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Abstract Data-driven approaches to identify geophysical signals have proven beneficial in high dimen-
sional environments where model-driven methods fall short. GNSS offers a source of unsaturated ground
motion observations that are the data currency of ground motion forecasting and rapid seismic hazard as-
sessment and alerting. However, these GNSS-sourced signals are superposed onto hardware-, location- and
time-dependent noise signatures influenced by the Earth’s atmosphere, low-cost or spaceborne oscillators,
and complex radio frequency environments. Eschewing heuristic or physics based models for a data-driven
approach in this context is a step forward in autonomous signal discrimination. However, the performance of
a data-driven approach depends upon substantial representative samples with accurate classifications, and
more complex algorithm architectures for deeper scientific insights compound this need. The existing cat-
alogs of high-rate (≥1Hz) GNSS ground motions are relatively limited. In this work, we model and evaluate
the probabilistic noise of GNSS velocity measurements over a hemispheric network. We generate stochastic
noise time series to augment transferred low-noise strongmotion signals fromwithin 70 kilometers of strong
events (≥ MW 5.0) from an existing inertial catalog. We leverage known signal and noise information to as-
sess feature extraction strategies and quantify augmentation benefits. We find a classifier model trained on
this expanded pseudo-synthetic catalog improves generalization compared to a model trained solely on a
real-GNSS velocity catalog, and offers a framework for future enhanced data driven approaches.

Non-technical summary GlobalNavigationSatellite System (GNSS) signals area sourceof valuable
earthquake ground motion data that is traditionally sourced from inertial-based instruments. Inertial-based
instruments include a class of sensors that use Newton’s first law to directly measure ground velocity or ac-
celeration. Routine noise of GNSS is more complex than the inertial-based instruments, which in turn has
limited the scope of adoption of GNSS in earthquake monitoring. Machine learning applied to the scientific
domain has shown that it can separate signal from noise and offer deeper scientific insights, but our existing
datasets are relatively limited. Implementing an effectivemachine learningmodel for any scientific objective
depends on having a sufficiently large, accurately labeled dataset for training and validating the model. We
present an expanded ”psuedo-synthetic” catalog comprised of transferred real-world signals added to syn-
thetic GNSS velocity noise generated from real world noise analysis. We demonstrate how training a model
on our expanded synthetic dataset outperforms training on limited real data and can support more sophisti-
cated learning objectives offering deeper understanding.

1 Introduction
Distributed observations of coseismic ground motions
are the backbone of accurate ground motion models,
finite fault modeling, and early warning. If available
in real-time, GNSS-derived high rate time differenced
carrier phase (TDCP) velocities (GRAAS and SOLOVIEV,
2004) applied to seismology (Colosimo et al., 2011)
are an additional source of these intrinsic measure-
ments (Parameswaran et al., 2023) that are tradition-
ally sourced from dedicated inertial sensor networks.
If available in near-real time or post processing, GNSS
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velocities can contribute to catalogs of ground motion
measurements used for empirical regional and local
ground motion models (Crowell et al., 2023). GNSS
spatially complements or substitutes existing inertial
ground motion observations (Crowell, 2021), especially
valuable in sparse networks (Grapenthin et al., 2017).
Furthermore, GNSS expands the dynamic range of in-
ertial measurements, and contributes to magnitude es-
timation (Murray et al., 2023) when inertial sensors sat-
urate (Melgar et al., 2013) during the largest, most de-
structive events.

However, ambient GNSS velocity noise remains well
above the noise floor of inertial sensors, largely due to
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sources of uncertainty related to ranging of space-based
weak radio frequency signals. Analysis of high rate po-
sitioning noise (Genrich and Bock, 2006), carrier phase
noise (Wang et al., 2021), andTDCP velocities (Shu et al.,
2018; Crowell et al., 2023) has shed valuable insight into
the factors that influence the ambient noise floor of
these GNSS velocities. To date, the GNSS velocity noise
frequency spectrum has not been evaluated across suf-
ficiently large temporal and spatial scales to statistically
report on the ambient noise across a network. Ambient
noise characterization methods developed in the seis-
mic community offer a statistical approach to represent
ambient noise frequency content for sensor network
monitoring and calibration. The probabilistic spectrum
of GNSS velocity noise illuminates the limit of seismic
signal detection in GNSS.
Improved classification of seismic signals within

GNSS noise will expand the range in which GNSS con-
tributesmaterial groundmotionobservationswithmin-
imal false alerting for denser in situ observations and
early warning integrity. Methods for addressing this
signal to noise (SNR) challenge exist: variations on a
short term average over long term average (STA/LTA)
detection adopted from inertial seismic sensors resolve
static offsets (e.g. Allen and Ziv, 2011; Colombelli et al.,
2013) but filter valuable dynamics encoded in the wave-
forms; threshold based detection methods (e.g. Crow-
ell et al., 2009; Hodgkinson et al., 2020; Dittmann et al.,
2022a) capture dynamics but struggle to balance sensi-
tivity with false alerting, and must mitigate false alerts
with external dependencies such as spatially correlat-
ing or temporallywindowing fromseismic triggers. Ma-
chine learning (ML) models combine a range of feature
inputs to improve the decision confidence in separat-
ing seismic signal from noise (e.g. Meier et al., 2019;
Dittmann et al., 2022b) in stand-alone mode. However,
the generalization performance of any such classifier
or deeper ML model will ultimately be limited by the
model selection and optimization, the extent of the la-
beled catalog for training, and the quality of the labels.
Previous GNSS seismic catalogs illustrate how lim-

ited the observed long-tail, largermagnitude GNSS seis-
mic events datasets are (Ruhl et al., 2018). For ex-
ample, the EarthScope/UNAVCO continuous geodetic
archive began archiving lower sampling rate GNSS ob-
servations in 1993 and 5Hz high rate data retrieval in
2006. Decreased hardware costs coupled with commer-
cial and scientific demand only relatively recently al-
lowed for global high-rate network expansion. Addi-
tional geodetic networks (e.g. INGV: Italy, GEONET:
NZ) complement EarthScope’s high rate catalog wor-
thy of inclusion on the order of doubling, not the or-
der(s) of magnitude needed for deeper learning to an-
swermore sophisticated questions. One solution to this
small data challenge is synthesizing waveforms using
kinematic finite fault ruptures and Green’s functions
(”FakeQuakes,” Melgar et al., 2016; Williamson et al.,
2020). This model-driven approach is invaluable for the
largest, most destructive events, where a data-driven
strategy for these infrequent events is inherently insuf-
ficient. However, this method is not yet practical for
generalizing across global rupture scenarios and great

care must be taken to not bias results with unknown un-
knowns of fault models and groundmotion propagation
of future events. This is an area of active research.
An intermediate real-world-data driven alternative is

to transfer samples from a separate source of our sig-
nals of interest (Hoffmann et al., 2019). Inertial sensors
have existed at more locations for far longer than the
first positioning satellite was launched. Event catalogs
of zero-baseline inertial measurements offer low-noise
ground motion velocities to be transferred as our truth
waveforms of accurately labeled samples. The GNSS
noise probabilistic power spectral density (PPSD) char-
acterization offers the necessary information to super-
pose stochastic noise for training over a range of noise
conditions. The final component to improved gener-
alization are the learning training decisions, includ-
ing model selection and feature engineering. With ap-
propriately applied domain knowledge to increasingly
larger data volumes, the revolution of transferable clas-
sification and regressionmodel algorithm development
is readily adaptable to earth science questions (Bergen
et al., 2019; Kong et al., 2018).
To improve our understanding of GNSS velocity sen-

sitivity relative to ambient noise, expand the quan-
tity of available labeled training data, and improve de-
tection classification performance in a highly variable
noise environment, we characterized the GNSS velocity
noise frequency spectrum from which we augmented
transferred inertial velocity waveforms observed over
80 years with synthetic GNSS velocity time series. This
manuscript presents a framework for expanding the
available, accurately labeled GNSS velocity waveforms
and evaluates the improved signal detection gained
from learning on such a catalog. Finally, we present the
expanded catalog to support evolving, deeper learned
models to train on.

2 Materials and Methods

2.1 Lightweight GNSS Velocity Processing

A GNSS receiver generates precise relative phase es-
timations by tracking the signal carrier wave using a
phase lock loop. To achieve absolute positioning using
carrier phase measurements, a suite of measurement
error source models must be estimated to account for
thermal noise, satellite and receiver oscillators, multi-
path reflections, atmospheric and ionospheric effects
from a 20,000 kilometer signal propagation path, and
unknown carrier cycle integer offsets (Teunissen, 2020).
These correction models incur costs, computationally,
potentially monetarily, and in performance for resolv-
ing carrier phase ambiguities to estimate absolute po-
sition. In past and current implementations of using
geodetic measurements for capturing earthquakes, ab-
solute positions are differenced from an a priori posi-
tion to extract relative topocentric motion, the signal
of interest. TDCP or variometric processing (GRAAS
and SOLOVIEV, 2004) differences these precise carrier
phase measurements in consecutive epochs to remove
temporally correlated error sources and consistent inte-
ger ambiguities. TDCP uses the precision of these mea-
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surements to its advantage, by foregoing absolute po-
sitioning in exchange for precise relative velocity mea-
surements while still benefiting from multi-signal ob-
servability across a visible satellite constellation. In this
context, TDCPadvantageously doesnot require ambigu-
ity resolution convergence, lacks complex error mod-
els which in turn minimizes measurement noise, and
reduces computational requirements. These factors
combined with the simplicity of the algorithmic inputs
makes it ideal for seismic ground deformation appli-
cations (Colosimo et al., 2011; Benedetti et al., 2014;
Hohensinn and Geiger, 2018; Grapenthin et al., 2018;
Parameswaran et al., 2023) at higher rates and poten-
tially on the network edge.
We use the SNIVEL processing method (Crowell,

2021) for estimating 5Hz GPS TDCP. This method uses
the narrow lane GPS-only L1/L2 phase combination,
the Klobuchar ionospheric correction, the Niell tropo-
spheric correction, and broadcast satellite ephemeris.
Observations are weighted as a function of satellite
elevation angle with a seven degree elevation mask.
While development accommodating precise orbits (Shu
et al., 2020), multi-GNSS, cycle slip detection/mitiga-
tion (Fratarcangeli et al., 2018), and higher order noise
source mitigation is ongoing and warranted, the cur-
rent method is capable of capturing ground motions
of nearfield M4.9 and larger sources at teleseismic dis-
tances (Crowell, 2021; Dittmann et al., 2022b).

2.2 Observed High Rate GNSS Velocity Noise
Model and Synthetic Noise

Understanding GNSS noise is imperative to apply-
ing GNSS observations to answer complex geophysi-
cal questions. Such investigations range from low fre-
quency estimation of secular plate velocities (Williams
et al., 2004) to higher frequency (>1Hz) signals, includ-
ing structuralmonitoring (SHENet al., 2019;Hohensinn
et al., 2020), space weather (Yang et al., 2017), and de-
formationmonitoring (Geng et al., 2018; Avallone et al.,
2011). Previous studies show that GNSS position noise is
a combination of white and colored or power-law noise
(Langbein and Bock, 2004). Starting from lowest fre-
quencies, the “dam profile” of exponentially decaying
noise with increased frequency is inferred to be a result
of correlated signal path and processing contributions
including multipath, ephemerides, clocks, and atmo-
spheric effects. GNSS highest frequency position noise
is attributed to receiver thermal noise and often pre-
sented as a white spectrum (Genrich and Bock, 2006).
Receiver thermal noise is parameterized as a function
of incoming signal strength and carrier phase tracking
filter design, including filter bandwidth and sample in-
tegration time. These baseband signal tracking loop
design choices balance dynamic stress response with
thermal noise mitigation (Yang et al., 2017), and are re-
flected in this highest frequency noise profile (Moschas
and Stiros, 2013; Häberling et al., 2015). As an aside, for
these reasons a calibrated high frequency instrument
response, similar to what has become the defacto stan-
dard in digital inertial instruments, has been proposed
(Ebinuma andKato, 2012). Wenote this asworthy of fur-

ther investigation for future efforts integratingTDCP ve-
locity noise into monitoring but have not yet observed
an instrument bias with respect to capturing seismic
strong motion signals in 5Hz velocities.
The EarthScope geodetic archive captures 5Hz data

of stations recording concurrent with larger magnitude
earthquakes. This includes at least 1 hour of “ambient”
5Hzdata antecedent to thehour inwhich the event takes
place. We process with SNIVEL all available 5Hz pre-
event hour long windows for our ambient GNSS veloc-
ity dataset. This dataset consists of 1507 hours from 904
stations since 2007 distributed from the Caribbean to
Alaska. We use this sample space to be representative
of GNSS velocity distributions both spatially and tempo-
rally.
We evaluated the spectrum of GNSS TDCP noise

over this sample set by adopting a seismic ambient
noise characterization method of McNamara and Bu-
land (2004) modified for GNSS displacements byMelgar
et al. (2020). In this approach, further modified for 5Hz
GNSS velocities, we calculated the power spectral den-
sity of 10 minute 5Hz single component velocity win-
dows. We evaluated power spectral densities (PSD) at
periods from 205s down to 0.4s in 512 bins. PSDs were
smoothed in octave intervals and then stacked across
73 aligned frequency bins over all available PSD seg-
ments. The result is a probabilistic power spectral den-
sity (PPSD), or distribution of power spectral densities
over the samples included. These PPSDs have been
adopted for seismic network monitoring (Casey et al.,
2018) and offer valuable insight for anticipated signal
sensitivity. We combined horizontal topocentric com-
ponents into a single PPSD and then estimated an inde-
pendent vertical PPSD, given GNSS vertical noise is ap-
proximately 3-5 times larger.
We stored 19 distribution slices (every 5th percentile

from 5% to 95%) of the real-world noise quantiles from
which to generate synthetic stochastic noise time se-
ries (See the pre-event time window of Figure 2). We
adopted the approach of Melgar et al. (2020) for GNSS
position displacements, first proposed by Boore (1983)
and further developed by Graves and Pitarka (2010). In
this approach, we were able to maintain the frequency
content of the noise at respective reference levels while
randomizing the phase for generating unique time se-
ries. We accommodated amplitude loss in the domain
transformationswith linear scaling. For additional con-
text of this strategy, Lin et al. (2021) demonstrated an
ML application leveraging the Melgar et al. (2020) ap-
proach for generating displacement noise time series
superposed on synthesized FakeQuake displacements
to train a deep learning model estimating Chilean sub-
duction zone moment magnitudes.

2.3 Strong Motion Observations and Aug-
mentation

Our signals of interest are velocity waveforms from
medium to larger earthquakes ( >M5.0) which GNSS ve-
locities are sensitive to (Dittmann et al., 2022a). The
Next Generation Attenuation for Western United States
2.0 (NGAW2) project (Ancheta et al., 2014) is a database

3 SEISMICA | volume 2.2 | 2023



SEISMICA | RESEARCH ARTICLE | GNSS Strong Motion Learning Catalog

Figure 1 (a) A histogram comparing the EarthScope 5Hz GNSS catalog (“GNSS”) with the NGA West-2 database (“NGAW2”)
for events observed by stations within 70 kilometers and sensitivity radii. The scatter plot in (b) shows the individual event
magnitudes as a function of time, and the secondary axis line plot is the cumulative station count over time observing the
events. In the cumulative line plot, the dashed line is the “NGAW2” and the solid line is “GNSS”.

of global strong motion measurements and response
spectral ordinates from “shallow crustal earthquakes in
active tectonic regimes” spanning over 75 years includ-
ing 21,339 three component records from 599 events
ranging M3.0 to M7.9. Global seismic networks con-
tribute strong motion accelerograms or broadband ve-
locity measurements that are processed by the NGAW2
project into acceleration, velocity, and displacement
waveforms. The processing consists of an acausal But-
terworth filter to reduce high- and low-frequency noise
and an instrument response correction; further infor-
mation regarding processing is given by Ancheta et al.
(2014). The records were visually inspected for cor-
ner frequency determination, quality, and complete-
ness, making the catalog an ideal source of low-noise
larger ground motion measurements. A primary appli-
cation of such a catalog is for ground motion predic-
tion research to inform earthquake engineering. We
use the processed velocity waveforms as our noise-free
signal. It is worth noting that the seismic community
has coalesced around several extensive labeled datasets
to benchmark and facilitate rapid growth of deep learn-
ing models for a variety of applications (Mousavi and
Beroza, 2022). We considered the several existing cu-
rated seismic ML catalogs (Woollam et al., 2022), but
found these predominantly emphasizedweaker signals.
This is logical given the signal-to-noise challenges from
inertialmeasurements looking toML for use in seismol-
ogy, but provides insufficient amplitudes for detection
in synthesized GNSS strong motion observations.

We focus our effort on the portion of the database
containing nearfield (≤70 km radius) observations of
M5.0 toM7.9within expected sensitivity radius of 1cm/s
peak ground velocity given the scaling laws of Fang et al.
(2020) for rapid hazard applications. Future work is
extensible to the limits of detection above the noise

floor (>1000km). We collected 2007 waveforms from
217 events (Figure 1). The processed velocity time series
are offered at either 100 or 200 Hz sampling rate. We
low pass filtered these waveforms with a filter corner
frequency of 2.5Hz and then downsampled to 5Hz. We
adopted a recursive short-term average over long-term
average (STA/LTA) detection algorithm to label ground
motion on each individual component. We found this
is a sufficient automatic detector given its performance
(Withers et al., 1998) in these relatively strong signals
and factoring in the subsequent noise injected into our
system. We used a 5 second short-term window and 10
second long-termwindowwith a detection threshold ra-
tio of 1.5. This metric was chosen through trial and er-
ror for its sensitivity for our larger strongmotion signals
of interest (Trnkoczy, 2012).

We exploited our “noise-free” signal waveforms and
realistic stochastic noise generation by adopting data
augmentation of transferred signals. Data augmenta-
tion is a formof regularization inwhich the size of a data
catalog is artificially increased by creating augmented
copies of our original waveforms (Zhu et al., 2020).
Augmentation not only expands extents of a data cata-
log, valuable in relatively limited event datasets such as
ours, but also improves generalization (Bishop, 1995).
Successful augmentation trains a classifier to learn fea-
tures or patterns in the presence of a larger range of au-
thentic noise factors (Iwana and Uchida, 2021). In our
application, we injected a synthetic noise time series
derived from a single reference level of noise spectrum
withuniquephase values (Figure 2). Wedid this at seven
noise reference levels on equivalent intervals from the
5th to 95th percentile to augment each strong motion
waveform, a form of magnitude augmentation or jitter.
We also buffered each augmented waveformwith a ran-
domnumber of samples tomisalign the samples in time
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Figure 2 Example of three component waveforms from a single event NGAW2 waveform from Chi-Chi, Taiwan (2003, M6.2
50Km radius) with three levels of synthetic noise added (5%, 50%, and 95% quantiles). (a) and (b) are the horizontal compo-
nents, H0 and H1 respectively. (c) is the vertical waveform and noise component.

relative to eachwaveformreplica. This resulted in seven
different pseudo-synthetic observational waveforms for
each station-event pair. This approachminimized over-
fitting in ourmodels by training on a range of noise for a
given signal at different offsets in each feature window,
and expanded our catalog seven-fold from 2,007 strong
motion waveforms to 14,049 pseudo synthetic GNSS ve-
locity waveforms (Figure 1).
Additionally, we included the ambient catalog used

in creation of the PPSDs to ensure the classifier is both
trained on and tested against real-world GNSS velocity
noise. This strategy was particularly important for po-
tential disturbances not captured by the ambient syn-
thetic noise generation process, such as the most infre-

quent events that might get statistically removed from
the stochastic power spectrum but could result in detri-
mental false alerts if their signature is not learned. For
example, the lowest frequency offsets from processing
artifacts are infrequent enough to barely impact the
probabilistic spectrum, but if not these are not included
in training they could present as a synchronized event.
We validated the performance of training a classifier
on this synthetic catalog against the previously labeled
EarthScope 5HzGNSS velocities (seeData and code avail-
ability). For description of this dataset, please refer to
Dittmannet al. (2022b). This curated catalog ofGNSS ve-
locity waveforms was processed identically as the noise
catalog of this work; but one fundamental difference
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is it is labeled through visual inspection instead of a
known “truth” of our lowest noise inertial waveforms.

2.4 Model Selection, Feature Engineering
and Training

First we validated the performance of a classifier
trained on our strong motion waveforms relative to our
previous GNSS velocity catalog approach. We used a
random forest classifier (Breiman, 2001) for our detec-
tion model. Random forest is an ensemble method of
decision trees. A decision tree is an algorithm that splits
inputs along features to classify samples. A single deci-
sion tree can be biased by the initial features selected to
seed the splitting; random forest overcomes this poten-
tial bias by running an ensemble of decision trees and
having each cast a vote, where the majority eventually
rules. We set up a binary classification that is demon-
strated to have high accuracy and balance of sensitiv-
ity and false alerting in GNSS velocities. By keeping our
model consistent with our previous work, we validated
the newly formed catalog.
For validation comparison, we preserved our strat-

egy fromDittmann et al. (2022b) of 30s overlappingwin-
dows. Future work will further optimize this sampling
strategy with respect to sensitivity and real-time per-
formance. From each window sample, we extracted a
series of features to test their performance for our sig-
nal detection classification. In the time domain, we ex-
tract metrics akin to the traditional thresholding meth-
ods, including the four largest amplitudes, the median,
and the median absolute deviation. In the frequency
domain we included the entire PSD range over the 5Hz
sampling of 30s windows, which includes periods from
1 second to 30 seconds. Variations on both of these
time and frequencymetricswere evaluated in our previ-
ous work, with the lower frequency (3s-15s period) hor-
izontal PSD themost influential for the classifiermodel.
However, while the overall performance over the en-
tire catalog was a marked improvement from the cur-
rent, variability in the false positive rate of the ambient
dataset combined with missed detections of nearfield
smaller magnitude events warrants further investiga-
tion.
Each sample consisted of one or a combination of

these features for 30 second windows for all three com-
ponents (Figure 3). STA/LTA labels were reduced to a
single positive or negative outcome from 450 samples
(150 samples per window x 3 components). Given our
knowledge of signal relative to noise in this synthetic
dataset, we also assigned a SNR metric for each sam-
ple, which was the peak single difference between sig-
nal power and noise power across all frequency bins.
Weemployed a similar nested cross validation approach
to our previouswork for comparison and validation. Be-
cause the number of discrete events is still relatively
small, we wished to minimize the potential bias from
random validation and testing set selection.
In nested cross validation (Bishop and Nasrabadi,

2007), we ran 10 different testing scenarios, where each
scenario keeps aside a different subset of one tenth of
the events. Within each fold, we also ran an inner loop

of 5 fold cross validation across a grid search of hyper-
parameters. This technique further minimized overfit-
ting hyperparameters by cross validating across a range
of sample subsets. Our hyperparameters included the
depth of nodes, or the number of decision splits, the
number of estimators or decision trees, classweighting,
a strategy that can assist with imbalanced datasets such
as ours, and finally a SNR training threshold. This last
hyperparameter was uniquely available to this pseudo-
synthetic dataset; we generated the noise added to the
signal, and so with this information we can accurately
quantify the relative detectability. Using this as a hy-
perparameter allowed us to optimize training sets to in-
clude the largest extent of low signal-to-noise samples
that benefit themodel, while avoiding degradingmodel
performance with undetectable low SNR.
In cross validation, we optimized the model on F1

scores, a balance of precision and recall. F1 is the har-
monic mean of precision and recall. Precision is equal
to the number of true positives (TP) over the sum of TP
and false positives (FP), and recall is the number of TP
over the sum of TP and false negtives (FN). Dittmann
et al. (see 2022b).

3 Results and Discussion

3.1 Noise Characteristics
In TDCP velocity noise, we observe a V-shaped noise
spectral profile in the PPSD (Figure 4). Periods longer
than 6s follow a power law profile, likely reflecting cor-
related errors such as multipath and atmospheric ef-
fects not completely removed in the time differenc-
ing. This result is aligned with Melgar et al. (2020),
which identified 1Hz PPP displacement noise as a red
noise with a dam profile down to their Nyquist fre-
quency. They infer that multipath and troposphere
are the primary sources of the PPP “random walk”
correlated noise signature (5s-200s period), and antic-
ipate a spectral flattening to white noise around their
maximum resolvable frequency (0.5 Hz) (Melgar et al.,
2020). 1Hz PPP PPSD had a corner around 3 seconds,
while in TDCP the lower frequency power law corner
is at 6 seconds period. Another notable difference
with TDCP processing reflected in this profile is the ab-
sence of absolute atmospheric models. In TDCP, the
single slant path phase differences with first order cor-
rections remove all but higher order gradients. Unfil-
tered time-differenced velocitieswill not accumulate er-
ror from potentially biased corrections models, a chal-
lengeof PPP. Shuet al. (2020) noted that inclusionof pre-
cise satellite clocks and orbits can significantly reduce
longer period drifts existing in displacements derived
from GNSS variometric velocities that otherwise must
be detrended.
At approximately 4-6s period the noise spectrum in-

flects and begins increasing at amirrored power law ex-
ponential to the lower frequencies. In TDCP at higher
rates (>1Hz), Crowell et al. (2023) observes in multiple
sample rates from a single receiver that TDCP velocities
have increased noise in the time domain, roughly a fac-
tor of 7 of standard deviation from 1 Hz to 10 Hz veloci-
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Number of
Station-Event
Waveforms

Number of
Samples

Labeling
Strategy

GNSS Event Catalog
(<70km) (Dittmann et al., 2022b) 247 5,187 visual

inspection
Ambient Noise
Training 1,507 88,893 assumed

event-free
Ambient Noise
Testing 1,507 85,806 assumed

event-free

NGAW2 2,007 60,330 zero-noise
truth labels

NGAW2
with Augmentation 14,049 422,309 zero-noise

truth labels

Table 1 Extent and strategy of catalogs used in this research of noise and M5+ events within expected detectability and
70km radius.

ties. In the frequencydomain these velocities present as
a reverse power law of increasing noise as frequency in-
creases, flattening at a corner around 0.2s period (5Hz).
We observe a similar spectral shape in our PPSDs. Fur-
thermore, Shu et al. (2018) processed up to 50Hz and
identified a spectral “knee” around 3.5Hz; the highest
frequencies observed in our study terminated at this
“knee”. We infer this highest frequency (>1Hz) corre-
lated noise to be predominantly influenced by receiver
thermal noise, and likely receiver baseband design de-
pendent (Moschas andStiros, 2013). Crowell et al. (2023)
also finds that the lowest noise power in the frequency
domain exists in the 1-10s periods of the highest sam-
ple rate observations (20Hz in their study), notable given
this intersects the spectral region of the seismic ground
motion waveforms of interest. Given the spectrum at
higher sampling rates, there is likely potential for im-
proved screening of TDCP velocities for our signals of
interest to reduce temporal aliasing (Hohensinn et al.,
2020; Crowell et al., 2023).
A future PPSDproduct from continuous single station

measurements would enable quantitative comparisons
of the ambient noise levels from one station to another
for monitoring and performance analysis. These noise
levels, presented in a domain familiar scheme, are a
meaningful proxy for the relative sensitivity to observe
ground motions. Routine outliers can be observed and
correlated to disturbances or events, a potentially valu-
able tool for network monitoring. In this study, with-
out continuous 5Hz observations, it is not possible to
assess time or spatially related variability outside the
semi-arbitrary windows currently available.

3.2 Pseudo Synthetic Model Performance

We evaluated three different feature selection strate-
gies by deploying three independent scenarios of ran-
dom forest hyperparameter tuning andmodel fitting on
identical training and testing splits. An advantage of our
psuedo-synthetic approach is our knowledge at the in-
dividual waveform level about discrete true signals rel-
ative to artificial noise across our synthetic catalog. Our
feature sets were time, frequency, and a combined time
and frequency set “psd-t”. Overall, we found the highest

performance from the largest feature vector of all avail-
able features (Figure 5). We found the PSD-only per-
formance similar to the “psd-t” combined feature vec-
tors, which aligns with our feature importances from
Dittmann et al. (2022b).
The overall F1 scores of Figure 5(a) indicate the op-

timal classifier will include both sets of information,
but the PSD-only and time-only F1 scores suggest that
the frequency domain information is most valuable for
its stand alone performance relative to time only fea-
tures. A benefit of our random forest model is read-
ily extracted feature importance information (Figure
6). When our random forest model was presented with
the time and frequency information, the trained model
distributed feature importances across spatial compo-
nents and features. The horizontal components (East-
/North) contributed more than the vertical, consistent
with previous findings aligned with increased vertical
GNSS noise relative to signals (Figure 4, Genrich and
Bock, 2006). Contrary to the stand alone performance
of Figure 5(a), discrete time domain features have con-
siderably more importance than the frequency domain
features. However, the sum of all frequency features in
Figure 6(b) is greater than the cumulative time domain
features for each respective component.
Within the frequency domain, the most valuable fea-

tures are in the 2-5s period range. This shape is distinct
from our previous classifier Dittmann et al. (2022b),
where the most valuable features were the lowest fre-
quency power spectra (6-30s).
Fromamodel explainability perspective, we interpret

that this importance distribution reflects the strength
of the ensemble decision tree algorithm to distribute
its decisions across all features with encoded informa-
tion to optimize performance. An equivalent algorithm
would be difficult to implement and generalize using
traditional thresholds or filtering of this combined in-
formation. From a domain interpretability perspective,
the relative value of signal amplitudes and signal fre-
quency content is comparable after factoring in the dis-
tribution of frequency importances across significantly
more bins. Amodel trained on these combined features
gets the best-of-all-worlds benefits that traditional ap-
proaches (e.g. STA/LTA, threshold) lack. Additionally,
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Figure 3 Demonstration of waveforms, noise and feature selection. The green timeseries in (a) is a downsampled NGAW2
waveform of a relatively weak signal for our application (a M5.5 at 12.5 km). The orange is a randomly generated noise time
seriesusing the50thpercentilenoise spectrum. Thegray shading is the regionofdetection triggeredby the recursiveSTA/LTA.
The sum of these time series (b) is then used as our observation. In the time domain (b) the features selected include the 4
largest amplitudes (solidmagenta circles), themedian, and themedian absolutedeviations, all indicated for thiswaveform in
magenta. Finally, we also compute the power spectral density using a periodogram (in purple) and extract the power at each
frequency bin. The original signal and noise periodograms are shown as well, for reference, though they are not included in
the feature extraction.
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Figure 4 GNSS velocity PPSDs. Panel (a) is the combined horizontal components, panel (b) is the vertical component. Hor-
izontal black lines are references for white noise timeseries of 3 respective standard deviations (5 cm/s, 1cm/s, 0.1cm/s).

the difference between the importances of this classi-
fier and the previous classifier we infer is due to the na-
ture of the labeling; these psuedo synthetic waveforms
are labeled with low-noise “truth” models, so higher
frequency, including more pulse-like signals, are more
readily labeled. This is in contrast to the visual inspec-

tion, in which the human eye is inherently drawn to
and presumably biased by longer period coherent sig-
nals. We will further evaluate in the validation sec-
tion that training on augmented psuedo synthetic wave-
forms outperforms human-level classification perfor-
mance.
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Figure 5 Testing feature extraction strategies across the NGAW2 synthetic dataset. Precision, recall, and F1 scores are pre-
sented as a function of feature extraction strategies across the entire catalog in 10 fold nested cross validation. “PSD” are
the frequency domain features, “time” are the time domain features, and “psd-t” are the same time and frequency features
concatenated into a single feature vector.

Figure6 Feature importances for our random forest classificationmodel cross validated and trainedon the entireNGAWest
2 syntheticGNSSdataset and theambientnoisedataset. Panel (a) shows the concatenated importances for all features across
all components when a model is trained on all the features at once; the pink shading represents time domain features, the
unshaded section are the frequency domain features. The second panel (b) is a close up of the North component features,
with the same background shading schema. Every other feature is labeled for reference, max1 is largest amplitude, max2 is
second largest, ..., 1.0s is the power in the 1s period bin of the PSD; for a single window example, see 3.

3.3 Quantifying Augmentation
Figure 1 and Table 1 make evident that transferred sig-
nals with data augmentation significantly expanded the

GNSS velocity catalog with respect to the number of
unique waveforms. Additionally, data augmentation is
an opportunity to expand sample feature space by lever-
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aging our knowledge of the signals relative to the noise
to train high quality labels with elevated noise environ-
ments (Zhu et al., 2020). We quantified the performance
impact of augmentation by comparing models trained
with and without augmentation. We ran identical com-
plete nested cross validation testing scenarios using two
different training tactics. In the first, we allowed the
model to train on all 7 replicas of eachwaveform. In the
second, we only provided the lowest noise waveform in
training. Panels (a-b) of Figure 7 are from the first train-
ing scenario with augmentation. We tested on all repli-
cas of the testing set waveforms, but for visualization
purposes the leftpanel (a) is theperformanceof the 20th
percentilemedian noisewaveforms, and the right panel
(b) is the performance of the 80th percentile high noise
waveforms. The 20th or 80th percentiles are chosen to
represent the “high” and “low” noise levels. SNR met-
rics were derived from the known noise time series and
known signal periodograms. With data augmentation,
we observed decreasing SNR for the same catalog while
testing against increased noise levels (from panel a to
b or c to d), with an overall true positive rate from 90%
to 84%. When we compared the 20% noise levels with
and without data augmentation (panels a, c), we notice
a similar drop in performance without augmentation.
Finally, when we looked at the highest noise samples
without augmentation, we see a dramatic decrease in
performance despite testing on the identical waveforms
with the same SNR, from 90% to 75%.

3.4 ValidationwithObservedHighRateGNSS
Velocity Event Waveforms

Finally, to validate our synthesis of GNSS velocity wave-
forms against real-world GNSS velocities, we reran a
nested cross validation experiment with the entire real-
world GNSS velocity catalog of Dittmann et al. (2022b)
as a reference to compare the synthetically generated
model. Similar in testing design to the previous com-
parison of data augmentation, we evaluated the perfor-
mance of two classification models against the same
semi-random testing subsets in the nested cross vali-
dation loops and reported on the mean performance.
In this testing split scenario, one model was fit on the
remaining ‘real’ data using hyperparameters extracted
from k-fold cross validation for each training set, while
the other model was fit on the entire synthetic GNSS ve-
locities catalog. All other feature engineering strategies
were held consistent and both models were evaluated
against the same ‘real’ testing sets. The synthetic GNSS
trained model yielded better performance metrics, in-
cluding increased precision, recall, and F1 (Figure 8).
This performance can best be explained by the extent of
training sets: the syntheticmodel was trained on 14,049
waveforms, where the “real”modelwas trained on ~200,
depending on the nested cross validation run testing
slice. The added extent and density of information in
the transferred and augmented training data improved
model generalization for unseen events.
Additionally, we ran an ambient test where we take

the best fit model from each dataset and applied it to a
yet unseen ambient noise dataset (for dataset descrip-

tion, see Table 1). We found the GNSS velocity trained
model had a nearly identical false positive rate, where
false positive rate is one minus the true negative rate
(Figure 8). This further validates that our noise training
and augmentation strategy was effective in improving
performance in difficult noise conditions, as our perfor-
mance improvement in the event catalog did not come
at the expense of ambient performance.
From these improved classification results we infer

that transferred, augmented “synthetic” waveforms are
not only a valid substitute for high-rate GNSS measure-
ments to partially overcome modern, smaller GNSS
seismic datasets, butmay outperformhuman-level clas-
sification performance. A future deployed classifier
will be trained on the combination of data catalogs
to achieve the best generalization performance for
yet-to-occur events. This real-world versus pseudo-
synthetic comparison and validation result also sug-
gests that evolved transfer learning across measure-
ment domains, including exploration of fine-tuning of
more mature seismic deep ML models with GNSS ve-
locities, could further advance GNSS seismology chal-
lenges.

4 Conclusions
We find the ambient GNSS velocity noise distribution’s
shape to be consistent with previous high-rate GNSS po-
sitioning noise analysis and spectral amplitudes, and
find the noise distribution to be useful for signal sen-
sitivity, synthetic noise generation, and future network
monitoring. We find that frequency, time, and com-
bined feature extraction strategies vary slightly un-
der different SNR regions and that data augmenta-
tion boosts overall performance by training a model in
higher noise settings.
Finally, we find that amodel trained on these pseudo-

synthetic waveforms, with the full suite of augmenta-
tion, outperforms themodel trained on strictlyGNSS ve-
locity waveforms over themagnitudes (MW 5.0-8.0) and
hypocentral distances (≤70 km) tested in this analysis.
Augmentation improves detection around the noise-
signal boundaries. The immediate benefit is an im-
proved classification model from an expanded catalog
that canbe retrained on the combinedpseudo-synthetic
and real catalog for unseen events. Such a classifier will
be embedded in enhanced network operations and haz-
ard monitoring for automated, stand-alone event de-
tection. The subsequent benefit is an expanded train-
ing catalog (Dittmann et al., 2023) and framework that
supports deeper learningmodels that are “data hungry”
(Mousavi and Beroza, 2022). This includes expanding
functional learning outputs, such as denoising, regres-
sion for magnitude inversion, and forecasting. With
respect to future training of the largest events using
this catalog, we identify possible limitations of this ap-
proach for specific experimental hypotheses due to the
potential for introducing magnitude saturation of iner-
tial instruments into our model training, a phenomena
we are explicitly avoiding by using GNSS as a source.
Similarly, more sophisticated source-dependent learn-
ing (e.g. forecasting) will need to consider the distribu-
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Figure 7 Comparing event detection with training on augmented noise samples across noise levels. Each panel includes
the peak SNR of the waveform for each event as a function of radius from the event. This SNR metric is the peak of signal
power to noise power for any frequency bin of periodograms calculated for all samples for all components for a given station-
event waveform. The plot marker radius is determined by the event magnitude. The top panels (a-b) are testing the 20th
noisemodel and 80th noisemodel of each station-event waveform using a classifier trained on all augmented samples. 20th
and 80th are chosen to represent “low” and “high” noise. The markers are colored by a binary detected/not detected. The
bottom panels (c-d) are testing the 20th/80th noise model waveforms with no data augmentation. This illustrates the value
of augmentation for detection in noise, in addition to the approximate threshold of detection given our knowledge of signal
and noise in this pseudo synthetic dataset. “TPR” - True Positive Rate.

tion of the NGAW2 source catalog used, specifically ac-
counting for subduction events. Further investigations
using this framework, perhaps paired with fully syn-
thetic methods, is warranted. A loose ML integration
of stand-alone inertial waveforms and this expanded
GNSS-sourced waveforms enables fine-tuning (Yosinski
et al., 2014) or transfer of existing inertial-based seis-
mic detectionMLmodels, such as Mousavi et al. (2020);
Seydoux et al. (2020). Tighter amalgamation of stand-
alone sensor sources benefiting from improved classifi-
cation could include GNSS-sourced velocity waveforms
directly in groundmotion catalogs (Crowell et al., 2023)
and operational monitoring systems. Such approaches
would further blur distinctions between inertial and
GNSS seismic signal sources, shifting from representa-
tions of different fields of earth sciences towards inde-
pendent observational inputs with complimentary dy-
namic ranges and respective noise models.

Data and code availability

The inertial seismic records are available from the Pa-
cific Earthquake Engineering Research Center (PEER)
Next Generation Attenuation for Western United States
2.0 (https://ngawest2.berkeley.edu/, Ancheta et al.,
2014).
The 5Hz GNSS data used for TDCP processing in

the study are available from the Geodetic Facility for
the Advancement of Geoscience (GAGE) Global Nav-
igation Satellite Systems (GNSS) archives as main-
tained by EarthScope Inc. (previously UNAVCO,
Inc). The data are available in RINEX (v.2.11) for-
mat at https://data.unavco.org/archive/gnss/highrate/5-
Hz/rinex/. SNIVEL code used for TDCP velocity process-
ing is developed openly at https://github.com/crowellbw/
SNIVEL (Accessed December 2021) (Crowell, 2021).
SNIVEL 5Hz velocity timeseries used in this study are
preserved at (Dittmann, 2022). Labeled 5HzGNSS veloc-
ity samples andpseudo synthetic samples are preserved
at (Dittmann et al., 2023).
Version 1.0.1 of the scikit-learn software used for ran-
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Figure 8 Testing performance of real GNSS velocity events as a function of training catalog used. These are themean scores
across the 10 testing folds of thenested cross validation. Thepurple results are fromamodel generatedusing cross validation
of the remaining real gnss dataset; the green results are from the bulk model fit to the entire NGAW2 synthetic dataset. Each
uses the “psd-t” feature extraction method (combined time and frequency features). The ambient true negative rate (TNR)
is estimated using a separate dataset of unseen ambient data. TNR is (true negatives) / (true negatives + false positives), or
equivalent to oneminus the false positive rate. The annotated text is the difference between the two approaches.

dom forest classification is preserved at (Grisel et al.,
2021) and developed openly at https://github.com/scikit-
learn/scikit-learn (Pedregosa et al., 2011). Figures were
made with Matplotlib version 3.5.1 (Caswell et al.,
2021), available under the Matplotlib license at https:
//matplotlib.org/.
Version 1.2.1 of the obspy software used for seis-

mic data handling and PPSD generation is preserved
at (Team, 2020) and developed openly at https://
github.com/obspy/obspy (Krischer et al., 2015). Soft-
ware used to generate psuedo synthetic waveforms and
train, test and validate models is available at https://
github.com/timdittmann/psuedosynth_gnss_velocities
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