks the ar-
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Figure 1 The event counts of ComCat and exotic catalog included in the AI-ready PNW dataset as a function of time.

rival times of seismic phases from the recorded seismo-
grams, which are one of the most important and pri-
mary data products extracted from the raw waveforms.
The analyst reviews and modifies the picks.
Seismic phase picking is the cornerstone of seismo-

logical research. With accurate phase arrival informa-
tion, the analysts can locate the event and estimate its
origin time. At the PNSN, the first P- and S-waves are the
phases picked for local and regional events. As a part
of the PNSN’s ANSS Quake Monitoring System (AQMS),
the network analysts use Jiggle, a graphical user inter-
face in Java to pick arrivals, locate events, and recal-
culate magnitudes (Hartog et al., 2019). The analysts
will manually annotate the arrival time and estimate
the uncertainties of their picks. The phase arrivals are
only picked on a single component per station, with P-
waves usually picked on vertical channels (Z compo-
nent) and S-waves on horizontal channels (E/N or 1/2
components). When it is clear, the polarity (first mo-
tion is up–positive–, or down –negative–) of the P-phase
is labeled by the analyst as well. Both acceleration and
velocity channels are used for phase picking, although
velocity channels are the most commonly used. The
PNSN operates sites with both velocity channels (broad-
band or short-period high-gain seismometers) and ac-
celeration channels (low-gain accelerometers used for
“strongmotion” seismology). Velocity channels are pre-
ferred when both instrument types exist since they usu-
ally have a higher signal-to-noise ratio than the strong-
motion channel.
Additional earthquake characteristics may be ob-

tained from the phase polarity and amplitudes, such as
focal mechanisms and magnitudes. All event parame-
ters are saved in PNSN’s AQMS database, and reason-
ably well-located earthquakes and explosions are re-
ported to the ANSS Comprehensive Earthquake Cata-
log (ComCat, Survey, 2017) via USGS Product Distribu-
tion Layer (PDL), the software-server infrastructure that
all the ANSS regional networks use to distribute earth-
quake products. It is important to note that the combi-
nation of automated tools, which get updated through
time, and manual intervention renders the event pa-

rameters not statistically stationary over time.
This study splits the PNW catalog into several

datasets: one that has PNSN analyst-verified event at-
tributes that were sent to the USGS, which we refer to
as the “ComCat event” dataset, one that we refer to as
the “exotic event” dataset and that has remained inter-
nal in the PNSN AQMS database, and one that focuses
on the 2022 Northern California earthquake sequence.
These datasets are packaged in different files because
they have different window lengths and data attributes.
We collect and organize the data from these. We show
in Figure 1 the annual event counts for the two sets of
events, ComCat and exotic, that are selected for the cu-
rated dataset. The temporal patterns ought not to be in-
terpreted as changes in seismicity rate since there are
systematic biases in the detection and labeling of the
events through time, whether they are human (analyst)
or instrumental (increased instrumental coverage).

ComCat Events

Wequery theANSSComCat and download 65,384 events
with magnitudes greater than 0 from 1 January 2002
to 31 December 2022, which we refer to as “ComCat
events”. We only select the events from ComCat sent by
the PNSN, whose event ID has a “uw” prefix. The event
metadata, including phase picks, are downloaded using
libcomcat (Hearne and Schovanec, 2020) and stored in
the QuakeML format (v1.2, Schorlemmer et al., 2011).
The source type of these events are either earthquakes
or explosions. The download contains 997,213 asso-
ciated phase picks. Among these picks, 944,220 were
made on velocity channels and only 52,982 (5.3%) on
strong-motion channels. For single-channel stations
where only the vertical channel (Z) exists (e.g., EHZ), S-
waveswere alsopickedonly if theonsetswere clear. The
temporal evolution of the ComCat events reflects a com-
bination of increased coverage and sensitivity of the
seismometers. In 2009, a large number of the cataloged
events came from an intense swarm of earthquakes at
Wooded Island in eastern Washington (Gomberg et al.,
2012). As listed in Table 1, the number of events repre-
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Figure 2 Number of events arranged by event type of the curated ComCat and Exotic event datasets.

sented in our final curated dataset is less than what we
originally downloaded due to data selection criteria de-
scribed in Section .

Exotic Events

We also collect data from 5,657 events cataloged by the
PNSN since 2002 that are neither labeled as earthquakes
nor explosions. The exotic events are not incorporated
in the ANSS ComCat and are only available through the
PNSN’s ANSS Earthquake Monitoring System (AQMS)
database. In this dataset, we include events that were
labeled as “surface event”, “thunder”, “sonic boom”, and
unfortunately a “plane crash” (a confirmed event near
Whidbey Island, Washington, 3 March 2013). We re-
fer to these events as “exotic events” herein. Figure 2
shows the number of events in each category for our fi-
nal dataset.
The temporal evolution of the exotic event catalog

depends on manual intervention by the analysts. Be-
cause non-tectonic earthquakes are not the priority of
the PNSN, analysts only pick when time permits. Most
of the labeled exotic events, such as surface events, are
detected on well-instrumented volcanoes (see Figure
S2). The lower event count in the period 2005-2008 coin-
cides with volcanic unrest at Mt. St. Helens, when the
network was also desensitized during this period to the
events around Mt. St. Helens due to the intense rate
of volcano-tectonic seismicity. It is quite possible that
other surface events outside of the volcanoes are miss-
ing, due to having fewer stations elsewhere.
Most of the exotic events are small in magnitude and

seismic amplitude and thus local to a few stations. Due
to a lack of additional observation of the events (e.g.,
a ground truth imagery as done in the ESEC catalog),
source characteristics such as the source origin time,
location, and magnitude are not provided for these
events.

2022 Northern California Ferndale Earthquake Se-
quence

We also include events associated with the 20 Decem-
ber 2022 M6.4 Ferndale (northern California) Earth-
quake. This sequence provided us with a rare oppor-

tunity to add labels for moderate-to-large earthquake
sizes. These events are outside of the PNSN’s authorita-
tive boundary and, thus are not routinely processed by
thenetwork. We select 20 events ofM≥3 reported by the
California Integrated Seismic Network (CISN) from that
sequence and manually pick 609 P-wave arrivals. Table
S1 lists events included in the dataset.

Station Metadata

The station metadata describes the technical informa-
tion necessary for seismic data processing and tracks
the history of any metadata changes. The IRIS DMC
stores station metadata as dataless SEED files, but they
can be downloaded in the StationXML format from
IRIS International Federation of Digital Seismograph
Networks Web Service (FDSN-WS, http://service.iris.edu/
fdsnws). Theup-to-date stationmetadataweuse is down-
loaded using ObsPy (Krischer et al., 2015). These sta-
tions are either long-term installations maintained by
a seismic network (e.g., UW, University of Washing-
ton, 1963) or long-time experiments that lasts several
years (e.g., US Transportable Array, FDSN code TA, IRIS
Transportable Array, 2003).

Event Waveforms

All digitized data from the PNSN are requested and
downloaded through the IRIS FDSN-WS. In total, we
download ∼70 TB of continuous data in miniSEED from
1 January 2002 to 31 December 2022, which takes 2
months to complete. We first curate waveforms from
high-gain velocity seismometers and specific channels
from short-period (EH?) and broad-band (either BH?
or HH?) seismometers. We do not use the SL? and
SH? channels since they are simply derived from EH?
channel after low-pass filtering or down-sampling. We
also include waveforms from strong-motion EN? sta-
tions separately since there are alsopicksmadeon these
channels by the analysts. We do not correct for instru-
mental response and do not integrate the acceleration
to velocity. All waveforms are resampled to 100Hz from
their original sampling rates, which may be 40 (most
BH? channels) or 100 (most EH? and HH? channels).
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Figure 3 Locations of the events included in the ComCat dataset. The red dashed polygon denotes the authoritative region
boundaries of PNSN. The solid linesmark the depth contour of the subduction slabwith a 20 km interval Hayes (2018). Some
contours are labeled by the slab depth. The plate boundary between Juan de Fuca and North America Plate (plate depth
0 km) is delineated in the white line. Some events are color-coded white because they are deeper than 60 km. These are
intermediate-depth earthquakes.

The resampling step is necessary for deep neural net-
workswithfixed input sizes. Wekeep the data as is, even
if it is clipped.

For each ComCat event, we only select the stations
where both P- and S-wave are picked. We prepare 150-
second data for ComCat events: the window starts 50
seconds before and ends 100 seconds after the source
origin time (200 seconds after the origin time for the
Northern California earthquake sequence). The same
length of traces before this time window is curated as
the noise waveforms. The reason for including somuch
noise window ahead of the origin time is to allow user
flexibilitywhen trimming and shifting the data in future
investigations. In the ComCat events, less than 1% of
the S-wave picks arrive later than 60 seconds after the

origin time. Thus, most S-wave arrivals are included
in the time window. Then, we apply a linear detrend-
ing. We also resample all waveforms to 100 Hz, which
upsamples the broad-band BH? channels. Due to the
small inaccuracy (∼0.00008%) of the digitizer clock of
the analog EHZ stations, the sampling rate at these sta-
tions shifts away from strictly 100Hz. We correct this by
resampling to 100Hz. Gappy traces are discarded. Miss-
ing channels, for example, the vertical-component-only
instruments (e.g., channel EHZ) are filledwith zeroes to
keep the consistency of a three-component stream (fur-
ther detailed below). Picks are only donewith data from
a single instrument per site, even if a site may have sev-
eral sensors. Therefore, each “stream” is independent
of the other. Examples of earthquake waveforms can be
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Magnitude range Number of included events Percentage of available events Number of independent streams
0 - 1 19,735 77.1% 70,168
1 - 2 21,717 79.2% 95,406
2 - 3 4,825 42.8% 21,901
3 - 4 398 (15) 37.9% 2,332 (296)
4 - 5 31 (3) 77.5% 205 (138)
5 - 6 1 (1) 100.0% 4 (86)
6 - 7 0 (1) N/A 0 (85)
0 - 7 46,707 71.4% 190,016

Table 1 Number of included ComCat events in each magnitude range. The magnitude used here includes duration (Md),
local (Ml), andhand (Mh)magnitude. The number of streams includes both velocity and acceleration channels. Also provided
is the number of included events as a percentage of downloaded ComCat events. Numbers in the parentheses show the
events and streams from the 20 December 2022 Northern California earthquake sequence and are not included in the total
number of events/streams.

found in Figure S3 and S4 for the velocity-seismograms
and Figure S5 for the acceleration seismograms. Exam-
ples of explosion waveforms can be found in Figure S6,
S7, and S8.
The PNSN operates seismic stations that are partic-

ularly remote. The transfer of data through teleme-
try sometimes leads to artifacts in the time series.
Furthermore, the transition from triggered to contin-
uous data was progressive. Sometimes, both triggered
waveforms, which are detrended, and continuous data,
which are unprocessed, are sent together: the triggered
data overwrites the continuous data, creating a step in
the data. These show in both short-period (EH?) and
broad-band (BH? and HH?) stations. For example, the
time series may contain offsets that could be corrected
in the future in the seismic archive at the IRIS DMC (see
Figures S9 and S10).
The waveforms extracted for an exotic event are not

aligned with the source origin time, which is mostly un-
known. Instead, we align the waveforms by the phase
picks provided by the analysts. The waveforms start
70 seconds before P-wave picks or 80 seconds before S-
wave picks, whichever is available. Most exotic events
have no picked S-waves, but if both P- and S-wave picks
exist, the P-wave is prioritized to align the timewindow.
The time window is 180 seconds long for all types of ex-
otic events, given the occasional long duration and elon-
gation (e.g., cigar-shaped waveforms, Manconi et al.,
2017) of the surface events. We follow the same data-
curating process and formats as we process the Com-
Cat events. Examples of surface-event waveforms can
be found in Figure S11 and S12. Examples of thun-
derquakes can be found in Figures S13 and S14. Exam-
ples of sonic boom events are found in Figures S15 and
S16, and all waveforms from the plane crash event in
Figure S17.
We also extract noise-only waveforms. These wave-

forms are extracted just ahead of the event waveforms.
We selected high-gain velocity channels (EH?, HH?, and
BH?) using a random selection. To further test if there
are hidden events in the noise waveforms, we run the
machine learning model (see Section ) to test whether
events could be detected and only found very few occa-
sions where events may have been present.
We organize the three-component waveforms into

NumPy arrays and define a stream as a three-

component array (Harris et al., 2020; Krischer et al.,
2015). To improve accessibility in themachine-learning
ecosystem, we follow the SeisBench data format con-
vention. The metadata is stored in CSV (comma-
separated values) files, while allwaveforms are stored in
the Hierarchical Data Format version 5 (HDF5) format.
The signal-to-noise ratios (SNR) are calculated (detailed
below) and saved as attributes in the metadata file.
After applying the selection criteria described above,

more than 70% of the ComCat events are kept in
the dataset. Figure 3 shows the map of the selected
events. The datasets cover events within the authorita-
tive boundary of the PNSN, offshore in the Jan de Fuca
Ridge, underneath Vancouver Island, and further East
in Idaho. We provide an overview of the final number
of ComCat waveforms and events in Table 1. The sum-
mary compiles the data volumeacrossmagnitudes from
0 to 6.4. It is possible that most of the events discarded
by the selection had no S-wave picks for clipped wave-
forms. Our selection criteria also excludedmore events
before 2010, which we attribute to the much fewer S
picks available when the data is clipped or when only
vertical-component stations are available.

Machine Learning Phase Picker and Enhanced
Earthquake Picks

We provide an alternative catalog of phase picks from
the earthquake event catalog as a use-case of the dataset
and a research-grade catalog of new picks of P and S
waves usingMachine Learning (ML). Automating phase
picking using deep neural networks has revived the
methodological development for picking seismic waves
(Mousavi and Beroza, 2022; Münchmeyer et al., 2022).
Here, we use the Earthquake Transformer architec-

ture from Mousavi et al. (2020) and implement phase-
picking benchmark tests on the ComCat events. The
SeisBench toolbox provides a set of Earthquake Trans-
former weights for models pre-trained with different
datasets. We select all windowed waveforms from HH?,
BH? and EH? channels and detrend the waveform. We
compare the picks made by these models trained on
STEAD, ETHZ, SCEDC, and INSTANCE datasets with the
PNSN analyst picks recorded in the ComCat events. We
demonstrate their performance by showing the resid-
uals between ComCat picks and ML-predicted picks
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Figure 4 Distributions of P- and S-wave picking residuals (tML − tP NSN ) from the benchmark testing on velocity seismo-
grams. The number in the upper right corner of each subplot shows the mean absolute error (MAE), the root-mean-square
error (RMSE) as the uncertainties to the MAE, the mean value of the residual, and the picking completeness in percentage
concerning the ground truth. The PNW-retrained Earthquake Transformer outperforms the other four pre-trained models
from SeisBench (Woollam et al., 2022) in both picking accuracy and detecting completeness.

for P- and S-waves. The performance metrics are the
mean absolute error (MAE), the root-mean-square error
(RMS) for the phase picking, and the percentage of de-
tected picks relative to ground truth picks.
The input size of the Earthquake Transformer using

SeisBench is 3-component, 60 seconds at 100 Hz. The
probability threshold for picking is 10%. Figure 4 shows
the distributions of the residuals amongmodels and for
both P and S wave picks.
The approaches to benchmark thedetection andpick-

ing performance are i) the seismic network-specific ex-
pectations for the manual picking uncertainties and ii)
the comparison of bias and variance in the residual dis-
tributions relative to other studies (Mousavi et al., 2020;
Münchmeyer et al., 2022). We find a general trade-off
between detection accuracy (completeness) and phase-
pick quality (low errors). The model trained with the
STEAD dataset has the best quality in phase picks rel-
ative to the (ground truth) analyst’s picks, but it misses
more than 20% of the detections. In contrast, themodel
trained with the SCEDC dataset had the best detectabil-
ity and only missed about 5% of arrivals for both P- and
S-waves, but the picking accuracy, especially that of S-
waves, is poor. Bothmodels shownegativemean residu-
als for both P- and S-waves, indicating that theML picks
are always earlier than themanual picks. There is also a
similar pattern on themodel trained with ETHZ and IN-
STANCE dataset in Figure 4. The performance trade-off
between detection and picking accuracymakes retrain-
ing the phase pickers using the PNWdata necessary.
Using our curated dataset of ComCat earthquakes

and explosions, we retrain the Earthquake Trans-
former model. Instead of training from scratch (ran-
domly initialized weights), we start the training from
the SeisBench-trained model, which used the STEAD
dataset, and continue training for additional 100 epochs
on our dataset. We note that about 3% of the STEAD
data set contains PNSN data, whichmay be problematic
for data leakage. However, the STEAD data is bandpass-

filtered 1-45 Hz, while we do not filter the data. We
randomly select 70% of the ComCat dataset for train-
ing and use the rest 30% for testing. We use a trian-
gular label with a 10-sample half-width. We use the
same loss function that Mousavi et al. (2020) used to
train the Earthquake Transformer (a weighted sum of
loss from P-, S- and detection branches). We use a
small learning rate (1 × 10−4) with the Adam optimizer
(Kingma and Ba, 2014) during the training. Compared
with the other pre-trainedmodels, the transfer-learning
on the PNW dataset improves the detection accuracy,
considerably improves the S-wave picks, and performs
as well as the STEAD-trained dataset (see Figure 4). Al-
though not eliminated, the negative mean residuals are
reduced after retraining. We also test all these mod-
els on strong-motion (acceleration) channels, for which
INSTANCE contains the most acceleration waveforms
(28.3%). The PNW transfer-learned model outperforms
other pre-trainedmodels on strong-motion channels, as
shown in Figure S18.

The ability to find more and accurate picks by the
retrained Earthquake Transformer makes it possible
to create a future Machine-Learning-enhanced earth-
quake catalog. We revisit waveforms from the Com-
Cat events that included either P or S picks. There are
683,133 P- and 244,431 S-wave picks for 62,054 events
from these waveforms. We detect 16,201 (2%) and
207,146 (85%) new arrivals out of 686,748 time windows
for P- and S-waves using the refined phase picker. As a
crude quality control, we remove thepickswhere the ra-
tio between the S-travel time and the P-wave travel time
exceeds 2.5 or below 1.5. We add these picks with PNSN
manual picks as a part of the curated dataset in a sep-
arate file. We also use this retrained model to predict
the noise waveform and drop those with any prediction
greater than 0.1. This step effectively removes unpicked
seismic events in the noise waveform.
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Figure 5 Number of streams from each channel type used in the ComCat and exotic event catalogs through time. Short-
period (EH?) andbroad-band (BH?) sensorswere thepredominant channels for bothComCat andexotic datasets before 2012,
while the recording at higher sampling rates at broadband sensors (HH?) increasingly has become the standard since then. A
limited number of streams from strong-motion accelerometer EN? channels is available in the dataset since 2007.

Description of the AI-ready Dataset

The datasets consist of two files per set, one HDF5 file
containing the waveforms and a CSV file with the meta-
data (attributes).

Waveforms

There are 190,016 and 9,267 three-component streams
curated from ComCat and exotic event catalogs, re-
spectively. Figure 5 shows the counts of streams ar-
ranged by channel type as a yearly estimate. We
store all waveforms in HDF5 files using h5py (Col-
lette et al., 2021) and index them by the trace name
in the metadata. The attribute trace_start_time in
YYYY-MM-DDTHH:MM:SS.SSSZ format describes theUTC
time at which the stream begins. Listing 1 illustrates
how users can read the waveform data and locate the
stream in Python.

Listing 1 Read stream data from SeisBench format wave-
form file using h5py
import h5py
f = h5py.File("/path/to/waveform.hdf5", "r")
trace_name = "bucket1$0,:3,:15001"
bucket, array = trace_name.split('$')
x, y, z = iter([int(i) for i in array.split('

,:')])
data = f[f'/data/{bucket}'][x, :y, :z]

The data is saved as vertical concatenated NumPy ar-
rays of fixed window length (here 150 s), three compo-
nents. It is distributed over several “buckets” that are
“groups” under the HDF5 taxonomy. The trace name (a
data attribute saved in the metadata data frame), the in-
dex of the data in the bucket, and the index of the first
dimension.

Metadata

The metadata describes the waveform data and its at-
tributes and is essential to our dataset. Each stream
corresponds to one record (or a row) in the metadata
file. We follow SeisBench conventions again. The unit
of each attribute is appended as part of the attribute’s
name. For example, source_latitude_deg indicates
the latitude of the source in degrees. A full description
of the attributes is listed in Table 2. As many attributes
are self-explanatory, we provide more details below.

Station Network Code

Stations selected in both datasets may come from nine
different FDSNnetwork codes. These stations are either
installed and maintained by PNSN (e.g., UWand UO) or
used by PNSN when doing phase picking and events lo-
cating (e.g., PB, CC, IU, CN,HW,TA,US).Maps of the sta-
tions shown in the dataset show a similar distribution
for both ComCat (Figure S1) and exotic events (Figure
S2). All stations are in-land stations, and no off-shore
stations (e.g., OOI) are used in our dataset. The num-
bers of streams from each FDSN network and their ref-
erences are listed in Table 3. PNSN stations contribute
more than 85% of streams in the ComCat and Exotic
event datasets.

Event ID

An event identifier (ID) is given to each event by the
PNSN after the processing is finalized and sent to
ANSS through USGS Product Distribution Layer (PDL).
The ComCat events contributed by the PNSN have
IDs of eight-digit numbers with a “uw” prefix, e.g.,
“uw10568488”. The event IDs are unique in the cata-
log. The exotic event IDs are internal to the PNSNAQMS
database and cannot be accessed through USGS.
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Attribute Description Example
event_id Event identifier uw10564613

source_origin_time Source origin time in UTC 2002-10-03T01:56:49.530000
source_latitude_deg Source latitude in degree 48.553
source_longitude_deg Source longitude in degree -122.52

source_type - earthquake
source_type_pnsn_label PNSN AQMS event type eq

source_depth_km Source latitude in kilometer 14.907
source_magnitude_preferred - 2.1

source_magnitude_type_preferred - Md
source_magnitude_uncertainty_preferred - 0.03
source_local/duration/hand_magnitude Ml, Md, and Mh if available 1.32

source_local/duration_magnitude_uncertainty Magnitude uncertainty if available 0.15
source_depth_uncertainty_km Source depth uncertainty in kilometer 1.69

source_horizontal_uncertainty_km Source horizontal uncertainty in kilometer 0.694
station_network_code FDSN network code UW

station_code FDSN station code GNW
station_location_code FDSN location code 01
station_channel_code FDSN channel code (first two digits) BH
station_latitude_deg Station latitude in degree 47.5641
station_longitude_deg Station longitude in degree -122.825
station_elevation_m Station elevation in meter 220.0

trace_name Bucket and array index bucket1$0,:3:15001
trace_sampling_rate_hz All traces resampled to 100 Hz 100

trace_start_time Trace start time in UTC 2002-10-03T01:55:59.530000Z
trace_P/S_arrival_sample Closest sample index of arrival 8097

trace_P/S_arrival_uncertainty_s Picking uncertainty in second 0.02
trace_P/S_onset P- or S-wave onset emergent
trace_P_polarity P-wave arrival polarity positive
trace_has_offset Any visible offset in the trace 0 or 1

trace_missing_channel Number of missing channel of the trace 0, 1, or 2
trace_snr_db SNR for each component 6.135|3.065|11.766

Table 2 Attributes in the metadata file. Some source attributes are not available for exotic events.

To distinguish them from ComCat events, we add a
“pnsn” prefix to their event IDs.

Event Type

When processing a seismic event as the seismic data
comes in, the event type is manually specified by the
network analysts. For example, the PNSN labels “prob-
able explosion” waveforms that have the characteris-
tics of shallow quarry blasts (strong P waves and loca-
tion near known quarries). Until the 1990s, the PNSN
would confirm these explosions by phone confirma-
tion, though this is no longer routinely done. When
sending the finalized event from the AQMS database to
the ComCat, PNSN maps and merges several types of
events into one: “earthquake”, “slow earthquake”, and
“long period volcanic earthquake” are mapped into the
“earthquake” category; “explosion”, “shot” and “proba-
ble explosion” aremerged into the “explosion” category.
For simplicity and consistency, we use the event types
“earthquake” and “explosion” for the ComCat events,
but their original event types are also included for ref-
erence in the metadata. Table S2 lists the latest PNSN
event-type labels from the PNSN AQMS database.

Source Magnitude and Type

The event size, as represented by the source magni-
tude, is only available for the ComCat events. All Com-
Cat events included in the dataset have magnitudes less

than seven and greater than zero, as shown in Table
1. The magnitude completeness of the catalog is es-
timated using the method of Wiemer and Wyss (2000)
and found to be around 2 for the years 2019-2022 (Fig-
ure S19). The types of magnitudes reported are typical
to regional earthquakes that have local seismicity: the
local magnitude (Ml) and the duration magnitude (Md).
There are three types of magnitude used in the

dataset. The PNSN uses a local magnitude(Ml, Richter,
1958; Jennings and Kanamori, 1983) that measures the
magnitude of a local earthquake using the averagemax-
imum amplitudes of two horizontal seismograms con-
verted to have theWood-Anderson response, preferably
taken from broad-band seismometers, and corrected
for the distance between the source and the receiver.
Suchmagnitude is reported by the National Earthquake
Information Center (NEIC) for all earthquakes in the
US and Canada. The coda duration magnitude Md is
calculated based on the duration of shaking measured
on the vertical component and could be the only avail-
able magnitude product for small events or those not
well recorded on well-calibrated stations with horizon-
tal components. Over the course of time, processes to
calculate the magnitudes vary because of varied pro-
cessing routines and analyst interventions.
Until 2012, the PNSN only reported duration magni-

tude to ComCat for most earthquakes using the algo-
rithm from Crosson (1972), except for a few significant
events that were manually changed to the local magni-
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Figure 6 Magnitude types of ComCat events as a function of time. Md and Ml denote duration and local magnitudes, re-
spectively. Mh denotes magnitudes manually inserted by the analysts. Before the PNSN began using the ANSS Earthquake
Monitoring System (AQMS) in 2012, 483 events had Ml estimates, and 46,326 events had Md estimates in the dataset.

tude. The early seismic stations of the PNSN only had
vertical components, a small dynamic range, and short-
period sensors that would clip even for relatively small
magnitude events. It is not possible to obtain a local
magnitude from such data. As the networkmodernized
over time, higher dynamic-range three-component sen-
sors were added, and the data quality improved, which
allowed PNSN to determine an Ml for more events.
From 2002 to 2011, 46,326 events had duration mag-
nitude preferred, while only 483 events (average mag-
nitude 2.45) had local magnitude reported as the pre-
ferred magnitude type. From 2012 to 2015, the PNSN
calculated and reported both duration and local mag-
nitudes, though the local magnitude was still only cal-
culated for larger events. Since 2015, the PNSN has
switched from having duration magnitude to the local
magnitude as the preferred anddefaultmagnitude. 80%
of all events included in the ComCat dataset until 2008
have a duration magnitude preferred, after when there
were increasingly more Ml-preferred magnitudes (Fig-
ure 6). While the duration magnitude is still calculated,
it is only the preferred magnitude for about 10% of the
events each year. From 2002 to 2022, therewere also 111
events with an Mh magnitude in the dataset, extracted
from the NEIC and manually added by the network an-
alysts. Note that there is no moment magnitude Mw re-
ported in this dataset because themomentmagnitude is
obtained from low-frequency seismograms, which are
often buried in the seismic noise for small earthquakes.
Mwmagnitude may be included as Mh.
There are potential challenges in interpreting the

magnitudes as ground truth labels. Md and Ml have
knownsystematic biases that arise from theparticularly
high near-source scattering of shallow earthquakes or
quarry blasts (Koper et al., 2020; Wang et al., 2021).
In 2012, the PNSN adopted AQMS, which included a
method to measure coda duration that was inconsis-

tent with the previously used method. The PNSN staff
did a rough recalibration of their Md relationship to
partially account for the systematic difference. How-
ever, there is a known inconsistency of the Md mag-
nitudes for the smallest events before 2012 and after
2012. Future efforts must be made to re-calculate the
magnitudes more systematically, ideally using consis-
tent methods, throughout the 2002-2022 period.
Table 1 shows the event counts per magnitude bin

for this dataset. The largest event in the dataset comes
from Mw 6.4 Northern California, 20 December 2022
by the CISN, but this event was outside the PNSN’s au-
thoritative boundaries. Thus, ComCat preferred an ori-
gin contributed by CISN. The largest earthquake in this
dataset within PNSN’s authoritative boundaries is Md
4.8 Brinnon, Washington, on 25 April 2003 (event ID
uw10583988). Relatively small magnitude uncertainty
(0.04), depth uncertainty (0.59 km), and horizontal un-
certainty (0.347 km) were reported.

Stream Signal-to-Noise Ratio

The signal-to-noise ratio (SNR) is an important factor
in measuring the noise level in the traces. Similar to
Michelini et al. (2021), we define the noise window as
8 seconds before the P-wave arrival for the ComCat
events. To better capture the energy of emergent S-
wave onsets, the signal window is defined as 1 second
before to 2 seconds after the S-wave arrival. For the ex-
otic event catalog, since P-wave and S-wave arrivalsmay
not be available, the noise window is defined to begin
12 seconds after the beginning of the traces. The sig-
nal window is the same as exotic events, P- or S-wave,
whichever is available. For each component, the SNR is
defined as

(1)SNR = 20 log10
|S98|
|N98|
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Figure 7 Waveform from event uw10583988 (M4.8 Brinnon, Washington, 25 April 2003) included in the dataset. Only the
vertical component is shown. The blue and red vertical lines show P- and S-wave arrival picked, respectively. The amplitude
units are in counts.

where |S98| and |N98| are the 98% percentile of the ab-
solute values in the signal and noise window, respec-
tively. When no data is available, e.g., a single-channel
station with only the EHZ channel, NaN (not-a-number)
is filled as a placeholder in the missing channels. Fig-
ure 8 shows the distribution of individual SNRs calcu-
lated from the ComCat and exotic event catalogs. The
traces with SNR > 80 db (indicating an error in the noise
window) or < −20 db (indicated too low of a signal) are
removed from the dataset.

Uncertainties

The metadata includes four types of uncertainties for
the ComCat events. The P- and S-waves arrival uncer-
tainties are estimated at the time of picking. Before
the PNSNusedAQMS, the uncertaintywas directlymea-
sured and recorded in the phase data, and a weight was
calculated. Using Jiggle from AQMS since 2012, the an-
alysts assign weight as an integer ranging from zero to
four to each pick by visually measuring the impulsivity
of the arrival. A zero weight indicates the highest ac-
curacy of picks, typically for P-wave arrivals, and has
0.03 seconds of uncertainty. A weight of three indi-
cates a low pick accuracy, typically for S-wave arrival
with 0.3 seconds of uncertainty. Phase uncertainties

are used when locating the events, but those with un-
certainty weights of four are typically not used in earth-
quake locations. Before 2012, PNSN used Spong (an
adaption of Fasthypo, Herrmann, 1979) as the location
engine. This changed to HYPOINVERSE (Klein, 2002)
after PNSN started using AQMS and Jiggle.

The origin location (depth and horizontal) uncertain-
ties are the error estimated from the location engine.
Figure S28 shows the locations of the events with hor-
izontal uncertainty greater than 20 km. Note the clus-
ter off-shore Oregon that is outside of the PNSN author-
itative boundaries. The PNSN has poor location con-
straints on these events since there are almost no off-
shore seismic stations except for the Ocean Observato-
ries InitiativeRegional CableArray (FDSNnetwork code
OO, Rutgers University, 2013), which are occasionally
picked during PNSN routine data processing. ComCat
maynot choose these originproducts fromPNSNaspre-
ferred. However, the events with high horizontal uncer-
tainty onlymakeup 0.4%of all ComCat events, and their
picks are still accurate enough to be part of the dataset.

We also include the magnitude uncertainties in the
metadata. Themagnitude is first evaluated on the chan-
nel level. For three-component stations, the channel-
level local magnitude is calculated only if a P- or S-
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Figure 8 Distribution of signal-to-noise ratios (SNR) of the traces from ComCat and exotic events. SNRs are calculated on
each component of the three-component streams.

Network FDSN Code Number of Streams Reference
UW* 100,561 | 5,653 | 26,716 University of Washington (1963)
PB 41,674 | 461 | 11,126 Plate Boundary Observatory Borehole Seismic Network
CC 23,988 | 3,119 | 6,784 Cascades Volcano Observatory/USGS (2001)
TA 9,912 | 4 | 3,012 IRIS Transportable Array (2003)
CN 6,008 | 2 | 1,692 Natural Resources Canada (NRCAN Canada) (1975)
US 3,420 | 0 | 981 Albuquerque Seismological Laboratory (ASL)/USGS (1990)
UO* 3,593 | 28 | 891 University of Oregon (1990)
HW 840 | 0 | 252 Hanford Washington Seismic Network
IU 20 | 0 | 4 Albuquerque Seismological Laboratory (ASL)/USGS (1988)

Table 3 Description of network FDSNcode and their references. Networks annotatedby an asteriskmark (*) aremaintained
by the PNSN. The number of streams shown for each network is from ComCat events, exotic events, and noise, respectively.
PB and HW network does not have a registered FDSN network DOI.

wave is picked on one of the components to only select
clear signals. Since 2012, a few single-component sta-
tions (EHZ) also contribute to the local magnitude and
have the sameweight as three-component stations. The
event magnitude is the median of all channel magni-
tudes that meet the SNR criteria. The event magnitude
uncertainty is the median absolute deviation (MAD) of
channel magnitudes used for event magnitude calcula-
tion. These uncertainties are calculated for all magni-
tude types except Mh.

P-wave Polarity

When analysts pick the phase arrivals, Jiggle also auto-
matically measures the first motion of the P-wave picks
with weights less than one (e.g., best waveforms), leav-
ing the rests as “undecidable”. The analysts can manu-
ally override these polarities if they are confident. Less
than 42% of P-waves in this dataset have undecidable
polarity information. TheP-wavepolarity ratio between
positive and negative as a function of the year is shown
in Figure S20. The sudden switch to a preference to as-
sign or report positive polarities in 2012 highly suggests

that the switch to AQMS and Jiggle in 2012 has affected
the PNSN analysts’ output. Until this data collection ef-
fort, we were unaware of this fact, and the reason for
the abrupt change is unclear.

Conclusion
This work contributes to collecting and curating a seis-
mic dataset for the Pacific Northwest region. The cu-
rated dataset is provided with the long-standing work
and labeling of the Pacific Northwest Seismic Network
analysts and seismologists. We described the temporal
and spatial characteristics of the data attributes.
This original contribution focused on preparing the

seismic waveforms and PNSN-provided data attributes
(phase picks and default source parameters). We picked
additional waveforms for the recent 20 December 2022
Northern California earthquake sequence, the largest
event recorded recently in proximity to the PNSN au-
thoritative boundaries. We also transfer-learned an es-
tablished phase picker, the Earthquake Transformer
(Mousavi et al., 2020), on the best quality of the PNSN
picks and provided additional picks for S waves, which
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we provided in this contribution as an alternate catalog
of picks.
There remains tremendouswork to improve the qual-

ity and consistency of the data attributes. We use ver-
sion control on the curated dataset through GitHub to
allow for future development of the data and metadata
(Ni, 2023). Examples of future developments may be
a refinement of the current attributes or the addition
of new labels. In particular, the attribute “magnitude”
should be carefully interpreted as 60% of the catalog
uses duration magnitude, and 40% of the catalog uses
the local magnitude, but both may have biases. There-
fore, a follow-up task is to re-calculate thesemagnitudes
using consistentmethods. Another avenue for improve-
ment is to re-estimate the polarity of the P and S waves,
using the known labels and predicting the “undecided”
labels. Furthermore, we have not yet included other
types of tectonic events, such as low-frequency earth-
quakes (Ducellier and Creager, 2022), but these would
improve the diversity of events. Finally, an obvious next
step will be event classification work that will take the
waveforms and predict the event type.
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