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Abstract We analyze at a broad spatial scale the slab seismicity during one of the longest and best
recorded foreshock sequencesof a subduction earthquake todate: theM8.1 2014 Iquique earthquake inChile.
We observe the synchronisation of this sequence with seismic events occurring in the deep slab (depth ~100
km). We show that the probability that this synchronisation is obtained by chance is infinitesimal (<10-5), in-
dicating that it is the result of a physical process taking place in the subduction. Amechanically logical expla-
nation for this synchronicity seems to be the presence of fluid connections between the intermediate-depth
range of the slab and the shallow seismogenic zone where foreshocks occur. These connections could be in
the form of transient fluid channels in which bursts of pressure pulses would propagate, or localized high per-
meability paths along the plate interface in which pore-pressure waves would travel. It suggests that, like for
the 2011 Tohoku earthquake, the deep slabwas involved in the nucleation process of the Iquique earthquake.
These observationsmay seem surprising but they are in line with the short-lived pulse-like channelizedwater
escape from the dehydration zone predicted by recent studies in slab mineralogy and geochemistry.

Non-technical summary In 2014 a large earthquake (M8.1) occurred in theNorth Chile subduction.
This earthquake was preceded by an intense foreshock crisis which lasted for nine months. We analyze here
this foreshock activity and we observe that it is synchronised with seismic activity occurring deep (~100 km)
in the slab, far down-dip from the foreshock locations and below the future rupture zone of the earthquake.
As this deep seismic activity is thought to be associatedwith the dehydration of slabminerals and the release
of water, it suggests that rapid water ascent from the dehydration zone may have triggered the foreshocks.
Other possiblemechanisms for this synchronicity of foreshocks with activity deep in the slab are discussed.

1 Introduction
Although it is still a controversial subject, an increas-
ing number of observations support that broad spatial
interactions occur in slabs. The rapidity and the scale
of some of the interactions reported (Bouchon, 2016,
2022; Panet et al., 2018, 2022; Bedford, 2020; Bouih et al.,
2022; Karabulut et al., 2022; Rousset et al., 2023) chal-
lenge our present understanding of slab dynamics and
raise questions about the mechanism of communica-
tion across long ( 100km or more) distances. We an-
alyze here, at a broad spatial scale, the long and well-
recorded foreshock sequence which preceded the M8.1
2014 Iquique earthquake in the North Chile subduc-
tion. Signs of short-term and long-term correlations be-
tween shallow and deep seismic activities there have
been previously reported (Bouchon, 2016; Jara et al.,
2017). We present here more detailed observations ex-
panded to the whole foreshock crisis which lasted for
nine months. The earthquake broke the Nazca/South-
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American plate interface in a region which had been
identified as a major seismic gap (Madariaga, 1998). Al-
though its foreshock sequence has attracted consider-
able attention Ruiz (2014); Schurr (2014); Kato and Nak-
agawa (2014); Kato et al. (2016); Lay et al. (2014); Bedford
et al. (2015); Meng et al. (2015); Duputel (2015), these in-
vestigations concerned activity in the the seismogenic
zone, which in subducting plates is limited to ~50 km
depth. Below, the plate boundary slips almost contin-
uously due to ductile deformation at elevated temper-
ature. Megathrust earthquakes break the seismogenic
zone but are not thought to extend much deeper. Be-
low ~60 km, another type of seismic event, however,
occurs in the descending plate. These events, termed
intermediate-depth earthquakes, take place not along
the interface but inside the cold core of the slab. They
are believed to be linked to the metamorphic dehydra-
tion of slab minerals.
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2 Synchronicity of Foreshocks with
Activity Down-Dip in Slab

The pre-Iquique activity begins to be noticeable ~9
months before the mainshock (Kato et al., 2016; Soc-
quet, 2017; Jara et al., 2017). The first phase of foreshock
activity occurs in July-August 2013. It begins north of
the epicenter and spreads southwards up to ~80 km
from it in following weeks (Fig. 1). A quiescence period
follows for a few months (September-December 2013,
Aden-Antoniow et al., 2020). A second phase of fore-
shocks starts ~120 km south from the epicenter in Jan-
uary 2014, three months before the earthquake, and in
the following weeks a broad slab segment is activated
(Fig. 1). This activity intensifies onMarch 16, twoweeks
before the earthquake, when a M6.7 shock occurs. The
evolution of this activity has been interpreted asmigrat-
ing slow slip which is supported by GPS and tilt obser-
vations (Socquet, 2017; Boudin, 2021). The spatial ex-
tent of the foreshock zone, about 180 km, is intriguing as
well as the rapidity with which seismicity spreads over
a plate interface known to have been locked for decades
(Madariaga, 1998; Chlieh, 2011; Metois et al., 2016).
We first study the relatively large (M > 4) events occur-

ring in the subduction before the earthquake. We use
for this the national catalog made by the Centro Seis-
mologico Nacional of Chile (CSN, www.sismologia.cl,
www.isc.ac.uk), whose completeness magnitude is
around M4 (Jara et al., 2017). Whenever available
(generally around and above magnitude 5), we use for
these events the moment magnitudes published by
the Global Centroid Moment Tensor (GCMT) Project
(www.globalcmt.org, Ekström et al., 2012), which is the
reference for large earthquakes worldwide.
In Fig. 2 we present the timing and magnitude of the

shallow (depth<40 km) and deep (80 km<depth<125 km)
earthquakes within increasing radial distance range
(160 km, 170 km, and 200 km) from the future epicen-
ter. The large depth separation differentiates shallow
events (i.e. foreshocks) associated with the slip of the
slab and intermediate-depth events associated with its
internal deformation. The lower depth limit (125 km)
has little effect as few events are deeper during the pe-
riods considered. Beyond this limit, events are far from
stations and catalog resolution degrades. The first epi-
central distance range considered is 160 km (Fig. 2a). At
lower radii from themainshock epicenter, the deep slab
is not yet sampled because of the low dip of the slab.
Within this distance range, the deep slab volume sam-
pled lies directly down-dip from the epicentral zone.
Fig. 2a shows that deep activity there is confined to the
two foreshock crises and that one deep event shortly
precedes (1 day) the intensification of the foreshock cri-
sis which will lead to the earthquake two weeks later.
Fig. 2b extends the exploration range to 170 km and fo-
cuses on the period preceding and including the first
crisis. At this range where a larger volume of deep slab
is sampled, a correlation emerges between deep and
shallow activities. Fig. 2c extends the exploration range
to 200 km and focuses on the period around the sec-
ond crisis and on the largest shallow (M>4) and deep
(M>4.5) events, the higher magnitude cut-off used for

deep events reflecting the higher level of deep back-
ground activity present in this subduction. At this dis-
tance range a time correlation between the two activi-
ties emerges clearly. The wider exploration needed for
a correlation to emerge during the second crisis seems
consistent with the broader spatial extent of this crisis
(Fig. 1).
In statistics the two time series displayed in Fig. 2, are

termed temporal point processes. To estimate the prob-
ability that one temporal point process (A) is dependent
on the other one (B), a distribution of interevent times
is constructed by fixing the events from series (B) and
measuring the time from each event in (A) to the clos-
est event in (B). This method is described in (Galbraith
et al., 2020). Probability is calculated by fixing the times
of the deep events, drawing randomly the times of the
shallow events, and comparing their mean interevent
timewith the one observed. In doing sowe do notmake
any hypothesis on any of the properties of the two time
series. We simply look if the interevent time observed
is due to random chance or if it is an intrinsic property
of the data. The application of the method to seismic
sequences is straightforward and described in Bouchon
(2022). In Fig. 2b (first crisis) the chance probability
that shallow events (i.e. foreshocks) are as closely syn-
chronized with the occurrence of deep events is < 10−5

(more than 100,000 random draws of the 9 M>4 shal-
low events are required to reach an interevent timewith
the 7 deep events present as small as the one observed).
A similarly small chance probability < 10−5 that shal-
low events occurring during the second crisis (Fig. 2c)
would be as closely synchronized with deep events lo-
cated within 200 km of epicentral distance is obtained.
The combined probability that shallow events would be
as closely synchronized with deep events below dur-
ing the two foreshock crises is thus infinitesimal. The
smallness of the valuesmay seemsurprising but it likely
reflects the burst-like characteristic of the seismicity:
As shown in Fig. 3, a burst is not simply made up of one
shallow and one deep event, but usually of a multiplic-
ity of them interweaved together within a short time,
a characteristic difficult to be reproduced by a random
process.
Using the catalog of Sippl et al. (2018a) for North

Chile, which decreases the magnitude of completeness
to ~2.7, we can explore shallow and deep activities at
lower magnitude. Because of the high level of deep
background activity below magnitude 4 in the subduc-
tion and the long duration and broad spatial extent of
the crisis, we focus on the period when the first fore-
shock activity is the most intense and on the subduc-
tion segment where this activity takes place (Fig. 3). To
interpret this figure, one has to realize that deep activ-
ity is continuously present in this zone, regardless of
the occurrence or not of foreshocks. Consequently, if
some interaction occurs between deep and shallow ac-
tivities it probably does not involve all the deep popula-
tion. Furthermore each family of events has necessar-
ily dynamics of its own and smaller events may be af-
tershocks of the larger ones. A notable feature of Fig. 3
is that shallow activity is usually accompanied by deep
activity. Calculating, as in Fig. 2, the chance probability
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Figure 1 Location of the large (M>4) foreshocks showing their broad north-south spatial extent along the strike of the slab.
All events with depth <40 km in the CSN catalog in the year preceding the earthquake up to the large M6.7 foreshock are
shown. Most activity occurs in two crises. Circle size increases with magnitude. Star is the epicenter. Arrow indicates plate
convergence direction (Vigny et al., 2009). Contour lines show slab interface depth (Hayes et al., 2012). Dark blue colormarks
the trench. White line shows the subduction segment considered in Fig. 3.

that the interevent time between the shallow (26 events)
and the deep (22 events) occurrences is as small as the
one observed yields a value < 10−5.
An intriguing feature of Figs.2 and 3 is the burst-like

occurrence of the events: The largest deep and shallow
events occur in packets of short duration and, as can be
seen in Fig. 3 (e.g. at -282, -266, -252 days etc), multiple
deep and shallow events are often interweaved together
within a burst. This complexity prevents the reading
of a simplistic chronology between deep and shallow
events.

3 Seismic Links indicative of Water
Channels?

Fig. 4 shows where the M>4 shallow and deep events
which make up the eight largest bursts (Fig. 2b-c) oc-
cur. It shows that during each burst, the deep events
tend to occur nearly down-dip from the shallow events.
This suggests a move along slab dip of the source of
slip/deformation during each burst. The rapidity of this

along dip move would be comparable to the migrating
speed of tremors (Shelly et al., 2007; Ide, 2010; Ghosh,
2010; Gomberg, 2010; Peng and Gomberg, 2010; Beroza
and Ide, 2011). The jumps of activity observed along
subduction strike from one burst to the next are also
tremor characteristics (Kao et al., 2007; Shelly et al.,
2007; Ghosh, 2010).

Fig. 4 also displays the slab seismicity down to small
magnitude during the entire 9-month long foreshock
crisis. This seismicity map is made with the Sippl et al.
(2018a) catalog. As we are interested in imaging possi-
ble seismic connections, it emphasizes clustered seis-
micity relative to isolated events. The spatial distribu-
tion of seismic events at depths of ~20-80 km, between
the shallow and deep earthquake zones, is apparently
aligned in lineaments parallel and oblique to the sub-
duction interface dip direction. It supports the pres-
enceof seismic links connecting the shallowM>4events
to the deep slab. It also shows the tendency of these
links to converge spatially towards the foreshock clus-
ters and the epicenter. The paths these links define are
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Figure 2 (a) Timings of all M>4 shallow and deep events located within 160 km from the epicenter in the year leading to
the earthquake from the CSN catalog. The last event is the mainshock. (b) Increasing the epicentral distance to 170 km and
focusing on the period before and during the first crisis. (c) Increasing the epicentral distance to 200 km and focusing on the
largest shallow and deep events of the second crisis. Shallow events after the M6.7 foreshock are not shown because they
are dominated by its own aftershocks. Periods of activity are indicated.

complex, sometimesmultiple, but their long range con-
tinuity is notable.
Another illustration of seismic links between deep

and shallow slab activities is presented in Fig. 5. This
figure is made with the catalog of Aden-Antoniow et al.
(2020) which uses a similar set of stations in North Chile
as the Sippl et al. (2018a) catalog and has a comparable
magnitude of completeness. It displays the seismicity
pattern in August 2013 - the period when the first fore-
shock crisis is particularly intense. It shows the pres-
ence during this period of two seismic links connecting
the future epicenter and the strongest foreshock cluster
(M>5) to the locations of the largest intermediate-depth
earthquakes (M>5) of this crisis.

4 Discussion

The presence of large volumes of water in subduction
zones has long been documented (Raleigh and Pater-
son, 1965; Peacock, 1990; Green and Houston, 1995;
Kirby et al., 1996; Hacker et al., 2003; Kawakatsu and

Watada, 2007; Rondenay et al., 2008; Kawanoet al., 2011;
van Keken et al., 2011; John, 2012; Abers et al., 2013; An-
giboust et al., 2014; Guillot et al., 2015; Plümper et al.,
2017; Sippl et al., 2018b; Shapiro et al., 2018; Contreras-
Reyes, 2021). The link between high-pressured fluids
and seismic activity has itself longbeen recognized (Sib-
son, 1992; Miller et al., 1996).
The deep events in each burst occur in the depth

range of 70 to 120 km where antigorite serpentine
breaks down releasing the largest amount of water.
Once released, water escape from the deep slab is
thought to occur through transient channels (Miller
et al., 2003; John, 2012; Angiboust et al., 2014; Plümper
et al., 2017; Taetz et al., 2018).
The present observations are consistent with amech-

anism involving the translation of pressure pulses in
fluid-filled channels. The burst-like nature of the seis-
mic activity would indicate that pressure propagation
and fluid flow are very intermittent. This transient
characteristic seems mechanically logical, with chan-
nels opening during overpressure passage and closing
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Figure 3 Timings of shallow and deep events in the subduction segment where the most intense activity of the first fore-
shock crisis takes place. This segment (white line in Fig. 1) extends from 40 km south to 80 km south of the epicenter and
its limits are aligned with the plate convergence direction. All the shallow (depth<40 km) and deep (80 km<depth<125 km)
events from Sippl et al. (2018a) catalog occurring on this segment during the period considered are presented. The segment
and period investigated correspond to the occurrence of the second and third bursts in Fig. 2b. Slight differences in magni-
tude relative to Fig. 2 are catalog differences. What is notable is that shallow activity is closely synchronized with some deep
activity.

as soon as fluid pressure locally in the channel drops
below local confining pressure. The along-dip organi-
zation of the bursts denotes an along-dip orientation of
the channels, which probably reflects the strong down-
slip corrugation of the Nazca slab interface (Soto, 2019).
Such corrugations have been recently proposed to act
as fluid conducts (Edwards, 2018). The occurrence of
the events in packets of short duration, including both
shallow and deep events, often interweaved together,
suggests that they are associated with the updip and
downdip propagation of pressure pulses. While surges
of overpressured fluids in the seismogenic zone are
probably producing the foreshocks, they are accompa-
nied by decompression pulses propagating downdip.
Another clear characteristic of the seismic activity is

its long remarkable extension along the strike of the
subduction (Figs. 1, 4). This long extension of the activ-
ity does not evolve in a continuous fashion but occurs
in jumps. For instance, after ~4 months of quiescence,
the second crisis begins suddenly in early January ~150
km away from where the first crisis had started and 50

km beyond the zone where foreshocks had previously
occurred. The activity was strong there for a few days,
then completely disappeared and by the end of January,
foreshock activity had jumped back to a zone close to
where it initiated.
The major characteristics that are observed, the ra-

pidity of the up-dip/down-dip interactions, the jumps of
the activities along subduction strike, thebroadwidth of
the subduction zone involved are not characteristics un-
seen before. These same characteristics have long been
reported for tremors (e.g. Shelly et al., 2007; Kao et al.,
2007; Ide, 2010; Ghosh, 2010; Gomberg, 2010; Peng and
Gomberg, 2010; Beroza and Ide, 2011). What is novel,
here and before the Tohoku earthquake, are the very
long range and the depth reach of these phenomena
as well as the relatively large magnitude of the seismic
events produced.
One may question the existence of physical fluid

channels at the depths considered. Their presence in
the dehydration zone itself, however, is observed in ex-
humed rocks originating from this zone and is nowwell
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Figure 4 Location of M>4 shallow and deep events (large colored symbols) occurring during the eight largest foreshock
bursts. Each color/symbol represents one burst (dates for each burst indicated at top of map). Last burst ends with the
Iquique earthquake (large star). Shallow events are below sea, deep events below land. Shallow and deep events in each
burst occur nearly along slab dip from each other. Superposed on the map is all the seismic activity during the entire crisis
(July 2013 – March 2014) obtained from Sippl et al. (2018a) catalog (black dots: depth <40 km, blue dots: depth>40 km). The
most spatially-clustered events (events with at least 3 neighbors within 10 km distance) are the larger dots.

documented (John, 2012; Angiboust et al., 2014; Plüm-
per et al., 2017; Taetz et al., 2018) but direct observation
on how these fluidsmigrate afterwards is lacking. Fig. 4
shows the presence of near continuous seismic paths
connecting the foreshock zones to the locations of the
largest intermediate depth events. The significance of
these paths may at first be doubted on the ground that
they are complex and multiple, but their convergence
towards the foreshock and epicenter locations is clear
and at least intriguing. The significance of the snapshot
image of Fig. 5 might be also doubted because its statis-

tical significance is difficult to assess, but it shows two
clear seismic paths between the shallow and deep ac-
tivities during one of themost activemonths of the fore-
shock crisis. The propagation of pore-pressurewaves or
porosity waves along or near the plate interface may be
an alternative to the strong spatial localization of fluid
flow of a channel model. Cruz-Atienza et al. (2018) have
shown theoretically that tremor migration and speed
can be explained by the propagation along the plate in-
terface of non-linear pore-pressure waves under con-
ditions that the interface is treated as a damage shear
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Figure 5 Seismic activity (black dots) in May (left) and August (right) 2013 from Aden-Antoniow et al. (2020) catalog. Only
the events occurring near the slab interface and below are shown. Size of the dots increaseswithmagnitude. Superposed on
themaps are the locations of the largest (M>5) foreshocks (red dots) and intermediate-depth earthquakes (blue dots) during
the first foreshock crisis (July-August 2013). Seismic paths, not present or recognizable inMay, before the crisis begins, link in
August themost intense intermediate-depth earthquake zone of this crisis (three blue dots) to the strongest foreshock cluster
(two red dots) and to the future epicenter (red star).

zone with strong permeability anisotropy. The seismic
paths observed here could then be following the zones
of highest permeability/highest shear deformation at or
near the plate interface.
If one accepts that fluid/pressure circulation is the

motor of the slab seismic activity observed during the
foreshock crisis, one intriguing question is why, in such
a short time (a few months), overpressured pulses/flu-
idswould ascend fromdifferent distant places spanning
such a long segment of the subduction. One possible
mechanism would be the existence of connections be-
tween the deep rock reservoirs where water from dehy-
dration is thought to be stored, so that pressure changes
in one would affect others. Another possible mecha-
nism could be a rapid deformation or slip of the slab,
too small or too deep to be detected geodetically, but of
broad spatial extent, which could disturb the slab inter-
face and the fluid present at depth. This probablywould
imply that the whole slab interface is nearing threshold
stress so that effective stress limit is reached nearly si-
multaneously along strike for ~200 km. One may also
wonder if the foreshock crisis could be driven by the up-
dip pressures from slow slip events occurring at depth.
The present study is limited to the 9 months-long du-

ration of the Iquique foreshock period, but it may be
of interest that one of the largest intermediate-depth
earthquake in instrumental time in Chile, the 2005M7.8
Tarapaca earthquake, occurred 9 years before, precisely
down-dip below the area which was to rupture during
the Iquique earthquake (Jara, 2018; Ruiz andMadariaga,
2018). Although seismic instrumentation inNorth Chile
at the time was too sparse to conduct the same study
as the one done here, it is notable that this earthquake

produced a long-term decrease in GPS eastward veloc-
ities in the region, interpreted as a decrease in plate
coupling (Jara et al., 2017). This situation appears sur-
prisingly comparable to the occurrence of the 2003
M7.1 intermediate-depth earthquake down-dip below
the Tohoku epicentral zone 8 years earlier. Although
the mechanisms by which slab dehydration, and its ac-
companying water release, induce intermediate-depth
earthquakes are still debated (e.g. vanKeken et al., 2012;
Abers et al., 2013; Prieto, 2013; Poli andPrieto, 2014; Fer-
rand, 2017; Gasc et al., 2017; Cabrera et al., 2021), the
association of the two seems now well established.
The interpretation of our observations seems sup-

ported by recent studies in subduction zonemineralogy
and geochemistry which predict the short-lived pulse-
like channelized water escape from the dehydration
zone (John, 2012; Angiboust et al., 2014; Plümper et al.,
2017; Taetz et al., 2018).

5 Conclusion
The present observations show the synchronisation
of the foreshock activity which preceded the Iquique
megathrust earthquake in Chile with seismic activ-
ity occurring below the foreshock locations in the
intermediate-depth range of the slab. They also show
the presence of near-continuous seismic links connect-
ing the two activities. These characteristics are simi-
lar to the ones observed before the Tohoku earthquake,
supporting that the same physical processes led to the
two megathrust ruptures. The most logical interpreta-
tion of these observations in today’s knowledge seems
to be the rapid ascent of water from the slab dehydra-

7 SEISMICA | volume 2.2 | 2023



SEISMICA | RESEARCH ARTICLE | Observation of a Synchronicity between Shallow and Deep Seismic Activities during the Foreshock Crisis Preceding the
Iquique Megathrust Earthquake

tion zone.
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