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Abstract Geocoding is a spatial analysismethod that uses address information (e.g., street address, inter-
section, census tract, zip code, etc.) to determine geographical coordinates (latitude and longitude). In recent
decades, geocoding has gone beyond its primary use for census and demographic information to novel appli-
cations in disaster risk reduction, even to earthquake early warning. Here I demonstrate the utility of geocod-
ing techniquesasapplied to twocase studies that: 1) relyonsurvey responsedata tounderstand theefficacyof
tests conducted on ShakeAlert®, the earthquake early warning system for theWest Coast of the United States;
and 2) use crowd-sourced video footage that showshowpeople behaveduring earthquakes. Geocoding these
data can improve our overall technical understanding of alerting systems, demonstrate whether individuals
take protective actions such as ‘Drop, Cover, and Hold On’ in response to an alert, and spotlight individuals
or communities that the system is reaching or unintentionally missing. The combination of these social sci-
ence datasets with geocoding information deepens our knowledge of these fundamentally human-centered
systems, including the potential to improve the distribution of alerts for people and individuals with access
and functional needs.

Non-technical summary As of May 2021, the ShakeAlert earthquake early warning (EEW) sys-
tem sends public alerts via cellphones and triggers automatic actions for infrastructure (e.g., shutting off gas
valves, slowing down trains to prevent derailment, etc.) in the states of California, Oregon, and Washington,
United States. The societal benefits of EEW are expandingworldwide and the efficacy of these systemswill be
tested by howwell received and understood alerts are by various publics andwhether individuals and groups
will take protective actions. In this study, I demonstrate the importance of geospatial techniques, such as
geocoding, as applied to two case studies that: 1) rely on surveys to understand the spatial efficacy of alert-
ing in Oakland, California, and 2) use video footage to understand what protective actions people take during
an earthquake. Geocoding, a method employed to determine a geographic location, provides information
on where alerts are received, what people experienced at that location during an earthquake, and how their
experiences may have influenced their behavior. Geocoding and other geospatial techniques may be of use
to emergency responders, structural engineers, and physical and social science researchers who seek to im-
prove earthquake earlywarning systems andhowpeople interactwith the technology to inform their decision
making.

1 Introduction
Geocoding is the process of using a street address, in-
tersection, census tract, zip code, or some other type
of location information and determining its geograph-
ical coordinates (latitude and longitude). Pioneered in
the late 1960s for use in the census, New Haven, Con-
necticut was the first city in theworldwith a geocodable
street network database (e.g., Smith and White, 1971).
Over the decades, scholars have used geocoding tech-
niques to examine the effect that physical proximity has
had on the careers of women writers in Victorian-era
London, England (Bourrier et al., 2021), to help with the
recovery inNewOrleans post-HurricaneKatrina in 2005
(Gardere et al., 2020), and in disease surveillance for
public health purposes (Lin, 2022; Shaheen et al., 2021;
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Cohen et al., 2022), to name only a few applications.

In addition, geolocation through location-based ser-
vices (LBS) has become very popular for use in vari-
ous mobile phone applications (or apps) since the early
2000s (e.g., Huang, 2022). LBS have greatly increased
our ability to understand individual and community de-
mographics and theways in which they travel andmove
about theworld. There aremany humanitarian applica-
tions to the use of LBS, such as tracking the location of
individuals with dementia (Abbas and Michael, 2022),
helping students around campus during the COVID-
19 pandemic to avoid transmission ‘hotspots’ (Elalami
et al., 2022), and with alerting capabilities for impend-
ing weather, flooding, and other natural hazards (e.g.,
Bopp and Douvinet, 2020).

Geolocation also extends to earthquake earlywarning
(EEW) alerting capabilities. The U.S. Geological Survey
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(USGS) operates and maintains the ShakeAlert® EEW
system (e.g., Given et al., 2018), which is now opera-
tional in California, Oregon, andWashington. The idea
for an EEWsystem in the United States has been around
since the late 1980s after the 1989M6.9 LomaPrieta, Cal-
ifornia earthquake (for a timeline, see McBride et al.,
2022b), and gained traction in the United States in 2006
(U.S. Geological Survey, 2019). Although early warning
systems are human-centered (e.g., Kelman and Glantz,
2014; Sumy et al., 2021), the ideas and conceptualiza-
tion around EEW largely came from seismologists and
the physical science community. For the United States,
this changed almost a decade later in 2015 with the de-
velopment of the Joint Committee for Communication,
Education, Outreach, and Technical Engagement (JC-
CEO&TE, de Groot et al., 2022).

Earthquake early warning (EEW) alerts are sent out
based on magnitude and intensity thresholds. Geolo-
cation is vital in determining seismic intensity, or the
severity of earthquake shaking, as intensity varies by
location on relatively small spatial scales (on the order
of tens to hundreds of meters) due to microzonation
(e.g., Kumar Shukla, 2022; Rastogi et al., 2023; Pilz et al.,
2015). Seismic intensity impacts what an individual
feels during earthquake shaking, whether they receive
an earthquake early warning alert (or not), andwhether
a person takes a protective action (or not). The magni-
tude and intensity thresholds for EEW vary from coun-
try to country; for example, theWest Coast of theUnited
States (California, Oregon, and Washington) receives
alerts at lower intensities (Bostrom et al., 2022; U.S. Ge-
ological Survey, 2021) compared to Japan (Nakayachi
et al., 2019) and New Zealand (Becker et al., 2020).

As EEW expands worldwide, the earthquake science
community is collecting a wealth of social science data
and information about those who received an EEW
alert, what people experiencedduring earthquake shak-
ing (seismic intensity), people’s behavior and whether
they take protective action during an earthquake, such
as ‘Drop, Cover, and Hold On’ (e.g., McBride et al.,
2022b). In this study, I demonstrate the range and util-
ity of geocoding social science data for the purposes
of informing and improving EEW. I first discuss the
Google Maps Geocoding Application Programming In-
terface (API) methodology for geocoding, chosen here
because the software is open-access and free to use. I
then demonstrate the applications of geocoding to two
case studies using: 1) survey data collected in Oak-
land, California, United States (McBride et al., 2023),
and 2) videodata from the 2018M7.1Anchorage, Alaska,
United States earthquake (McBride et al., 2022b). I con-
ducted the geocoding in the two case studies described
here. I then consider limitations and ethical considera-
tions around the methods used and how to address pri-
vacy and protection of these data. Finally, I discuss ap-
plications of geocoding and other location-based tech-
niques to evaluate the distribution and effectiveness of
alerts, whichwill inform future improvements to earth-
quake early warning (and earthquake science broadly)
worldwide.

2 Methods: Google Maps Geocoding
Application Programming Interface
(API)

The Google Maps Geocoding Application Programming
Interface (API) is freely and openly available, does
not require proprietary software that may be cost pro-
hibitive, is accessible over the Internet, and can be
enabled within several clients, such as JavaScript and
Python, without the need for large amounts of scale up
time. A call to the Google Maps Geocoding API does re-
quire anAPI key, whichmay require a small fee depend-
ing on how frequently the Geocoding API is used.
Geocoding works best when starting with an accu-

rate street address (e.g., Yang et al., 2004; Kilic and Gül-
gen, 2020), either provided by the individual directly or
through the identification of a landmark from which
a street address can be obtained. From a street ad-
dress, I use the Google Maps Geocoding API to ob-
tain geographic coordinates (latitude and longitude) for
mapping purposes. The output from the Google Maps
Geocoding API is in JavaScript Object Notation (JSON)
format and is easily readable by a range of different
computing languages.
As an example, I examine the street address for the

headquarters of the EarthScope Consortium: ‘1200 New
York Avenue NW Suite 400 Washington DC 20005-3929’
(Figure 1). The address for the EarthScope Consor-
tium headquarters has nine ‘address components’: the
suite number or subpremise (400), the street number
(1200), the route or street (NewYorkAvenueNorthwest),
the neighborhood (Northwest Washington), the local-
ity (Washington), the administrative area (District of
Columbia), country (United States), postal code (20005),
and postal code suffix (3929). The ‘long name’ has all
parts spelled out, while the ‘short name’ contains ab-
breviations; for example, the US (‘short name’) for the
United States (‘longname’). The readable address is pro-
vided in the ‘formatted address’ output (1200 New York
Ave NW #400). I conduct a quality check on the data
by comparing the ‘address components’ (input) with the
‘formatted address’ (output).
The geographic coordinates (latitude and longitude)

are provided in the ‘geometry’ section of the JSON out-
put (Figure 1). The ‘location’ is the geocoded location
of the EarthScope Consortium headquarters, with lati-
tude (‘lat’) and longitude (‘lng’) coordinates. There are
four ‘location types’ that the Google Maps Geocoding
API uses: rooftop, range interpolated, geometric cen-
ter, and approximate. The ‘rooftop’ output is the most
precise, while the ‘approximate’ output is the least pre-
cise. I will discuss these outputs in context with the case
studies and examples in the following sections.
Lastly, the ‘viewport’ output provides a level of un-

certainty on the location. I use the Euclidean distance
formula between the ‘location’ output with the ‘north-
east’ and ‘southwest’ viewport bounds, respectively, and
take a mean (average) of these two outputs to obtain a
level of uncertainty on the geolocation. In this exam-
ple, the distance between the ‘location’ and the ‘north-
east’ and ‘southwest’ viewports are 1.6 m and 1.8 m, re-
spectively, with a mean of 1.7 m (5 feet). The view-
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1) Subpremise
or Suite Number

2) Street Number

3) Street or Route

4) Neighborhood

5) Locality or City

6) Administrative Area 
(State and/or County) 

7) Country

8) Postal Code

9) Postal Code 
        Suffix

Viewport Bounds
(Proxy for Uncertainty)

Address Components

Formatted Address

Location Type

Geometry

{   
   results : [   
      {   
         address_components : [   
            {   
               long_name : 400   
               short_name : 400   
               types : [ subpremise ]   
            }   
            {   
               long_name : 1200   
               short_name : 1200   
               types : [ street_number ]   
            }   
            {   
               long_name : New York Avenue Northwest   
               short_name : New York Ave NW   
               types : [ route ]   
            }   
            {   
               long_name : Northwest Washington   
               short_name : Northwest Washington   
               types : [ neighborhood   
            }   
            {   
               long_name : Washington   
               short_name : Washington   
               types : [ locality   
            }   
            {   
               long_name : District of Columbia   
               short_name : DC   
               types : [ administrative_area_level_1   
            }   
            {   
               long_name : United States   
               short_name : US   
               types : [ country   
            }   
            {   
               long_name : 20005   
               short_name : 20005   
               types : [ postal_code ]   
            }   
            {   
               long_name : 3929   
               short_name : 3929   
               types : [ postal_code_suffix ]   
            }   
         ]   
         formatted_address : 1200 New York Ave NW #400   
         geometry : {   
            location : {   
               lat : 38.90020730000001   
               lng : -77.02841359999999   
            }   
            location_type : ROOFTOP   
            viewport : {   
               northeast : {   
                  lat : 38.9014802802915   
                  lng : -77.02708596970848   
               }   
               southwest : {   
                  lat : 38.8987823197085   
                  lng : -77.02978393029149   
               }   
            }   
         }   

Geographic Coordinates

Figure 1 The Google Maps Geocoding API JSON output for the EarthScope Consortium headquarters in Washington DC.
The nine ‘address components’ (input) are individually labeled. The ‘formatted address’ (output) provides a quality control
check on the input parameters. The geocoded output in the ‘geometry’ section contains the geographic coordinates (latitude
and longitude), and location type and viewport bounds, which together provide a proxy for geographic uncertainty.
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Figure 2 Flowchart showing the survey or video data inputs, the types of answers produced based on the information pro-
vided, the precision of these types of information, and the location type output from the GoogleMaps Geocoding Application
Programming Interface (API).

port bounds provide a level of location uncertainty
that is smaller than the footprint of the building it-
self; thus, these considerations should be taken as a
proxy or level of uncertainty, rather than a robust loca-
tion uncertainty. Additional context on location uncer-
taintywill be providedwithin the case study sections be-
low. For more thorough and complete information on
the Google Maps Geocoding API, the reader is referred
to the Developers page (https://developers.google.com/
maps/documentation/geocoding).

3 Case Study 1: Survey Data for Geolo-
cation

Most online survey providers have built-in tools to ob-
tain an internet protocol (IP) address without any in-
put from the survey responder (e.g., Sumy et al., 2020).
However, geocoding IP addresses may be unreliable
and output inaccurate geographic locations (e.g., Poese
et al., 2011; Callejo et al., 2022), with potential uncer-
tainties on the order of kilometers (e.g., Ma et al., 2023).
Due to the potentially large location uncertainties, sur-
vey designers can directly ask questions about an indi-
vidual’s location, with approval by an Institutional Re-
view Board or other research ethics committee (e.g.,
Grady, 2015). The respondent can then ‘opt-in’ to provid-
ing details about their location to a specificity that they
feel comfortable with, whether it be a postal address,
landmark, or some other geographic identifier.
For earthquake early warning, people receive alerts

within a certain spatial area based on earthquake mag-
nitude and intensity thresholds. This spatial area is
known as an alerting geofence. Extending the work of
McBride et al. (2023), I seek to use survey data to ex-
amine the data latencies at the top ten locations with
the most survey responses inside the alerting geofence
to determine: 1) who received an alert and with what
data latencies; and 2) who did not receive an alert (and
should have) or who received alerts at very long data la-
tencies (>120 s).
McBride et al. (2023) conducted two tests of the

ShakeAlert system in coordination with the Federal
Emergency Management Agency’s (FEMA) Integrated
Public Alerting & Warning System (IPAWS) Wireless
Emergency Alert (WEA) in Oakland and San Diego

County, California, respectively, before the systemwent
live for public alerting for California in October 2019.
The two survey questions asked about location were:
1) What was your physical location [during the test]?
You can choose to report your Zone Improvement Plan
(ZIP) code, physical address, or suburb, and 2) If you
do not know your exact location, can you provide the
closest identifiable landmark? These two questions al-
lowedMcBride et al. (2023) to gather broad information
around location in a way that respected the survey re-
spondent’s privacy (see Acknowledgements for ethical
approval information). However, upon examination, I
found that these questions also produced widely dif-
ferent information ranging from a postal address (pre-
cise information that can be easily geocoded), to a land-
mark or building that required some initial identifica-
tion andpreprocessing of the information, or a ZIP code
(broad information that was difficult to narrow down,
and therefore often discarded; Figure 2).

The test of the ShakeAlert system in Oakland, Cali-
fornia provides an excellent example of the types of lo-
cation responses received by survey. The USGS coor-
dinated with the California Governor’s Office of Emer-
gency Services (CalOES), the Federal Communications
Commission (FCC), and local emergency management
partners to conduct a test of the ShakeAlert system in
Oakland, California on 27 March 2019 at 11 AM local
time. The test took place in downtown Oakland dur-
ing a weekday a year before the COVID-19 pandemic, so
many respondents were at their offices and workplaces
in public or commercially zoned locations. This alle-
viates a privacy concern about revealing too much in-
formation about an individual’s personal or residential
property in this study.

The Oakland, California test covered a spatial area of
2.24 km2 in downtownOakland centered around Broad-
way. The survey gathered a total of 1,013 responses in an
area with 40,000 people, reaching 2.5% of the popula-
tion within the alerting geofence (McBride et al., 2023).
Initial data cleaning to remove inaccurate results left
828 responses to analyze. Here I discuss the manual in-
spection of the raw survey data to find the best postal
addresses (and most easily geocoded location informa-
tion) from a variety of different responses, starting with
the landmark information (Figure 2), a practice not de-
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Figure 3 (a) Map of the alerting geofence (red polygon) and the ten locationswith the largest survey response. The symbols
are color-coded by their median data latency (e.g., when the alert arrived at a particular location) and sized by the number of
survey responses that reported receivinganalert. Alerts that arrivedat >120 sat that locationare removedandnot considered
in themedian calculation. The numbers at each location refer to the landmarks identified in the x-axis of Figure 3b. There are
locations that received alerts that are located outside of the geofence and are denoted with a black circle. (b) The number of
survey responses by location. We examine the number of received alerts (white), with alerts that arrived >120 s (red), inexact
timing of alerts (grey), and did not receive (black). The Alameda County Administration Building (ACAB) received the most
alerts and is located on the perimeter of the alerting geofence.

scribed in McBride et al. (2023). For Oakland, Califor-
nia, landmark information included the ‘Caltrans Build-
ing’ or the ‘Alameda County Administration Building’
(ACAB). Other types of landmarks included intersec-
tions, such as ‘Near Wells Fargo on 12th and Broadway’
or ‘Oak Street and 13th’. More difficult types of land-
marks to assess were responses, such as ‘Main Library’
which we interpreted to mean ‘Main Oakland Public Li-
brary’. Becauseof the small spatial area (2.24 km2), even
landmarks such as ‘Starbucks’ were accurately identi-
fied. The most commonly incorrect part of the postal
address for the Oakland test was the ZIP code, which
may reflect the difference between their home and of-
fice addresses and their corresponding ZIP codes. This
is also recognized as a commonerrorwithin theU.S. Ge-
ological Survey’s ‘Did You Feel It?’ (DYFI?) community
intensity survey (Wald et al., 2011).
Once I had street addresses, either from the survey

respondent themselves or from the use of Google Maps
(maps.google.com) to translate a landmark or intersec-
tion to a street address, I found a geographic location
through the Google Maps Geocoding API. The location
type output of the Google Maps Geocoding API (Fig-
ure 1), the description of these location types, and the
survey data from the Oakland test of the ShakeAlert
EEW system that most likely resulted in the location
type are documented in Table 1. There are four main
location type outputs: rooftop, range interpolated, ge-
ometric center, and approximate, in order from most
precise (rooftop) to least (approximate, Figure 2 and Ta-
ble 1). The approximate location type stems from ZIP
code information only and has uncertainty on the order

of kilometers. The median uncertainty for the approx-
imate locations was 1.5 km, which I adopt as the maxi-
mumuncertainty threshold for the other location types.
The other location types have median uncertainty on
the order of 200 m or less. I reiterate that the view-
port information (Figure 1) is a proxy for uncertainty
and does not reflect the actual uncertainty in these lo-
cations. I geocoded a total of 823 survey responses (Ta-
ble 1). Of these, 64 locations (8% of the total) resulted
in ‘approximate’ location types and two were above the
median uncertainty threshold of 1.5 km; all were dis-
carded.

Here, I used the remaining 757 geocoded locations
combined with the data latency information collected
via surveys during the Oakland test of the ShakeAlert
EEW system to examine the alert receipt and median
alert latency at the top ten locations with survey re-
sponses (Figure 3), which extends the work of McBride
et al. (2023). The map (Figure 3a) shows the alerting
polygon and the distribution of locations, which are pri-
marily confined to government offices or other large of-
fice buildings. The largest number of survey responses
received at any one location (location #1: ACAB; Fig-
ure 3a) was fifty (50), regardless of whether an alert was
received or not (Figure 3b). In context with the research
questions identified above, I find that at the top ten lo-
cationswith themost survey response, 1) themedian la-
tency of the alerts ranged from 6-19 s (Figure 3a), and 2)
alerts were largely received, yet some alerts took a very
long time (>120 s) or were not received at all (Figure 3b).
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4 Case Study 2: Video Data for Geolo-
cation

Now I consider a second case study for geolocationwith
the use of video data, which demonstrates the utility
of geolocation. While the previous method with sur-
vey data was forward approaching (e.g., can ask the sur-
vey respondent about their location), this method with
video data is backward (or forensic) approaching (e.g.,
usingmetadata provided via social media or identifying
landmarks within the video itself, without contacting
the individual). Video data fromhousehold surveillance
cameras are increasingly used to check in on children
and pets (e.g., Ur et al., 2014; Bernd et al., 2022), provide
insurance claim information (e.g.,Wonget al., 2009; Ah-
mad et al., 2019), and protect from theft (e.g., Pandya
et al., 2018). As a society, we also are increasingly pub-
licly surveilled waiting at a stoplight by state and local
departments of transportation (e.g., Zhang et al., 2022),
in a grocery store to better understand retail behavior
andprevent theft (e.g., Alikhani andRenzetti, 2022), and
even in school classrooms for safety-related and dis-
tance learning purposes (e.g., Johnson et al., 2018; King
and Bracy, 2019; Fisher et al., 2020).
An increasing ubiquity of smartphone cameras com-

bined with social media platforms (YouTube, TikTok,
Facebook, and Twitter, as examples) provide public
spaces for content related to earthquake experiences
(e.g., Earle et al., 2010; Crooks et al., 2013; Stefanidis
et al., 2013). After a potentially damaging earthquake,
the Earthquake Engineering Research Institute (EERI)
deploys a Virtual Earthquake Reconnaissance Team
(VERT, 2023, EERI Learning) to collect online videos
and imagery (McBride et al., 2022a). These ephemeral
data must be identified and downloaded within a short
time span. For instance, the social media platforms
WhatsApp and Instagram allow users to post ‘stories’
that are only available for 24 hours after the original
post. In addition, videos may sometimes be deleted or
removed froma site due to its sensitive content (e.g., the
terrifying nature of earthquake shaking, building col-
lapse, etc.). Traditional news media sources may also
help as they typically piece together several videos with
location information for ‘B-roll’ that can be individually
examined for protective action behavior.

Video data must be collected quickly and efficiently
through a variety of approaches. Teams already in place
and ready to virtually deploy, such as through EERI
VERT, gather video information over a span of oneweek
ormore after the event (e.g., McBride et al., 2022b). The
use of keywords and hashtags help to identify earth-
quake footage, and dates and location information help
to rule out unrelated videos (e.g., Crooks et al., 2013;
McBride et al., 2022a). At times, a video is tagged by the
original poster (OP) or reposter and/or news reporter as
coming from the event or a certain geolocation nearby
the event. Social media comments on the post or news-
reel help to determine whether this geographic infor-
mation is correct. Oftenpeoplewill comment asking for
location information, and if the OP responds, this helps
provide a landmark or other identifying information to
determine a geolocation. At other times, location infor-
mation can be gleaned by examining the film frame-by-
frame for identifying features. Information ismore eas-
ily obtained from videos collected at a public location,
such as a restaurant, public park, or school or work en-
vironment. These landmarks are translated into a street
address for use in the Google Maps Geocoding API (Fig-
ure 2), and often result in a ‘rooftop’ location type (Ta-
ble 1).

However, unlike the survey data, I cannot directly
ask for location related information. People may also
post videos from their personal (home) address or a pri-
vate location. In this instance, if someone comments
for more location information on social media, the OP
typically provides a nearby landmark, neighborhood,
and/or intersection that provides inexact location infor-
mation. These data often result in the ‘geometric cen-
ter’ or ‘range interpolated’ output from the GoogleMaps
Geocoding API (Figure 2). However, the OP may post
the video to social media under their own name. De-
pending on the location of the natural hazard event, the
area that the hazard impacted, and the uniqueness of
a person’s name, a street address can be determined
through online, open-access resources such as White
Pages (www.whitepages.com) or through Voter Records
(www.voterrecords.com). More common names in the
United States, such as Smith or Johnson, are more dif-
ficult to determine. We also may obtain an inaccurate
result if a person moved or switched jobs, yet updates

Table 1 Google Maps Geocoding API output for the Oakland test of the ShakeAlert system

Google Maps
Geocoding API
Location Type

Description Survey Data Type
For Oakland Test
(McBride et al., 2023)
Median Uncertainty
(km) N (Ntotal = 823)

ROOFTOP Street address precision Street Address/Land-
mark 0.079 739

RANGE INTERPOLATED Interpolated between
two precise points Landmark 0.191 7

GEOMETRIC CENTER Geometric center of a
street or polygon Intersection 0.191 13

APPROXIMATE Approximate location Zip Code 1.50 64
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Figure 4 Videos posted to Twitter from home security
cameras. (a) Two adults flee their home during earthquake
shaking. The hashtag #earthquake, information about
which earthquake in the post, and the timing of the posting
all help to determine that this was the 30 November 2018
Anchorage, Alaska, United States earthquake. This informa-
tion was posted to a personal account which helped with
geolocation. (b) The Daily Mail US obtained video footage
from an adult who evacuated a house with a child. Note
that the adult is barefoot and lightly clothed outside in the
snow where exposure to the weather presents a concern.
The family highlighted in this video provided a news con-
ference about their experience using their names, which al-
lowed for geolocation. Personal information on both Twit-
ter posts is redacted here due to privacy concerns.

were not made to their social media accounts or other
open-access directories. Considerations for privacy are
paramount and we are unable to geocode videos with
insufficientmetadata or lack of other open-access infor-
mation. Additional information about privacy concerns
is discussed in the Limitations and Considerations sec-
tion.

The 30 November 2018 M7.1 Anchorage, Alaska,
United States earthquake (U.S. Geological Survey, 2023)
provides an example of how we can use video data to
obtain location information.
The 2018 Anchorage earthquake was a deep event

(46.7 km or 29 mi deep) and people experienced a max-
imum Modified Mercalli Intensity (MMI; Stover and
Coffman, 1993) VIII (severe shaking and moderate to
heavy damage). According to the USGS Prompt Assess-
ment of Global Earthquakes for Response (PAGER), the
estimated economic losses were significant, requiring
a regional or national response (U.S. Geological Survey,
2023). Fortunately, due to the depth of the earthquake
and lessons learned during the 1964 M9.2 Alaska earth-
quake, there were no earthquake shaking related fatali-
ties (Alaska Earthquake Center, 2018).
As an example, a YouTube video collected by the An-

chorage (Alaska) School District shows a classroom of
high school students taking the recommended protec-
tive action in the United States (‘Drop, Cover, and Hold
On’) within three seconds (Anchorage School District
YouTube Channel, 2018). This video demonstrates the
importance of earthquake drills, as the students did not
hesitate to take the recommended protective measures
(Adams et al., 2022). In Figure 4, we provide snapshots
of two videos posted to Twitter from personal locations
that demonstrate individuals fleeing their homesduring
earthquake shaking. The earthquake occurred in late
November with snow on the ground, thus people who
chose to flee risked exposure to the elements (Figure 4).
McBride et al. (2022a) found a total of 124 videos for

the Anchorage earthquake from social media (Twitter
andYouTube) and newsmedia sources. Videos from the
newsmedia typically includedmultiple video segments,
which brought the total up to 145 videos. Geolocating
videos also helps to compare the video data gathered at
a particular location and remove any duplicates. I ge-
olocated a total of 80 videos (55%) using the procedures
outlined above (Figure 5). The output from the Google
Maps Geocoding API had a ‘rooftop’ location type for all
but three of the locations, with a median uncertainty of
80 m.
For the 2018 Anchorage earthquake, I determine the

level of shaking (seismic intensity) that people experi-
enced based on the USGS ShakeMap (U.S. Geological
Survey, 2021). The ShakeMap reports the MMI along
with other seismic information, such as peak groundac-
celeration (PGA) and peak ground velocity (PGV) at cer-
tain frequencies (Wald et al., 2006; Worden et al., 2010).
The nominal grid spacing for the 2018 Anchorage earth-
quake is on the order of 0.167º (1.85 km) in both lati-
tude and longitude. I determine the closest grid node
by calculating the Euclidean distance between each of
the geolocated videos with the USGS ShakeMap infor-
mation to determine the MMI that people felt during
this earthquake. The median distance between the ge-
olocated videos and the closest MMI grid node is on the
order of 688 m.
I find that the people who uploaded videos expe-

rienced MMI 4.7-7.6 with a median MMI 7.1 (Fig-
ure 5). The minimumMMI 4.7 was a video uploaded to
YouTube from Seward, Alaska, 140 km away from the
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2018-11-30 17:29:29 (UTC) M7.1 Anchorage, AK Earthquake (46.7 km deep)
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Figure 5 Intensities from the 2018 Anchorage, Alaska, United States earthquake. The locations of the video footage (circles)
in the Anchorage, Eagle River, and Wasilla areas are color-coded by Modified Mercalli Intensity (MMI). The instrumental (grey
triangles) and ‘Did You Feel It?’ (grey squares) intensity information are shown in the background to provide context as to
how this video information may help. MMI 6, 6.5, and 7 contours are shown and labeled.

earthquake epicenter. Even with this video removed,
the median MMI 7.1 remains. Most of the videos are
clusteredwithinAnchorage andneighboring areas such
as Eagle River andWasilla (Figure 5). Additional videos
were collected from rural areas of Alaska that expe-
rienced light to moderate levels of shaking. For this
case study, I use the ShakeMap to determine the seis-
mic intensity of the geocoded videos (color coded cir-
cles in Figure 5). However, the videos also may provide
a source of information about what people experienced
during the event that could help determine the seismic
intensity, especially in areas where instrument cover-
age is sparse and/or people are unaware of the DYFI sur-
vey.

5 Discussion: Applications to Earth-
quake Early Warning

There are several benefits of determining the geo-
graphic location of social science data through geospa-
tial analyses, such as geocoding. First, geocoding helps
to reduce both the survey and video datasets. For in-
stance, I want to concatenate survey responses that
originate from the same location to better understand
EEWalert latencies such as in case study 1, which canbe
done once the geocoding is completed. With the videos,
I can sort them by geolocation and compare the videos
to verify the authenticity of the video and make sure
that I do not double count. This is particularly helpful

for large datasets and instances where the news media
uses different cuts of a video or splices/jumps the video
to save time. Sorting by locations helps an analyst look
through the videosmore carefully and determine dupli-
cates that may not have been caught in the initial pro-
cessing.
Second, the geocoding of social science data allows

researchers to determine whether earthquake early
warning alerts are reaching areaswithin the alerting ge-
ofence. The data latencies in alert receipt, and whether
an alert was even received or not, can then be examined
by location. In EEW, there is a seismic intensity thresh-
old at which people want to be alerted that varies from
country to country (e.g., Nakayachi et al., 2019; Becker
et al., 2020; Bostrom et al., 2022). Further, if an alert is
deemed appropriate for a given spatial area, alerts need
to staywithin that area andnot ‘leak’ outside of the alert-
ing zone. If not, alerting areas that do not feel shaking
or only feel light shaking could potentially give rise to
the ‘cry wolf’ effect (e.g., LeClerc and Joslyn, 2015).
Through geocoding techniques, McBride et al. (2023)

find that the alerts mostly stay within the geofence dur-
ing a test of the ShakeAlert system in Oakland, Califor-
nia. However, geocoding demonstrates that data laten-
cies within the alerting geofence are on the order of 10s
and that even individuals at the same location within
the alerting geofence might not all receive an alert, as
demonstrated by the new analysis of the top ten loca-
tions that received alerts as presented inFigure 3. These
findings give rise to concerns over the long latencies in
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alert delivery and in the variation between cellphones
that receive an alert (e.g., cellphone carriers, wireless
data transmission networks, and cell phone types). In a
technical test of the system, McBride et al. (2023) found
that there did not appear to be any technological privi-
lege associated with different cell phone types; further
examination outside of the lab and placed into practice
is still needed.
Third, geocoding social science data allows for an

understanding of what people experienced during an
earthquake. Geocoding allows us to correlate a particu-
lar location with its seismic intensity, as demonstrated
through the video reconnaissance footage. An under-
standing of seismic intensity, which is location depen-
dent, provides information about an individual’s choice
of protective action (if any). From surveys collected in
Japan and New Zealand, people tend to use the time
afforded by earthquake early warning to mentally pre-
pare themselves for shaking and do not take a protec-
tive action (Nakayachi et al., 2019; Becker et al., 2020).
Survey respondents reported that they mentally pre-
pare themselves over taking a physical protective ac-
tion because they still expect low shaking intensities
that would not warrant protection, even when they re-
ceive an alert. Mental preparation was also found from
video footage collected after an alert was sent during
the 2021 M6.2 Petrolia, California, United States earth-
quake (Baldwin, 2022). Geolocation allows researchers
to place the video footage in context with seismic inten-
sity and allows for a better understanding of what peo-
ple experienced during an earthquake andwhether this
impacts their choice of protective action.
Conversely, the geolocationof social sciencedatamay

provide additional information about what happened
during an earthquake (e.g., books falling off shelves,
light fixtures shaking, etc.), which aids in determination
of seismic intensity andwhether alertswere received by
those who should have. Instrumental intensity is col-
lected by seismometers from around the world, which
can readily detect moderately sized earthquakes (M5+)
at large epicentral distances (e.g., Ekström et al., 2012).
However, in remote areas, areas without dense seis-
mometer coverage, and/or for small earthquakes (M<3),
collecting instrumentally recorded informationmay be
challenging. The geolocation of surveys has already
proven useful for seismologists to better understand
seismic intensity through the USGS ‘Did You Feel It?’
survey (Wald et al., 2011; Quitoriano and Wald, 2020;
Goltz et al., 2022), where location and now even EEW
alerting information can be asked directly. A poten-
tial next step for ‘Did You Feel It?’ would be to upload
videos that could corroborate survey response infor-
mation, such as objectively viewing how long shaking
lasted instead of relying on survey responses alone.
The videos also capture the duration of earthquake

shaking and what people experienced during an earth-
quake, whichmay affect how a person or group chooses
how to respond to an earthquake, early warnings, and
in the aftermath of an event (e.g., Jon et al., 2016; Vin-
nell et al., 2022). Conversely, these social science data
may also be relevant to physical science in helping to
constrain a duration magnitude (e.g., Lee et al., 1972;

Eaton, 1992; Hirshorn et al., 1987), with the realization
that one would have to correct for ‘building response’
(instead of instrument response) which is affected by
the amplitude, duration, and frequency of earthquake
shaking. This may prove too difficult to use for mag-
nitude in practice, as each building would have its own
response to correct for, yet these videos may be able to
help in regions where seismic networks are sparse and
more data is needed. Both magnitude and intensity are
required parameters in estimating earthquake alerting
accuracy and calibrating alerting thresholds.
In addition, earthquake early warning is simply one

mechanism to help individuals and communities pre-
pare for earthquakes, know what protective actions to
take during an earthquake, and how to respond in the
aftermath of an event. These survey and video data also
could help structural and civil engineers, emergency
responders, and even insurance companies accurately
account for damage that occurred during earthquakes
(e.g., Coburn and Spence, 2002). VERTs collect videos
to understand human behavior during earthquakes and
to assess the level of damage within a particular re-
gion for structural health monitoring purposes (e.g.,
McBride et al., 2022a). The combination of video re-
connaissancewith geolocation can alsohelp emergency
responders by showing where damaged areas are after
an earthquake event and therefore prioritizing where
emergency services are needed most (e.g., Shan et al.,
2012; Li et al., 2022). Videos could also demonstrate to
insurance companies unbiased information about the
damage sustained during an earthquake, to better doc-
ument how the earthquake impacted a particular build-
ing and/or adjust insurance rates. Broadly, geocoding
can assist in better understanding the relationship be-
tween seismic intensity and earthquake damage, which
can be used to calibrate risk informed earthquake early
warning alerting thresholds.

6 Limitations and Considerations
The user response information obtained via surveys or
videos may be biased. Surveys can be biased because
only those willing to fill out the survey and contribute
respond (otherwise known as self-selection or a conve-
nience sample), so they often do not include a represen-
tative sample of a particular population (e.g., Sackett,
1979; Salkind, 2010; Sumy et al., 2020; McBride et al.,
2023; Goltz et al., 2020). For earthquakes or other poten-
tially traumatic experiences, survey information may
be biased depending on their own perceptions, such
as people often thinking that earthquake shaking lasts
longer than they experienced or other exaggerated re-
ports (e.g., Fraser et al., 2016; Bossu et al., 2017).
While videos may present an opportunity for more

objective information, the videos can be cut, cropped,
or otherwise filtered or changed in someway that could
also provide biased information. Also, those who stop
to take videos versus those who have security cameras
operating in the backgroundhave likely altered their be-
havior in some way, such that they are not taking an
appropriate protective action (e.g., Martin-Jones, 2022).
These considerations likely bias the data.
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In addition, tradeoffs exist between the informa-
tion that survey respondents provide and the geoloca-
tion uncertainty. For example, although landmarks are
straightforward to geocode from survey responses, they
may be overemphasized because a landmark is easily
identifiable and may garner a disproportionate num-
ber of mentions in the survey responses. In the case
study on Oakland, California, this is unlikely to be the
case due to self-selection bias as the surveys went to
primarily local and state government office ‘landmarks’
(Figure 3). While a landmark can be easily geocoded,
there is uncertainty of whether a person was at this lo-
cation or not. The bias towards landmark information
may need to be considered in future applications of the
geocoding methodology.
The collection of survey and video data around a po-

tentially traumatic earthquake experience and narra-
tive must be considered with care, for both the hu-
man subject and the researcher. For instance, the USGS
DYFI? survey is subject to the Privacy Act of 1974 and
the Paperwork Reduction Act of 1995, respectively. Lo-
cation information can only be asked by generic ques-
tions (e.g., ZIP code, landmark, partial address, etc.),
and a street address cannot be asked for directly or
specifically requested (Goltz et al., 2020). This limits
our ability to geocode all addresses and adds to the un-
certainty in our location information. Ethical consid-
erations around privacy limit the ability to reach out
to a survey respondent, even if their contact informa-
tion is provided, and care must be taken to keep their
responses confidential and anonymous when working
collaboratively due to cybersecurity concerns (e.g., Nat-
ural Hazards Center, 2021). For the survey collected in
Oakland, California, the geolocations were for mostly
commercially zoned and public places since the test of
the ShakeAlert system took place in downtownOakland
on a weekday before COVID-19, which alleviated a pri-
vacy concern. I note that human subjects research ap-
proval is only required with the surveys and not when
we download publicly available video information.
In addition, it is important to not directly contact the

individuals who responded to a survey or uploaded a
video to protect their privacy, as further inquiry may
cause emotional upset or harm. In turn, researchers’ in-
teractions with the video data must be limited because
viewing someone’s experience during a natural hazard
event can also be traumatic (e.g., Kiyimba and O’Reilly,
2016). Secondary trauma, when another individual sees
or listens to the traumatic experience of another per-
son, also can take an emotional toll on the part of the
researcher. Reducing or limiting the amount of daily in-
teraction with the video data and/or turning the sound
off can lessen the impact of secondary trauma on the
researcher (McBride et al., 2022a).
For geocoding purposes, accurate data entry can

significantly improve the ability to geolocate the data
(e.g., Yang et al., 2004; Kilic and Gülgen, 2020). As re-
searchers, we need to consider how important the ac-
curacy and precision of the geocoded result needs to be
(e.g., Roongpiboonsopit and Karimi, 2010), which will
vary based on the research questions and context. For
understanding EEW alert receipt and seismic intensity,

I would want the most accurate and precise informa-
tion possible, with an uncertainty on the order of me-
ters. As determined through other studies, the street
addresses with ‘rooftop’ location type output from the
Google Maps Geocoding API typically produces a ge-
olocation within the footprint of the building, produces
better results within the United States compared to in-
ternationally, and is the best among web-based solu-
tions, with errors on the order of tens of meters (e.g.,
Chow et al., 2016; Kilic and Gülgen, 2020).
Additional sources of uncertainty include the online,

freely available, personal records used. These records
(like voting records) can sometimes be out of date, and
there is very little control or understanding of the un-
certainty of this information in this study. For instance,
someone could have moved locally or have a relatively
common last name that makes it sometimes difficult to
determine whether the information is correct. In par-
ticularly transient areas or for socially vulnerable indi-
viduals, online records such as theWhite Pages may be
incorrect or out of date (e.g., Dempsey, 2022). As an
example, I looked my own name up in online records
and found that my listed address is incorrect. The lim-
itations and considerations around the data and the
geocoding methodology limit our ability to extend this
work to a plethora of physical science applications, yet
these limitations may be overcome in the future.

7 Conclusions and Future Directions
Here I demonstrate the usefulness of geocoding so-
cial science data to improve the ShakeAlert earthquake
early warning system in the United States. The nov-
elty here is not in the geocoding method itself, but
rather in its application to survey and video data used
to better understand the functionality and inform po-
tential improvements to EEW. Geocoding social science
data allows researchers to: 1) determine whether earth-
quake early warning alerts stay within the alerting ge-
ofence, so as to not cause undue panic or stress to those
who may only experience light shaking; 2) determine
when an alert is received at a particular location and
whether there is a range of data latencies at a partic-
ular location to suggest improvements to the system,
such as demonstrated in the case study for Oakland,
California; and 3) correlate the survey or video loca-
tionwith seismic intensity to corroborate what a person
experienced during an earthquake to more accurately
calibrate earthquake early warning alerting thresholds,
such as demonstrated with the 2018 M7.1 Anchorage,
Alaska earthquake. The approaches described here
are very manually intensive, requiring a team of re-
searchers to manually collect and analyze data, which
can takemonthsormore. A futuredirection includes in-
corporatingmachine learning and artificial intelligence
techniques to simplify the data gathering, geolocation
analysis, and understanding of human behavior (e.g.,
Chachra et al., 2022; Ofli et al., 2022).
In addition, geolocation has underexplored and un-

derutilized seismological applications for earthquakes
that occur in relatively remote and rural areas, struc-
tural and civil engineering applications for structural
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health monitoring, and emergency response and man-
agement to provide resources to areas who need them
the most, to name a few (e.g., Kankanamge et al.,
2019). The geocoding of online and thumbnail ques-
tionnaires, such as DYFI? (Wald et al., 2011; Quitoriano
and Wald, 2020), the European-Mediterranean Seismo-
logical Center’s LastQuake app (Bossu et al., 2015, 2018),
and theUniversity of California-Berkeley’sMyShake app
(Chachra et al., 2022; Kong et al., 2023), contributes to
the situational awareness in emergency response after
an earthquake. Thus, the future of geocoding for the
benefit of EEW lies with calibrating these felt reports
with who received an alert (or not) to determine ap-
propriate EEWintensity thresholds for a particular area
and how people responded during the event (e.g., Goltz
et al., 2022), and adjust the thresholds if necessary.
Additionally, cell phone applications and their

location-based services improve situational awareness
and emergency response efforts. However, we need
to look beyond those who are using EEW apps to
those who are not (e.g., Bopp and Douvinet, 2022).
Through geocoding, wemay find potentially vulnerable
sociodemographic groups who we need be thoughtful
about how to best reach through alerting strategies.
Targeted public education and outreach campaigns
around earthquake early warning to these commu-
nities, potentially through drills in formal education
environments (Adams et al., 2022) or at museums and
other free-choice learning environments (Sumy et al.,
2022b),may provide a potential solution. As earthquake
early warning is expanding in use worldwide (Allen
and Stogaitis, 2022; McBride et al., 2022a), a focus on
communities who might not have the socioeconomic
ability or technological privilege to use apps or re-
ceive alerts (e.g., due to the poor coverage of wireless
communication networks), have language barriers that
prevent their understanding of alert messages, and/or
other access and functional needs will help drive
education and outreach around earthquakes and early
warning in a way that can increase societies’ resilience
and disaster preparedness (e.g., Sumy et al., 2022a).
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