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Abstract Template matching has become a cornerstone technique of observational seismology. By tak-
ing known events, and scanning them against a continuous record, new events smaller than the signal-to-
noise ratio can be found, substantially improving the magnitude of completeness of earthquake catalogues.
Template matching is normally used in an array setting, however as we move into the era of planetary seis-
mology, we are likely to apply template matching for very small arrays or even single stations. Given the high
impact of planetary seismology studies onour understandingof the structure anddynamics of non-Earthbod-
ies, it is important to assess the reliability of template matching in the small-n setting. Towards this goal, we
estimate a lower bound on the rate of false positives for single-station template matching by examining the
behaviour of correlations of filtered white noise (given that the unfiltered data before processing is totally un-
correlated). We find that, for typical processing regimes andmatch thresholds, false positives are likely quite
common. We must therefore be exceptionally careful when considering the output of template matching in
the small-n setting.

Non-technical summary Many signals of interest to seismologists are so small that they cannot be
easily seen on seismograms. In order to identify these signals, seismologists have developed the technique of
template matching, which takes a large signal and runs it over a seismogram. If the template signal matches
the seismogram under a certain mathematical definition, then we consider it to be a match, and we add that
part of the seismogram to the catalogue of signals. Normally, seismologists cross-check this process using
multiple seismograms recorded at different instruments, but this is not necessarily possible on other planets
where it is too expensive to deploy many seismometers. Without this cross-checking, it is possible that many
of the “matches” are in fact false positives. We performed a statistical experiment to show that these false
positives are in fact likely to be quite common, whichmeans that wemust be careful when handling template
matching with single seismometers.

1 Introduction
One of the most important goals in observational seis-
mology is to observe the smallest interesting signals
possible. As codified in the Gutenberg-Richter law, the
number of seismic events decreases exponentially with
magnitude. This implies that the overwhelming major-
ity of events create seismic signals smaller than can be
observed above the noise that contaminates seismic ob-
servations. Access to these small events gives us great
insight into tectonic processes across timescales, in-
cluding the geometry of buried faults, fault heterogene-
ity, earthquake statistics etc.
Correlation based methods have proven to be one

of the most successful ways of extracting small signals
from the noise. This class of methods relies on the
fact that interesting seismic signals typically have dif-
ferent structure to both instrumental noise and ambient
groundmotions produced by environmental processes.
Furthermore, within the elastic regime groundmotions
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are linear, so events with different magnitudes will still
look similar (albeit with different amplitudes) if they oc-
cur at approximately the same location and are filtered
appropriately. The cross-correlation class of methods
scans the seismic record with templates—snippets of
known high-amplitude signals that will match lower
amplitude signals buried in the noise. Correlation
based techniques using previously observed or calcu-
lated templates are therefore also known in the liter-
ature as template matching or matched filter analy-
ses. Thesemethods have been prominent in geophysics
for many decades, especially in exploration settings, as
comprehensive early reviews will attest (Anstey, 1964).

In observational and monitoring settings, the colla-
tion of suitable template catalogues had towait until the
proliferation of broadband digital seismograms, but the
technique is now ubiquitous across distance ranges and
period bands (e.g., Shearer, 1994; Gibbons and Ring-
dal, 2006; Bobrov et al., 2014). Template matching has
beenused extensively for the purposes of identifying re-
peating earthquakes, and also more generally for con-
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structing catalogues where earthquakes are required to
merely be similar, rather than exact matches. It is the
latter case (which typically has relaxed assumptions on
the required level of waveform matching) that we are
concernedwith in this study. While advancedmatching
algorithms have been proposed to mitigate various fail-
uremechanisms (e.g. Gao andKao, 2020; Kurihara et al.,
2021), we here focus on themost basic form of template
matchingbased on thenormalized cross-correlation co-
efficient of a single window, which is heavily used in
contemporary studies.
Template matching is extremely computationally in-

tensive, although the calculations are simple. The
advent of general-purpose graphical processing units
(GPGPUs) has thus benefited template matching anal-
yses immensely, and allowed large continuous wave-
formdatabases tobe scannedefficientlywithmany tem-
plates, resulting in a huge increase in the number of
catalogued events, albeit with potential concerns re-
garding the overall rate of false detections (e.g., Beaucé
et al., 2017; Ross et al., 2019).
Template matching studies are potentially especially

useful in planetary seismology contexts, which suffer
from the constraints of temporary single-station de-
ployments where extracting all possible events from
the limited data available is particularly advantageous.
In the Martian context, which has been the prime re-
cent focus of planetary seismology, the InSight single-
station Mars seismometer demonstrated that a larger-
than-terrestrial fraction of the seismicity comes about
from events which are very similar to each other. These
include events of geological (thermal/tectonic) origin
(Dahmen et al., 2021; Sun and Tkalčić, 2022) which are
identified through matching, and those of impact ori-
gin which display very similar infrasonic chirps (Gar-
cia et al., 2022); similar techniques have recently been
re-applied to Apollo data to isolate diurnal variations
in crustal properties (Tanimoto et al., 2008) and iden-
tify new deep moonquakes (Sun et al., 2019). Given the
paucity of data in planetary settings, all successful de-
tections of seismic sources are incredibly useful, and
are likely to be influential in our understanding of the
planetary target.
An interesting additional application of template

matching in a planetary seismology context would be
in the search for signals which are expected and which
would have predictable waveforms, but are likely to be
at or near the noise floor. Such signals are exceedingly
rare, but can include cases such as expected impact
events (Fernando et al., 2022). Although not currently
used by any planetary seismology missions, the poten-
tial for automated triggering (e.g., to switch into high-
sampling mode) upon detection of seismic precursor
phases exists. Similarly, the current procedure of down-
linking low-resolution data from spacecraft to Earth,
uplinking requests for specific data segments back to
the spacecraft, and downlinking these back to Earth
may be made substantially more efficient through on-
board event detection and selection. On-board detec-
tion of seismic signals is therefore a potentially impact-
ful future planetary seismology capability albeit with
significant challenges including sampling rates, timing

concerns, template generation, processing capabilities,
data storage, and downlink planning. Some of these
challenges persist for any implementation of on-board
detection; however, false positives would exacerbate
the issues with processing, data storage, and downlink
planning at a minimum. Every proposed event detec-
tion would require on-board processing to first detect
and then additional processing to bound the timeframe
of the event and transfer the highest available rate data
for all relevant instrumentation into a downlink/stor-
age buffer. The availability of on-board data storage, es-
pecially for downlink, could be challenging to provide
when detection rates are high, depending on the over-
all design and downlink buffer sizes for detected events.
Downlinkpriorities and rateswouldneed tobe carefully
managed to make sure that all the data can be returned
before any downlink buffers overflow and data is lost.
False positive detections may not be fully preventable
in the on-board single-station setting, but steps should
be taken tominimize these instances, particularly if on-
board detection is a capability as there are fewer re-
sources on a spacecraft to accommodate the added bur-
den. In all cases, then, these capabilities would require
robust template matching via cross-correlation for sin-
gle stations, and a minimal rate of false positives. In
return, savings may be made in the power and commu-
nications budgets. Whilst current limitations of power,
on-board processing capacity, and the identification of
appropriate templates mean that these techniques have
not been used to date, they are likely to become more
advantageous as more sophisticated geophysical net-
works are deployed off-world.
In light of these opportunities for advancing both the

instrumental methodology, and interpretation, of plan-
etary seismology, it is of vital importance to thoroughly
understand the failure modes of template matching so
that we have confidence in proposed detections. In this
short manuscript, we investigate a basic issue in tem-
plate matching—the rate of false positives. It is imme-
diately apparent that any finite length template corre-
lated against an infinitely long target signal will eventu-
ally result in a match that is arbitrarily good—the ques-
tion is, under realistic data processing conditions, does
this happen sufficiently quickly as to pose an issue for
the interpretation of template matches?

2 Template Matching Definitions
The normalized cross-correlation between two signals
of equal length X = [x1, x2, . . . , xn]T and Y =
[y1, y2, . . . , yn]T is defined to be

(1)CC(X, Y) = 〈X − X̂, Y − Ŷ〉√
〈X − X̂, X − X̂〉〈Y − Ŷ, Y − Ŷ〉

,

where

(2)〈X, Y〉 =
n∑

i=1
xiyi,

and
(3)X̂ = 1

n

n∑
i=1

xi.
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Figure 1 Maximum [-1,1] normalized cross-correlations between three-component random noise segments. Blue lines
show the maximum cross-correlation up to some time, with the ±1σ shown in light blue. Orange lines show the Median
Absolute Deviation (MAD) over 100 days, with the ±1σ shown in light orange (not visible due to narrow uncertainty over this
interval).

This definition produces a value in [-1,1], where 1 is
perfectly correlated and -1 is perfectly anticorrelated,
independent of the relative amplitude of the signals or
any static offsets. The normalized three-component
cross-correlation between two three-component sig-
nals X = (X1, X2, X3) and Y = (Y1, Y2, Y3) is then
defined to be the average

(4)
CC3(X, Y)

= CC(X1, Y1) + CC(X2, Y2) + CC(X3, Y3)
3 .

To calculate the cross-correlation time series when X
and Y are not the same length, we scan the cross-
correlation function along the longer signal. Specif-
ically, assume X is the shorter signal, and that it
has M samples, while Y has N samples. Denot-
ing Yi = [yi, yi+1, . . . , yi+M−1]T , then CC(X, Y) =[
CC(X, Y1), CC(X, Y2), . . . , CC(X, YN−M+1)

]T , and

similarly for CC3 for 3 component signals. The Median
Absolute Deviation (MAD) of a signal X is defined to be

(5)MAD(X) = median(|X − median(X)|).

Template-matches are typically defined by a thresh-
old that is some multiple of the MAD of the cross-
correlation signal, that is, X is a match to a segment of
Y at starting index i if

(6)CC(3)(X, Yi) ≥ cMAD(CC(3)(X, Y)),

for some constant c, where c ∼ 7 is a typical choice for
3-component seismograms (e.g., Sun andTkalčić, 2022).

Simulation Results and Discussion
We investigated the base rate of expected false-positives
for three-component, single-station template match-
ing. We considered pairs of signals X and Y that are
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Figure 2 Maximum cross-correlation between three-component random noise segments, normalized by the Median Abso-
lute Deviation (MAD) over 100 days. Blue lines show the maximum MAD normalized cross-correlation up to some time, with
the ±1σ shown in light blue.

completely white-noise, that is, the underlying signals
before processing are totally uncorrelated. The rate of
production of false positives for initially white noise sig-
nals (after data processing) will therefore give a lower
bound on the true rate of false positives for general sig-
nals (given the same processing). Due to the timescale
invariance of white noise, it would be possible to per-
form this analysis in non-dimensional units, however
we have chosen to present results in physical units to
aid intuition. We considered a typical setup for teleseis-
mic planetary applications, with signals recorded at 20
Hz, bandpass filtered with lower corner frequency 0.1
Hz and upper corner frequencies of fmax = 0.4, 0.8, and
1.6 Hz, using a 4 pole zero-phase Butterworth filter. The
shorter signalX has a variable window length ofwlen =
5, 10, or 20 s, while the longer signal Y is 100 (Earth)
days long. When initially generating signals, we added
40 s of padding to either end (4 times the lower bandpass
period) to avoid filter edge effects, before cutting to the
required lengths. For each of the 9 combinations of up-

per corner frequency andwindow length, we generated
32 pairs of three-component filteredwhite noise signals
X and Y. We then calculated the MADs and running
maximums of the cross correlation signals CC3(X, Y).
By calculating the results for 32 random pairs, we can
also calculate the standard deviation of the resulting es-
timates. As the underlying raw data is white noise, the
results for different parameter regimes can be immedi-
ately obtained by scaling frequency f and time t with a
common factorα so that f ′ = αf , t′ = t/α; for example,
the results of the fmax = 1.6 Hz, wlen = 20 s case over a
100 day run are equivalent to a 1-16 Hz, 2 s window over
10 days, recorded at 200 Hz.

Figure 1 shows the running maximum cross-
correlations and MADs for the 9 combinations of
filter and window length. Figure 2 shows the cross-
correlations normalized by MAD. Combinations with
narrow filter bands and short window lengths, which
are seen in the top left corner of the figures (e.g.
subfigures (a), (b), (d)), unsurprisingly result in large
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maximum cross-correlations relatively quickly. How-
ever, they also result in relatively high MAD (i.e., there
are relativelymany periods with high cross-correlation,
due to the quasi-sinusoidal nature of the signals over a
short time window). As a result, the MAD normalized
cross-correlations saturate quickly for these combina-
tions. Conversely, combinations with longer windows
and wider passbands, found in the bottom right of the
figures (e.g. subfigures (f), (i), ( j)) have overall lower
maximum cross-correlations, but also lower MADs and
so the MAD normalized cross-correlations continue to
grow even after 100 days. In particular, in the worst
case (fmax = 1.6 Hz, wlen = 20 s), the maximum MAD
normalized cross-correlation exceeds 7 after one day,
and 8 after 100 days—or on average about 15 false
positives at an MAD ratio of 8 for the 1480 days the
Insight mission was active on Mars. As seen in Figure
1, the estimates of the MAD of the cross correlations is
very stable by the end of the 100-day correlation period
for all cases. This allows us to estimate the maximum
possible multiplier of MAD achievable for the different
filter/window configurations, which is shown in Table
1.
This experiment considers random pairs of three-

component signal X and Y. A more typical experiment
is to hold the longer signal Y fixed (we only record one
seismogram), and to scan multiple templates across it.
For the filtered white noise case, because the data that
are processed to give X and Y are uncorrelated, the
effect of multiple templates is simple to calculate. If
the average time between cross-correlations exceeding
the MAD threshold of c is Tc for a single template (i.e.,
matches occur at a rate of 1/Tc), then for N templates
the average time betweenmatches is Tc/N (i.e., a rate of
N/Tc). For example, taking the lower-right case of Fig-
ure 2, scanning 100 white noise templates would result
in a false positive match with MAD normalized cross-
correlation exceeding c = 8 approximately once a day.
Modern workflows for template matching in obser-

vational seismology normally further consider the av-
eraged cross correlation across an array, up to and in-
cluding arrays with extremely large numbers of instru-
ments such as Distributed Acoustic Sensors (DAS) (e.g.,
Gibbons and Ringdal, 2006; Li and Zhan, 2018). Ar-
ray deployments implicitly create a “barcode” of rela-
tive arrival time patterns for each potential source lo-
cation that must be generally be satisfied for a signal
to count as a match. As such, array deployments are
much more resilient to false positives in general. This
is not to say that false positives are not an issue; in par-
ticular, for arrays with narrow apertures relative to the
content of waveform frequency, coherent noise sources
can correlatewell. Likewise, templates containing com-
mon noise phenomenon (such as passing cars, or elec-
tronic ‘glitch’ noise as with InSight on Mars (Kim et al.,
2021)) may match waveform segments that do not con-
tain any interesting seismic signals but do contain a
similar noise signal. These effects should be consid-
ered as additive to the basic analysis of random noise
false-positives investigated here, and are almost cer-
tainly more important for larger arrays. The key take-
away of this paper is to emphasize that for single sta-

wlen (s)
5 10 20

f m
a

x
(H
z) 0.4 5 7 9

0.8 7 10 14
1.6 10 14 20

Table 1 Estimatedmaximummultiple of MAD to the near-
est unit for each configuration of filter corner frequency
fmax and window length wlen.

tions, that are the current state-of-the-art for planetary
applications (as well as some circumstances on Earth),
the baseline rate of false-positive detection is significant un-
der realistic processing choices.

3 Conclusions
In this work, we investigated the rate of false-positive
detection of template matching for snippets of filtered
white noise scanned across filteredwhite noise records.
We used realistic processing for 3-component traces for
pre-processing, and found that the rate of false-positive
detection is significant. Because the unprocessed white
noise data used to generate the templates and long-run
signals is on average totally uncorrelated by definition,
these results act as a lower bound on the rate of false
positives for realistic signals using the same process-
ing. Real seismic signals will contain features that may
induce “spurious” correlations (in the sense that they
are not related to seismic activity), and the relation-
ship between the spectra of real seismic noise and pre-
processing filter choices will also have implications for
the rate of false positives in excess of the baseline con-
sidered here.
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