


Issue 3, Volume 1, 2024

Aims and Scope
Seismica publishes original, novel, peer-reviewed research
in the fields of seismology, earthquake science, and re-
lateddisciplines. Seismica is a community-driven, diamond
open-access journal. Articles are free to publish and free to
read without a subscription, and authors retain full copy-
right.

Seismica strives to be accessible, transparent, respect-
ful, credible, and progressive.

Seismica’s scope includes a wide range of topics in seis-
mological and earthquake sciences. A non-exhaustive
list of topics that fall within the scope of Seismica in-
cludes: Fault-slip and earthquake source phenomena,
Earthquake records, Imaging the Earth, Theoretical and
computational seismology, Beyond Earth-tectonic applica-
tions, Techniques and instrumentation, Earthquake engi-
neering and engineering seismology, Community engage-
ment, communication and outreach.

For submission instructions, subscription and all other in-
formation visit: https://seismica.library.mcgill.ca/.
For editorial questions or issues, please contact info@seis-
mica.org.
For technical assistance, please contact info@seismica.org.
For appeals, please contact appeals@seismica.org.

About the cover
Cover Caption Drone-based lidar platform preparing to
land after conducting a survey near Shä́ r Ndü Chù (Duke
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Abstract The 2023 Mw 6.4 Quiché earthquake is the deepest recorded major (Mw > 6) earthquake to
have occurred in the Cocos slab beneath Central America, at a depth of ∼ 255 km. Here, we refine the source
parameters of both the Quiché earthquake, and the only other event at comparable depths (the 1997 Mw 5.5
Jutiapa earthquake), confirming both their exceptional depth within the downgoing slab, and their down-dip
extensional mechanism. That the Cocos slab remains capable of hosting major intraslab earthquakes, with
mechanisms consistent with down-dip extension, near, or at, the tip of the contiguous slab, suggests that the
slab itself is weak, such that theminimal stresses derived from supporting the negative buoyancy of the short
section of slab down-dip from this earthquake are still sufficient to lead to brittle failure of the slab.

Resumen El terremoto de Quiché de magnitud Mw 6.4 en 2023 es el terremoto de mayor magnitud
(Mw > 6) registrado en la zona más profunda de la placa de Cocos bajo América Central, a una profundi-
dad de ∼ 255 km. Aquí, refinamos los parámetros fuente tanto para el terremoto de Quiché como para el
único otro evento a profundidades comparables (el terremoto de Jutiapa demagnitudMw 5.5 en 1997), con-
firmando tanto su profundidad excepcional dentro de la placa descendente, como su consistentemecanismo
extensional hacia abajo. Que la placa de Cocos siga siendo capaz de experimentar terremotos intra-slab de
granmagnitud, con consistentes mecanismos de extensión hacia abajo, cerca o en el borde con la placa con-
tigua, sugiere que la placamisma es débil, a tal punto que las tensionesmínimas derivadas de este terremoto,
asociadas a la flotabilidad negativa de la pequeña sección de la placa descendente, siguen siendo suficientes
para producir el fracturamiento frágil de la placa.

1 Introduction
The oceanic Cocos plate subducts beneath Central
America along the Middle America Trench, giving
rise to both widespread seismicity on the subduc-
tion megathrust and to prolific (although unevenly dis-
tributed) seismicity within the Cocos slab as it descends
into the upper mantle. Although contributing only
a small proportion of the overall moment release as-
sociated with the Central American subduction zone,
intraslab events can, on occasion, be both large and
damaging. In the case of Central America, these in-
traslab events include the damaging Mw7.7 2001 El Sal-
vador earthquake (Vallée et al., 2003), the Mw7.4 1999
Oaxaca/Tehuacán earthquake (Singh et al., 2000), and
the 2017 Mw8.2 Tehuantepec and Mw7.1 Puebla earth-
quakes (Melgar et al., 2018a,b).
In its northern sections, the Central American slab is

dominated by the flat slab region under southern Mex-
ico (e.g., Kim et al., 2010; Manea et al., 2017). East of
∼ 97◦ W, the slab transitions via a region of probable
slab tearing (e.g., Rogers et al., 2002;Manea et al., 2013)
to a more classical slab geometry, dipping gently down

∗Corresponding author: t.j.craig@leeds.ac.uk

into the uppermantle (e.g., Syracuse et al., 2008;Manea
et al., 2013). East of the flat slab region, the slab shows a
fairly consistent geometry, characterisedby its dip grad-
ually increasing from < 20

◦ to > 60
◦ at fairly consistent

slab curvatures (Hayes et al., 2018). Current slabmodels
suggest the contiguous downdip slab extends to depths
of ∼ 250-300 km — below this depth, the nature of the
slab becomes unclear, with different data suggesting ei-
ther a gap between the shallow slab and a detached slab
in themidmantle (Rogers et al., 2002) or a fragmentary,
perforated, slab subject to through-going mantle flow
(Zhu et al., 2020; Xue et al., 2023).

The causative rheological mechanism allowing brit-
tle failure in such intraslab earthquakes to occur re-
mains uncertain, with both dehydration embrittlement
and shear-heating driven thermal instability remaining
as viable candidates (e.g., Hosseinzadehsabeti et al.,
2021;Wimpenny et al., 2023; Prakash et al., 2023). How-
ever, no matter what the rheological control allowing
seismogenic failure is, the consistency and regional co-
herency of deformation illuminated by intraslab seis-
micity requires that their spatial occurrence is con-
trolled by the intraslab stress state – well established to
be a function of the interplay between stresses related
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Figure1 Earthquakesalong theCentral AmericanSubductionZone. (a) Earthquakedepths. Insetpanel showsa regional lo-
cationmap; (b) Earthquakemoment tensors, from the gCMT catalogue. Compressional quadrants are shaded by earthquake
depth. Inset boxes highlight the 2023 Quiché and 1997 Jutiapa earthquakes, and use our moment tensors and locations.
Contours show the Slab2 model (Hayes et al., 2018). Dashed blue box shows the region used in plotting the cross sections
shown in Figure 5.

to the negative buoyancy of the slab (slab pull), trac-
tions on the edge of the slab from its interaction with
the surrounding mantle, stresses relating to the bend-
ing and unbending of the slab, and stresses arising from
the evolving thermochemical state of the slab (e.g., ther-
mal expansion, volumetric changes resulting frommin-
eralogical phase transitions) (e.g., Manea et al., 2006;
Bailey et al., 2012). The dominant two are believed to be
slab pull, which plays a role in driving global plate tec-
tonics, and the bending stresses. Which of these domi-
nates the overall stress state of the slab likely varies be-
tween different geodynamic settings (Sandiford et al.,
2020; Craig et al., 2022; Sippl et al., 2022).

This study focuses on the Mw 6.4 2023 Quiché earth-
quake (Figure 1), which occurred beneath the central
Guatemalan cordillera on the 17th May 2023, at 23:02:00
(UTC). Preliminary locations placed this earthquake at
depths of ∼ 255 km (as reported by the NEIC; please see
Table 1), at the leading edge of the contiguous section
of the subducting Cocos slab beneath Central America.
The depth and location of this earthquakemake it stand
out against the backdrop of other seismicity associated
with the Central American slab – both as a compara-
tively large-magnitude event for the Central American
slab, but also as one at substantially greater depths than
generally recorded for earthquakes in the slab beneath
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Origin time (UTC) Method Lat (◦) Long (◦) Depth (km) Mw Mrr Mtt Mpp Mrt Mrp Mtp γ

2023/05/17
23:02:00.5 NEIC 15.181 -90.815 253.5 6.4 - - - - - - -
23:02:03.2 gCMT 15.17 -90.99 253.0 6.4 0.305 -0.334 0.030 0.326 -0.525 0.124 84%
23:02:05.6 This Study 14.82‡ -91.12‡ 256.0 6.4 0.449 -0.375 -0.074 0.222 -0.428 0.306 94%

1997/05/15

04:39:21.5 NEIC 14.460 -89.775 274.2 4.9† - - - - - - -
04:39:23.3 ISC-EHB 14.490 -89.741 279.4 4.9† - - - - - - -
04:39:26.3 gCMT 14.53 -89.85 272.9 5.5 0.170 -0.072 -0.073 0.315 -0.616 0.043 92%
04:39:25.6 This Study 14.12‡ -89.82‡ 270.0 5.5 0.328 -0.213 -0.115 0.276 -0.568 0.136 85%

Table 1 Earthquake source parameters from different seismic catalogues. Note that at the time of writing no solution is
yet available for the 2023 Quiché earthquake from the ISC. Magnitudes denoted † are instead mb rather than Mw. Locations
marked with ‡ are unreliable.

Central America. Along with the 2023 Quiché earth-
quake, we also revisit a Mw 5.5 earthquake from 15th

May 1997, which occurred under Jutiapa in southeast-
ernGuatemala,∼150 kmESE along the strike of the sub-
duction zone from the Quiché earthquake, but at a sim-
ilar depth – also at the leading edge of the contiguous
slab. Together, these two earthquakes represent the two
deepest larger-magnitude events, and define the tip of
the seismogenic slab.
Here, we present a refinement of the seismologically-

determined source parameters of these two earth-
quakes, consider their geodynamic context within the
Cocos plate, and the implications of such deep intraslab
earthquakes for the force-balance of the subducting
plate.

2 Earthquake source parameter deter-
mination

We refine initial estimates of the source parameters of
the Quiché and Jutiapa earthquakes using global seis-
mic data. We use the Grond software of Heimann et al.
(2018) to invert seismological waveform data for the
earthquake location (latitude, longitude, depth), source
duration, magnitude, and six components of the mo-
ment tensor. We draw on both vertical and horizontal
component data recorded at teleseismic distances (30

◦

– 90
◦) from the earthquake epicentre. Horizontal com-

ponents are rotated into earthquake-relative radial and
transverse components. Station response functions are
removed from all seismograms, and data are filtered to
frequencies of 0.025 – 0.25 Hz using a four-pole Butter-
worth bandpass.
We use vertical component data to invert for the di-

rect P-wave and its associated depth phases, and both
radial and transverse data to invert for the S-wave and its
associated depth phases. Misfits from radial and trans-
verse component waveforms are downweighted during
inversion by a factor of two, to reduce over-fitting of the
usually higher-amplitude S-wave and its depth phases.
Inversion windows are taken from 20 seconds before
the predicted onset of each direct phase, to 120 after –
a time range estimated to encompass the direct arrival
and principal depths phases (pP, sP, pS, sS), based on the
initial catalogue depth, and verified visually. Whilst the
majority of similar studies use only vertical and trans-
verse component data, we find here that the additional

use of radial component data, in this case, makes a mi-
nor improvement in the resolution of the source mech-
anism, due to the inclusion of the pS depth phase, par-
ticularly for the Quiché event.
We invert for the six components of the moment

tensor (constrained to be purely deviatoric with no
isotropic component), along with three location param-
eters, moment, and source duration. Synthetic and ob-
served waveforms are realigned during each iteration
using on a time shift which maximises the cross corre-
lation value between the observed and synthetic traces
at each station and for each component independently.
Information about the velocity structure of the over-

riding Central American plate is limited, in compari-
son to other subduction zones, due to the relative spar-
sity of near-field instrument deployments. As a result,
we use a velocity structure based on the global ak135
velocity model (Kennett et al., 1995). Given the inclu-
sion of a waveform-realignment step in the inversion
approach, our modelling is most sensitive to the veloc-
ity structure at depths between the earthquake source
and the free surface. This being the case, our results are
not particularly impacted by the lack of a fast, coldmid-
mantle slab in ak135, and this does not have a signifi-
cant impact on the determination of either source depth
or source mechanism. However, teleseismic source in-
versions, especially in cases where station-specific tem-
poral realignment is included, are typically insensitive
to small changes in the lateral location of the earth-
quake. As such, although we do allow our inversion to
re-determine source latitude and longitude (see Table
1), we note that these are poorly constrained, with sub-
stantial variability in the range of acceptable solutions,
and therefore we consider these parameters to be unre-
liable.
Figures 2 and 3 show inversion results for the Quiché

and Jutiapa earthquakes respectively, showing example
radial, transverse and vertical component waveforms,
the resultant probabilistic moment tensor, and param-
eter histograms for depth, strike, dip, rake, and the de-
gree to which the mechanism contains any non-double
couple (nDC) component. In this case, we assume that
a well-constrained mechanism would be a pure double
couple, and that any nDC component would reflect the
mapping of noise into the solution. For both events,
the nDC moment required is only a small fraction of
the overall moment release required, indicating that
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Figure 2 Earthquake source determination results for the 2023 Quiché earthquake. (a) Probabilistic moment tensor. Red
lines show theminimummisfit moment tensor. (b) Observed waveforms (black) and calculated synthetics (red) for the min-
imummisfit solution. Shown are 6 examples traces, two each for radial, transverse and vertical components. Note that the
instruments shown for each component varies. Annotations give thenetworkand stationname, epicentral distance, azimuth,
trace start time, and inversion window length. (c) – (g) show probability density functions for depth, strike, dip, rake, and the
ratio of the moment proportions allocated as a compensated linear vector dipole (CLVD) to the overall moment.

Figure 3 Earthquake source determination results for the 19997 Jutiapa earthquake. Panels are as shown in Figure 2.

our solutions are reasonably well constrained, and free
from significant noise influence – a conclusion visually
supported by inspection of the waveforms in Figures 2
and 3, which shows clear, relatively noise-free phase ar-
rivals.
As the waveform fits in Figures 2 and 3 show, we are

able to fit both the timing and amplitude of multiple
phases across the waveform sections used. Both of our
two earthquakes yield well-constrained depths, with Ju-
tiapa being slightly deeper (270 km) than the Quiché
event (256 km). These events are verified to be the deep-
est significant earthquakes within the Cocos plate yet
recorded using global seismic data.
Whilst the two earthquakes differ slightly in their

mechanism, due to the different signs of their small
nDC components, the double couple component
of their respective mechanisms is overall similar,
representing almost pure dip-slip faulting, striking
marginally obliquely to the strike direction of the slab,
with a steeply-dipping southeast striking nodal plane,
and a shallowly-dipping northwest striking nodal
plane. Mechanism orientation parameters in all cases
are extremely well constrained, and are consistent
with the orientation of faulting within the Cocos slab in
other earthquakes deeper than ∼ 150 km.
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Figure 4 Reprojected earthquake moment tensors in the Central American Subduction Zone. Upper panel shows earth-
quake locations, coloured by depth. Contours show the slab model of (Hayes et al., 2018). Blue lines show the limits of the
cross section shown in Figure 5, red line shows the projection line for the lower panel. Lower panel shows earthquake loca-
tionsasa functionofdepthanddistancealong theprojection line shown in theupperpanel. Moment tensors (for earthquakes
with Mw ≥ 6.0 are rotated in three dimensions to be in a slab-relative reference frame appropriate for the location of the
earthquake and its local slab geometry. Themoment tensor for the 1997 Jutiapa earthquake is plotted despite having anMw

of 5.5.

3 Seismicity with the Central Ameri-
can Slab

In Figure 4, we show subduction-related seismicity
along the Central American subduction zone, repro-
jected into a slab-relative reference frame such that the
focal mechanisms shown are relative to the local slab
surface from the Slab2model of Hayes et al. (2018). Fig-
ure 5 shows a cross section through the slab beneath
Guatemala, including a reprojection into slab-relative
coordinates in Figure 5b.
Although in map view (e.g. Figure 1), many of the

deeper earthquakes within the Cocos slab appear to
be thrust-faulting earthquakes, when considered in a
slab-relative reference frame, earthquakes within the
slab instead almost entirely reflect down-dip extension
within the slab. As Figure 5 demonstrates, intraplate
faulting is dominated by downdip extension almost per-
fectly aligned to the direction of the slab dip. The slight
mis-alignment between the strike of active intraslab
faults and the slab strike (visible on Figure 4 and Figure
5a) probably reflects the slight misalignment between
the trench orientation and the relict fabric of the incom-
ing Cocos plate, reactivated in the outer rise (e.g., Mas-
son, 1991; Ranero et al., 2005), andwhich likely remains

active in the intraslab environment (Boneh et al., 2019).

The majority of slabs globally show a diversity of in-
traslab focal mechanisms, with a mix of both downdip
compression and downdip extension, typically sepa-
rated into discrete planes (double seismic zones) within
the slab (Isacks andMolnar, 1969; Sandiford et al., 2019,
2020; Craig et al., 2022; Sippl et al., 2022). However, as
we see from Figures 4 and 5, the Cocos slab stands out
against this trend – almost all of the intraslab seismic-
ity below ∼75 km depth reflects down-dip extensional
stresses. As Figure 5a shows these earthquakes show a
remarkable degree of consistency in their slab relative
mechanism orientations – a result of a relatively sim-
ple intraslab stress field, presumably dominated by slab
pull, and with minimal impact from bending-related
stresses after the initial phase of post-subduction un-
bending, reflected in the simple slab geometry seen be-
neath Guatemala on Figure 5c.

However, of particular note here is that both the
Quiché and Jutiapa earthquakes occur at the very lead-
ing edge of the contiguous Cocos slab, in a regionwhere
the slab is subject to neither substantial bending-related
stresses, nor to major buoyancy forces relating to the
presence of a substantial high-density down-dip slab.
Despite this, both earthquakes show complete consis-
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Figure 5 (a) Slab-relative orientations of the principal axes for the population of earthquakes consistent with down-dip
extension. (b) Trench-perpendicular cross section for the region between the blue lines on Figure 1. Earthquakes locations
are given by circular points, underlain by bars indicating the inclination of the T axis. Bars are coloured blue for those events
consistent with down-dip extension, red for those consistent with down-dip compression, and grey for all other earthquakes.
Locations are reprojected to show trench-perpendicular distance relative to the local trench. Background shows the variation
in slab geometries across the region. Yellow circles highlight the 2023Quiché and 1997 Jutiapa earthquakes. (c) Cross section
showing earthquake locations andmoment-tensor orientations in a reference frame relative to the local slab surface.

tency in orientation with the rest of the intraslab defor-
mation field. The Quiché earthquake also stands out for
its magnitude – although not, by a long way, the largest
intraslab event recorded within the Cocos plate, a Mw

6.4 would be expected to require a fault area on the or-
der of ∼ 100 km2, requiring either a high-aspect-ratio
rupture, or a substantial seismogenic cross section for
the slab at this depth.

4 Dynamics of the Central American
Slab

Simple numerical calculations in the wake of the devel-
opment of early slab models explored the evolution of
the intraslab stress state as a function of the slab length
(e.g., Vassilou et al., 1984; Vassilou andHager, 1988), as-
suming that the slab behaves as a Newtonian fluid cou-
pled to a less viscous surrounding mantle and deform-
ing under its own weight, descending into a layered
mantle structure. Such models neglect any bending-
related stresses, andany stress variations resulting from
the internal rheological evolution of the slab, and there-
fore simply provide estimates of the intraslab stress
field driven by slab pull and the interaction of the slab
with the surrounding mantle. We do not attempt to re-
produce the calculations of Vassilou and Hager (1988)
here, but summarise their findings in Figure 6. Theneg-
ative buoyancy of the slab in each case puts the shal-
low part of the slab into down-dip extension, whilst
for slabs extending towards the mantle transition zone,
where there is a significant viscosity contrast, there is a

switch into down-dip compression in the deeper parts
of the slab, which propagates back to increasingly shal-
lower depths for slab that reach deeper into the man-
tle. The dashed line on Figure 6 shows the impact of
having an inclined slab, rather than a vertical one –
essentially, this serves to reduce the magnitude of the
stresses involved, and produces a rotation in the local
stress tensor, but has little impact on the ’polarity’ of
the stress field, with shallow depths still being domi-
nated by down-dip extensional stresses. The Cocos slab
under Guatemala wouldmost closely resemble the ‘270’
km slab model shown in Figure 6. Of note here is that
the predicted stresses near the slab tip are very low, due
to the small length of negatively buoyant slab extend-
ing to greater depths. We also note that for slabs only
reaching to∼300 km, the tip of the slab is not placed into
down-dip compression, as it remains too distant from
the mantle transition zone.
At this time, we are not aware of any concrete evi-

dence that the Cocos slab persists significantly below
∼300 km as a contiguous structure (i.e., one which can
act as a stress guide) –whilst there is clearly slab-derived
material deeper into the mantle (e.g., Rogers et al.,
2002), how this connects to the shallow slab is unclear,
with no clear evidence for a down-dip continuous slab.
In models which do image the continuation of slab-
derived material below 300 km (e.g., Zhu et al., 2020;
Xue et al., 2023), the weak velocity anomaly, combined
with the orientation of mantle fabrics, is interpreted to
show a fragmentary slab subject to through-going man-
tle flow. We do, however, note that further work on
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Figure 6 Stress as a function of depth for variable length
slabs, descending under their own weight into a viscous
mantle. All slabs are assumed to dip vertically, except for
the dashed line, which dips at 45◦. The in-plane stress field
within the slab is in down-dip extension at shallow depths,
with the increase beyond ∼350 km reflecting a switch to
down-dip compression due to interaction of the slab tip
with the viscosity increase at the transition zone (670 km).
After Vassilou and Hager (1988).

imaging the Cocos slab beneath Central America may
change this picture, and our subsequent interpretation.
Under the assumption that the Cocos slab does not

persist below ∼300 km in a manner capable of sus-
taining significant stresses, it is notable that, even at
the very tip of the contiguous Cocos slab, the slab re-
mains capable of producing earthquakes such as those
beneath Quiché and Jutiapa. The slab-pull derived in-
traslab stress field should, at the tip of the slab, become
small, yet the consistency between the orientation of
these earthquakes at 250–270 km depths, and those be-
tween 120–250 km, suggests that a similar interplay of
stress field and relict structure continues to control the
orientation of faulting throughout the slab, potentially
modulated by the availability of a brittle rheology de-
pendent on localisedhydration alongpre-existing struc-
ture. Two implications arise from this observation:

• that, in the absence of bending-related stresses, the
buoyancy-related stresses (i.e., slab pull) continue
to dominate the intraslab stress field, even in en-
vironments where these stresses must be small.
Other sources of stress (e.g., those arising from
the thermo-chemical evolution of the slab), must

therefore be insignificant.

• that the slab itself must be rheologically quite
weak, such that even the reduced buoyancy-related
stresses present near the slab tip remain capable to
activating, in the case of the Quiché earthquake, a
substantial seismogenic cross section of the slab.

5 The mechanics of intermediate
depth earthquakes

In keeping with other intermediate depth earthquakes
(e.g., Ye et al., 2020; Wimpenny et al., 2023), both the
Quiché and Jutiapa earthquakes had low-productivity
aftershock sequences. Despite its own considerable
magnitude (Mw 6.4), the Quiché earthquake was re-
ported by the NEIC to be followed by only two other
earthquakes within 100 km of the earthquake epicen-
tre in the following 6months, both considerably smaller
(mb 4.6 and 4.3) and considerably shallower (< 200

km). Following the 1997 Jutiapa earthquake, the NEIC
reported only one aftershock near the intermediate-
depth source region, with mb 4.9. The lack of a sub-
stantial aftershock population also inhibits the infer-
ence of earthquake rupture dimensions and causative
fault plane based on aftershock distribution and extent,
although we note the potential for local seismic data to
clarify this (e.g., Yani-Quiyuch et al., 2023).
That the deviatoric stress derived from the negative

buoyancy of the short section of the contiguous slab
down-dip from these earthquakes was still capable of
producing major seismogenic failure of the slab sug-
gests that the yielding stress of the slab at such depth
was also low – a condition more easily reconcilable
with the rheological control on intraslab seismicity be-
ing related to either dehydration embrittlement or de-
hydration stress transfer, either of which would greatly
reduce the effective yield stress, rather than a shear-
heating model, which would still require high stresses
to initiate the initial shear instability.

6 Conclusions

The Quiché and Jutiapa earthquakes represent down-
dip extensional failure near the tip of the subducting
Cocos slab beneath Guatemala. The coherence of the
moment tensors of these earthquakes with those updip
suggests that the intraslab stress field at such depths re-
mains dominated by the negative buoyancy of the slab
(slab pull). That the slab at such depths remains ca-
pable of major seismogenic failure in down-dip exten-
sion, despite the limited section of contiguous slab ex-
tending beyond the depth of these earthquakes, sug-
gests that the slab itself is relatively weak, in order to al-
low failure under only low-magnitude slab pull-derived
stresses. The sensitivity of the slab to relatively small
deviatoric stresses (compared to lithostatic stresses), is
consistent with a fluid-related rheological control on in-
traslab seismicity.
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Abstract The advent of sub-meter resolution topographic surveying has revolutionized active faultmap-
ping. Light detection and ranging (lidar) data collected using crewed airborne laser scanning (ALS) can pro-
vide ground coverage of entire fault systems but is expensive, while Structure-from-Motion (SfM) photogram-
metry from uncrewed aerial vehicles (UAVs) is popular for mapping smaller sites but cannot image beneath
vegetation. Here, we present a new UAV laser scanning (ULS) system that overcomes these limitations to sur-
vey fault-related topography cost-effectively, at desirable spatial resolutions, and even beneath dense veg-
etation. In describing our system, data acquisition and processing workflows, we provide a practical guide
for other researchers interested in developing their own ULS capabilities. We showcase ULS data collected
over faults from a variety of terrain and vegetation types across the Canadian Cordillera and compare them
to conventional ALS and SfM data. Due to the lower, slower UAV flights, ULS offers improved ground return
density (∼260 points/m2 for the capture of a paleoseismic trenching site and ∼10–72 points/m2 for larger,
multi-kilometer fault surveys) over conventional ALS (∼3–9 points/m2) as well as better vegetation penetra-
tion than both ALS and SfM. The resulting∼20–50 cm-resolutionULS terrainmodels reveal fine-scale tectonic
landforms that would otherwise be challenging to image.

Non-technical summary Lidar remote sensinguses lightpulses froma laser instrument tomeasure
distances to objects and surfaces to create high precision, three-dimensional models. It is useful for mapping
theground surfacewhereobscuredby forest, because laser pulses that avoid foliageandbrancheswill sample
the ground surfacewhile those that don’t can be digitally removed, unlike in photogrammetry. Typically, lidar
instruments are mounted on tripods (terrestrial laser scanning) or crewed aircraft (airborne laser scanning).
Recently, lidar systems have become compact and light enough to be deployed fromuncrewed aerial vehicles
(UAVs, or drones) and this technology is being adopted across many disciplines. Here, we describe some of
the first applications of a drone lidar system to study landforms generated by active faults, and illustrate its
capabilities using surveys of a variety of faulted landscapes with different vegetation types across western
Canada. Our system offers a cost-effective way of obtaining otherwise expensive lidar data, and compares
favourably against establishedmethods of topographicmapping, allowing us to survey the landscape in finer
detail than was previously possible. The drone system is subject to practical and regulatory constraints and
we discuss ways that these could bemitigated in the future.

1 Introduction
Lidar (light detection and ranging) is an increasingly
popular terrestrial remote sensing method that com-
bines the return times of reflected or back-scattered
laser pulses with information on the location and ori-
entation of the laser scanner to produce a dense ‘point
cloud’ containing the Cartesian (x, y and z) co-ordinates
of a geographic target (Xiaoye Liu, 2008; Glennie et al.,
2013). The sub-meter point spacings characteristic of
lidar data are finer than the ∼1–10 meter pixel dimen-
sions typical of modern satellite-derived digital eleva-
tionmodels (DEMs) (e.g.Morin et al., 2016; Hodge et al.,
2019; Wang et al., 2019; Benavente et al., 2021; Salomon
et al., 2022). Furthermore, since multiple laser returns
can be distinguished from the same outgoing pulse, and

∗Corresponding author: guysalomon@uvic.ca

since distinct canopy returns can be filtered out, lidar is
able to penetrate vegetation to yield a bare-earth digi-
tal terrain model (DTM) of the ground surface. These
unique attributes of lidar remote sensing have con-
tributed to an explosion of interest acrossmany geospa-
tial fields, including tectonic geomorphology (Meigs,
2013). It is becoming common practice to acquire li-
dar along fault surface traces as it provides some of the
best data for constraining fault offsets, kinematics, and
scarp morphology (e.g. Cunningham et al., 2006; Hil-
ley et al., 2010; Zielke et al., 2010, 2015; Elliott et al.,
2012; Salisbury et al., 2012; Johnson et al., 2018; Wei
et al., 2019), as well as a topographic baseline for map-
ping any future earthquake deformation (Oskin et al.,
2012; Glennie et al., 2014; Nissen et al., 2014; Scott et al.,
2018; Diederichs et al., 2019; Ishimura et al., 2019; La-
joie et al., 2019; Wedmore et al., 2019) or aseismic fault
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creep (DeLong et al., 2015; Scott et al., 2020). Lidar is
especially useful in regions such as northwestern North
America, wherewidespread forest covermay otherwise
obscure fault scarps or other earthquake-related land-
forms (e.g. Haugerud et al., 2003; Hunter et al., 2011;
Morell et al., 2017; Nelson et al., 2017; Johnson et al.,
2018; Harrichhausen et al., 2021; Schermer et al., 2021;
Witter et al., 2021).
Lidar data are typically collected through one of two

established methods. In Terrestrial Laser Scanning
(TLS), landscapes are mapped at low incidence angles
from a laser instrument mounted on a stationary
tripod (Telling et al., 2017). TLS can achieve very dense
point clouds with 100s to 1000s of points per square
meter (pts/m2), but to avoid shadowing of features of
interest behind objects like tree trunks or undulating
topography, the scanner is typically deployed at several
locations. Furthermore, due to the time taken to set
up each new scanner position, TLS surveys are best
suited for relatively small outcrop or landform-scale
acquisitions (e.g. Jones et al., 2009; Haddad et al., 2012;
Gold et al., 2013; Wiatr et al., 2013; Bubeck et al., 2015;
DeLong et al., 2015; Wedmore et al., 2019). In rare
instances, terrestrial lidar surveys have been expanded
by mounting the scanner on motorized vehicles, back-
packs, or tethered balloons, a configuration termed
Mobile Laser Scanning (MLS) (Glennie et al., 2013;
Brooks et al., 2013; Brooks et al., 2017; Nevitt et al.,
2020; Zhu et al., 2022). The second, more prevalent
method is Airborne Laser Scanning (ALS), where the
laser scanner is mounted onto a crewed aircraft and
flown over the target area (Xiaoye Liu, 2008; Glennie
et al., 2013). Thismethod is suitable for collectingmuch
larger datasets, typically in 1–2 km wide swaths that
can extend tens to hundreds of kilometers along linear
targets such as fault traces, coastlines, or infrastructure
corridors (e.g. Toth et al., 2007; Prentice et al., 2009;
Hubbard et al., 2011; Oskin et al., 2012; Langridge
et al., 2014; Clark et al., 2017; Johnson et al., 2018).
ALS generally yields much lower point densities than
TLS with typical values for modern acquisitions being
10–15 pts/m2. Other limitations associated with ALS
include the steep cost of deploying a crewed fixed-wing
aircraft (10s to 100s of thousands of dollars per survey),
restrictions on what altitudes and speeds they can fly
at (which limits the raw point density), and constraints
on scanning angles that can prevent penetration of the
densest vegetation (VanValkenburgh et al., 2020; Resop
et al., 2019). Rotary-wing aircraft (helicopters) are less
constrained in terms of altitude and speed and have
been used to achieve higher point density in some lidar
surveys (Chen et al., 2015), but are generally even more
cost-prohibitive.

Recently, a proliferation of inexpensive uncrewed
aerial vehicles (UAVs)—commonly referred to as
‘drones’ and formally as remotely piloted aircraft
systems (RPAS)—have provided a more accessible
means of terrain mapping, including for seismology
and active tectonics (e.g. Bemis et al., 2014; Johnson
et al., 2014; DuRoss et al., 2019). Until very recently,
this has involved deploying cameras and using sophis-

ticated photogrammetric algorithms to create Digital
Surface Models (DSMs) (e.g. Harwin and Lucieer,
2012; James and Robson, 2012; Westoby et al., 2012),
with consequently only very limited ability to map
forested landscapes. However, the recent develop-
ment of smaller, lighter laser scanners has opened up
the possibility of collecting lidar datasets from UAV
platforms, referred to from now on as drone lidar or
UAV laser scanning (ULS) (Wieser et al., 2016). This
new advancement has seen some early adoption in
the fields of archaeology (Risbøl and Gustavsen, 2018;
VanValkenburgh et al., 2020), forestry and ecology
(Brede et al., 2017; Kellner et al., 2019; Tomsett and
Leyland, 2021), and fluvial and landslide geomorphol-
ogy (Resop et al., 2019; Pellicani et al., 2019), but its
effectiveness for mapping active faulting has not yet
been demonstrated.
This paper introduces a state-of-the-art ULS system

(Fig. 1) developed at the University of Victoria to study
the geomorphology of putative active faults across the
Canadian Cordillera. This is a region of widespread
seismicity (Ristau et al., 2007) and elevated seismic haz-
ard (Kolaj et al., 2020), but aside from the major plate
boundary faults, only a few seismogenic faults have
been conclusively identified andmapped owing to steep
terrain, dense forest cover, and recent glaciation (e.g.
Morell et al., 2017; Harrichhausen et al., 2023). We be-
gin in Section 2 by describing the drone platform and
instrumentation as well as our data collection, process-
ing and analysis workflows. Our aimhere is to provide a
blueprint for other seismologists and geomorphologists
interested in developing their ULS systems. In Sections
3–6, we then showcase examples of ULS lidar data col-
lected using our drone platform along four faults with
differing surface expressions in four unique types of
vegetation cover fromacrosswesternCanada (Fig. 2 and
Table 2). The spatial scales of these case studies vary
from a paleoseismic trench site with dimensions of a
few hundred meters surveyed in a few hours (Harrich-
hausen et al., 2023) to regional acquisitions along fault
sections totalling several kilometers in length mapped
over several days (Finley et al., 2022a). In each case
study, we compare the ULS data both quantitatively and
qualitatively with existing ALS data, as well as SfM data
where available. Particular focus will be on vegeta-
tion penetration performance, achievable ground re-
turn densities, and their impacts on derived DTM reso-
lutions for the different lidar acquisitionmodes. In Sec-
tion 7, we assess the impact of UAV flight speed on sur-
vey duration, point density and data quality, before dis-
cussing the unique applications, advantages, and limi-
tations of ULS in active tectonics research. One of the
principal advantages is simplified and cheaper repeat
observations, with the potential for imaging co-seismic
rupture, off-fault deformation, and post-seismic after-
slip at finer spatial (<50 cm) and temporal (<1 day) res-
olutions. Additionally, the higher spatial resolutions at-
tainable with ULS allow for more confident measure-
ment and interpretation of subtle fault scarp morphol-
ogy. The limitations of ULS systems include spatial
coverage, which is restricted by battery life, flight con-
straints imposed by civil aviation authorities, and the
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Term Description
AGL Above ground level.
ALS Airborne laser scanning—lidar from a crewed aircraft. Synonymous with ALSM and airborne lidar.
ALSM Airborne laser swathmapping—lidar froma crewed aircraft. SynonymouswithALS and airborne lidar.
BVLOS Beyond visual line-of-sight.
DEM Digital Elevation Model—a 3-D representation of terrain heights. Synonymous with DTM.
DoD DEM of Difference—an elevation difference map between two DEMs.

DSM Digital Surface Model—a 3-D representation of Earth surface heights, incl. natural or man-made ob-
jects.

DTM Digital Terrain Model—a 3-D representation of terrain heights. Synonymous with DEM.

GCP Ground control point—an identifiable point on Earth’s surface with known location used for geo-
referencing.

GNSS Global Navigation Satellite Systems—a system that uses satellites to provide autonomous geoposition-
ing.

GPS Global Positioning Systems—the world’s most utilized GNSS, and sometimes used synonymously.
ICP Iterative closest point—an algorithm used to co-register two point clouds.

IMU Inertial Measurement Unit—a device that tracks orientation using magnetometer, accelerometer, and
gyro.

INS Inertial Navigation System—a device integrating an IMU and GNSS.
.LAS Industry standard binary file format used for the interchange and archiving of lidar data.
.LAZ Compressed file format used for the interchange and archiving of lidar data.

lidar Light detection and ranging, with varied capitalization (LiDAR, LIDAR, Lidar). Synonymous with laser
scanning.

MLS Mobile laser scanning—lidar from a roving scanner on or tethered to Earth’s surface.

M3C2 Multiscale Model to Model Cloud Comparison— a method that measures differences between point
clouds.

PPP Precise Point Positioning—a GNSS method that calculates positions with errors of a few centimeters.
RINEX Receiver Independent Exchange Format—a data interchange format for raw GNSS data.
RPAS Remotely Piloted Aircraft System. Synonymous with UAV and drone.

RTH Return to Home—a feature of some UAS that allows the drone to return autonomously to its take-off
point.

sbet Smoothed best estimate of trajectory—relating to the processing of UAV flight paths.
SfM Structure-from-Motion—an algorithm for estimating 3-D scene structure from a set of photographs.
sUAS Small Unmanned Aircraft System—a UAVweighing less than 25 kg.
TLS Terrestrial Laser Scanning—lidar from one or more stationary locations on Earth’s surface.
UAS Uncrewed Aircraft System—a UAV and its accessories (e.g. ground control, transmission).
UAV Uncrewed Aerial Vehicle. Synonymous with RPAS or drone.
ULS UAV Laser Scanning—lidar from a UAV platform, also referred to here as “drone lidar”.
VLOS Visual line-of-sight.

Table 1 Acronyms and initialisms used in this paper and/or common within the wider literature on drone-based and lidar
remote sensing, with abbreviated definitions where helpful.

Section Fault Target and landscape Vegetation Type Area Time to
description (km2) Collect

3 XEOLXELEK - Reverse fault scarp Pacific Dry 0.01 5 hours
Elk Lake fault, within a suburban park Forest (1 day)
Vancouver Island

4 San Juan fault, Strike-slip fault within Pacific Cool 2.8 14 hours
Cowichan Valley, a steep-sided valley Temperate Forest (2 days)
Vancouver Island

5 Southern Rocky Suspected fault scarp crossing Cordilleran 3.1 16 hours
Mountain Trench fault, gently-sloping alluvial fans Dry Forest (3 days)
East Kootenay

6 Eastern Denali fault, Major strike-slip fault in Northwestern 10.4 12 days
Kluane Lake a broad glacial valley Boreal forest

Table 2 Summary of case studies described in this paper. The drone lidar platform was tested in several different tectonic
settings and climatic regions along faults of a variety of kinematic styles within the Canadian Cordillera in British Columbia
and the Yukon. Canadian vegetation types are from Baldwin et al. (2019).
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necessity of road access to launch sites with good visual
sightlines, and we finish the paper by discussing ways
in which these limitations might be mitigated in the fu-
ture.

2 Methods
2.1 The ULS system
Our ULS platform was built using several commercially
available andcustom-built components (Fig. 1). The for-
mer comprise a DJI Matrice 600 Pro hexacopter, a Riegl
miniVUX-1UAV laser scanner, an Applanix APX-20 UAV
Inertial Navigation System (INS), and a Trimble AV14
antenna. Custom-built elements include an interface
board used to integrate the laser scanner and INS and a
housing andmountingmechanism. The 2.75 kgpayload
is mounted to the drone with a dovetail-style connector,
similar to those used in motion-stabilized gimbals for
cinematography.
The DJI Matrice 600 Pro hexacopter has a payload ca-

pacity of 6 kg, more than double what we deploy. It uses
one set of six TB47S Lithium-Ion Polymer batteries per
flight (4500mAh), enough power for ∼20minutes of fly-
ing with our payload. Notably, these batteries are just
below the 100 watt-hour rating restriction imposed by
civil aviation authorities, allowing us to travel to field
sites with the drone system via commercial airline. The
drone is maneuvered via a remote controller and trans-
mitter with a manufacturer-stated maximum operating
distance of 5 km, though in practice, we begin to en-
counter connectivity issues beyond ∼1.5 km in forested
andmountainous terrain. The pilotmust abide by flight
constraints imposed by civil aviation authorities, in-
cluding altitude limits of 400 ft (121.92 m) above ground
level (AGL) in both Canada and the U.S., restrictions
to flights over people, and maintenance of visual line-
of-sight between the pilot (or a visual observer in con-
stant radio contact with the pilot) and the drone. Many
countries have similar UAV regulations, although ex-
act parameters for flight height and horizontal distance
do vary (Stöcker et al., 2017). In Canada, pilots must
have obtained Advanced Operations drone pilot certifi-
cation fromTransport Canada (Transport Canada, 2022)
through an onlinemultiple-choice test and an in-person
flight review. This certification allows the pilot to oper-
ate in controlled airspace with any drone weighing less
than 25 kg. Many other national aviation authorities of-
fer similar certifications (e.g. Federal Aviation Admin-
istration, 2023; UK Civil Aviation Authority, 2023; Euro-
pean Union Aviation Safety Authority, 2022; Civil Avia-
tion Safety Authority, 2021).
Weighing 2 kg and with a manufacturer-stated op-

timum altitude of 80 m AGL, the miniVUX-1UAV laser
scanner is specifically designed for deployment from
a drone. It offers an eye-safe laser (at Laser Class 1)
with a pulse repetition rate of 100 kHz and a 360◦ field
of view. The laser footprint diameter at optimum alti-
tude is 6.4 cm at nadir and 9 cm at 45◦ from nadir. The
scanner can record up to 5 returns from a single laser
pulse,making it suitable for application in densely vege-
tated areas where SfM terrainmapping would be unfea-

sible. The Applanix APX-20 UAV INS integrates a Global
Navigation Satellite Systems (GNSS) device and an Iner-
tial Measurement Unit (IMU), which together with the
attached Trimble AV14 antenna track the precise loca-
tion and orientation of the laser scanner. This allows
the coordinates of points within the final point cloud
to have sub-decimetric accuracies (3–5 cm). The break-
out board interfaces with the laser scanner using a cus-
tomized circuit boardwhich allows communication and
timing between components, streams data between the
INS and the laser scanner, and distributes power to both
of these systems.
Our ULS system also makes use of a range of aux-

iliary equipment (Figure 3A). This includes a Trimble
R12 GNSS base station (and tripod) for post-processing
the drone trajectory and—if the best possible absolute
georeferencing is desired—a separateTrimbleR12GNSS
rover unit, TSC7 handheld computer and monopod for
surveying ground control points (GCPs). For these we
use 120 cm× 120 cm fabric harlequin-iron cross targets,
which we secure to the ground with hammer and nails.
We also pack a field laptopwith flight planning software
installed, an iPad or cell phone to connect to the radio
controller, walkie-talkies to allow constant communi-
cation between crew members, an inverter generator
(minimum 2200 watts to support all charging needs),
charging equipment and spare drone batteries to allow
aquick successionof repeat flights, andfield safety gear.
All of the equipment fits inside our Jeep Wrangler field
vehicle with room for three crew members and their
personal gear.

2.2 Survey planning
Initial planning starts with consideration of three fac-
tors. Firstly, as our drone platform and auxiliary equip-
ment (Figure 3) are too bulky to be carried easily by foot,
launch sites must be accessible via vehicle. Existing
coarse resolution DTMs, satellite imagery, and Google
Streetview are great tools for identifying such spots. In
areas with steep topography or forest cover, visual-line-
of-sight is often impossible tomaintain from the launch
site and so we use one or more visual observers posi-
tioned in areas with good sight lines in constant com-
munication with the drone pilot via walkie-talkie. Sec-
ondly, if the survey is located within classified airspace,
approvalmust be applied for in advance. In Canada this
can be done online through NAV Canada’s NAV drone
application. Thirdly, in the days leading up to the field-
work we check the weather forecasts, as our drone can-
not operate in any form of precipitation or in winds that
are greater than 8 m s−1.
Once these initial considerations are addressed, we

use drone flight planning software to generate auto-
mated flight paths for our data collection. Map Pilot Pro
by Maps Made Easy and Universal Ground Control Sta-
tion (UgCS) by SPH Engineering have both been used
successfully for this purpose, with the latter our current
preference since it allows more control over survey de-
sign (custom base maps and images), flight parameters
(e.g., altitude, speed), and laser parameters (e.g., field
of view, swath overlap) such that a desired point den-
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Figure 1 Annotated photograph of the drone platform and instrumentation used in this study. For scale, the full diameter
of the drone, including rotor blades, is 1.66 m.

sity is achieved. There is a trade off between point den-
sity and areal coverage and the specific scientific goals
of the survey need to be considered. These parameters
are fine-tuned using Riegl’s RiParameter software to en-
sure even point spacing, and set in the laser instrument
using the RiAcquire tool. We discuss optimization of
these parameters in section 7.1. Typical flight plans for
fault-related studies consist of 2–8 strike parallel survey
lines, and 2 cross-track lines for the purposes of track
alignment in post-processing (Figure 3B). For larger sur-
veys thesewill beundertaken inmultipleflights in order
to allow for battery replacement. Note that each indi-
vidual flight must have a minimum of two overlapping
lines, and it is best practice to design surveys that allow
for the completion of full lines, rather than abandoning
and resuming part-way along a line; overlapping data is
critical for scanline alignment when merging flights in
post-processing. In fault surveys when the desire is to
achieve maximum coverage along-strike, the most effi-
cient flight plans in our experience consume ∼35% bat-
tery on the outward track and∼35%on the return track,
allowing the drone to return to home safely at 30% bat-
tery, the depletion threshold recommendedby theman-
ufacturers. Survey extents are further limited by the
need to maintain visual line-of-sight between the pilot,
or one or more visual observers in constant radio con-
tact with the pilot, and the drone. In the absence of ob-
stacles we find this visual limit to be around ∼1.5 km,
though it is often challenging in forested areas to find

ideal sight lines. In practice, considering battery, radio
controller connectivity, and line-of-sight requirements,
we find that survey lengths from an individual launch
site are limited to a maximum of ∼1.8 km even with vi-
sual observers present. Flight paths for the case stud-
ies presented in this study are provided in the supple-
mental material (SM1–11) to illustrate survey patterns
required for different spatial extents and terrain.

2.3 Data acquisition
On the day of the survey, we drive to our launch site
where we first set up the GNSS base station (Figure 3C).
Getting the base recording started early ensures that
there is a sufficiently long (minimum 3 hour) base ob-
servation for post processing the flight trajectories. The
drone platform is assembled and the laser and IMUpay-
load mounted onto it. Before uploading the automated
flight plan, a short, manual test flight ensures that the
controller is operating as expected and that the drone’s
gyroscope andmagnetometer are calibrated. If desired,
GCPs can be placed in 4–6 locations scattered across the
survey footprint and clear of forest cover. These loca-
tions should ideally be situated beneath multiple over-
lapping and orthogonal flight lines. It is expedient to
deploy GCPs before or during the drone setup and test
flight, often by our visual observers as they move into
position. In order to calibrate the IMU, the drone sys-
tem is powered up and sits for 5 minutes of static cali-
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Level	1	Vegetation	Zones	of	Canada

Alpine	Tundra

Arctic	Tundra

Boreal	Forest	&	Woodland

Cordilleran	Cool	Temperate	Forest

Grassland,	Parkland	&	Steppe

Other

Pacific	Cool	Temperate	Forest

Faults	(BCGS)

Quaternary	Sediments

Cowichan	Fold	and	Thrust	(Cn)

SiletzTerrane	(Es)

Pacific	Rim	Terrane	(Mp)

Wrangellia	Terrane	(Mw)

Figure 2 Location of case study sites (Table 2). (A) Level 1 Vegetation zones for Canada from Baldwin et al. (2019). Major
faults are in red, someofwhich have been labelled. CSZ: Cascadia Subduction Zone, EDF: EasternDenali fault, NRMTF: North-
ern Rocky Mountain Trench fault, SRMTF: Southern Rocky Mountain Trench fault, TF: Tintina fault. (B) Simplified geological
map for southern Vancouver Island with major faults labelled, modified from the BC Geological Survey compilation by Cui
et al. (2017). LRF: Leech River fault, SJF: San Juan fault, XELF: XEOLXELEK-Elk Lake fault. Abbreviations for states, provinces
and territories are as follows; AB: Alberta, AK: Alaska, BC: British Columbia, ID: Idaho, MT: Montana, NWT: Northwest Territo-
ries, WA: Washington, YT: Yukon. Background imagery is from Esri (2022).

bration, followed by a dynamic calibration that involves
accelerating, decelerating and strafing to the left and
right. Finally, the flight plan is uploaded to the drone
from our field laptop or tablet, after making any last
minute adjustments as needed. The entire set-up pe-
riod, from arriving at the launch site to the start of the
first survey flights, typically takes an hour with two or
three people present.

The drone is then launched and its automated flight
pattern started, with pilot and visual observers in con-
stant radio communication to ensure that it is always
within sight andmaintaining sufficient clearance of ob-
stacles. Once the batteries approach the 30% depletion
threshold, the drone is brought back to the landing spot,
and the static calibration is repeated before the system

can be powered down and the batteries changed for
fresh ones. For larger surveys, it is necessary to bring
several sets of batteries and generator to recharge de-
pleted batteries and keep flying throughout the day. At
our highest levels of operating efficiency, we find that
6 sets of 6 batteries (TB47S) and two DJI Hex Charg-
ers, running simultaneously and continuously, are nec-
essary to keep pace with surveying. Once the full sur-
vey has been successfully flown, the base station needs
to remain running for aminimum of half an hour to en-
sure that its location is well constrained, as is recom-
mended in both Riegl and Applanix documentation. If
we are surveying GCPs with a GNSS rover, we usually do
this after the final drone flight, and leave the base sta-
tion running yet another half an hour as we pack up the
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remaining gear.

2.4 Data Processing
After a successful survey, data from the laser scanner,
the INS, and the GNSS base station and rover are copied
to a workstation for processing. We follow the work-
flow summarized in Figure 4, which includes several
pre-processing steps before the final point cloud is gen-
erated. The first step involves processing the GNSS
data collected by the base station and rover. The base
observation file is converted to RINEX format and up-
loaded to Natural Resource Canada’s (NRCan) Precise
Point Positioning (PPP) tool to post-process the GNSS
observations and calculate an accurate base positionus-
ing satellite orbit, clock and bias corrections. GCP loca-
tions surveyed with the rover can then be adjusted us-
ing the corrections to the base location from the PPP
processing. The revised GCP locations are uploaded
to the NRCan GPS-H tool to convert their ellipsoidal
heights into orthometric heights, and the final coordi-
nates exported as a csv file. The NRCan tools are free
for usewithin theCanadian landmass, but other free on-
line PPP options are available for use outside of Canada
including; the National Geodetic Survey’s Online Po-
sitioning User Service (OPUS, https://geodesy.noaa.gov/
OPUS/index.jsp), GNSS Analysis and Positioning Soft-
ware (GAPS) (Leandro et al., 2011), magicGNSS (Piriz
et al., 2008), and the Automatic Precise Positioning
Service (APPS) which uses JPL’s GipsyX/RTGx software
(Bertiger et al., 2020). The next pre-processing step in-
volves refining the drone trajectory using INS data from
the Applanix APX-20 UAV and converting this to ortho-
metric heights. Working in Applanix’s POSPac UAVsoft-
ware, the INS data are imported into a project and the
base station observation added. The inertial processing
tool is run to produce a smoothed best estimate of the
trajectory (sbet), which is then exported in orthometric
heights for import into the proprietary laser processing
software (RiWorld).
We process the MiniVUX-1UAV lidar data in Riegl’s

proprietary RiProcess software. Each flight produces
an individual laser file and associated trajectory. These
are imported into the laser project and used to create
an initial point cloud. The trajectories can be edited to
remove unwanted data collected during turns or tran-
sits of the drone, leaving only data collected along the
main survey lines. This is an important step as accel-
erations, decelerations, and rotations during turns and
transits can negatively impact the final point cloud, cre-
ating sections with an uneven spacing of points. Once
the point cloud has been sufficiently cleaned in this
way, the individual flights can be merged into a single
project. GCP coordinates can then be added by import-
ing the csv file from GPS-H processing, and used to ad-
just and align the point clouds. In order to select the
corresponding points in the laser file, we find that the
cloud is best visualized using the reflectivity option. We
select several points nearest the center of each GCP tar-
get and average their elevations to account for centimet-
ric vertical scatter. Once target centerpoints have been
added for several flight lines, the flight line point clouds

can be precisely georeferenced, aligned, and adjusted
using the RiPrecision tool. Flat hard surfaces can be
used to check the amount of scatter present within the
point cloud. Many of our field sites are in remote re-
gions with limited options for additional, independent
ground control, and we have therefore not performed
testing of georeferencing uncertainties of our system
against geodetic control monuments. However, we es-
timate uncertainties in the order of ∼20 cm, based on
random scatter observed in our point clouds (∼15 cm)
as well as expected accuracies of our GNSS ground
control. We acknowledge that constraining these er-
rors is important, especially for applications involving
change detection between multiple acquisitions. How-
ever, our ∼20 cm estimate compares favourably with
uncertainties associated with ALS datasets, such as er-
rors of ∼21 cm observed by Hodgson and Bresnahan
(2004) over a range of land cover types, and horizontal
and vertical errors of ∼29 cm and ∼9 cm observed by
Glennie et al. (2013) in helicopter lidar acquisitions.
Once the flight lines have been aligned and geo-

referenced, an unclassified point cloud can be exported
for final classification, cleaning and gridding, for which
we use a variety of programs within the licensed LAS-
tools package (Isenburg, 2021). A copy of the shell script
for classifying and rasterizing the raw lidar point cloud
can be found in the supplemental material (SM12). To
determine ground points we use lasground_new, a pro-
gressive morphological filter (Zhang et al., 2003). There
are alternate options for ground classification, such as
simple morphological filtering (Pingel et al., 2013) or
cloth simulation filtering (Zhang et al., 2016), both of
which can be freely used with the Point Data Abstrac-
tion Library (PDAL), an open-source library for pro-
cessing and analysing point clouds (Butler et al., 2021).
However, we prefer lasground_new because it has sev-
eral parameters such as step, spike and bulge that can
be adjusted to best find ground points according to
the environment in which the data were collected, and
which works well on steep, forested slopes (Cățeanu
et al., 2017) that are prevalent in western Canada. Once
the ground returns have been determined, we classify
the remaining points using lasclassify. Other, optional
steps at this stage of processing include tiling the point
cloud to allow for efficient multi-threaded processing
and clipping it to a polygon of interest. Isolated noise
points within the cloud are then removed using las-
noise before a DTM can be generated by rasterizing the
ground points with lasgrid. Lasgrid can also be used
to export other desired parameters such as point den-
sity per pixel, intensity, scan angle, and (if available)
RGB values. The same LAStools parameters were used
to process each dataset, with the only differences being
the cell size for the resultant raster products, listed in
Table 3.

2.5 Data comparisons and differencing
In Sections 3–6, we compare our fully processed drone
lidar data with overlapping airborne lidar and SfM sur-
veys in order to assess their consistency and to de-
termine from any differences whether drone lidar of-
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Figure 3 (A) Equipment needed for a typical acquisition. (1) Four-wheel drive vehicle. (2) Safety gear including first aid kit,
traffic cones, high-visibility vests, and fire extinguisher. (3) Walkie-talkie radios for pilot and visual observers, plus chargers.
(4) Trimble monopod for GNSS rover. (5) Trimble R12 GNSS rover in Pelican case. (6) TSC7 handheld computer for Trimble
system. (7) Trimble R12 GNSS base station in Pelican case. (8) Trimble tripod for GNSS base station. (9) GCP targets, hammer
and nails in carry bag. (10) Riegl miniVUX-1UAV laser scanner, Applanix APX-20 UAV INS, and assembly toolkit in Pelican case.
(11) Windows laptop with UgCS flight planning and Riegl lidar processing software installed. (12) At least four but preferably
six sets of batteries for the drone, plus two DJI Hex Chargers. (13) DJI Matrice 600 Professional hexa-copter in its customized
carry-case (dimensions 68 cm × 53 cm × 49 cm). Not pictured: field iPad (to connect to the radio controller), generator
(minimum 2200 W), extension cord, powerbar, and tarpaulin. (B) Flight line planning in UgCS for a segment of the Southern
RockyMountain Trench acquisition (Section 5). The red pin is our launch site, the red box is our specified target area, and the
blue-green lines are the drone flight lines. (C) Sketch-map showing a typical roadside survey set-up.

fers advantages over the more established methods.
For these analyses, we first used the iterative closest
point (ICP) algorithm available within free CloudCom-
pare software (http://www.danielgm.net/cc/) to perform
a final registration of the drone and comparison point
clouds. The ICP algorithm finds a rigid body transfor-
mation (translation and rotation) that iteratively min-

imizes the closest point pair distances between two
point clouds. This step was taken in order to account
for several sources of error, including random scatter
within each point cloud, potential differences in the
global registration of the two datasets including use of
different vertical datums, and/or uncertainties within
the control used to georeference either dataset. Con-
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Figure 4 Flow diagram summarizing our ULS data processing workflow. Abbreviations used in this figure; DSM: Digital Sur-
face Model, DTM: Digital Terrain Model, GPS: Global Positioning Systems, INS: Inertial Navigational System, NRCAN: Natural
Resources Canada, PPP: Precise Point Positioning, sbet: smoothed best estimate of trajectory.

sequently, remaining differences between the datasets
(see below) will largely represent differences in the way
each method characterizes the ground surface, cou-
pled with (likely minor or localized) natural or anthro-
pogenic landscape change that may occurred between
each pair of surveys.

We used CloudCompare’s M3C2 (Multiscale Model to
Model Cloud Comparison) plugin (Lague et al., 2013) to
calculate the distance between groundpointswithin the
compared datasets. The M3C2 algorithm computes the
local distance between two point clouds along a normal
surface direction. This calculation is performed upon
the point clouds, without anymeshing or gridding, pro-
viding a signed 3-D distance as opposed to alternative
techniques which only offer either 2-D differences (e.g.
vertical difference maps) or unsigned 3-D differences
(CloudCompare’s cloud-to-cloud distance tool). Addi-
tionally, the M3C2 method is designed for application
to datasets of contrasting point spacings (Lague et al.,
2013; DiFrancesco et al., 2020), and is thus well-suited
for comparing dense drone lidar datasets with coarser
airborne datasets. Within CloudCompare, the drone
lidar dataset was selected to be cloud #1 and the air-
borne lidar or SfM dataset as cloud #2. The sign of the
distance reflects where the reference point cloud was
along the direction of the normal for each core point.
For example, a negative M3C2 value indicates an area
where the drone lidar data are located underneath the
airborne lidar. The clouddistanceswere calculatedwith
the ‘multi-scale’ option, meaning that the normal dis-
tances could be in any combination of horizontal and
vertical. The coarser of the two datasets was used to de-
termine the core points as its wider point spacing re-
duces the number of computations required. The plu-
gin produces a point cloud containing the M3C2 dis-

tances and areas with significant change as additional
attributes. This was saved and rasterized, highlighting
internal differences between the point clouds.
We further quantified disparities in the raster models

produced for the drone lidar and comparison datasets
by calculating their DEMs of Difference (DoD). For this,
the drone lidar was first re-gridded (post point cloud
alignment) at the same resolution as the airborne li-
dar DTM or SfM DSM, before the vertical topographic
differencing was performed using the Geospatial Data
Abstraction Library’s gdal_warp tool (GDAL/OGR con-
tributors, 2023). Following the methodology and con-
ventions of Scott et al. (2021), the compare dataset (the
newer drone lidar DTM) was subtracted from the ref-
erence dataset (the older airborne lidar DTM or SfM
DSM). As such, negative DoD values represent areas
in which the drone lidar DTM is lower than the refer-
ence ALS or SfM model, and vice versa. Note that this
distance is purely vertical, unlike the M3C2 distances
which are normal to the sparser of the point clouds. A
shell script for differencing DTMs and generating his-
tograms is provided in supplemental material (SM13).

3 The XEOLXELEK-Elk Lake fault: a lo-
cal survey of a paleoseismic trench
site

3.1 Background andmotivations
The XEOLXELEK-Elk Lake fault (XELF) is a newly-
recognized active crustal fault within the fore-arc of the
northern Cascadia subduction zone on southern Van-
couver Island, BC (Harrichhausen et al., 2023). The fault
is named after XEOLXELEK (pronounced hul-lakl-lik),
the name given to Elk Lake by theWSÁNEĆ people. The
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Figure 5 (A) Field photo showingULSdata collection at the eastern XEOLXELEK (Elk Lake) shoreline site. The photo location
and orientation are shown in (B). The visual observer stands at the top of the XELF scarp and at the approximatemid-point of
the future, NE-trending paleoseismic trench (Harrichhausen et al., 2023). (B) SfM-derived orthophoto of the acquisition site.
White triangles indicate the location of the fault scarp. (C) Cross section C—C’ through part of the classified drone lidar point
cloud. Green points are vegetation, pink are ground points, and yellow points are unclassified.

XELF was first identified from provincial airborne lidar
imagery (LidarBC, 2023) crossing Saanich peninsula be-
tween Saanich Inlet in the NWand Haro Strait in the SE
(Figure 2B). The lidar data revealed several ∼N-facing
fault lineaments including a 1-2.5 m high scarp dis-
placing the surface of a Pleistocene glacial landform—
a large, N–S drumlinoid ridge—between XEOLXELEK
(Elk Lake) and Haro Strait. A site was chosen for pa-
leoseismic trenching between the eastern lake shore-
line and the Patricia Bay Highway, where the scarp
passes through Elk-Beaver Lake Regional Park. The
trench, excavated in August 2021, contained evidence
that indicated the XELF has ruptured in at least one
large (Mw ∼6.1–7.6) thrust earthquake during the late
Holocene (Harrichhausen et al., 2023).
The eastern XEOLXELEK (Elk Lake) shoreline site

(Fig. 5A–B) provided an early and relatively simple test
of our new ULS system, acquired prior to the planned
trench and providing the best possible data for measur-
ing the local scarp height. The survey area has dimen-
sions of just∼100mandexhibits gentle relief other than
a steep bank up to the Patricia Bay Highway along the
eastern boundary. The ground cover is mostly mowed
grass as well as scattered blackberry bushes, decidu-
ous trees (willow and oak) and conifers (Douglas Fir
andWestern Red Cedar), the tallest of which are around
35m. Since the site lieswithin themunicipal Elk-Beaver
Lake Regional Park and on traditional WSÁNEĆ terri-
tory, further permissions had to be obtained to conduct
research and operate a drone within the park, in ad-

dition to the civil aviation approvals described in Sec-
tion 2.2 (see Acknowledgments).

3.2 ULS data acquisition and results
We surveyed the eastern XEOLXELK (Elk Lake) shore-
line site with our drone lidar system in May 2021
(Fig. 5A), threemonths prior to the paleoseismic trench
excavation by Harrichhausen et al. (2023). Our 100 m ×

110 m (∼11,000 m2) drone lidar dataset took a total of
4 hours to collect, including set-up, with a crew of a pi-
lot, two visual observers, and two assistants who helped
avoid flying over pedestrians in the busy park (see Sec-
tion 2.1). The drone was flown at a height of 45 m AGL
in a cross-hatch pattern of N-S and E-Wflight lines (sup-
plementary Figure SM1) and at a relatively slow speed
of 2 m s−1. These parameters were chosen in order to
collect as high a resolution dataset as possible, with an
expectation of >100 pts/m2. At 45 m AGL the laser foot-
print is 3.6 cm at the center of each 90 m-wide swath
and 5 cm at the edges of the swath. Three GCPs were
deployed and used to georeference the dataset.
Processing and classifying the drone lidar data using

the workflow described in Section 2.4 yielded an aver-
age point density of 543 pts/m2 and an average classi-
fied ground return density of 260 pts/m2, leading to an
average ground return spacing of ∼6 cm (Figure 6A–
B, middle column, and Table 3). Classified ground re-
turns constitute ∼48% of all points in the cloud. As
expected, ground returns are densest away from the
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Figure 6 Comparison of topographic datasets at the eastern XEOLXELEK (Elk Lake) shoreline site: (left column) LidarBC ALS
data, (middle) ourULSdata, and (right) our SfMdata. (A) Representative groundpoint clouds viewedat a roughlymetric scale
in order to contrast point spacings. (B) Survey-wide classified ground point densities. The same color palette is used for each
plot, and white spaces indicate areas without ground coverage (mostly trees and dense blackberry bushes). (C) Hillshaded
DTMs illuminated from the SSW (210◦) in order to highlight the NNE-facing fault scarp, further delineated by white arrows.
The DTMs were constructed with an interpolation of 5 pixels in order to minimize holes.

trees over areas of open, mowed grass, reaching val-
ues as high as ∼700 pts/m2 where swaths from several
flight paths overlap. However, a visual inspection of
the classified point cloud in cross section also reveals
successful imaging of the ground surface through tree

and shrub foliage (Fig. 5C). We find that a cell size of
20 cm optimizes the ULS raster DTM, minimizing its
pixel dimensions without introducing widespread data
gaps (Fig. 6C, middle column). The cross-hatched point
density pattern (Fig. 6B, middle column) results from
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General Acquisition Information

Paper
section

Fault
(site)

Data
type Provider

Area
(km2)

Point
density
(pts/m2)

Ground return
density
(pts/m2)

Ground
return

spacing (m)

% pts
ground

DTM
cell size
(m)

3.2 XELF ULS This study 0.01 543.39 260.11 0.06 48 0.2
XELF ALS LidarBC 13.97 9.00 0.33 64 1.0
XELF SfM This study 1906.16 554.04 0.04 29 0.2

4.2 SJF ULS This study 2.81 130.28 13.38 0.29 10
east 1.21 141.70 10.80 0.30 7 0.5
west 1.59 121.59 17.24 0.24 13 0.5
SJF ALS Mosaic (ground only) 5.70 0.43 - 1.0

5.2 SRMT ULS This study 3.14 101.57 35.62 0.17 35 0.3
SRMT ALS LidarBC 17.71 7.00 0.38 41 1.0

6.2 EDF ULS This study 10.42 97.54 45.47 0.21 47
BURW 0.37 92.75 25.95 0.20 28 0.3
COPJ 1.02 79.60 25.46 0.20 32 0.3
DUKE 4.86 112.33 71.78 0.19 64 0.3
NINE 0.82 90.33 21.43 0.22 24 0.3
QUIL 1.34 96.96 21.45 0.22 22 0.3
SLIM 0.52 82.25 29.00 0.29 35 0.3
TELL 1.49 81.61 19.69 0.23 24 0.3
EDF ALS This study 7.85 3.45 0.54 44 1.0

ICP transformation Differencing

Paper
section

Fault
(site)

Data
comparison

Max
rotation (◦)

Translation
vector (m)

M3C2 DoD

Mean (m) SD (m) Mean (m) SD (m)

3.3 XELF ULS–ALS 0.0008 0.28 −0.05 0.19 −0.32 0.26
XELF ULS–SfM 0.0005 0.33 −0.03 0.14 −0.27 0.27

4.3 SJF (east) ULS–ALS 0.0001 0.07 0.22 0.42 0.21 0.62
SJF (west) ULS–ALS 0.0002 0.32 0.13 0.31 0.15 0.53

5.3 SRMT ULS–ALS 0.0001 0.54 −0.01 0.09 −0.02 0.29

6.3 EDF (BURW) ULS–ALS 0.0004 0.82 −0.01 0.14 0.01 0.26
EDF (COPJ) ULS–ALS 0.0002 0.87 −0.01 0.17 0.00 0.25
EDF (DUKE) ULS–ALS 0.0003 0.54 0.00 0.18 0.00 0.28
EDF (NINE) ULS–ALS 0.0002 0.99 0.01 0.18 0.01 0.23

Table 3 Statistics of our ULS and comparison datasets (upper part of the table) and of the ICP alignments and subsequent
M3C2andDoDdifferencing (lowerpart of the table). ALS statistics are calculated fromwithin the footprints of the correspond-
ing ULS surveys, allowing a like-for-like comparison. % pts ground is the percentage of all lidar returns classified as ground.

the perpendicular orientations of the survey flight lines.

3.3 Comparisons and differencing with ALS
and SfM data

Our first comparison dataset is the provincial airborne
lidar survey, flown in 2019 and available from the Li-
darBC (2023) portal. Within the ULS survey footprint,
the ALS point cloud yields an average point density of
14 pts/m2, an average ground return density of 9 pts/m2

for a spacing of ∼33 cm, and a maximum ground re-
turn density of 10 pts/m2 (Figure 6A–B, left column, and
Table 3). The ALS point cloud also contains more, and
larger, data gaps than the ULS cloud, indicating greater
difficulty in imaging beneath vegetation. The ALS DTM
has a cell resolution of 1 m, 25 times coarser than our
ULS DTM (Figure 6C, left column). The fault scarp can
be made out in both raster datasets as a gentle NNE-
facing slope trendingWNW-ESE across the center of the
target area, but the finer resolvability of the ULS dataset
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DoD	(m)

M3C2	Distance	(m)

Figure 7 Differencing of the ULS and ALS datasets (left hand column) and of the ULS and SfM datasets (right hand column)
at the eastern XEOLXELEK (Elk Lake) shoreline site, shown as (A) M3C2 distances calculated in CloudCompare and (B) a DEM
of Difference. Positive values indicate where the ULS dataset was higher than the comparison dataset. Histograms show
distributions of raster values.

is evident in a small linear depression along one of the
park footpaths, which is not visible in the ALS DTM.
Though not a tectonic feature, this does highlight the
potential forULS to identify subtler fault offsets than are
evident in traditional airborne lidar data.
Because much of the eastern XEOLXELEK (Elk Lake)

shoreline site is coveredbymowedgrass, it provides our
best opportunity out of all of our case studies to com-
pare our drone lidar with SfM data. With this in mind,
we surveyed the site with SfM two weeks before our
drone lidar flights. Using a DJI Phantom 4 Professional
V2 dronewith the built-in camera, we captured 749 pho-
tographs which were then processed using the Agisoft

Metashape Professional software package, with 15GCPs
deployed across the scene for georeferencing (e.g. John-
son et al., 2014). After classifying the SfM point cloud
with the LAStools LASclassify program, we yielded an
average point density of 1,906 pts/m2 and average clas-
sified ground point density of 554 pts/m2 and spacing of
0.04 m (Figure 6A–B, right column, and Table 3). How-
ever, the SfM is strikingly less uniform than either li-
dar point clouds, containing far more, and larger, data
gaps, reflecting its inability to image beneath vegetation
(Figure 6B). As a consequence, we find that the optimal
resolution of the SfMDTM is 20 cm (Figure 6C, right col-
umn), no finer than the ULS DTMdespite their differing
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underlying ground point densities.
The ICP rigid body transformation that most closely

aligns the ULS point cloud to the ALS point cloud in-
volved a translation vector of 28 cm and rotations of
<0.001 radians (Table 3). These values reflect small dif-
ferences, within the expected error, of the global regis-
tration of the two surveys, with minimal tilting of one
relative to the other. The mean M3C2 distance between
the airborne and drone lidar point clouds was 5 cmwith
a standard deviation of 19 cm (Fig. 7A, left panel). The
equivalent DEM of Difference (DoD) exhibits a mean of
−0.32 m and a standard deviation of 26 cm (Figure 7B,
left panel). Positive values (blue colours) reflect areas
where the ULS DTM is higher than the ALS DTM, and
negative values (red colours) reflect those where the
ULS DTM is lower. These non-zero values reflect a com-
bination of factors, including residual misalignment of
the point clouds (even after ICP co-registration) and in-
ternal vertical scatter, estimated from hard, flat, non-
vegetated surfaces (e.g. roads, parking lots) at ±6.7 cm
in the ALS point cloud and ±7.5 cm in our ULS point
cloud. However, careful analysis of the DoD and M3C2
maps also supports a third cause of vertical differences.
The largest differences (−2.6 m) were negative and are
most likely the result some areas where returns off of
dense vegetation were misclassified as ground in either
of the datasets. These highest values are approximately
in the same area that is covered by dense blackberry
bushes (Fig. 5). This also coincides with areas in the
airborne lidar that have few to no points (Fig. 6C). It
is likely that the airborne dataset has its lowermost re-
turns from within the blackberry bush rather than the
ground surface, while the drone lidar, with its denser
point cloud hasmanaged to capture a better ground sur-
face beneath these dense bushes. This also explains
why the M3C2 distances are largest in the very same ar-
eas.
The ICP rigid body transformation that aligns theULS

and SfM point clouds involved rotations of <0.01 radi-
ans and a translation vector of 33 cm, again indicating
consistency to within a few decimeters in global regis-
tration of the two datasets. The mean M3C2 distance
was−0.03mwith a standard deviation of 27 cm (Fig. 7A,
right column), while the DoD had a higher mean value
of −0.27 m and a standard deviation of 27 cm (Fig. 7A,
right column). Given the stark contrast in vegetation
penetration capability, it is difficult to interpret these
centimetric-to-decimetric differences between the ULS
and SfM surveys. Similar to the airborne lidar compari-
son, the greatest discrepancies are in areas that are cov-
ered in dense bushes, where the ULS alone seems to
penetrate to ground level.

4 The San Juan fault: a kilometric sur-
vey of a fault scarp in steep, forested
terrain

4.1 Background andmotivations
The San Juan fault (SJF) is a major crustal fault on
southern Vancouver Island, located north-west of the
XELF (Fig. 2B). The SJF transects the island west to

east for ∼80 km across densely forested hills of the
southern Vancouver Island ranges. In our area of in-
terest, the fault separates the intrusiveWest Coast Crys-
talline Complex from the extrusive Jurassic Bonanza
Group of the Wrangellia terrane (Harrichhausen et al.,
2022). There have been numerous interpretations, in-
ferred from regional geology, of the roles that the SJF
has played throughout its evolution (Johnson, 1984; Rus-
more and Cowan, 1985; Brandon, 1989; England and
Calon, 1991). Most recently, its kinematics have been
constrained to have been left-lateral during Eocene ac-
cretion of the Crescent-Siletz terrane (Harrichhausen
et al., 2022). The position of the SJF in the forearc of
the active Cascadia subduction zone, its favourable ori-
entation relative to the regional stress field, and its con-
spicuously linear trace motivate a close examination of
its current activity, but no convincing evidence of re-
cent earthquake rupture has yet been found. If the
SJF is active, it may pose a considerable risk to Victo-
ria, Nanaimo, and other towns and infrastructure along
Vancouver Island’s Highway 1 corridor.
For our drone lidar surveying of the SJF, we targeted

a ∼4 km section of the fault accessed via logging roads
west of ShawniganLake (Fig. 8A). The SJF trace is locally
defined by a N-facing scarp that appears to cross-cut a
glacially scoured surface as well as a number of small
tributaries of the Koksilah River. The presence (or ab-
sence) of faulted offsets to these glacial and fluvial fea-
tures could help determine whether this section of the
SJF has been active in the late Quaternary. The area of
interest includes some steep slopes with a topographic
variation of 300 m. Vegetation cover includes stands
of second growth Pacific cool temperate forest (Bald-
win et al., 2019), with Douglas firs,Western Red Cedars,
Western Hemlock and Sitka Spruce trees that are up to
50m tall. Additionally, some of the area includes recent
clearcutswith some small trees and shrubs. Our survey-
ing of the SJF therefore provides good tests both ofmap-
ping at kilometric lengthscales over rugged terrain and
of the vegetation penetration capability of the drone li-
dar system.

4.2 ULS data acquisition and results
We surveyed the SJF with our lidar drone in Septem-
ber 2022. For logistical reasons, we split the target area
into two sections separated along strike of the SJF by a
gap of ∼1 km (Fig. 8A). The SJF West section is ∼2 km
along strike by ∼700 m wide and the SJF East section is
∼1.7 km along strike by ∼700 m wide, with a total sur-
veyed area of 2.9 km2. The two sites took a total of 2 days
to survey (14 hours of field work excluding travel) with a
crew of three people (a pilot and two visual observers).
The drone was flown at 5 m s−1 at a height of 80 m
AGL along flight lines oriented parallel to the mapped
fault scarp, that were merged with the help of orthog-
onal calibration lines (supplementary Figures SM2 and
SM3). For the SJF-East section, two launch points were
required to maintain VLOS around high topography in
the center of the survey area. At 80mAGL the laser foot-
print is 6.4 cmat the center and 9 cmat the edges of each
∼160 m wide swath swath. At each site we deployed 5
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Figure 8 (A) Hillshaded UAV lidar DTM (illuminated from 315◦) for the San Juan Fault study area, overlain on satellite pho-
tograph. White triangles indicate the approximate location of the SJF. Coloured squares indicate the areas shown in the DTM
comparisons below. (B) Comparisons between ALS and ULS DTM hillshades at the SJF West site (left hand panels) and the
SJF East site (right hand panels). (C) Cross sections C1–C1’ and C2–C2’ through the ULS classified point cloud. Green points
are vegetation, pink are ground points, and yellow points are unclassified.

GCPs to assist with georeferencing the point clouds.

Our SJF East and SJF West ULS surveys have aver-
age point densities of 121 pts/m2 and 142 pts/m2 and
average classified ground return densities of 11 pts/m2

(0.3 m spacing) and 17 pts/m2 (0.24 m spacing), respec-
tively (Table 3). The point clouds are therefore an or-
der of magnitude sparser than those at XEOLXELEK
(Elk Lake), reflecting the greater platform heights and
speeds and reduced swath overlap used in our deploy-
ments along the SJF. Additionally, only ∼10% of the
laser returns along the SJF are classified as ground
compared to ∼48% at XEOLXELEK (Elk Lake), reflect-
ing the stark differences in vegetation between the two
target areas. Nevertheless, the drone lidar still cap-
tures an abundance of ground surface returns along the
SJF, from beneath both mature forest and new growth
within clear cuts (Fig. 8C). The optimized 0.5 m-pixel
hillshaded ULS DTM captures clearly both the ∼E–W-
striking fault scarp and several ∼NNE–SSW-trending
glacial flutes at the SJF West site, as well as the ∼NE-
trending tributary channels at the SJF East site, one of
which exhibits an apparent right-lateral offset at the
fault (Fig. 8A). Further analysis and interpretation of
this rich dataset will form the basis of future study.

4.3 Comparison and differencing with ALS
data

We can compare our ULS data with regional airborne
lidar flown forMosaic ForestryManagement in 2021. In
the year between the two surveys there appears to have
been little forestry activity in the area (and no new cut
blocks), allowing a like-for-like comparison. Within the
footprint of the ULS surveys, the ALS yields an average
ground point density of 6 pts/m2 and average spacing of
0.43 m, somewhat coarser than the ULS data. A visual
comparison of the 0.5 m-pixel ULS DTM with the 1 m-
pixel ALSDTMdemonstrates how the drone lidar allows
for finer scale (<1 m) features to be identified (Fig. 8B).
For example, tree stumps and vehicle tracks on clear-cut
slopes are clearly visible on thedrone lidar hillshadebut
are only vaguely delineated in the airborne lidar.
The ICP rigid body transformations that best aligned

the ALS and ULS point clouds involved rotations of
<0.001 radians and translation vectors of 0.07–0.32 m.
Post alignment, the averageM3C2distanceswere 0.22m
for SJF East and 0.13 m for SJF West, with standard de-
viations of 0.42 m and 0.31 m, respectively, while the
equivalent DoDs have mean elevation discrepancies of
0.21 m and 0.15 m with standard deviations of 0.62 m
and 0.53 m, respectively (Fig. 9 and Table 3). These re-
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Figure9 Differencingof thedroneandairborne lidardatasets for theSJF studyarea, shownas (A)M3C2distances calculated
inCloudCompare and (B) aDEMofDifference. Positive values indicatewhere theULSdatasetwashigher than theALSdataset.
Histograms show distributions of raster values.
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sults indicate internal consistency of the two datasets to
within a few decimeters.
The largestM3C2 distances in the SJFWest dataset oc-

cur along the northern edge of the ULS survey within
a steep valley (Fig. 9A). Our point cloud is sparsest in
this area, as it was covered fully by just one flight line.
Other small areas with large M3C2 distances highlight
where excavations for roadmaintenanceweremade be-
tween acquisitions (Fig. 9A). There are also small chan-
nels that show up as negative values in the M3C2 dis-
tance andDoDplots, as a result of improvedpenetration
through dense riparian vegetation in the ULS dataset.
The strip of high M3C2 distances in the eastern part of
the SJFEast dataset results fromamis-alignedULSflight
line, whichwediscuss further in Section 7.2. In general,
the raster differences are a lot noisier than the M3C2
point cloud comparison (Fig. 9B). The largest raster dif-
ferences are concentrated at thebottomof valleys, areas
with both steep slopes and dense vegetation. It is likely
that fewer true ground returns were obtained in these
areas, but particularly in the ALS dataset, as the ULS
dataset generally places the valley floors lower. Similar
to the data comparisons undertaken in the previous sec-
tion, this highlights the better vegetation penetration
capability of the drone lidar system.

5 The Southern Rocky Mountain
Trench: a kilometric survey of an
alluvial fan scarp

5.1 Background andmotivations
The Rocky Mountain Trench (RMT) is a conspicuously
linear series of NW-trending valleys that crosses the
Canadian Cordillera from northern Montana to south-
ernYukon, where it continues as theTintinaTrench into
Alaska (Fig. 2A). It demarcates the boundary between
the Omineca and Foreland morphogeological belts and
is defined by a series of major fault zones with dis-
tinct northern, central and southern segments (Clague,
1975; Gabrielse et al., 1991). The Southern RMT fault
(SRMTF), in the East Kootenay region of southeastern
BC is a steeply west-dipping normal fault active pri-
marily in the Eocene (van der Velden and Cook, 1996).
However, there is some evidence that the SRMTF may
remain seismically active (Purba et al., 2021; Finley
et al., 2022b), strongly motivating the acquisition and
interpretation of lidar data. Our preliminary analysis
of newly-released provincial airborne lidar (LidarBC,
2023) revealed a ∼3 km-long, W-facing scarp crossing a
series of potentially Holocene-aged alluvial fans above
the eastern shoreline ofColumbiaLake, just southof the
town of FairmontHot Springs (Fig. 10A). The exact trace
of the SRMTF is not well mapped at this location ow-
ing to the thick overburden in the valley floor. However,
the scarp is parallel to and alignedwithmapped strands
of the SRMTF to the north and south, and could poten-
tially indicate a neotectonic reactivation. Given that this
part of theRMTwasoccupiedbyGlacial Lake Invermere
during the late Pleistocene (Sawicki and Smith, 1992),
other potential origins including wave-cut shorelines or
slumping within weak glaciolacustrine sediments must

also be considered.
Our goal in surveying the Columbia Lake scarp with

our lidar drone was to help determine its true origin.
This includes illuminating any lateral offsets to a series
of small runnels that cross the scarp, and characteriz-
ing its detailed shape for the purpose of morphologic
dating (e.g. Nash, 1980; Arrowsmith et al., 1998; Hilley
et al., 2010) or to reveal any bevels that might indicate
a compound, multi-earthquake origin (e.g. Zhang et al.,
1986; Johnson et al., 2018; Wei et al., 2019). The alluvial
fan that constitutes our principle target forms a gently-
sloping surface from the western front of the Stanford
Range at ∼900–1,000 m elevation to the lake shoreline
at ∼809 m. This is covered by a mix of open grassland
and groves of ponderosa pine, typical of Cordilleran dry
forest (Baldwin et al., 2019). The Columbia Lake site
therefore provides a test of ourULS systemacross a gen-
tler relief and more sparsely-vegetated landscape than
along the SJF. Since the survey area lies within tradi-
tional territories of the Ktunaxa and Secwépemc First
Nations as well as within the Columbia Lake Provincial
Park and Nature Conservancy of Canada land, extra re-
search and drone use permissions had to be obtained
in addition to the civil aviation approvals described in
Section 2.2 (see Acknowledgments).

5.2 ULS data acquisition and results
We surveyed the Columbia Lake site over a period of
three days in October 2022 with a crew of two people
(the pilot and one visual observer). Our survey covers
∼3.22 km2, with a length of ∼4 km along strike of the
scarp and awidth of∼0.8 km, enough to capturemost of
the fan surfaces between the mountain rangefront and
the Columbia Lake shoreline. The target area was flown
in several segments, with orthogonal calibration lines
that tie the flights together (supplementary figure SM4).
Launch sites were located along the park access road
that conveniently runs N–S down the middle of the fan
surfaces, often adjacent to the scarp itself. The drone
wasflownat a height of 80mAGLand a speed of 4ms−1,
with the gentle relief andmix of grassland and scattered
ponderosa pine allowing for excellent sight lines. The
ULS data were georeferenced using ten harlequin-iron-
cross GCPs.
Our ULS system yielded an average point density of

102 pts/m2 and was easily able to image beneath the
scattered ponderosa pine trees (inset, Fig. 10), pro-
ducing an average classified ground return density of
36 pts/m2 at an average spacing of 0.17 m (Table 3).
Overall, ∼35% of all laser returns are classified as
ground, lower than the ∼48% at XEOLXELEK (Elk Lake)
but substantially higher than the ∼9% along the SJF, re-
flecting the differing vegetation densities of the three
areas. We optimally gridded the classified ground re-
turns at a pixel resolution of 30 cm (Fig. 10A). The hill-
shaded DTM clearly reveals the primary scarp striking
N–S across the largest, northern alluvial fan (af1), as
well as some secondary splays just east of it (Fig. 10D,
right panel). It also reveals a lineament within the
southernmost alluvial fan (af4) that may represent an
along strike continuation of the scarp. We encountered
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Figure 10 (A) Hillshaded ULS DTM for the Columbia Lake site along the SRMTF. The red polygon shows the area of the ULS
survey overlappedby LidarBCALS coverage. Inset shows the locationof a newparking lot andupgraded trail to the lake shore
that was not developed when the provincial lidar was collected. Alluvial fans (af) are numbered from northernmost (af1) to
southernmost (af4). White triangles indicate the approximate location of the SRMTF. (B) M3C2 distances between the ULS
and ALS point clouds, with an inset showing changes over the new parking lot and trail. Positive values indicate where the
ULS dataset was higher than the ALS dataset. (C) DoD (ULS-ALS), with an inset showing changes over the new parking lot and
trail. The inset below (C) and (D) shows cross section A—A’ through the classified drone lidar point cloud, with green points
for vegetation, pink for ground points, and yellow for unclassified returns. (D) Comparison between ALS and ULS hillshaded
DTMs. Cross section D-D’ shows the increased level-of-detail in the ULS DTM along the main scarp. Note that the ALS profile
has been shifted upwards by 1 m in order to aid comparison.

18 SEISMICA | volume 3.1 | 2024



SEISMICA | RESEARCH ARTICLE | Mapping fault geomorphology with drone-based lidar

difficulties aligning some of the flight lines due to poor
INS calibration, whichmay explain someN-S linear cor-
duroy artefacts visible in the center of the hillshaded
DTM (Fig. 10D, right panel). However, to the trained
eye, these minor and localized artefacts are easily dis-
tinguished from genuine tectonic landforms.

5.3 Comparison and differencing with ALS
data

Our comparison data are provincial airborne lidar col-
lected over a two year period (2015–2017) usingmultiple
sensor platformswith unknown acquisition parameters
(LidarBC, 2023). The sparse metadata owe to the fact
that these surveys were flown by a third party and later
acquired for LidarBC, without the control needed for
them to verify accuracies. This captures ∼ 80% of our
ULS dataset, but misses the southernmost alluvial fan
(af4) surveyed with the drone, where we observe an ad-
ditional scarp along strike. Within the footprint of over-
lap, the ALS data have an average ground return density
of 7 pts/m2, five times coarser than the ULS survey, and
an average ground return spacing of 0.38 m, twice that
of the ULS survey (Table 3). Despite these differences in
spatial resolution, there is little visual contrast between
the ALS and ULS hillshaded DTMs (Fig. 10D). However,
fault-perpendicular topographic profiles reveal that the
shape of the scarp is captured by ULS at greater detail
than by ALS (inset to Fig. 10D).
The ICP rigid body transformation that most closely

aligns the two point clouds has a translation vector of
0.54 m and a rotation of <0.001◦ (Table 3). After this
global registration, the mean M3C2 distance between
the aligned point clouds is −0.01 m with a standard de-
viation of 0.09 m, while the DoD has an average eleva-
tion difference of −0.02 m with a standard deviation of
0.29 m. These results show that despite some artefacts
(described below), our ULS dataset is still both aligned
to within a few decimeters and internally consistent to
within a few centimeters with the ALS survey.
The greatest differences between the twopoint clouds

as revealed by M3C2 and DoD maps (Fig. 10 B–C) are
along the park access road: a gravel pit in the south
and a parking lot in the north, both of which we sus-
pect were excavated or re-graded between surveys.
There are also negative M3C2 and DoD values along the
Columbia Lake shoreline, which likely represent chang-
ing water levels between acquisitions. However, the
M3C2 distance and DoD plots also highlight alternat-
ing N–S strips of negative and positive values (±15 cm),
clearest in the northern half of the survey. We interpret
these as errors in the ULS point cloud due to a poorly
calibrated INS on some of our flights.

6 The Eastern Denali fault: maximal
coverage of amajor strike-slip fault

6.1 Background andmotivations
The Denali fault hosted North America’s largest and
longest onshore earthquake of the modern instrumen-
tal period. The Mw 7.9 earthquake of November 3 2002

ruptured for∼340 kmwest to east across central Alaska,
producing mostly right-lateral surface offsets of up to
∼9m (Eberhart-Phillips et al., 2003). Though the Denali
fault continues southeastwards into Yukon and north-
western BC (Fig. 2A), the 2002 earthquake stopped short
of the Canadian border, branching instead onto the Tot-
shunda splay fault, where it terminated. This rupture
pattern has elicited investigations into the current ac-
tivity and kinematics of the Denali fault east of the Tot-
shunda junction (Bostock, 1952; Clague, 1975; Haeus-
sler et al., 2017; Marechal et al., 2018; Blais-Stevens
et al., 2020; Choi et al., 2021), usually referred to as the
Eastern Denali fault (EDF). The EDF has been active in
the Holocene since it lacks a glacial overprint and dis-
plays several push-up or mole-track structures within
till (Bostock, 1952; Blais-Stevens et al., 2020). Paleo-
seismic trenching of the fault and coring of lake sedi-
ments ponded against the scarp also revealed evidence
forfive strongearthquakesduring thepast∼6,800 years,
leading Blais-Stevens et al. (2020) to call for the acquisi-
tion of lidar imagery to better illuminate the surface off-
sets, kinematic style, and other characteristics of these
events.
We targeted a ∼100 km stretch of the EDF centered

upon Lù’àn Män (Kluane Lake) and paralleling the
paved Alaska Highway (Fig. 11D). This section of the
fault occupies a broad glacial valley, surfacing up to a
few kilometers NE of the frontal range of the St. Elias
mountains and displays tectonic landforms including
those targeted for paleoseismic trenching and coring by
Blais-Stevens et al. (2020). The area is mostly covered
by boreal forest (Fig. 2A), consisting mainly of white
spruce trees, aspen and balsam poplar. However, the
EDF crosses several wide fluvial terraces deposited by
rivers sourced in the St. Elias mountains, the youngest
of which are only sparsely vegetated. Our work along
the EDF therefore provides an example of surveying
rugged (though not mountainous) topography contain-
ing both dense and sparse vegetation. Our surveying
of the EDF also represents our closest attempt at a re-
gional ULS survey. We sought to survey as much of the
fault as possible, but sparse secondary road coverage off
the main Alaska Highway prevented us from accessing
long stretches of it. We therefore flew several separate
sections of the EDF from launch sites located wherever
a passable road crosses the fault, usually one that fol-
lows a major river sourced in the St. Elias mountains
(Fig. 11D). However, these river outlets are also where
we expect to observe some of the best expressions of
the fault in Quaternary deposits, such as deformed river
terraces and offset terrace risers. Our drone cover-
age, though discontinuous, should therefore still cap-
ture many of the features of greatest geomorphic inter-
est.

6.2 ULS data acquisition and results
We collected ∼10 km2 of drone lidar data at seven in-
dividual survey sites—from NW to SE, Quill Creek, Bur-
washCreek, DukeRiver, Copper JoeCreek, NinesCreek,
Slims River/Topham Creek, and Telluride Creek—that
together capture a ∼15 km length of the EDF (Fig. 11D).
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	Elevation	(m)

Figure 11 (A) Hillshaded drone lidar DTM of the Duke River site on the Eastern Denali fault (EDF). The extent of panel B is
marked by the white rectangle. White triangles indicate the approximate location of the EDF. Underlying satellite imagery is
fromBing. (B) Inset showing a 2mhigh northeast facing scarp along a river terrace. The red polygon shows the bounds of the
flight parameter testing discussed in Section 7.1. White line shows the location of cross section C–C’. (C) Cross section C–C’
through the classified ULS point cloud, with green for vegetation, pink for ground returns, and yellow for unclassified points.
(D) Locations of all ULS collection sites (green polygons) along the trace of the EDF as identified with lidar data (red line). The
cyan polygon outlines the comparison ALS dataset. Satellite imagery is from Google. QUIL = Quill Creek, BURW = Burwash
Creek, DUKE = Duke River, COPJ = Copper Joe Creek, NINE = Nines Creek, SLIMs = Slims River/TophamCreek, TELL = Telluride
Creek.

Data were acquired during two, week-long field cam-
paigns in September 2021 and August 2022, each in-
volving three crew members (a pilot and two visual ob-
servers); the largest site, at Duke River, was flown over
multiple days (Fig. 11A). Flight paths for each site are

plotted in supplementary figures SM5–SM11. The drone
was flown at 80mAGL and speeds of 5m s−1 in 2021 and
4m s−1 in 2022. Since large portions of each target area
were difficult to access on foot, we were unable to de-
ploy asmany GCPs as we did at the study sites described
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in previous sections. The number of GCPs range from 2
at the Nines and Quill Creek sites to 20 at the Duke River
site (cumulative across several days of surveying).
The seven ULS surveys yielded average point densi-

ties of 80–112 pts/m2 with a mean of 98 pts/m2, average
classified ground return densities of 20–72 pts/m2 with a
mean of 45 pts/m2, and average ground return spacings
of 0.19–0.23 mwith amean of 0.21 m (see Table 3 for re-
sults of each individual survey). Generally, theULS does
an excellent job of imaging beneath the boreal forest
canopy (inset, Fig. 11A), with ∼47% of all laser returns
classified as ground. We did encounter some misalign-
ment of flight lines in some of the datasets—particularly
at Quill Creek—again, potentially due to a poor INS cal-
ibration. This can produce some striping in the M3C2
and DoD results (Fig. 12), with separations of ±15 cm in
places. However, these linear artefacts are easily distin-
guished from genuine tectonic landforms. The ground
returns were rasterized at an optimal pixel resolution of
0.3 m for each of the seven individual surveys.
We focus our further analysis in this paper on the

Duke River site, which is the largest and densest of our
EDF ULS surveys (Fig. 11 and Table 3). Results from
the other EDF drone lidar surveys are presented in the
supplemental material (SM14—16); some of them were
also interpreted in an earlier technical report of ours
(Finley et al., 2022a) and a full tectonic analysis of all
of the EDF lidar topography will be the subject of a fu-
ture paper. The 0.3m-resolutionDuke River DTM show-
cases several interesting tectonic landforms along the
principal trace of the EDF (Fig. 11A). From NW to SE,
these include en-echelon push up structures indicative
of dextral strike-slip, a pair of clear, right-lateral off-
sets to terrace risers south of the active Duke River, an
abrupt, 7◦ bend in fault strike, and a large, SW-facing
scarp with a vertical separation of ∼5m. The lidar DTM
also reveals a previously unmapped, secondary strand
of the EDF, expressed as a SW-facing scarp crossing the
widest, southern terrace of the Duke River (Fig. 11B).
This highlights the potential for drone lidar to capture
subtle, off-fault tectonic landforms away from principal
fault traces.

6.3 Comparison and differencing with ALS
data

Until this study, the Canadian portion of theDenali fault
had not been flown systematically with lidar, with the
best freely-available topographic data coverage being
the 2 m-resolution, satellite photogrammetry-derived
ArcticDEM (Morin et al., 2016) and a bespoke 4 m-
resolution DTM constructed from legacy airphotos us-
ing SfM (Bender and Haeussler, 2017). In addition to
our drone lidar surveying described above, one of us
(B.M.) also collected a∼295 km2, ∼70 km-long airborne
lidar swath on 19 August 2018 that captures ∼50 km of
the EDF between Burwash Creek and south of Nines
Creek (Fig. 11D), which for the purposes of this studywe
use as our comparison dataset. The ALS survey covers
four of our seven drone lidar sites, including the largest
atDukeRiver. The airborne lidar yields an averagepoint
density of∼8 pts/m2 and an average ground return den-

sity of ∼3.5 pts/m2, less than 10% of the equivalent ULS
values, and the average ALS ground return spacing is
0.54m,more than double that of theULS (Table 3). Con-
sequently, the ULS DTM exhibits noticeably finer detail
than is discernible in the ALS DTM.
For the Duke River dataset, the ICP rigid body trans-

formation that optimally aligns the ULS and ALS point
clouds has a translation vector of 0.54 m and a maxi-
mum rotation of 0.0003◦, indicating global registration
to within a few decimeters and negligible tilting (Table
3). The mean M3C2 distance between the aligned point
clouds is 0.00 m with a standard deviation of 0.18 m,
while the DoD has an average elevation difference of
0.00 m with a standard deviation of 0.28 m, indicat-
ing excellent internal consistency between the two li-
dar surveys. The other survey sites with paired cover-
age have slightly higher global ICP translations (of up to
0.99 m), but had similarly lowmeanM3C2 and DoD val-
ues (of up to 0.01 m) and standard deviations (of up to
0.28 m).
After ICP alignment of the ULS and ALS ground re-

turns, the largest M3C2 distances between the two
clouds are along the active braided channels of theDuke
River, with some showing erosion and others deposi-
tion such as from the formation of sandbars (Fig. 12A).
There are also some large M3C2 distances found along
thebluffs on thenorthernbankof theDukeRiver. These
steep slopes are mostly composed of unconsolidated
glacial till and are very unstable, with several small fail-
ures occurringwhilewewereworking in the area. Thus,
it is unsurprising that there are differences in these sur-
faces between the ALS and ULS acquisitions. Other ar-
eas with non-negligible M3C2 values may result from
slight misaligments between the individual, day-to-day
acquisitions at the Duke River site, which were georef-
erenced using separately-surveyed GCP deployments.
The raster DoD highlights similar areas of difference
(Fig. 12B), although it does appear a little noisier than
the M3C2 distances due to small misalignments in the
rasterization of roads, small channels and other linear
features.

7 Discussion
7.1 Flight parameter trade-offs
The four case studies described in Sections 3–6 high-
light not only the usual trade-off in remote sensing be-
tween data spatial resolution and coverage, but also the
flexibility in drone surveying to adjust flight parameters
for the job at hand in a way that would be difficult with
a crewed aircraft platform. For example, for our local
survey of the eastern XEOLXELEK (Elk Lake) shoreline
site, we flew the drone at a substantially slower speed
and a lower height than in the other, kilometric-scale
surveys, resulting in a point cloud that was around five
times denser but also smaller in scale (Table 3). In prac-
tice, however, the trade-off between platform speed and
point clouddensity is complicatedby the limitedbattery
life of the drone, which restricts the area that can be col-
lected in a single flight.
We therefore conducted an explicit test of the trade-
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Figure 12 Differencing of the drone and airborne lidar datasets for the Duke River site along the EDF, shown as (A) M3C2
distances calculated in CloudCompare and (B) a DEMof Difference. Positive values indicatewhere theULS datasetwas higher
than the ALS dataset. Histograms show distributions of raster values.

offs between platform speed, flight duration, and lidar
point density, with the aim of determining the ideal
flight parameters for collecting high-density data as ef-
ficiently as possible. We did so during our surveying
along the EDF in 2022, choosing for the test a small
(∼2500m2) area of the Duke River site centered along a
segment of the EDF that offsets an abandoned, forested
river terrace (Fig. 11B).We surveyed this area nine times
over the course of a single day, at 1 m s−1 increments
in speed from 1 m s−1 to 10 m s−1, using the same op-
timal flight height (80 m AGL) and the same flight pat-
tern (Fig. 13B, left panel). The nine flights yielded or-
der of magnitude ranges in both point densities, from
∼51–496 pts/m2, and classified ground return densi-
ties, from ∼10–68 pts/m2 (Table 4). We observe the ex-
pected tradeoff between platform speed and ground re-
turn density, with the slowest flight yielding more than
double the point density of the next slowest flight but
taking double the time (Fig. 13A). The resulting DTMs
all looked similar to the eye (Fig. 13B), although the data
from faster collections were slightly noisier. The faster
collections had a greater variation in the DTM surface,
potentially as a result of small bushes and other low veg-
etation being classified as ground.

Ultimately, the most efficient speed for a given sur-
vey depends on the desired point density and should be
determined on a case-by-case basis accounting for both
the scale of the features being targeted and the vegeta-
tion cover type. In our general case, we strive for sub-
meter pixel DTMs in order to identify fine-scale fault ge-
omorphology that might not be visible in existing air-
borne datasets. Ideally, each raster cell value should
be based on the average of at least 3 ground returns.

Thus, for a 50 cm DTM, 12 ground returns per square
meter are desirable, allowing each raster cell to be cal-
culated using a minimum of 3 ground points. The min-
imum DTM resolution in Table 4 was calculated using
this rule of thumb. Using Fig. 13A as a guide, an appro-
priate maximum acquisition speed would therefore be
about 6 m s−1. Anecdotally, this agrees well with our
experience gleaned frommany drone lidar campaigns.

7.2 Drone lidar performance
Our four case studies described in Sections 3–6, as well
as the additional testing at the Duke River site described
above, demonstrate the wide range of ground return
densities attainable with drone lidar, governed princi-
pally by the platform height and speed, swath overlap,
and vegetation type. At its densest—our local survey of
a planned paleoseismic site along the XELF with only
scattered tree cover (Section 3)—we obtained a ground
point density of 260 pts/m2 at an average spacing of
6 cm, though of course further improvements would
have been possible with additional, overlapping flight
lines. In surveys undertaken at the kilometric length
scales more generally of interest to tectonic geomor-
phologists, we obtained ground return densities rang-
ing from ∼10 pts/m2 (spacing of ∼30 cm) along the
rugged, heavily forested SJF (Section 4) to ∼70 pts/m2

(spacing of ∼20 cm) at the mixed-cover Duke River site
on the EDF (Section 6). In all cases, the ULS densities
were a marked improvement from those of the com-
parison ALS datasets, which ranged from 3.5–9 pts/m2

with spacings of 0.33-0.54 m (Table 3). Of course, these
differences trade off against aerial coverage; in our
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Speed
(m s−1)

Survey time
(min)

Point density
(pts/m²)

Ground point
density (pts/m²)

%pts
ground

Minimum DTM
resolution (m)

1 23.50 495.63 68.36 14 0.21
2 11.75 242.49 28.16 12 0.33
3 7.83 155.68 23.80 15 0.36
4 5.88 122.87 20.10 16 0.39
5 5.37 99.83 19.20 19 0.40
6 4.47 84.98 15.58 18 0.44
7 3.83 72.70 12.12 17 0.50
8 3.35 65.17 14.19 22 0.46
9 2.98 57.93 9.70 17 0.56
10 2.68 50.52 10.05 20 0.55

Table 4 Results of our testing of platform speed trade-offs. The survey time does not include the static IMU calibrations (∼5
minutes per flight), nor the time taken to transit the drone between the launch site and the start of the first data collection
flight line. TheminimumDTM resolution is based on a recommendation that at least 3 ground points should be averaged per
raster cell.

ground point density

percent ground points

A

B

Figure 13 Results of platform speed trade off tests. (A) Relationships between acquisition time, platform speed, and the
resulting ground return density. The 12 points per square meter threshold illustrates that sub-0.5 cm DTMs can only reliably
be obtained at speeds of 6 m s−1 or less. (B) 30 cm-resolution DTMs for the fastest (10 m s−1), intermediate (5 m s−1) and
slowest (1 m s−1) flights. The red line on the 10 m s−1 panel shows the acquisition path used for all flights.
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largest ULS survey along the EDF we collected a total
of ∼10 km2 of data in two week-long field campaigns,
whereas our ALS survey collected 25 times that area in
a single day. OurULS surveying along the SJF, SRTMand
EDF shows that coverage of 0.5–1.6 km2 is achievable in
a single day with the drone, including over rugged to-
pography.
Our ICP alignments of ULS ground returns with cor-

responding ALS point clouds show that the two datasets
are usually globally registered to within less than a me-
ter of one another (Table 3), with the one exception,
along the SJF, likely arising from differences in the
geoidmodel used to calculate orthometric heights (Sec-
tion 4.3). TheRieglMiniVUX-1UAVlaser scanner has ex-
pected accuracy of 10 mm and precision of 5 mm and
the Applanix APX20-UAV INS has a post-processed ac-
curacy of 2–5 cm. Once the ULS and ALS ground re-
turn clouds are aligned using ICP, average M3C2 dis-
tances and DoD values on the order of a few centime-
ters are therefore within the expected noise, especially
considering that the average is biased by localized oc-
currences of significant landscape alteration between
surveys (e.g. road construction; Fig. 10B–C). Generally,
theM3C2 distances were very similar to the DoD values,
implying that the local distances calculated on the point
clouds were mainly in the vertical direction. We did
encounter artefacts arising frommisaligned flight lines
within some of the ULS datasets (e.g. Figs. 7B and 9), al-
though further post-processingmayhavehelped reduce
these (Gu et al., 2023) and similar problems can occur
in some ALS surveys, too (Scott et al., 2022). One main
challenge for mobile lidar systems thus far has been in
point accuracy, particularly as a result of the IMU tra-
jectory Glennie et al. (2013), and our ULS results bear
this out.
Our detailed comparisons of data collected at the

eastern XEOLXELEK (Elk Lake) shoreline site show
how ULS penetrates low-lying vegetation (blackberry
bushes) better than ALS does, with both lidar sys-
tems naturally outperforming SfM (Section 3.3). Coun-
terintuitiuvely, the ULS produces a lower fraction of
ground returns (48%) than the ALS (64%), which hints
that in densely-vegetated areas, some laser returns off
shrubs and bushes might be misclassified as ground in
ALS datasets, to a greater extent than they are in ULS
datasets. This would explain why the ground surface
modelled fromULS data is often slightly lower than that
from ALS data (Figs. 7 and 9). It is important to note
thatmany ground classification algorithms, such as pro-
gressive morphological filters (Zhang et al., 2003) and
cloth simulation functions (Zhang et al., 2016), were de-
veloped using and for ALS data. Thus to effectively de-
termine ground points within ULS data, the default al-
gorithm parameters may need to be adjusted.
The relative vegetation penetration capabilities of

ULS and ALS are further showcased in Figure 14. In
the left-hand column, we plot 5 m wide point cloud
swath cross-sections for typical vegetation present in
each of the study sites. These demonstrates that the
ULS is better at both capturing the vegetative structure
and minimizing gaps in the ground returns. This may
partly reflect that the ULS footprint is ∼6–9 cm in diam-

eter at our optimal flight elevation of 80 m AGL, several
times narrower than the∼15–90 cm footprints typical of
airborne systems (e.g. Lin et al., 2013; Fernandez-Diaz
et al., 2014).
Tectonic geomorphologists generally analyse raster-

ized DTMs rather than point clouds and so it is impor-
tant to consider ULS in this context. The ∼1–10 pts/m2

ground return densities typical of ALS data (Figure 14,
middle column) usually translate to ∼1 m raster res-
olutions, whereas the much the denser point clouds
collected by our drone system (Figure 14, right-hand
columns) allow for finer pixel dimensions of 0.2–0.5 m.
Lin et al. (2013) proposed that 0.5 m was an optimal
DTM resolution for detecting tectonic-geomorphic sig-
nals, with 0.25 cm pixels offering little improvement,
but this may reflect the larger (0.41 m) footprint of
their airborne laser scanner. Since ULS laser footprints
are much smaller (6–9 cm), it enables us to produce
sub-50 cm DTMs which aid the identification of many
features obscured in typical 1 m resolution imagery,
such as ruts in road-ways, footpaths, and individual tree
stumps or logs (e.g. Figs. 7 and 8B).

7.3 Limitations and future prospects of
drone lidar

Based on our four case studies in Sections 3–6 and
the performance metrics discussed above, we foresee a
number of specific applications for drone lidar within
the field of tectonic geomorphology. Because battery
life, road access, and VLOS requirements limit us to
kilometric fault length-scales (e.g. Fig. 11D), we do not
envisage ULS (or any other type of drone-based imag-
ing) as a regional reconnaissance tool in the way that
ALS has become. However, ULS may be a useful, rela-
tively low-cost way of extending lidar coverage beyond
the footprint of an existing ALS survey, such as we did
along both the SRMT and EDF (Figs. 10A and 11D). As
demonstrated in Section 3 and 7.2, ULS also offers bet-
ter andmore even ground point coverage beneath trees
and shrubs than ALS,making it possible to densify lidar
coverage along known faults in vegetated landscapes.
Faulted landforms targeted for paleoseismic trenching,
slip rate studies, or morphologic dating may benefit
from the finer, decimetric spatial resolutions achiev-
able with ULS. We have also shown how drone lidar
can reveal subtle landforms associated with structural
complexity and distributed deformation, such as the
secondary scarps imaged on the Columbia Lake allu-
vial fans (Fig. 10D) and at the Duke River site along the
EDF (Fig. 11). There is also scope for mapping land-
scapes and landformsassociatedwith othernatural haz-
ards, such as landslides (Pellicani et al., 2019), volca-
noes, tsunamis, and flooding. Finally, because drone
deployments are both logistically easier and cheaper
than procuring a crewed aircraft, there is rich potential
for the use of ULS for rapid response (e.g. mapping of
new earthquake surface ruptures) and in repeat mode
(e.g. high temporal and spatial resolution time-series
of postseismic afterslip). Building upon this study, the
capability of repeat ULS surveying for mapping three-
dimensional surface deformationwill be tackled explic-
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Figure 14 Left-hand column: representative 5 m-wide swath cross-sections through the ULS (red) and ALS (yellow) point
clouds showing typical vegetation for the XELF (top row), SJF (second row), SRMT (third row) and EDF (bottom row) study
sites. Thepoint cloudsaredisplayedconcurrently,withALSpoints enlarged toprevent them frombeingobscuredbehindULS
points. Note that for the SJF site, only ALS ground returns were provided to us. Middle column: ground point density maps
for the ALS datasets at the four study sites. Pink polygons mark the cross-section locations of the left-hand column. Right-
hand column: ground point density maps for the ULS datasets. Additional ULS point cloud profiles through stereotypical
vegetation for each survey site are provided in supplemental figures SM17—20.
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itly in a forthcoming paper of ours.
Just asULSwill complement rather than supplantALS

as a source of high-resolution topographic data, we do
not see it replacing TLS or drone-based SfM systems for
all applications. Firstly, the upfront costs of our ULS
system (discussed further below) are higher than that
of many TLS systems and much higher than those of
drone-based SfM. Since many consumer drones come
equippedwithhigh-quality cameras (e.g. Pellicani et al.,
2019), we envisage that SfM will remain the tool of
choice for collectinghigh-resolution topography in arid,
vegetation-sparse landscapes (e.g. Johnson et al., 2014).
ULS would still offer certain advantages over SfM in
such regions—for example its active source allowsmap-
ping in low light conditions, and the processing of the
lidar point cloud is significantly less computationally
intensive—but these would come at greatly increased
cost. Similarly, ULS is unlikely to replace TLS for appli-
cations in which ground-based scanner vantage points
suffice. However, ULS can capture a small target area
quicker than TLS; for example, Brede et al. (2017) col-
lected a 140 pts/m2 ULS dataset in a single 9 minute
flight, whereas it took two days to complete TLS cover-
age of the same 100 m × 180 m site.
The components of our ULS system cost more than

CAD $100,000 when purchased in 2018–2019, though
these costs are likely to decrease significantly as the
technology matures (e.g. Van Tassel, 2021). As ULS is
adopted for a broader range of scientific and commer-
cial applications, an increasing variety of drones and
miniaturized scanners and INS instruments are becom-
ing available, including as part of integrated systems.
In our experience, once the upfront costs of purchas-
ing a ULS system is made, the year-on-year costs for in-
surance and software licensing are inexpensive. One of
the biggest constraints on drone systems is their lim-
ited flight time, related to battery life. However, elec-
tric cars and a growing array of battery poweredmobile
devices are driving improvements in battery technology
that will positively benefit drone surveying (Townsend
et al., 2020; Liang et al., 2019; Rajashekara, 2013, e.g.).
Alternatively, gasoline andhybrid-poweredUAVs are be-
coming commercially available, offering much higher
energy densities and ensuing improvements in both
flight time and lifting capacity (e.g. Skyfront, 2023; Met-
calf et al., 2022; Viswanathan et al., 2022; Harris Aerial,
2023). Another major constraint for ULS is imposed
by aviation authorities, which require specialist equip-
ment and large amounts of permitting for beyond visual
line-of-sight (BVLOS) flight in both Canada and the U.S.
Flying BVLOS would allow for larger drone acquisitions
with fewer crew and less time in the field. This will po-
tentially change as drone software and collision avoid-
ance systems mature and new RPAS-specific legislation
emerges (Transport Canada, 2023).

8 Conclusions
We describe a state-of-the-art drone lidar system, pro-
vide a practical guide for other researchers interested
in developing their own, and showcase its perfor-
mance using four case studies from a range of ter-

rain and vegetation types found within the Canadian
Cordillera. These range from a local (∼100 m × 100 m)
survey of a paleoseismic trenching site with scattered
tree cover, captured at a ground return density of
260 pts/m2, to multi-kilometer mapping of faults in re-
mote, forested regions, captured with ground return
densities of ∼10–72 pts/m2. Our ULS point clouds are
gridded into bare earth DTMs with ∼20–50 cm pixel di-
mensions, substantially finer than the∼1mdimensions
typical of airborne lidar DTMs. Inmost cases, the drone
lidar ground returns are globally registered to overlap-
ping airborne lidar data to within ∼0.3–1.0 m, and once
aligned, point-to-point distances and DEMs of differ-
ence indicate internal consistency to within a few cen-
timeters. Distinct advantages of terrain mapping using
ULS includebetter imagingbeneath vegetation, theflex-
ibility to adjust flight parameters to achieve a desired
ground return density, and relatively straightforward
platform deployment logistics. In practice, ULS map-
ping is currently limited to kilometric lengthscales by
battery life, road access requirements, and regulatory
constraints, so it is unlikely to replace ALS for regional
fault reconnaissance. However, we envisage rich poten-
tial of drone lidar for (1) cost-effectively mapping faults
beyond the edges of existing ALS surveys; (2) detailed
surveying of known faults for paleoseismic trenching,
fault slip rate estimations, ormorphologic dating; (3) re-
vealing subtle landformsarising fromoff-fault deforma-
tion; (4) rapid collectionof perishable data suchas along
earthquake surface ruptures; and (5) for repeat deploy-
ments along surface ruptures for capturing afterslip.
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Abstract Documenting the interplay between slow deformation and seismic ruptures is essential to un-
derstand the physics of earthquakes nucleation. However, slow deformation is often difficult to detect and
characterize. Themostpervasive seismicmarkersof slowslipare low-frequencyearthquakes (LFEs) that allow
resolvingdeformationatminute-scale. Detecting LFEs is hard, due to their emergent onsets and lowsignal-to-
noise ratios, usually requiring region-specific template matching approaches. These approaches suffer from
low flexibility and might miss LFEs as they are constrained to sources identified a priori. Here, we develop a
deep learning-based workflow for LFE detection and location, modeled after classical earthquake detection
with phase picking, phase association, and location. Across three regions with known LFE activity, we de-
tect LFEs from both previously cataloged sources and newly identified sources. Furthermore, the approach is
transferable across regions, enabling systematic studies of LFEs in regions without known LFE activity.

Non-technical summary Earthquakes are caused by suddenmovements on tectonic faults. While
such suddenmovements have been documented for thousands of years, the last decades have revealed that
tectonic faults also host a wide range of slow deformation. Such slow slip happens over the scale of days to
years but is still substantially faster than regular plate convergence rates. Recent years have shown that slow
slip can play an essential role in the buildup of large earthquakes. Classically, slow deformation is detected
and characterised using geodetic observations, such as GNSS or InSAR. This limits the time and space resolu-
tion. An alternative is looking for seismic markers accompanying slow slip, among which the most pervasive
are low-frequency earthquakes (LFE). Due to their low signal to noise ratio and emergent onsets, such LFEs
are notoriously difficult to detect. Here, we develop a novel method for detecting LFEs using deep learning.
Our method successfully detects LFEs from both known and unknown sources. In contrast to previous ap-
proaches, our method can detect LFEs without prior knowledge of the region, which makes it promising for
LFE detection in regions where no LFEs have been found previously.

1 Introduction
Stress release on tectonic faults canhappen in twoways:
fast and slow. Fast deformation happens in the form
of earthquakes; slow relaxation is observed as creep or
episodes of accelerated slip, so-called slow slip events
(Dragert et al., 2001; Ozawa et al., 2002; Lowry et al.,
2001; Ide et al., 2007a). The complex interactions be-
tween fast and slowdeformationmight be at play during
the initiation of large earthquakes (Radiguet et al., 2016;
Socquet et al., 2017; Cruz-Atienza et al., 2021). However,
studying these interactions requires detailed catalogs of
both deformation types. While the impulsive nature of
earthquakes causes clear signatures on seismic record-
ings, detecting slow slip is substantially more challeng-
ing. Its detection commonly uses geodetic observations
with a limited spatial and temporal resolution (Michel
et al., 2019; Okada et al., 2022; Costantino et al., 2023).
An alternative way to map slow deformation is by

detecting and characterising its seismic markers. One

∗Corresponding author: munchmej@univ-grenoble-alpes.fr

such type of markers are low-frequency earthquakes
(LFEs), weak seismic signalswith adurationon the scale
of seconds. Recent research shows that the rate and
magnitude of LFEs track the slow deformation (Frank
and Brodsky, 2019; Mouchon et al., 2023). LFEs are sim-
ilar to regular earthquakes in some characteristics, e.g.,
distinct phase arrivals or predominantly double-couple
sources, but also have clear differences (Shelly et al.,
2007; Ide et al., 2007b; Royer and Bostock, 2014; Iman-
ishi et al., 2016; Supino et al., 2020; Wang et al., 2023).
First, they have an eponymous depletion of energy in
the high-frequency band (above a few Hz). Second,
in consequence of missing high frequencies, they do
not exhibit impulsive arrivals but are emergent, making
them hard to detect. Third, they often occur in intense
bursts with inter-event times of only seconds, leading
to superimposed waveforms commonly referred to as
tremors (Shelly et al., 2007).

To illustrate the challenges these characteristics
cause for LFE detection, it is worth contrasting LFE de-
tection with the identification of regular earthquakes.
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Detecting regular earthquakes traditionally relies on a
two-step procedure: (i) phase picking, i.e., identifying P
and S waves arrival times at seismic stations; (ii) phase
association, i.e., selecting sets of picks across stations
that are consistent with a common source location and
origin time. Downstream analysis can then determine
the event location and additional source parameters.
In this workflow, a side benefit of the phase associa-
tion step is that it acts as a quality control to remove
spurious phase picks. At the moment, such a work-
flow is usually not applicable to LFE detection, as the
low signal-to-noise (SNR) ratio and the emergent onsets
make it impossible for classical algorithms topickphase
arrivals. There are exceptions, notably the JMA cata-
log (Japan Meteorological Agency, 2023), but these rely
onhigh-quality andhigh-density data,manual interven-
tion, and high SNR LFEs. Instead, LFE detection usu-
ally relies onmanual identification (Shelly, 2010), beam-
forming (Frank and Shapiro, 2014), or phase coherence
(Gombert and Hawthorne, 2023). These approaches of-
ten suffer from high computational demand or require-
ment for manual labour. However, they can be used
to generate LFE template waveforms forming an initial
catalog for a subsequent matched filtering search on
long running recordings. As the initial approaches of-
ten fail to identify all existingLFE sources, such catalogs
will be biased towards certain sources.
Due to its high sensitivity, matched filtering, also

known as template matching, has become the de facto
standard for LFE detection (Shelly, 2017; Bostock et al.,
2015; Frank et al., 2014). Once initial templates are iden-
tified, the method identifies repeat occurrences of the
template events by correlating these with the continu-
ous waveforms. In addition to detecting occurrences,
this procedure groups the LFEs into families according
to their matching templates. This allows to stack wave-
forms and accurately locate the families. While highly
sensitive, matched-filtering presents several disadvan-
tages: templates are always region and station specific,
matched filtering does not provide locations for indi-
vidual events, and the model can not detect LFEs out-
side the initially detected families. Especially the last
limitation shapes our understanding of LFEs, as tem-
plate matching can only recover repeating events, po-
tentially skewing our view of overall LFE behavior by
themost repetitive sources. Furthermore, the grouping
into families is partially artificial, as template matches
often overlap, i.e., many detections can not be uniquely
assigned to one family.
A closely linked task to the detection of LFEs is the

detection of tectonic tremors. Typical methods lever-
age either coherency across station, through source
scanning (Kao et al., 2005), waveform coherency (Arm-
bruster et al., 2014), envelope correlations (Bombardier
et al., 2023), or repetitiveness of waveform motives
within or across stations (Rubin and Armbruster, 2013).
However, while the underlying processes are closely re-
lated, the tasks pose distinct challenges. Tremors are
usually severalminutes long, making them easier to de-
tect than LFEs. In addition, these longer waveforms
make it easier to locate them, as more characteristics,
e.g., envelopes, can be used for location. In contrast,

LFEs are short signals, with waveforms lasting atmost a
few seconds, making detection and location more dif-
ficult. However, the short duration of LFEs also im-
plies that they can monitor underlying processes at a
higher resolution than tremors, thereby providing ad-
ditional insights into slow deformation. In some cases,
waveform coherency methods similar to tremor detec-
tion can be applied for LFE detection, but the results are
usually restricted to high signal-to-noise ratio examples
(Savard and Bostock, 2015).
To build a flexible LFE detector addressing the disad-

vantages of templatematching, it would be appealing to
make amore traditional earthquake detectionworkflow
applicable to LFEs. The critical point for this is a viable
automatic phase picker for LFE arrivals. We borrow
from the recent breakthroughs in seismic phase pick-
ing with deep learning, where recent neural network
models have substantially improved earthquake detec-
tion (Zhu and Beroza, 2019; Ross et al., 2018; Münch-
meyer et al., 2022). These neural network models are
trained on millions of manually labelled phase arrivals
and thereby learn to accurately discern seismic phase
arrivals from noise and accurately determine arrival
times. The application of these models to continuous
data has allowed to substantially increase the complete-
ness of earthquake catalogs (Tan et al., 2021; González-
Vidal et al., 2023; Moutote et al., 2023).
For tremor and LFE detection with deep learning,

only few studies exist. Rouet-Leduc et al. (2020) iden-
tify tremor episodes in single-station records, but do
not attempt to detect or locate individual LFEs. Thomas
et al. (2021) focus on LFEs on the San Andreas fault
and test model configurations on cataloged events. The
preprint of Lin et al. (2023) presents an LFE detection
workflow similar to the one presented here but focus
exclusively on SouthernVancouver Island. Here, we de-
velop a deep learning based LFE picker and show its
applicability to three independent study regions: Cas-
cadia, Guerrero and Nankai. To train our picker, we
develop a novel strategy for synthetic data generation
that allows for fine-grained control of the training pro-
cess. Using this method, we set up a classical earth-
quake detection workflow and demonstrate how to au-
tomatically create LFE catalogs across different world
regions. Our model successfully identifies and locates
individual LFEs, even without using any training exam-
ples from the target region. The resulting catalogs are
coherent with classical catalogs but have been obtained
in a fully automated and region-agnostic manner. Fur-
thermore, the catalogs identify LFEs missing from the
reference catalogs, showing that our approach can un-
cover sources missed in the template matching proce-
dures. Wemake the trained picker availablewith a user-
friendly interface through SeisBench (Woollam et al.,
2022).

2 Training and validation of a deep
learning LFE phase picker

For detecting LFEs and determining their phase ar-
rival times, we build a deep learning network. Our
network is closely modeled after PhaseNet (Zhu and
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Beroza, 2019) due to the model’s simplistic architec-
ture and the excellent performance on earthquake data
(Münchmeyer et al., 2022). PhaseNet is a 1D U-Net,
i.e, a neural network consisting of convolutional en-
coder anddecoderbranches and skip connections (Ron-
neberger et al., 2015). We provide themodel with 60 s of
3-component waveforms sampled at 20 Hz, bandpass-
filtered between 1 and 8 Hz, the band in which LFEs
are typically observed. The model outputs probability
curves for P and S phase arrivals. We provide full details
on themodel and trainingprocedure in the supplement.
In contrast to traditional earthquake pickers, train-

ing the model on cataloged LFE waveforms is subopti-
mal. First, LFEs occur in bursts, i.e., around one LFE ar-
rival there are often further arrivalsmany ofwhich have
not been labelled. This leads to incorrect labelling and
in addition makes a quantitative analysis of the model
performance difficult. Second, most LFE catalogs are
based on template matching, i.e., individual arrivals
need to be inferred from arrival times on templates.
Due to the low SNR, these times are often highly inac-
curate, leading to high model uncertainties. Instead,
we train our model on synthetics. For this, we combine
LFE stacks with real seismic noise, allowing us to con-
trol the number and timing of LFEs and the SNR (Fig-
ure 1). We use up to three LFEs per trace to train the
model to recognise events with low inter-event times.
We use seismic noise from the INSTANCE dataset for
Italy (Michelini et al., 2021) as it contains no known
LFEs.
We train our model using four regions: Southern

Vancouver Island in Cascadia (Canada/USA) (Bostock
et al., 2015), the central section of the San Andreas
fault (USA) (Shelly, 2017), Guerrero (Mexico) (Frank
et al., 2014), and Nankai (Japan) (Japan Meteorologi-
cal Agency, 2023). Figure S1 shows the distribution of
events and stations in the reference catalogs. For Casca-
dia, San Andreas and Guerrero, we use templatematch-
ing catalogs and the previously described strategy for
generating examples. For Nankai, we apply the classi-
cal training scheme as used for earthquakes as individ-
ual picks are available. Further details on the datasets
can be found in the supplement.
We evaluate our trained models quantitatively on

synthetic examples generated with the previously de-
scribed noise plus stack strategy. The performance on
synthetic data can serve as a proxy for the expected per-
formance on real data. We exclude the Nankai catalog
from the analysis, because the catalog incompleteness
precludes the extraction of challenging yet guaranteed
LFE-free time windows. As this study focuses on the
generated LFE catalogs, we only provide a synopsis of
the analysis on synthetics here and refer to the supple-
ment for further details.
Overall, the models show excellent detection perfor-

mance for both P and S waves, with an area under the
curve (AUC) of the receiver operator characteristics of
0.97 to 1.00 in all regions for positive SNR in dB scale
(Figure 1). The performance degrades mildly at -2.5 dB
SNR and more sharply after, but all AUC values stay
above 0.88 even at -10 dB SNR. Models transfer well
across regionswith theworst results for amodel trained

exclusively on Cascadia (Figure S2). The best perform-
ing model is the one trained jointly on all four regions.
Therefore, we use the model trained jointly on all re-
gions in the subsequent analysis unless explicitly stated
otherwise.
Analysing the pick time residuals, clear regional dif-

ferences are visible, with lowest residuals in Cascadia
(Figure S3). In all regions, average residuals are about
0.3 s larger for P arrivals than S arrivals, indicating that
these are more difficult to pick. With standard devia-
tions between 0.3 and 1.3 s (at 0 dB), residuals are sub-
stantially higher than for traditional earthquake pickers
(Münchmeyer et al., 2022). Nonetheless, the residuals
expose only low or no bias across all regions. For the
regional differences in performance, we think that they
can primarily be attributed to the heterogeneity in data
quality and SNR. For example, the Cascadia stacks show
the highest SNR, leading to the lowest pick residuals. In
turn, this implies that no conclusions about inherent re-
gional differences in difficulty for picking LFEs can be
inferred.

3 Building deep learning LFE catalogs
Usingourphasepickingmodel, we set upanLFEcatalog
workflow similar to the classical earthquake detection
workflow. Herewe provide an overview of theworkflow
with further details in the supplement. First, we pick
P and S phases by applying the trained deep learning
model to continuouswaveformsusing SeisBench (Wool-
lam et al., 2022). Second, we use the PyOcto phase asso-
ciator (Münchmeyer, 2024) to identify coherent arrivals
across stations. Third, we use NonLinLoc (Lomax et al.,
2000) with a 1D velocity model to perform absolute lo-
cation of the events. To avoid false detections, we fil-
ter the events based on the number of phase picks and
the location residuals. For comparison,we create earth-
quake catalogs using the samewaveforms andworkflow
but using a PhaseNet model trained on INSTANCE im-
plemented in SeisBench as the picker (Zhu and Beroza,
2019; Michelini et al., 2021; Woollam et al., 2022).
As we observed a certain number of events detected

as both earthquakes (EQs) and LFEs, we remove these
events from the LFE catalogs (Figure S4). We note that it
is not clear whether these events should be classified as
LFEs or EQs. The level of overlap is dependent on the re-
gion, with almost no overlap in Cascadia and Guerrero,
a 5% overlap on the San Andreas fault, and a 40% over-
lap inNankai. While we are not certainwhat causes this
different behavior, we speculate that in Nankai, LFEs
and earthquakes showawide range of apparent spectra,
due to the diverse event distribution and frequency de-
pendent attenuation. This might lead to a higher num-
ber of overlapping detections.
We apply our workflow to compile LFE catalogs for

the four study regions. As we focus on studying the
performance of the model and its resulting catalogs,
we restrict ourselves to short study periods: 2003-02-26
to 2003-03-10, 2004-07-02 to 2004-07-27, and 2005-09-03
to 2005-09-25 for Cascadia; 2005-09-01 to 2005-11-30 for
Guerrero; 2014-07-01 to 2014-10-01 for San Andreas;
2012-05-25 to 2012-06-14 for Nankai. We chose the pe-
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Figure 1 Data generation procedure and evaluation results for synthetic data. The top panels show (top to bottom): the
combination of two LFE stacks from Cascadia, a 60 s noise segment from INSTANCE, the combination of signal and noise at
3dBSNR, and theGaussianpulse labels for thePandSarrivals. Thebottompanels showthe receiveroperatingcharacteristics
(ROC) at different SNR. The numbers in the legend indicate the area under the ROC curve (AUC). For all plots, we use the joint
model trained on all four datasets.

riods to contain both intense LFE activity and segments
without any identified LFEs.
Figure 2 shows the spatial event distributions. While

the overall event locations are scattered, we notice
strong similarities with the reference catalogs. For Cas-
cadia (10211 events detected), LFE activity is distributed

along a band underneath South Vancouver island. For
Guerrero (876 events detected), LFEs occur mostly in
a band between 100◦ and 99◦ West and around 18.25◦

North. For Nankai (2525 events detected), a clear band
of LFEs is visible in Southwestern Nankai. Further LFEs
around 135.5◦ E match the second band of LFEs com-
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Figure 2 LFE catalogs obtained from deep learning (top row) and the reference catalogs (middle row). For deep learning,
eachdot representsoneLFE. Thebottomsubpanels showdepthcross-sections, showing longitudeanddepthof events. Color
encodes event depth. The histograms on the left of the cross-section show the depth distribution of the detected events.
In the reference catalogs for Cascadia (Bostock et al., 2015) and Guerrero (Frank et al., 2014) each dot represents an LFE
family. For Nankai (Japan Meteorological Agency, 2023) individual LFEs are plotted. The bottom panels show waveforms of
associated LFE picks from deep learning in each region. Red lines indicate phase picks (dotted for P, solid for S).

monly observed in Nankai. For San Andreas (975 events
detected), the new catalog deviates from the previous
observations, with the detection broadly distributed in
space instead of along the fault (Figure S7). This is likely
caused by very poor locations due to the station geom-

etry. As many events are only detected by the Park-
field borehole arraywith very dense station spacing, the
aperture is small. Together with high pick uncertain-
ties, this makes determining accurate locations chal-
lenging. Therefore, we will exclude San Andreas from
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the following analysis.
In all catalogs, the event depth exposes high scatter.

Nonetheless, the largest density of events is around the
previous estimates of LFE source depths. For Cascadia,
events within the network show less scatter on depth
than outside the network. We suggest that this is caused
by the high timing uncertainty of the picks. In particu-
lar, a high P pick uncertainty will cause poor depth con-
straints as the P to S time is indicative of depth. Tem-
plate matching catalogs alleviate this problem by locat-
ing LFE families instead of single events. In Guerrero,
we observe an arc-shaped depth distribution. This is
most likely related to the station distribution that traces
out almost a straight line, leading to poor location con-
straints perpendicular to the station line (Frank and
Shapiro, 2014).
Figure S5 shows the event density of the detected

events. This visualisation further highlights the match
with the reference catalogs both in terms of latitude and
longitude and in terms of depth. For Japan, the high-
est event density occurs in the South-Western band of
LFE activity. For Cascadia, the fine structure of detected
LFEs is compatible with earlier publications, e.g., clear
overlap is visible with patches A and C in the visualisa-
tion of LFE density of Figure 7 by Savard and Bostock
(2015).
Even though the overall shape of the catalogs is con-

sistent with the previous catalogs, this alone does not
confirm that the identified events are indeed LFEs. We
therefore conduct additional analysis into the newly ob-
tained catalogs. Figure 3 shows spatial and temporal
patterns in the catalogs. In Cascadia, LFEs in all three
observed sequences show a clear North-Westward mi-
gration. This is consistent with the slow slip and tremor
migration patterns in the area during these episodes
(Wech, 2021). We conducted an additional analysis,
comparing the PNSN tremor catalog and LFEs detected
using ourmethod for a 31 day period in 2021 (Figure S6).
This analysis shows a high agreement between LFE and
tremor locations, density, and temporal development.
This holds even though for this time period we used a
less dense station coverage and considered a larger part
of Vancouver Island than in the 2003 to 2005 episodes.
For Nankai, we observe a migration in the North-

Eastward direction. Notably, the migration is not con-
tinuous but rather has a gap and an additional, earlier
cluster at the far North-West. This pattern matches ex-
actly the migration pattern in the JMA catalog. We do
not observe clear spatial migration patterns in Guer-
rero, however, such patterns have previously only been
identified with very precise location estimates (Frank
et al., 2014). In all regions, the evolution of daily event
rate between the deep learning and reference catalogs
is highly similar with Pearson correlation coefficients
between 0.74 and 0.93. In absolute numbers, the deep
learningmethoddetects substantially fewer events than
the template matching, but more events than the man-
ual detection procedure of the JMA. We note that the
number of events from deep learning is highly depen-
dent on the chosen quality control parameters, which
we set rather conservatively to avoid false positive de-
tections.

Figure 4 shows a comparison of the velocity spectra
of LFEs detected by ourmethod, earthquakes and noise
in the three regions. The spectra clearly show the char-
acteristics of the different event types. The earthquake
spectra show increasing or at least constant energy up
to about 10 Hz. In contrast, the LFEs show a continu-
ous decrease or at most constant levels of energy from
low frequencies onward. The LFEs only show substan-
tially higher energy than the noise in a small frequency
band, while the EQs show substantially higher SNR at
high frequencies. This depletion in energy at higher fre-
quencies is the key property of LFEs.

4 Increased diversity of LFE sources
through deep learning

We compare the detected events to the reference cata-
logs (Figure S8). In Cascadia, for 64% of the LFEs from
our workflow, we find an LFE in the reference catalog
within 10 s; for Guerrero for 81% of the events. For
Nankai, only 8% of our LFEs are in the reference cata-
log, however our catalog also substantially exceeds the
original catalog in the total number of events. Con-
versely, we recover 39% of the cataloged events. Note
that a loose threshold for matching is justified due to
uncertainties in the origin times due to inaccurate lo-
cations. On one hand, these results are another confir-
mation that the method correctly identifies LFEs. On
the other hand, the substantial fraction of uncataloged
events suggests that our method identifies previously
unidentified LFEs. In the following, we verify and anal-
yse these detections.
First, we rule out spurious detection. To this end, we

scramble the picked arrival times of each station by ap-
plying small random shifts. We choose constant shifts
for each station for every hour. This destroys the ex-
act times, while keeping the pick distribution, the P to S
times within a station, and the higher number of picks
within tremor bursts intact. We then build “catalogs”
by associating these scrambled pick times, using the
same associator settings as for the actual catalogs. The
scrambled “catalogs” only contain about 5% to 10% of
the number of events contained in the original catalogs
and show no spatial coherence (Figure S10). Even these
numbers are still likely an overestimation of the false
positive rate, as events recorded at many stations are
likely to be unperturbed by our scrambling procedure.
Therefore, at least 20% additional detections can not be
attributed to spurious associations.
Mapping the events withoutmatches in the reference

catalog (Figure S11) reveals that they follow the same
spatial extent and migration pattern as the full catalog.
Notably, for Cascadia and Mexico there are changes in
the temporal patterns. For Cascadia, the newly detected
events concentrate early and late in the LFE sequence,
coinciding with a spatial location around the southeast-
ern tip of Vancouver island and towards the northwest-
ern end of the LFE cluster. Nonetheless, there are ad-
ditional detections dispersed throughout the whole re-
gion including the central region with good coverage
in the reference catalog. For Mexico, the largest frac-
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Figure 3 Spatial and temporal migration patterns of detected LFEs. Each dot represents one LFE. The time within the se-
quence is indicated by colour. The bottom panel shows the number of events per day for the LFEs from deep learning (blue)
and reference catalogs (orange). The numbers in the upper left corners indicate the Pearson correlation coefficient between
the daily number of events between the two catalogs.

tion of new detections clusters in time between days
30 and 50 of the analyses sequence. Visualising the in-
terevent time (Figure 4) confirms these observations.
Both the full deep learning catalogs and the catalog of
events without a match in the reference catalogs show
clear burst behaviour. In particular for Mexico, cer-
tain LFEbursts are contained virtually completely in the
template matching catalog, while others have not been
identified at all. This highlights that the newly detected
LFEs donot only uncover new sources but evennewLFE
bursts.
To further validate this finding, we correlate the un-

cataloged detectionswith the family stacks from the ref-
erence catalogs (Figure S12). For Cascadia, the distri-
bution of correlation values for these uncataloged de-
tections are identical to the noise distribution, i.e., the
new detections do not match known sources. For Guer-
erro, some events show systematically higher correla-

tions than the noise. Nonetheless, the vast majority
of our additional detections do not match the known
sources any better than the noise. This verifies that
these new detections are systematically different and
that these events can not be foundwith templatematch-
ing without identifying further, novel templates.
Extending upon the finding that the model can gen-

eralise from known families to LFEs outside these fam-
ilies, we investigate the ability to detect LFEs in regions
the model has not been trained on. For this analysis,
we trained leave-one-outmodels, i.e.,models trainedon
all but one region, and applied them on the left-out re-
gion. Figure S13 visualises the spatial and temporal mi-
gration patterns. Again, the clear migration patterns in
Nankai and Cascadia are retrieved. Furthermore, the
number of events correlates highly (Pearson correla-
tion between 0.69 and 0.82) with the reference catalogs.
The total size of the catalogs varies, with a substantially
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Figure 4 Spectra and interevent times in the different regions. The toppart shows velocity power spectral density for noise,
earthquakes (EQs), and LFEs detected using deep learning. For each region, all traces stem fromone reference station (Casca-
dia - MGCB, Guerrero - MAXE, Nankai - IIDH). Noise example have been extracted outside tremor episodes. Spectra have been
calculated from the horizontal components (20 s windows for noise, 11 s windows starting 1 s before the S arrival for events).
Thin lines show individual spectra, bold linesmedian spectra. EQs were selected at a similar distance and depth range to the
LFEs. Network averaged spectra are shown in Figure S9. The bottom part shows the development of interevent times during
the LFE sequences in the reference catalogs, the deep learning catalogs, and for the unmatched events, i.e., all events from
the deep learning catalogs that are not in the reference catalogs. Vertical stripes in the events indicate the occurrence of LFE
bursts. For Cascadia, we only visualise the 2005 sequence for simplicity. We visualise all events from the reference catalogs
without further declustering, leading to very low interevent times.

smaller catalog in Cascadia, a similarly-sized catalog in
Nankai, and a far bigger catalog in Guerrero. However,
these might be related to changes in the model confi-
dence values rather than their actual quality as we pro-
duced all catalogs with fixed picking thresholds. The
cross-regional analysis clearly illustrates that the mod-

els can be transferred across regions and recover LFEs
from families they have not been trained on.
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5 Conclusion
Our analysis shows that deep learning and template
matching are complementary in the way they detect
LFEs with specific advantages and disadvantages for ei-
ther method. The biggest strength of deep learning is
the flexibility. The model can be applied to additional
stations, including temporary stations, shows higher di-
versity in terms of event families, and can be trans-
ferred across regions. In addition, our method directly
allows to locate single LFEs, even though with substan-
tial uncertainties in terms of depth. In contrast, tem-
platematching requires a predefined set of sources that
is difficult to obtain and specific to each region and set
of stations. While rigid, this leads to a more sensi-
tive model, as evidenced by higher event counts. Fur-
thermore, it allows template matching to identify LFEs
with fewer stations than deep learning. For LFEs, com-
monly no individual location is performed after tem-
plate matching, due to the difficulties caused by the low
SNR ratio. However, it has been shown that relative lo-
cations of individual LFEs can be determined with clas-
sical methods as well (Shelly et al., 2009). A promising
avenue might be the combination of deep learning and
template matching, i.e., using deep learning to identify
a diverse set of templates and afterwards use template
matching to increase the completeness of the identified
families.
Lastly, the deep learning method extends our view

of LFEs by detecting previously unidentified sources.
Building a comprehensive set of templates for tem-
plate matching is challenging: the low bandwidth and
SNR makes it difficult to distinguish between closely
spaced sources, leading to a trade-off between missing
sources and redundant templates. In contrast, the deep
learning method is source-agnostic, i.e., no selection of
sources needs to be performed for detecting individual
events. Such a source-agnostic view is necessary to per-
formunbiased subsequent analysis that requires a com-
plete view of LFE sources, such as estimates of slow slip.
In addition, the fact that the model can be transferred
across regions shows that LFEs have universal, region-
independent properties similar to earthquakes. Given
our results, we expect that deep learning methods will
allow to map LFEs across world regions with high con-
sistency and diversity.
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Abstract The aim of this study is to collect information about events in the city of Oslo, Norway, that
produce a seismic signature. In particular, we focus on blasts from the ongoing construction of tunnels and
under-ground water storage facilities under populated areas in Oslo. We use seismic data recorded simulta-
neously on up to 11 Raspberry Shake sensors deployed between 2021 and 2023 to quickly detect, locate, and
classify urban seismic events. We present a deep learning approach to first identify rare events and then to
build an automatic classifier from those templates. For the first step, we employ an outlier detectionmethod
using auto-encoders trained on continuous background noise. We detect events using an STA/LTA trigger and
apply the auto-encoder to those. Badly reconstructed signals are identified as outliers and subsequently lo-
cated using their surfacewave (Rg) signatures on the seismic network. In a second step, we train a supervised
classifier using a Convolutional Neural Network to detect events similar to the identified blast signals. Our
results show that up to 87% of about 1,900 confirmed blasts are detected and locatable in challenging back-
ground noise conditions. We demonstrate that a city can be monitored automatically and continuously for
explosion events, which allows implementing an alert system for future smart city solutions.

Non-technical summary Monitoring infrastructures and operations in cities relies on different
kinds of sensors providing information for local authorities and the general public. In this study we collect
information about events in the city of Oslo, Norway, that produce ground shaking. We focus on blasts from
the ongoing construction of tunnels and under-ground storage facilities under populated areas in Oslo. We
use data from senors in the city, deployed between 2021 and 2023 for example in schools, to identify these
blasts by means of machine learning methods. We are able to detect up to 87% of about 1,900 confirmed
blasts.

1 Introduction
Global estimates for future growth indicate that thepop-
ulation of cities will continue to increase (Brockerhoff,
1999). This growth has caused many cities to upgrade
their infrastructures and to embrace the vision of a
“smart-city” (McKinsey, 2018). Data collection through
different types of sensors represents the base layer for
such solutions. Large data sets are being produced and
need to be automatically processed so that relevant in-
formation can be extracted and transferred to local au-
thorities and the general public to facilitate decisions
and to optimize the performance of cities in areas such
as transport, safety and supply of water and energy (Fis-
cher et al., 2013; Chang et al., 2014; Al Nuaimi et al.,
2015).
Integrating seismic data into the data collection of

such systems is currently not a common and wide-
spread approach, although the potential of urban seis-
mology using seismometers or Distributed Acoustic

∗Corresponding author: andreas.kohler@norsar.no

Sensing (DAS) has already been recognized in previous
studies (Ritter et al., 2005; Díaz et al., 2017; Spica et al.,
2020). To date, this approach is routinely used mainly
for earthquake early warning and fast response in ur-
ban areas with substantial seismic hazard (Kong et al.,
2016), or for monitoring geothermal or other reservoirs
in proximity to cities (Kraft et al., 2009; Hillers et al.,
2020; Fiori et al., 2023). Advantages of using seismic
data to monitor other urban activities compared to, for
example, optical and acoustic systems include better
compliance with General Data Protection Regulations
(GDPR) (Zhang et al., 2017), efficient propagation of sig-
nals in the ground, independence of visibility, and in
general a new type of sensor data not provided by the
other methods.

This study focuses on the city of Oslo, Norway, ad-
dressing common needs of two departments of the mu-
nicipality, i.e., the Agency for Emergency Planning and
the Water and Sewage Department. The Agency for
Emergency Planning is interested in obtaining quick in-
formation about any kind of unusual event that pro-

1
SEISMICA | ISSN 2816-9387 | volume 3.1 | 2024



SEISMICA | RESEARCH ARTICLE | Monitoring urban blasts in Oslo, Norway

duces a seismic signature, e.g., explosions or sudden
massmovements, to facilitate fast emergency response.
An example of such an event was the bombing of a
government building in the city center of Oslo during
the terrorist attack on 22 July 2011 which was recorded
on seismometers in and around Oslo (Bergen Univer-
sity, 2012). The Water and Sewage Department is con-
cerned with monitoring ongoing construction activity
to secure the freshwater supply of the city of Oslo. The
construction of tunnels and under-ground water stor-
age facilities under populated areas started in 2021 and
is planned to be finished in 2028. Furthermore, due
to population growth in Oslo, public transport infras-
tructure is currently extended, i.e., new metro tun-
nels are being constructed below or close to residen-
tial areas. Finally, a tunnel for a main electric power
line under the city has been under construction since
2023. All these construction activities are accommo-
dated by blasts which are partly felt by citizens, which
have raised concerns in the population during a few
documented incidents when the explosion yield was
higher than anticipated.
Explosion monitoring with seismic sensors is a well-

established technique for observing mining and quarry
activities on a regional scale (Gibbons and Ringdal,
2006) or for verifying the Comprehensive Nuclear Test
Ban Treaty (CTBTO) on a global scale (Kalinowski and
Mialle, 2021). More recently it has also been used for
identifying military attacks (Dando et al., 2023). A chal-
lengewith pursuing such an approach in urban areas on
a very local scale andpreferably in real-time, is the pres-
ence of a multitude of other seismic sources and high
background noise levels. Such complex records require
advanced processing methods which may be found in
machine (ML) or deep learning (DL), fields which have
made great advances within seismology in recent years
(Kong et al., 2019; Bergen et al., 2019; Mousavi et al.,
2019; Mousavi and Beroza, 2023; Zhu and Beroza, 2018;
Mousavi et al., 2020; Provost et al., 2017).
In this context, there are two main possible ap-

proaches we can pursue: (1) Identification of so far
unidentified seismic events of interest in an unsuper-
vised manner or (2) using a sufficiently large number
of already identified events of interest to train a classi-
fier in a supervised manner. Approach (1) will be re-
quired inmost cases as an initial step for urbanmonitor-
ing purposes. It can be further divided into clustering,
where the outcome are groups of signals or time win-
dows of potential interest, or outlier detection, where
the target is only aparticular groupof infrequent events.
Clustering can be either done by automatically group-
ing the continuous seismic records (Köhler et al., 2010;
Johnson et al., 2020; Chamarczuk et al., 2020; Seydoux
et al., 2020; Steinmann et al., 2022a,b) or by grouping
pre-detected transient signals (Sick et al., 2015; Jenk-
ins et al., 2021). The features a clustering algorithm
utilizes must be either extracted beforehand (e.g., Köh-
ler et al., 2010) or are extracted automatically by a DL
architecture (e.g., Mousavi et al., 2019). In a broader
sense, simple non-machine learning methods, such as
thewell-knownShort-TermAverageoverLong-TermAv-
erage (STA/LTA) trigger or trigger algorithms based on

other characteristic functions of the seismic waveforms
(kurtosis, spectral amplitudes in different bands, etc.),
may be considered to belong to approach (1). They can
be used directly or combined with clustering for out-
lier detection. Hence, we can consider the STA/LTA
method to be the baseline which ML or DL methods
must outperform. In other words, under certain con-
ditions STA/LTA may still be the most efficient way to
detect events of interest.
In this study, we use passive seismic records acquired

with the objective to quickly detect, classify and locate
urban seismic events, particularly blasts. The use cases
for detecting those events in near real-time include, but
are not limited to, quickly informing the public in case
of ground shaking felt by citizens or quickly identifying
large blasts from construction works or attacks that can
impact public safety and infrastructure integrity due to
potential damage caused to structures (Shallan et al.,
2014; Dowding, 2016; Naveen et al., 2021) or mobiliza-
tion of unstable ground (Bouchard et al., 2018). For this
purpose, a seismic network of low-cost sensors was de-
ployed in target areaswithin the city of Oslo from spring
2021 onwards. We present a DL approach to first iden-
tify target events and then, if target events are sufficient
in number, to build an automatic classifier from those
templates. For thefirst step, we suggest an outlier detec-
tion method for automatic identification of rare events.
These events are then located using their short-period
fundamental-mode Rayleigh wave (Rg) signatures on
the seismic network by means of stacking the observed
travel-time corrected waveform envelopes. We then
identify blasts inside and close to the city limits of Oslo
and use them to train a supervised deep learning clas-
sificationmethod to detect more of these events missed
by the outlier detector.

2 The seismic network
We deployed three-component Raspberry Shake 3D
sensors (Nugent, 2018) at different locations within the
city of Oslo (Fig. 1, Table 1). The network was ex-
tended gradually starting in May 2021, with up to 11
stations recording simultaneously from June 2022 to
July 2023. The sensors were connected to mobile net-
work modems for real-time data transmission and re-
motemaintenance. GPS antennaswere deployedwhere
possible. However, we found that the timing provided
through NTP (Network Time Protocol) was sufficient at
a few sites where free view to the sky could not be estab-
lished. Sensor locationswere in the basement of private
businesses, private houses, andpublic school buildings.
The first batch of sensors (ALNN1-4, ALNN7) was de-
ployed with a dense layout in an area with quick clay in
the sub-surface in the Eastern part of Oslo (Alna area)
to allow for near-surface structural monitoring using
ambient noise and detection of possible ground move-
ments, a task which will be described in a future study.
ALNN2 was removed after a few months in November
2021 due to construction activities in the host building.
More sensors were deployed to the North of that area
(ALNN5, ALNN6, ALNN8) and towards the city center
and the Western part of Oslo (EKBG1, OSLN1-OSLN5).
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The latter batch of sensorswas located closer to the area
of activity related to the construction of tunnels and
an underground cavity for freshwater storage (Fig. 1),
where the excavation is mostly done by blasting. All
data are recorded continuously with a 100Hz sampling
rate, and the corner frequency of the sensors is at about
0.5Hz. In addition, we use two permanent seismic sta-
tions equipped with broadband seismometers, one lo-
cated on the university campus (OSL, part of Norwe-
gian National Seismic Network) (Ottemöller et al., 2018,
2021) and the other one outside the city, to the Southeast
of Oslo (OFNS2, not on map in Fig. 1).

3 Methods
Our aim is to detect rare or unusual seismic events ob-
served on the deployed network using an outlier detec-
tion method. In contrast to a standard STA/LTA trigger
approach, we do not want to simply detect all transient
signals in the data stream. Frequently and regularly oc-
curring urban events or noise bursts only recorded at
single stations are not the focus of this study, although
for example traffic monitoring with seismic data might
be another topic of interest in urban seismology. Out-
lier events in our definition are singular or repeating
events, but the latter not dominating the record, i.e.,
occurring not more than a few times per day. Hence,
here we do not pursue a full clustering of all occurring
signal and noise classes using ML, DL or other big data
methods as done in previous studies (Köhler et al., 2010;
Yoon et al., 2015; Seydoux et al., 2020; Steinmann et al.,
2022a). However, it should be noted that clustering can
be used for outlier detection. It would require to iden-
tify the event cluster of interest, i.e., the rare events.
However, we decided to not pursue this approach fur-
ther since we want to avoid the manual step to identify
the outlier cluster. Furthermore, rare events may not
necessarily be caught up in a distinct cluster.
Our workflow begins with identifying and collecting

these repeating outlier events based on their origin lo-
cations and, if a sufficient number of observations has
been collected, building a supervised classifier with la-
beled training data to more reliably detect those events
in continuous data. Doing so, we have an outlier de-
tection method available shortly after the start of the
measurements which is flexible enough to pick up new
events, while the supervised classifier can be gradually
enhanced during the course of the seismic deployment
by training it with newly identified events.

3.1 Outlier detection
Auto-encoder neural networks are popularmethods for
dimensionality reduction (Wang et al., 2016) and to
identify anomalies or outliers in time series data (Yin
et al., 2020; Thill et al., 2021). The idea is to use a Convo-
lutional Neural Network (CNN) to reduce the dimension
of the input time series, here three-component seismic
waveforms with T time samples per component, using
a series of convolutional layers or filters, and then use
the resulting latent features to reconstruct the signal
with amirroredmodel neural network structure (Fig. 2).

In seismology this approach has been mostly adapted
for data compression and interpolation (Navarro et al.,
2019; Zheng and Zhang, 2020; Nuha et al., 2020). Fur-
thermore, Valentine and Trampert (2012) highlighted
the potential of auto-encoders for various applications
in seismology. Mousavi et al. (2019) used an auto-
encoder model to extract features suitable for unsuper-
vised clustering. If data compression is the goal, the
number of latent features should be low. However, our
objective here is not primarily to compress data, and
therefore we tested different dimensions from no com-
pression at all, i.e., number of latent features is equal to
3T , down to a latent dimension of T . Our final choice
with best performance is a number of 2T latent fea-
tures, i.e., a data compression by 33% (see supplemen-
tary Figure S1 for a comparison).
If the auto-encoder is trained using a continuous (un-

labeled) seismic record, which is representative for a
particular station,waveformsof regularly occurring sig-
nals and background noise should be reconstructed
well by the model. If a signal is not reconstructed well
enough, it can be considered to be an outlier. This ap-
proach has some relation to an auto-regressive model,
which predicts a time series based on previously ob-
served data and which is well known in seismology for
its ability to detect the onset of seismic arrivals (Leonard
and Kennett, 1999). However, similar to the STA/LTA
method, an auto-regressive model is sensitive to all
(including frequently occurring) transient signals with
different characteristics than the background noise, a
property which is not desired in our case.
We train auto-encoder models for single stations us-

ing the vertical and both horizontal components. Here,
we use two stations with comparable low background
noise levels as trigger stations: EKBG1 southeast of the
city center and OSLN2 to the west of the city center
(Fig. 1). The auto-encoder is trained for the two sites and
then applied to time windows including STA/LTA detec-
tions obtained from the continuous data. Doing so, we
aim to select only those STA/LTA triggered signals that
can potentially be of interest. A future extension would
ideally include outlier triggers on all stations. However,
since in this study we are only interested in locatable
events observed simultaneously on several stations of
our network, we found it to be sufficient to trigger only
on these two stations, since all locatable events are ob-
served on at least one of these.
The auto-encoder input differs slightly for both

stations, and also the selection of training data is
done in a different manner. For OSLN2 the train-
ing data is a continuous record of eight consecu-
tive days (02/06/2022–09/06/2022) band-pass filtered be-
tween 0.3–12.5 Hz. The size of the input time segment
fed into the auto-encoder is T = 512 samples (see Fig. 2)
for each component. For EKBG1 we use a higher num-
ber of samples (T = 1024), partly because this record
visually appeared a bit more complex (frequent tran-
sients). A band-pass filter between 0.3 and 25 Hz is
used to potentially also capture outliers with higher fre-
quency content. The training data for EKBG1 are 90
time periods of continuous data of 6 hours’ duration
each, selected between 02/11/2021 and 14/03/2022. The
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Name Longitude Latitude Recording time Location
ALNN1 10.8582 59.9336 08.06.2021-30.09.2023 Alfaset graveyard
ALNN2 10.8497 59.9282 09.06.2021-15.11.2021 private business
ALNN3 10.8452 59.9300 21.05.2021-30.09.2023 private business
ALNN4 10.8480 59.9314 09.06.2021-30.09.2022 private business
ALNN5 10.8336 59.9409 25.09.2021-30.09.2023 Linderud public school
ALNN6 10.8353 59.9405 29.09.2021-30.09.2023 Linderud public school
ALNN7 10.8464 59.9302 30.09.2021-30.09.2023 private business
ALNN8 10.8373 59.9411 15.11.2021-22.01.2023 Bjerke public school
EKBG1 10.7581 59.8974 03.11.2021-30.09.2023 Kongshavn public school
OSLN1 10.7694 59.9552 27.04.2022-30.09.2023 private house
OSLN2 10.7062 59.9415 01.06.2022-30.09.2023 Vinderen public school
OSLN3 10.7328 59.9425 01.06.2022-13.09.2023 Ullevål public school
OSLN4 10.6548 59.9415 24.10.2022-24.06.2023 Hovseter public school
OSLN5 10.7670 59.9650 10.06.2023-30.09.2023 private house
OSL 10.7227 59.9372 permanent NNSN station
OFSN2 10.9108 59.8401 permanent NORSAR station

Table 1 Seismic stations used in the study.

Figure 1 Map of the city of Oslo (OpenStreetMap contributors, 2017) draped on the Digital Elevation Model (DEM) at 10 m
resolution, with infrastructure, potential seismic source areas and seismic stations. Map location is shown on the top left
inset. (A, B) Close-ups of two areas in Eastern Oslo with denser seismic deployment. Stations which were used for STA/LTA
triggering and outlier detection are marked with orange circles.
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Figure2 Auto-encoder architecture consistingof several down-sampling andup-samplingblocks shown indetail above the
neural network. T represent the number of time-steps of one component. After down-sampling, the output is flattened and
a dense layer is used to create the latent dimension (2T ). The latent dimension is reshaped and used as input to the series of
up-sampling blocks. Finally, a single convolutional layer is used to construct the output of the network. Each convolutional
layer uses between 64 and 256 filters with a kernel size of 7. Input and output signals are cross-correlated to detect badly
reconstructed events with low correlation coefficients, i.e., outliers.

motivation for this selection was to exclude visually de-
tected blast signals from the training. Thiswas achieved
by manually screening a selection of days, from which
the 6 hour-long time windows were then chosen. We
did not pursue the same approach for OSLN2, which
was implemented later, since we found that keeping the
rare outlier events in the training data did not impair
detection performance. In general, we found it to be
more important that representative noise records are
included (i.e., day and night, weekday and weekend),
rather than making sure that outlier events of interest
are excluded from the auto-encoder training. All wave-
form time windows are normalized with minimum and
maximum amplitude before being fed into the auto-
encoder.
We apply an STA/LTA detector with a low threshold

(STA length = 0.5 s, LTA length = 10 s, STA/LTA threshold
= 4) to continuous three-component data, and if all three
components exhibit a coincident trigger, a detection is
declared. We then apply the auto-encoder method to
a time window around each detection (same duration
as training data). One way of evaluating the quality of
the auto-encoder signal reconstruction, i.e., to identify
an outlier signal, is to compute the normalized correla-
tion coefficient of the original and reconstructed seis-
mic traces (Fig. 2). We also tested using the recon-
struction loss, i.e., RMS value of the observed and re-
constructed waveforms, for outlier detection. However,

we found the correlation value to be more suitable to
identify outlier events which are mostly blasts in our
case. A comparison of RMS and correlation values of
all STA/LTA detections and confirmed blast signals at
station OSLN2 is provided in the supplementary Figure
S4, showing that the RMS is not a good discriminant for
blasts in our case.

Figure 3 shows examples of one outlier event and
three STA/LTA detections not recognized as outliers at
each station (OSLN2 (a-d) andEKBG1 (e-h)). The correla-
tion between original and reconstructed traces formost
data is in general very high, i.e., larger than about 0.8.
Using a lower/higher latent dimension would compress
the seismic data more/less, which would increase/de-
crease the construction loss and decrease/increase the
correlation. We found the current dimension of the
auto-encoder to be optimal for our task. However, it
must be tuned for each new data set. Figure 3a and
e show seismic signals which were later confirmed as
blasts. Particularly, the vertical component waveforms
are not well reconstructed. Hence, both exhibit com-
parably low correlation coefficients (0.6 and 0.84) in re-
lation to the other STA/LTA detected transient signals.
The latter aremanually identified as regularly occurring
noise bursts, including signals originating from very
close to the sensors.

5
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Figure 3 Comparison of recorded three-component waveforms (blue) and waveforms predicted by auto-encoder (orange)
for stationOSLN2andEKBG1. STA/LTA value and correlation coefficient between traces are given in eachpanel. Twodetected
outlier events, marked red in a) and e), are confirmed blast signals. The other transient signals triggered by the STA/LTA
method were not detected as outliers due to higher correlation.

3.2 Locations based on Rgwaves
Once an outlier is detected at station OSLN2 or EKBG1,
the remaining stations are used in addition to attempt
an automatic location. P and S wave arrivals would
be needed for traditional event location based on on-
set time readings, but are not observed for the majority

of events due to high noise levels. However, we found
the Rg wave, which is a short-period Rayleigh wave in
the Earth crust typically observed for seismic sources
close to the surface, to be well recorded over the en-
tire network between 0.8 and 2 Hz. In order to use
Rg for event location, we first compute envelopes of

6
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the band-pass filtered vertical component data and dis-
card stations with Signal-to-Noise Ratios (SNR) below
7.0 (OSLN2) and 6.2 (EKBG1). If a minimum of four
stations are left, we perform a 2D gridsearch to find
the event source location maximizing the stacked time-
shifted envelopes of all stations, an approach similar to
stacking and migration methods developed for seismic
event localization (Gharti et al., 2010). ForRg travel time
computation we assume a velocity of 2.0 km/s which we
found to fit observed Rg waves with plane wave fronts
travelling over the network from a known source at a
large distance. The extent of the gridsearch is from
10.55 to 11.0 degrees longitude and 59.86 to 60.0 degrees
latitude. The step width is 0.01 degrees in longitude
and 0.005 degrees in latitude. In addition to maximiz-
ing envelope stacks, we estimate the Rg back-azimuth
from three-component data for the stations above the
SNR threshold. This is done by finding the rotation an-
glemaximizing the amplitude on the radial component.
The 180 degree ambiguity is avoided by selecting the di-
rection whose correlation coefficient between the verti-
cal andHilbert-transformed radial component of theRg
wave is positive. The weighted back-azimuth residual
of each location grid point is subtracted from the stack-
ing amplitude. The grid point maximizing this value is
taken as the source location. Based on the location, we
assign to each confirmed and locatable outlier a label
corresponding to different construction areas in the city
of Oslo.

3.3 CNNs for blast classification
The supervised classifier is a Convolutional Neural Net-
work (CNN) which takes three-component waveform
data of a single seismic station as input (Fig. 4). The
method uses the well-established AlexNet architecture
(Krizhevsky et al., 2012) and is loosely based on the
model we used in Köhler et al. (2022) to classify calv-
ing events in the Arctic. We train a two-class model
distinguishing STA/LTA detections of blasts in Oslo and
all other detections (noise and other events). Here, we
only use station OSLN2 to train and test the classifier.
The model consists of a layer to randomly crop the in-
putwaveforms, five convolutional layerswith batchnor-
malization and max-pooling, and finally two dense lay-
ers which process the flattened output of the convolu-
tional layers and generate the output probabilities. We
use 26 s as input time window duration around each
blast which is cut to 22 s by random cropping. For the
noise class we use a time window of waveform data of
the same duration before each blast detection such that
the classes are balanced. The hyper-parameters con-
trolling size of convolutional filters and type of pool-
ing are tuned with KerasTuner (Chollet et al., 2015).
In the tuning process, the number of filters in each of
the five convolutional layers was kept constant. Keras-
Tuner uses ranges of hyper-parameters (filter length be-
tween 3 and 49) and different options (max vs. average
pooling) as input and searches the parameter space to
optimize the classification accuracy. The final hyper-
parameters are shown in Figure 4.
For the final classifier, we use a stratified 5-fold cross

validation, i.e., five different models are trained, each
using 80% of the shuffled data (confirmed blasts from
the outlier detection and the noise class examples) for
training and 20% for validation. When applying the
classifier for prediction, the averaged probabilities for
blast andnot blast of these fivemodels are used. Finally,
we have to set a probability threshold for detecting a
blast. We can either use a threshold of 0.5, i.e., select
the winning class, or require a higher confidence for a
blast to be detected using a higher threshold.

3.4 Reference blast detections based on
STA/LTAmethod

For evaluating the outlier detection method and the
blast classifier, we would need complete ground-truth
data about blast occurrence in the city of Oslo, which
turned out to be difficult to obtain. Alternatively, we
canvisually screenall potential seismic events observed
on the network. This will not allow us to assess the
network’s detection sensitivity, but rather the detection
method’s ability to recognize all recorded blasts. Since
our methods use STA/LTA detections as input, we cre-
ate our reference event catalog by processing all these
STA/LTA detections in the sameway we process the out-
liers, i.e., attempt a Rg wave based localization and la-
bel the recognized blast signals in the different parts of
the city. This resulted in 1,870 blasts located within the
study area between November 2021 and October 2023.
We use the recall and precision metrics to evaluate

all deep learning models with respect to this data set.
We want to achieve a high recall (high number of rec-
ognized blasts) and high precision (low number of false
triggers). In contrast to a conventional event detector,
the decision on what is a false and what is a true posi-
tive is amoving target for an outlier detector. Additional
events not being part of the reference data could still
be events of interest. Nevertheless, we can still use the
recall-precision metrics as a proxy to compare model
performance relative to each other. To decide on deci-
sion thresholds for the outlier detector (correlation co-
efficient) and blast classifier (blast probability), we eval-
uate recall-precision curves provided in the supplemen-
tarymaterial. We compute the performancemetrics be-
fore event localization sincewewant to include unlocat-
able events.

4 Results of outlier event detection
After visual inspection ofmany signals detected onmul-
tiple days as well as evaluating recall and precision,
we finally set the outlier detection threshold to 0.86 for
EKBG1 and 0.78 for OSLN2. Supplementary Figure S1
shows recall-precision curves for outlier detectors at
OSLN2. The optimal detection threshold corresponds
to correlation coefficients producing a recall-precision
point closest to the upper-left corner. Note that pre-
cision will increase after applying the automatic loca-
tion procedure because false alarms are usually unlo-
catable events. The distribution of correlation coeffi-
cients at stations OSLN2 and EKBG1 in relation to the
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Figure 4 Architecture of the deep Neural Network of the blast classifier.

chosen thresholds are provided in supplementary Fig-
ure S5.
Figures 5, 6 and 7 showmaps of stacked envelope am-

plitudes and the best location estimates for several blast
signals detected as outliers. The events in Figure 5a–
c are blasts related to the construction of underground
water tunnels and storage facilities at the Stubberud,
Oset, and Huseby sites (see also Fig. 1). Figure 6 shows
a blast at the Losby quarry East of Oslo, a blast at the
metro tunnel construction site at Bryn, and a blast from
a construction site for a new electric power line tunnel
in Sogn. For the latterwe have a ground-truth confirma-
tion of location and blasting time. Figure 7 shows three
blast signals for which we also have ground-truth times
and locations. They originate from the construction of
the newmetro tunnel for the Fornebu line in theWest of
Oslo, about 3 km south of the underground water stor-
age construction site. The precise locations were pro-
vided to us and the public with an uncertainty of about
100m.
The spatial distribution of stacking amplitudes shows

as expected that the resolution strongly depends on
the event location. Outside of the network, resolution
is poorer and consequently the blast locations are not
well-constrained. This can be observed as broader am-
plitude maxima to the West and East of Oslo, as well as
biases with respect to the ground-truth locations. Note
that since OSLN4 was not deployed before October 2022
and produced corrupted data from summer 2023 on-
wards, poor resolution is also expected for locations at
theHuseby construction site for events outside this time
interval. As a consequence, blasts from the Fornebu
metro tunnel and the water storage site cannot always
be discriminated. However, as the comparison with
ground-truth location shows, the accuracy is very good
when the entire network was in operation (see Fig. 5, 6
and 7).
Figure 8a shows all locatable outliers triggered at

OSLN2 and EKBG1 in the study period (1,272 events).
Two different symbol colors are used to distinguish the
time period of complete and incomplete station cover-
age (see Table 1). Almost all events are located inside
or close to areas of known construction or quarry blast
activities. Clusters of events are indicated, of which
we have already seen examples above. By far the most

blasting activity is observed to the West of the city cen-
ter, i.e., the Huseby and Fornebu constructions sites.
Events are well-located during complete station cover-
age, while a number of blasts tend to be falsely located
westwards from Huseby when the westernmost station
OSNL4 was not in operation. Note that we have filtered
out distant events (blasts from distant quarries and re-
gional and teleseismic earthquakes) since they are usu-
ally falsely located at the edge of the grid search region
or in the center of the network if the incidence angles
are steeper.
Figure 8b shows the corresponding time line of locat-

able outliers. Before July 2022 only stations with high
noise levels in the east of Oslo were in operation and
consequently only a few events are observed. For the
rest of the study period, there is a lot of blasting activ-
ity with up to 10 events per day and about 4 per day on
average. Pauses in the blasting during public holidays
(Easter and Christmas break) and school holidays dur-
ing summer are clearly visible. Figure 9 presents more
detection statistics for all located blasts. Time of day
and day of week distribution are consistent with blast-
ing which usually ceases on Sundays and during night-
time (Figure 9d and e). Local seismic magnitudes of
blasts are between -0.5 and 1.5 (Figure 9c).
The temporal distribution of blasts in the reviewed

reference data set is shown in the background of Figure
8b. A high percentage of these events are recognized
as outliers (69%). However, 31% of visually identified
blasts are not found (i.e., false negatives; 520 events).
A closer look at the distributions of STA/LTA ratios of
all events in Figure 9a and b, as a proxy for SNRs, gives
an explanation for those results. The distribution of ra-
tios are shown for all locatable outlier events, for all
detected outliers (including those that were not locat-
able), and for all STA/LTA detections. Note that logarith-
mic scales for number of detections are used. The com-
parison shows that STA/LTA detections at OSLN2 with
STA/LTA ratios above 10 are almost all classified as out-
liers, themajority being also locatable as blasts (Fig. 8a).
In other words, there would be no need for an outlier
detectionmethod for those events, andwe could simply
use the STA/LTA detections directly to monitor blasts.
However, towards lower SNRs the picture changes. We
obtain an increasing number of STA/LTA detections, the
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b) Construction blast Oset

a) Construction blast Stubberud

c) Construction blast Huseby

Figure 5 Map of Oslo region overlayed with stacked envelope amplitudes (normalized). High amplitudes indicate more
likely event location. The best location (orange cricle) and seismic stations (triangles) are shown. The star symbols and
their extents indicate the areas of known blasting activity. On the right-hand side the vertical component seismic data for all
stations are shown. Orange data indicate low-pass filtered envelopes enhancing Rg arrivals.

majority not being locatable events, probablymostly lo-
cal noise bursts. The outlier detectionmethod allows us
to reduce the number of detections to be screened for
location considerably. For the lowest SNRs we obtain a
number of locatable STA/LTA detections which turned
out to be blasts not detected as outliers (red bars). This
indicates that our outlier detection method has limi-

tations in recognizing weak events. We will deal with
thesemissed events when applying the supervised blast
classifier. It is worth emphasizing that visual inspection
of the unlocatable outliers at OSLN2 revealed clear blast
signals which were not observed on more than three
stations. Four examples are included in supplementary
Figure S6. This shows that the outlier detector com-
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a) Quarry blast Losby

b) Construction blast Bryn (metro tunnel)

c) Construction blast Sogn (power line tunnel)

Figure 6 Same as Figure 5. Note that smaller size of star in (c) indicates more certain (ground-truth) blast location.

bined with a denser station network would have recog-
nized even more blasts.

For EKBG1 (Fig. 8b) there are a few more detections
with high SNRs that are not classified as outliers. The
major difference to OSLN2 is that fewer outliers turned
out to be locatable events which could be identified as
blasts. In other words, a lot of outliers are seismic
events at EKBG1 which are not observed on other sta-
tions. Given that we know that blasts are usually picked
up by at least twomore stations, it is likely that these are

mostly local noise bursts around EKBG1 that cannot be
explained by normal backgroundnoise fluctuations and
hence are not well-reconstructed by the auto-encoder.
However, it is worth emphasizing that many STA/LTA
are still removedbyoutlier detection,which reduces the
amount of detections to be screened for possible local-
ization.

10
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a) Construction blast Fornebu metro (Lysaker)

b) Construction blast Fornebu metro (Skøyen)

c) Construction blast Fornebu metro (Frognerparken)

Figure 7 Same as Figure 5. Note that smaller size of stars in all panels indicate more certain (ground-truth) blast locations.

5 Results of blast classifier

Ideally, we need to train a classifier with data from sev-
eral stations so that it generalizes well enough and can
identify blast signals in the data from different stations.
As also discussed below, the reason for starting with a
classifier trained for a single station (OSLN2) is the lim-
ited number of blasts observed on all stations which re-
sults in an unbalanced training data set with respect to
event location and observing stations. However, a few

stations close to OSLN2 have a comparable number of
observations and could be included in the training. We
will come back to this in the discussion section.

We train the blast classifier with waveforms from
OSLN2 including all 1,272 blasts from different areas in
Oslo detected as outliers at OSLN2 and with the same
number of noise examples. The reason for not using all
1,870 signals in the reference data set is that we want to
simulate aworkflowwhereweonly trainwithblasts pre-
viously detected by the outlier detector, excluding those
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Figure8 a) Located seismic events fromoutlier detection. Clusters andnumber of blasts are indicated. b) Time line of those
events together with all observed andmanually confirmed blast STA/LTA detections.

that we only identified after screening all STA/LTA de-
tections. The classification performance metrics of the
best model of all five folds using data not used for train-
ing are shown in Table 2. We achieve high values for
both precision and recall.
Next, we apply the classifier to all 29,058 STA/LTA de-

tections at OSLN2 in the time period from 01/06/2022
until 28/09/2023. We use a probability threshold of 0.5,
i.e., picking the winning class (blast vs. not blast) as
well as 0.7 to test different confidence levels. Figure
10a shows the time line of 1,385 classified and locatable
blasts using a threshold of 0.7 together with the refer-

Class Blast Not blast
Precision 0.92 0.95
Recall 0.94 0.93
F1 0.93 0.94
Accuracy 0.93

Table 2 Performance of blast classifier on validation data.
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a) Number of detections vs. STA/LTA (OSLN2) b) Number of detections vs. STA/LTA (EKBG1)

d) Time of day of locatable eventsc) Local magnitude of locatable events e) Day of week of locatable events

Figure 9 Statistics of STA/LTA and outliers detections, and locatable blasts.

ence data set. In comparison with the outlier detec-
tor (Fig. 8b), more blasts are recognized. When we use
our reference data set, which includes 1,870 blast man-
ually identified by screening all locatable STA/LTA de-
tections, as ground-truth for evaluation, the recognition
rate increases from 69 to 80%, and the number of False
Negatives decreases to 371 events. A number of 22 False
Positives are either blasts outside the study area, which
we did not include in the reference data set of locatable
blasts, or are local signals at OSLN2which are randomly
associated with Rg wave-like signals at other stations.
Of all STA/LTA detections, 424 events are classified as
blasts but are not locatable. As with the outlier detector,
these events are not necessarily false, but are simply not
observed on more than three stations, which would al-
low for a reliable location and for being included in the
reference data set (supplementary Figure S6 shows ex-
amples). In fact, we checked a selection of these detec-
tions manually and found that almost all of these show
clear blast-like signatures at station OSLN2 and OSLN3.
Hence, in relation to the high number of tested STA/LTA
detections (29,058), the actual number of false classifi-
cation is negligible if the goal is to provide real-time in-
formation about ongoing blasting at construction sites.
However, if the goal is early warning in case of unusual
events (accidents, attacks), any false detection should
be avoided and other data have to be included before
issuing an alert.

For a probability threshold of 0.5 the blast recogni-
tion rate increases further to 87%. As themaps inFigure

10b–c show, this is partly due to more of the underrep-
resented blasts in the north and east of Oslo being cor-
rectly classified (compare Fig. 10b and c). It is expected
that those events yield a lowerblast probability since the
training data is unbalanced with respect to event loca-
tion. However, there are also more False Positives (77)
and about 100 more unlocatable events (519) compared
to using the high threshold. Visually inspecting those
100 additional events revealed that about 30% look like
blasts, but are not locatable because they are observed
on only one or two stations. However, the rest (70%) are
now actual false detections which we would avoid with
a higher threshold.

6 Discussion
We present a prototype for an automatic urban seismic
monitoring system which identifies any potentially in-
teresting event as well as routinely detects previously
identified events. Our system is based on a low number
of low-cost seismic sensors and was running for almost
two years. We demonstrate that with comparably low
effort when it comes to upgrades of the sensor infras-
tructure, a city can be monitored continuously for ex-
plosion activity. In our case this includes construction
blasts, but there is no reason for other types of explo-
sions, such as accidents or deliberate attacks, not to be
detected as long as there is sufficient coupling with the
ground.
An alternative approach to identify events of inter-
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Figure 10 a) Time line of locatable STA/LTA detections classified as blasts by the CNN model in comparison to reference
blast data set. b–c) Locations of classified blasts using a probability threshold of 0.7 (a) and 0.5 (c). Orange symbols are for
complete and blue symbols for incomplete network operation. Black triangles show seismic stations.

est in an unsupervised fashion would be to apply re-
cently developed (deep) clustering methods (e.g., Sey-
doux et al., 2020). While adapting such methods and
comparison of the results with our method would go
beyond the scope of the current paper, we encourage
further studies to compare both approaches. The main
reason why we did not choose a method to identify
outlier events via clustering, is the additional need to
identify the cluster(s) of interest and the risk that out-
lier might be too rare to form separate clusters. We
found that an auto-encoder is a relatively easily imple-
mented and trained alternative (compared to more so-
phisticated deep learningmodels), and is not difficult to
tune for each station. The only tuning we did for each
new station was the selection of the training data, the
number of samples in the input time window, and the
latent dimension if the auto-encoder. We identified the
sample number and latent dimension to be themost im-
portant parameters, while the rest of the model archi-

tecture, hyper-parameters, and the choice of training
data (except that it should cover different noise condi-
tions at different times) does not need to be adapted for
each station.

There are different possibilities for improving the sys-
tem. First and most important, the seismic station net-
work can be extended by covering a larger area and by
increasing station density. This will improve location
accuracy, especially outside the current network area
beyond the city limits. A denser sensor deployment will
also enable locatingmore events that so far are only ob-
served on a single or two stations and are, therefore,
not locatable with our Rg wave stacking approach. This
would also allow us to potentially run the outlier de-
tector on more than two stations simultaneously and to
locate the detected events with more stations that are
close-by.

Secondly, the detection process could be further im-
proved. The outlier detector could be retrained regu-
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larly since local noise conditions around each station
may have changed over time. Furthermore, more work
can be done to further tune the neural network archi-
tecture of the auto-encoder to optimize outlier detec-
tion at different seismic stations. One could also further
investigate if the same outlier detector model can be
applied to different stations despite of station-specific
background noise conditions and sub-surface-related
site effects. To test this we already trained an additional
auto-encoder model with combined data from stations
OSLN2 and OSLN3. We then applied this and the orig-
inal model for OSLN2 to both stations and compared
the results. The outlier detector performance con-
firmed our choice to make the detector station-specific
(see recall-precision curves in supplementary Figure
S2). While we found best performance with the current
model, we acknowledge the high number of latent fea-
tures. However, this is not an issue as such since our
goal is not data compression but outlier detection. A
more systematic study of outlier detector performance
for decreasing the number of latent features beyond the
tests we presented here may help to further optimize
the detection rate.
We train the supervised blast classifier with a com-

parably low number of data points. Longer recording
periods will increase the available data and, thus, most
likely improve classifier performance. Alternatively, it
is possible to augment the existing training data with
noise or other seismic signals (Köhler et al., 2022). This
is of particular importance for areas with infrequent
blasts which are currently not well-represented in the
training data and are therefore less likely to be correctly
classified (events in the east of Oslo). We only used a
single station to train the classifier. Consequently, the
model learns station-specific features and does not gen-
eralizewell. However, ideallywewould need a classifier
which generalizeswell enough to detect blasts on all sta-
tions. We started to explore training a single classifier
with waveform data from all stations, either using inde-
pendent input data (three-component waveforms from
different stations) or using multiple channels from dif-
ferent stations in one data sample as input. However,
we found that both approaches requiremore and better
balanced training data when it comes to blast detection.
We trained a model using data from two stations in the
west of Oslo (OSLN2 and OSLN3). Supplementary Fig-
ure S3 shows that the generalization ability is not satis-
factory. The classifier trained on OSLN2 and applied to
OSLN3 does not perform well at all. The model trained
on both stations and applied separately to both stations
performs better at OSLN3, but still clearly worse than
our preferred model. The model trained on both sta-
tions andapplied toOSLN2performs slightlyworse than
the original model we used above. With longer time se-
ries of blasts being available in future, we would like
to generalize the blast classifier for more stations, and
most important, for other source areas.
The SNRs of many detected blasts in our study are

rather low (see Fig. 9a and b) which is expected for
an urban environment. This naturally impacts the per-
formance of the outlier detector, as discussed above, as
well as to someextent theblast classifier. Again, thebest

way to deal with this issue is a larger training data set to
better represent noisy waveform data.
For evaluating our methodology we used a manually

compiled data set of locatable blasts in the city of Oslo.
We have shown that the outlier detector detects about
70% of those events. The classifier specifically trained
to detect blasts increases recognition rate to 80%. If the
goal ofmonitoring is to detect asmany real blasts as pos-
sible while accepting a number of false alarms, the clas-
sifier performance can be improved further up to 87%
by using a lower probability threshold. In general, our
outlier event detector andblast classifier generate a very
low number of false alarms. We encountered randomly
associated Rg waves producing false events in less than
1% of the locatable outlier events. However, this is
partially due to the combination with the Rg-based lo-
cations procedure which sorts out many unlocatable
events. Nevertheless, even without event location, the
amount of events to be processed is reduced consider-
ably compared to simply applying an STA/LTA detector
and attempting to locate all those events. Furthermore,
we found also many real blast signals among the out-
liers being unlocatable due to limited station density.
With larger training data and denser seismic networks,
we therefore expect the benefit of our methodology to
become even more evident.
A system such the one we have proposed has to be

adapted and modified when deployed in another city.
Themost critical parts are the existence of a station net-
work with sufficient resolution for event location and
the deployment of a functional outlier detector. If all
signals of interest have a high SNR, it may be sufficient
to simply use an STA/LTA detector combined with Rg-
wave based location for outlier detection. However, the
supervised blast classifier would still be part of such
a system. Before deploying the network and selecting
stations for the outlier detector, potential source loca-
tions for blasts, e.g., construction sites, or infrastruc-
ture to bemonitored should be identified. From our ex-
perience, the Rg waves of blasts needed for localization
can be observed at up to about 12 km distance, whereas
blast signals detected as outliers require stations at not
more than about 6 km distance. Furthermore, adaption
to other stations in another city requires retraining of
the DL models. The outlier detector does not require
a large data set for this. After 2-3 weeks there should
be sufficient wave field variability captured to train the
auto-encoder(s). However, the blast classifier would re-
quire rather frequent blasting to gather enough events
for training the CNN; from our experience around 1,000
events are needed. This might be a limitation of our
work flow in areas with infrequent blasting.
The final question is how our system can be inte-

grated into a smart-city solution. The simplest objec-
tive could be to provide the general public with real-
time information about event locations on a publicweb-
dashboard or through a mobile app. If citizens felt
ground shaking, they can easily check if it was related to
any known construction site. If the goal is early warn-
ing in case of unusual events (accidents, attacks) and
the seismic monitoring system is supposed to automat-
ically alert the city authorities and possibly the pub-
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lic, combination with other data sources available to
the stakeholders may be needed to avoid false alarms.
All data layers combined could then provide automatic
alerts and initiate further actions. For example, we en-
vision that the recorded ground motion could be uti-
lized to predict potential damage of infrastructure and
buildings categorized on the European Macroseismic
Scale (EMS-98). Ifmost detected events are construction
blasts as in our case, automatic monitoring can still be
useful in a smart-city application, for example to alert
about blasts above a certain magnitude or amplitude
threshold in areas with unstable ground such as quick
clay.

7 Conclusions
The objective of this study was to detect events in the
city of Oslo, Norway, that generate seismic signals. To
this end, we have successfully developed a prototype of
an automatic urban seismic monitoring system using
input data from low-cost seismic sensors deployed be-
tween 2021 and 2023. The work flow of our system in-
cludes two deep learning methods: the first one iden-
tifies rare events using an event outlier detector based
on an auto-encodermodel and the second one classifies
events of interest using a CNNmodel trained in a super-
visedmanner. Bothmethods usedwaveforms of signals
as input, which were pre-detected using the traditional
STA/LTA triggermethod. For both evaluating the outlier
detector and training the event classifier with events of
interest, we relied on locating the seismic signals using
Rg waves observed on the seismic network.
The results of our approach impressively reveal ongo-

ing construction activity and their temporal variation in
the city of Oslo. From about 1,870 construction blasts in
different areas during 22months ofmonitoring generat-
ing locatable seismic signals on our network, the outlier
detector recognized 69%. The classifier trainedon these
blasts was able to detect between 80 and 87% of those,
many with low Signal-to-Noise ratios. At the same time,
the false detection rate is very low. In absolute num-
bers, the automatic system was able to retrieve 1,271 of
themanually identifiedblasts in the initial outlier detec-
tion step, and between 1,385 and 1,627 blasts, depend-
ing on the detection threshold, using the blast classifier.
The performance of our prototype system could be

improved by expanding and densifying the seismic net-
work as well as increasing the training data with more
blast records. However, we demonstrated that even
with a low number of seismic sensors, a city can be
monitored automatically and continuously for explo-
sion events. This opens up new possibilities to include
seismic records into the sensor data stream of future
smart city solutions. We are therefore confident that
the outcomeof ourpilot study represents a robust proto-
type system for urban explosion monitoring in the city
of Oslo and possibly elsewhere.
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Abstract Automated seismic arrival picking on large and real-time seismological waveform datasets
is fundamental for monitoring and research. Recent, high-performance arrival pickers apply deep-neural-
networks to nearly raw seismogram inputs. However, there is a long history of rule-based, automated arrival
detection and picking methods that efficiently exploit variations in amplitude, frequency and polarization
of seismograms. Here we use this seismological domain-knowledge to transform raw seismograms as input
to a deep-learning picker. We preprocess 3-component seismograms into 3-component characteristic func-
tions of a multi-band picker, plus modulus and inclination. We use these five time-series as input instead of
raw seismograms to extend the deep-neural-network picker PhaseNet. We compare the original, data-driven
PhaseNet and our domain-knowledge PhaseNet (DKPN) after identical training on datasets of different sizes
and application to in- and cross-domain test datasets. We find DKPN and PhaseNet show near identical pick-
ing performance for in-domain picking, while DKPN outperforms PhaseNet for some cases of cross-domain
picking, particularly with smaller training datasets; additionally, DKPN trains faster than PhaseNet. These re-
sults show that while the neural-network architecture underlying PhaseNet is remarkably robust with respect
to transformations of the input data (e.g. DKPN preprocessing), use of domain-knowledge input can improve
picker performance.

Riassunto Individuare l’arrivo delle fasi sismiche è fondamentale per il monitoraggio e la ricerca dei ter-
remoti. Attualmente, la maggior parte dei programmi di riconoscimento (pickers) utilizza le deep neural net-
work (DNN) su sismogrammi grezzi. Esistono però decadi di ricerche sul rilevamento automatico degli arrivi
sismici basate su variazioni in ampiezza, frequenza e polarizzazione dei sismogrammi (domain-knowledge).
Sfruttiamo queste conoscenze per pre-processare i sismogrammi grezzi in cinque serie temporali, ottenendo
le tre funzioni caratteristiche di un pickermultibanda, il modulo e l’inclinazione. Utilizzando questo nuovo in-
put, realizziamoun’estensionedi PhaseNet (PN) basata sulla domain-knowledge (DKPN) e confrontiamo i due
modelli (PN e DKPN), addestrandoli su stessi dataset di diverse dimensioni. Eseguiamo due test: in-domain
(su dati estratti dallo stesso dataset di addestramento) e cross-domain (su dataset diversi). DKPN e PhaseNet
mostrano prestazioni quasi identiche per il riconoscimento delle fasi in-domain, mentre DKPN supera Pha-
seNet per alcuni casi cross-domain, in particolare per dataset di addestramento più piccoli. L’allenamento di
DKPN è più veloce di quello di PhaseNet. Questi risultati mostrano che, sebbene l’architettura di rete neurale
alla base di PhaseNet sia notevolmente robusta, l’uso di input basati sulla domain-knowledge puòmigliorare
le prestazioni del picker.

Non-technical summary Automatic procedures for detecting seismic energy onsets on seismo-
grams are critical for earthquake and environmentalmonitoring, earthquake and tsunami early-warning, and
for fundamental research in seismology and earthquake hazard. Recent, high-performance onset detectors
mainlyuse sophisticated,machine-learningalgorithmswhichare “trained”on large setsof, unprocessed, seis-
mograms. However, there is a longhistoryof rule-based, automatedonsetdetectionalgorithms inearthquake
seismology that efficiently exploit various characteristics of seismogram waveforms. Here we use classical,
seismological energy onset detection algorithms to transform seismogram waveforms before input to an es-
tablished machine-learning onset-detector. We compare this extended detector with the original detector
using identical training seismograms and application to diverse test seismograms. We find that the extended
detector shows improvedperformancewhenapplied to seismogramswithdifferent characteristics fromthose
used for training, and can allow use of smaller datasets during training. The results show that the established
machine-learning detector performs well independent of transformations of the input data, but that such
transformations can improve performance and efficiency in some cases.
1 SEISMICA | ISSN 2816-9387 | volume 3.1 | 2024
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1 Introduction
Automated seismic arrival pickers are algorithms for
detection, onset timing, phase type identification, and
other characterization of seismic energy arrivals on
seismogram waveforms. These pickers are funda-
mental for earthquake and environmental monitoring,
earthquake and tsunami early-warning, arrival-time to-
mography, subsurface characterization, and for basic
research of earthquakes and their hazard. Highly ef-
ficient, accurate and consistent automated picking is
necessary for processing large to massive datasets with
manydata channels, high sampling rates or long record-
ing periods, for real-time monitoring and warning, and
for analyzing highly productive aftershock sequences
and swarms.
For some years, automated seismic arrival picking

algorithms have been developed using machine learn-
ing (Enescu, 1996; Dai and MacBeth, 1995; Wang and
Teng, 1995; Mousset et al., 1996; Gentili and Michelini,
2006; Beyreuther et al., 2012; Kong et al., 2018). Recent,
high-performance machine-learning pickers are based
mainly on deep-neural-networks (LeCun et al., 2015)
and are data-driven—trained and applied to nearly raw,
seismogram waveforms as input features (Liao et al.,
2021; Mousavi et al., 2019, 2020; Mousavi and Beroza,
2022; Münchmeyer et al., 2022; Ross et al., 2018a; Soto
and Schurr, 2021; Woollam et al., 2019; Yu and Wang,
2022; Zhu and Beroza, 2018). There is, however, a
long history of automated, seismic arrival detection,
onset-timing and phase identification algorithmswhich
efficiently exploit variations in amplitude, frequency
and polarization of seismogram waveforms (Steven-
son, 1976; Allen, 1978, 1982; Bai, 2000; Bagagli, 2022;
McEvilly and Majer, 1982; Baer and Kradolfer, 1987;
Withers et al., 1998; Lomax et al., 2012). These “classi-
cal” pickers are typically composed of rule-based algo-
rithms defined by experts, using seismological domain
knowledge to perform processing of seismogramwave-
forms, and subsequent analyses for detection, onset-
timing and phase identification. Various parameters of
the pickers are adjusted through trial-and-error or for-
mal optimization (e.g., machine-learningVassallo et al.,
2012) to produce results best matching manually deter-
mined or other reference picks. Detections from clas-
sical pickers can also be fed into deep-neural-networks
to further refine the arrival timing and characterize the
picks (Yeck et al., 2020).
Incorporating expert, domain knowledge in the fea-

ture engineering and training of deep-neural-networks
has been proposed and shown to improve performance
over pure data-driven learning (Marcus, 2018; Borgh-
esi et al., 2020; Jozinović et al., 2021; Kong et al., 2018;
Mousavi and Beroza, 2022; Muralidhar et al., 2018), es-
pecially when there is limited or poor quality train-
ing data, or with difficult learning tasks. A basic
question then arises: should the expert, seismologi-
cal domain-knowledge components of classical pick-
ers be discarded when developing high-performance,
deep-neural-network pickers? This may be the case if
the deep-neural-networks have a sufficiently large and
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complex architecture to learn to accurately map key
characteristics of seismogram waveforms and phase
onset energy into detections and picks, especially for
cross-domain application. Such learning requires large,
comprehensive and high-quality training datasets, and
adequate computing resources to train the network.
Otherwise, the use of domain-knowledge for prepro-
cessing input seismogram waveforms may improve the
performance, or even make viable, the training and ap-
plication of deep-neural-network pickers, particularly
for small or poor quality training datasets, when com-
puting resources are limited, or for urgent analysis.
Most classical, automated pickers first convert raw

seismograms into characteristic function (CF) time-
series which greatly amplify the main features of seis-
mic phase arrivals, such as abrupt changes in ampli-
tude, frequency, or polarization of the waveforms. Sec-
ondly, these pickers analyze the CFs to detect and de-
termine onset-times, phase types and other character-
istics of possible seismic energy arrivals while ignor-
ing background variations in signal. Conversion of raw
seismograms into picker CFs is commonly and most
basically performed with mean removal and high-pass
filtering, followed by sliding-window calculation of a
short-term average (STA) and a long-term average (LTA)
of the signal amplitude to form the CF based on the
ratio STA/LTA (Allen, 1978, 1982; Baer and Kradolfer,
1987). Additional or alternative processing of seismo-
grams for detection, time picking or phase identifica-
tion include autoregressive analysis (Sleeman and van
Eck, 1999), particle-motion and polarization analysis
(Vidale, 1986; Bai, 2000; Plešinger et al., 1986; Anant
and Dowla, 1997; Ross and Ben-Zion, 2014), vectormod-
ulus (Bai, 2000), and time-frequency domain, spectro-
gram (Lomax et al., 2012; Alvarez et al., 2013; Njirjak
et al., 2022) or wavelet analyses (Anant andDowla, 1997;
Zhanget al., 2003;Mousavi et al., 2016). FilterPicker (Lo-
max et al., 2012) constructs a picker CF through applica-
tion of an STA/LTA algorithm to a series of band-pass fil-
tered seismograms, equivalent to a simplified spectro-
gram representation of the raw waveforms. The multi-
band nature of FilterPicker enables picking of seismic
onsets over a range of dominant frequencies in the pres-
ence of signal offset and high noise, improving correct
detection of true seismic phase onsets even in complex
waveforms.
Here we examine changes in the performance of

a deep-learning picker when its raw seismogram in-
put is modified using seismological domain-knowledge
from classical pickers. In a manner similar to Gentili
and Michelini (2006) for picking and Wang and Teng
(1995) and Njirjak et al. (2022) for earthquake detec-
tion, we preprocess 3-component, broadband seismo-
grams into a set of 5 input time-series: the 3-component
characteristic functions of the multi-band FilterPicker,
plus the instantaneous modulus and inclination of the
waveforms from particle-motion analysis. This prepro-
cessing increases the dimensionality of the input data.
We use these 5 time-series as input features instead
of 3-component, raw seismograms to extend the deep-
neural-network picker PhaseNet (Zhu andBeroza, 2018)
within the SeisBench platform (Woollam et al., 2022).
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We compare the original PhaseNet and our extended,
domain-knowledge PhaseNet (DKPN) using identical
training, validation and test datasets and identical pro-
cessing pipelines. We train PhaseNet and DKPN on
waveforms from the INSTANCEdataset (Michelini et al.,
2021). The training is run on 7 subsets with different
sizes, leading to a set of trained model variants. We ap-
ply this set of trained models to in-domain test datasets
from INSTANCE and to cross-domain test data from two
different datasets available in SeisBench: ETHZ from
the Swiss Seismological Service, and PNWfrom seismic
networks in the US Pacific Northwest (Ni et al., 2023).
The use of domain-knowledge input in DKPN instead

of near-raw waveforms for the PhaseNet deep-learning
picker requires slightly more computing time for train-
ing and application, due to the additionalwaveformpre-
processing, though data preprocessing, code optimiza-
tion, multi-processing and use of GPUs effectively re-
moves this time penalty. For P and S arrivals the explicit
information targeting detection and picking of seismic
energy arrivals introduced by the domain-knowledge
processing enables DKPN to reach higher performance
than PhaseNet for cross-domain application, especially
with smaller training datasets. In contrast, DKPN and
PhaseNet perform nearly identically for in-domain P
and S picking. These results suggest that the underlying
PhaseNet architecture can robustly learn arrival detec-
tion andpick characterization somewhat independently
of the form of the input data, presumably as long as key
information relevant to arrival detection and picking re-
mains present in the input, as is the case with DKPN.

2 Data and Methods
We use the SeisBench machine learning toolbox (Wool-
lam et al., 2022) to access seismogram waveform
datasets and the PhaseNet deep-neural-network picker
model, and as a general platform for data processing
and augmentation operations.

2.1 PhaseNet, a deep-neural-network picker
PhaseNet (Zhu and Beroza, 2018) is a deep-neural-
network algorithm for probabilistic detection, onset-
timing and phase-type identification of seismic P and
S arrivals.A trained deep-neural-network can be inter-
preted as a very high-dimensional approximation func-
tion composed of many, local mappings of input to
output (Balestriero and Baraniuk, 2018). These map-
pings produce increasingly abstract layers which pre-
serve only essential information in the data needed for
a target regression or classification task (LeCun et al.,
2015). Indeed, in this study we are investigating the ef-
fects of using essential information for picking as input
and thus potentially reducing the amount of network
training needed to identify and isolate essential infor-
mation.
The input for PhaseNet are 3-component, broadband,

seismogram waveforms of 3001 samples (30 sec at 100
Hz sampling) with minimal preprocessing (mean re-
moval and normalization). These input data are pro-
cessed through a modified U-net (Ronneberger et al.,

2015; Zhu and Beroza, 2018, , their figure 5) with 4
stages of down-sampling and reduction in number of
nodes based on 1-D convolution followed by 4 stages
of near-symmetric up-sampling and expansion based
on 1-D deconvolution (Zhu and Beroza, 2018). Direct,
skip connections between corresponding down- and
up-sampling layers help to improve training conver-
gence. After the last stage of down-sampling, the in-
put is reduced to 22 points x 12 channels, which, con-
sidering the size of the convolutional kernel , implies
the network has a broad receptive field on the original
seismograms (Zhu and Beroza, 2018) which is about 26
sec (Hien, 2018). At the end of up-sampling, PhaseNet
outputs 3 channels of 3001 points: prediction probabil-
ity distributions for P and S arrivals and for noise, time-
aligned to the original 3001 input samples. Here we de-
rive arrival picks from peaks in the P and S probabilities
through rule-based post-processing to give pick arrival
time (at peak maximum), and confidence (peak ampli-
tude)
In Zhu and Beroza (2018) PhaseNet is trained on a

dataset of detected earthquakes from Northern Califor-
nia composed of 623,054 3-component recordings, all
of which have manually picked, P and S arrival times.
Through various experiments, Zhu and Beroza (2018)
conclude that PhaseNet achieves much higher picking
accuracy and recall rate than a classical STA/LTA plus
autoregressive analysis method (Akazawa, 2004) when
applied to the waveforms of known earthquakes, with a
particularly pronounced improvement in S picking per-
formance.

2.2 Modified FilterPicker characteristic func-
tions

FilterPicker (Lomax et al., 2012) applies an adaptation
of the STA/LTAalgorithmof Baer andKradolfer (1987) to
construct a picker CF froma succession of band-pass fil-
tered seismograms. Seismogram waveforms, with little
or no preprocessing, pass through a pipeline of: 1) dif-
ferentiation, 2) band-pass filtering at a geometric pro-
gression of center periods ranging from the sampling
interval to the longest period signal to be picked (e.g.,
for sampling interval 0.01sec, 7 bands at 0.01, 0.02, 0.04,
0.08, 0.16, 0.32, 0.64 sec center periods), 3) squaring of
each band-pass series to form a positive, envelope func-
tion, 4) forming a CF for each band as the ratio of instan-
taneous deviation from long-term mean to long-term
standard deviation of the band envelope, and 5) form-
ing a definitive, summary CF from the maximum of the
band CFs at each sample point. The succession of band-
pass filtered seismograms are equivalent to a simplified
time-frequency, spectrogram representation of the raw
waveforms. The multi-band nature of FilterPicker pro-
vides a strong response in the summary CF for seismic
onsets with a range of dominant periods, even in the
presence of strong, narrow-bandnoise, of strongmicro-
seismic or other, longer period noise, and of offset sig-
nals. See Lomax et al. (2012) for details and examples.
We implement FilterPicker within the data aug-

mentation step of SeisBench processing using the
FBpicker, Python implementation of FilterPicker from
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Figure 1 Standard PhaseNet andmodified Domain Knowledge PhaseNet deep-learning architecture. The DKPNmodel re-
places the nearly-raw, 3-component seismogram input of PhaseNetwith the 3-component FilterPicker CF plus instantaneous
modulus and inclination traces (bottom left panel). Otherwise, the layers, connections and output for bothmodels are iden-
tical. For details of the full PhaseNet architecture, symbols and color codes, see Zhu and Beroza (2018, ; their figure 4).

the PhasePApy package (Chen and Holland, 2016). We
modify the FBpicker algorithm to replace its sliding,
fixed-window procedure for generating band CFs with
the decay-constant, recursive filter procedure of the
original FilterPicker. We further modify the resulting
FilterPicker algorithm by taking the logarithm of the
summary CF to compress high amplitudes in the CF at
strong arrival onsets and thus avoid the need for a cut-
off parameter (Lomax et al., 2012) to limit the highly-
variable maximum CF values. Finally, we normalize
the CFs with the maximum standard-deviation of the 3-
component CFs. Aswe donot use the detection andpick
characterization logic of FilterPicker, there are only two
primary picker parameters: a filter window defining
the frequency of the longest period band, and the long-
term, time-averaging scale for recursive band-pass fil-
tering. In this study we set FilterPicker parameters
following the guidelines and defaults in Lomax et al.
(2012), with some trial-and-error over a limited range of
typical values for broadband, local and regional event
picking.

2.3 Instantaneousmodulus and inclination
In addition to themodified, 3-component CFwaveforms
fromFilterPicker, we also calculate twowaveforms con-
sisting of quantities from particle-motion analysis, the
instantaneous modulus and inclination, using the Fil-
terPicker, band-pass filtered seismograms. In order to
suppress response to background noise, both quantities
are calculated independently at each sample point, us-
ing the 3-component Z, N, E data values on the band-

passwaveformcorresponding to themaximumbandCF
for the sample point. The modulus is the length of the
3-component data vector, √(Z2 + N2 + E2), normalized
by dividing by the maximum standard-deviation over
all sample points. The inclination or incidence angle
is given by tan-1[Z / √(N2 + E2)] / π, where dividing by π
normalizes to a range of [-1,1] so -1, 0 and 1 correspond
to down, horizontal and up inclination, respectively.
We expect these two additional waveform inputs will

help the picker to recognize and discriminate between
P and S phases in the stream, especially given that the
replacement of raw waveforms with CF’s entails a loss
of information. Modulus re-introduces absolute ampli-
tude information which might aid in discrimination of,
for example, a typically higher amplitude S arrival from
a lower amplitude P arrival. Inclination re-introduces
polarization information which can indicate the type of
arrival sincePwavesusually exhibit dominantly vertical
particle motion and S waves often show stronger hori-
zontal motion.

2.4 Domain Knowledge PhaseNet
DKPN is our extension of the PhaseNet picker model to
use classical, seismological domain-knowledge as input
features. We replace the 3-component, raw seismogram
input to the PhaseNet model with the 3-component CFs
of themodified FilterPicker and the instantaneousmod-
ulus and inclination of the waveforms (Figures 1 and
2-5). This entails that in the first convolution plus rec-
tified linear unit step in the first layer, instead of trans-
forming a 3x3001 input dimension to 8x3001 dimension
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Figure 2 Example processing and picking results for models trained with the INSTANCE NANO2 dataset and applied to IN-
STANCE, ETHZ, and PNW trace samples. In each plot, the title indicates INSTANCE training dataset size, test dataset, network-
station-location-channel code, event date, magnitude and distance from station. Subplots show: (rows 1-3) de-meaned and
normalized Z, N, and E component, observed seismograms; (row 4) P (blue-green) and S (light red) label data; (rows 5-6)
PhaseNet (PN) and DKPN P (blue-green) and S (light-red) probabilistic predictions, gray horizontal lines indicate threshold
0.3; (row 7) normalized, DKPN FilterPicker Z, N, E CF’s; (rows 8-9) normalized, DKPN instantaneous inclination andmodulus.
Solid bars at top of each subplots show P (blue-green) and S (light red) label picks. Dashed bars at the bottom of each sub-
plot show PhaseNet (yellow) and DKPN (blue) P and S predicted picks for threshold 0.3. Horizontal axis shows sample count.
Seismogram from the INSTANCE dataset (in-domain testing) for which DKPN and PhaseNet both pick P and S strongly near
the label times. Note the sharp, strong P onset and emergent S onset in the DKPN CFs, the change in character between P
and S of the DKPN inclination, and the clear P and S onsets in theDKPNmodulus; these features show the introduced domain
knowledge which drives the DKPN picks.

5 SEISMICA | volume 3.1 | 2024



SEISMICA | RESEARCH ARTICLE | Effects on a Deep-Learning, Seismic Arrival-Time Picker of Domain-Knowledge Based Preprocessing of Input Seismograms

Figure3 SameasFigure2, for a seismogramfromtheETHZdataset (cross-domain testing) forwhichaclear, high-frequency,
labeledParrival ismatchedbyDKPNbutnotPhaseNet. DKPNstrongly, andPhaseNetmoreweaklyboth identify anunlabeled
S arrival, which is likely correct given the waveforms and epicentral distance. The relatively poor performance of PhaseNet
for this seismogrammay be due to the waveform arrivals (e.g. short, high-frequency P signal and long duration, long-period
S signal) differing significantly from arrival waveforms in the INSTANCE dataset used for training.

as in standard PhaseNet (Zhu and Beroza, 2018, ; their
figure 4), DKPN transforms a 5x3001 input dimension
(channels x length) to 8x3001 dimension (Figure 1). We
otherwisemakeno change to thePhaseNetmodel as im-
plemented in SeisBench (SeisBench v0.3 or later).

2.5 Seismogramwaveform datasets
In this study we use three benchmark, seismogram
waveform datasets provided in SeisBench: INSTANCE
(Michelini et al., 2021) composed of ~1.2 million, 3-
component waveforms for ∼50,000 earthquakes from
M 0 to M 6.5 in and around the Italy region (epi-
central distances ~0-6°); Eidgenössische Technische
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Figure4 Sameas Figure 2, for a lowS/N seismogram from thePNWdataset (cross-domain testing) forwhichDKPNcorrectly
picks a P arrivalwith a sharppredictionprobability peak, while PhaseNet fails to pick but shows aweakpredictionprobability
peak.

Hochschule Zürich (ETHZ; Woollam et al., 2022) com-
posed of 36,743, 3-component waveforms for 2231
events from M 1.5 to ~M 5 in and around the Switzer-
land region (epicentral distances ~0-4°); and the Pacific
Northwest AI-ready Seismic Dataset (PNW, Ni et al.,
2023) composed of ~200,000, 3-component waveforms
for ~65,000 events from M 0 to ~M 6.4 in the US Pa-
cific Northwest region with local and regional epicen-
tral distances. A signal-to-noise (S/N) ratio included

in the INSTANCE metadata, reported in dB, is calcu-
lated (Michelini et al., 2021) from amplitudes in the 5
sec following the S arrival (signal) and 5 sec before the
P arrival (noise), though here we do not filter the IN-
STANCE training datasets on S/N ratio. INSTANCE in-
cludes pure noise waveforms, which, following Zhu and
Beroza (2018)we do not use for training. For detailed in-
formation on filtering criteria for both training and test-
ing stages, the reader is referred to the Supplementary
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Figure 5 Same as Figure 2, for a low S/N seismogram from the PNW dataset (cross-domain testing) for which PhaseNet
correctly picks a weak P arrival with a sharp prediction probability peak, perhaps by responding to the low amplitude, P
coda signal. DKPN fails to pick P, with a very weak prediction probability peak; this failure is likely due to the emergent CF Z
component and lack of amplitude increase on the modulus at the P time, both related to the P arrival on the Z seismogram
having low amplitude and frequency content similar to the preceding noise.

Text S1 and Table S1.

Visual examination of INSTANCE dataset waveforms
and picks shows some traces with: missing S picks; la-
beled picks on very high or pure noise low-gain data;
clearly early or late picks; and unreasonably large pick
uncertainty estimates. To mitigate these problems, we
filter the dataset metadata to include only high-gain HH

channels, events at epicentral distance ≤ 100 km, and,
following Zhu andBeroza (2018), traceswhichhaveboth
P and S picks, resulting in ~300,000 3-component trace
sets available for training, validation and testing. We
also create probabilistic pick labels for training using a
fixed sigma of 0.1 sec instead of using the labeled pick
uncertainties. See Supplementary File S1 for examples
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of filtered INSTANCE waveforms.
In order to evaluate picker performance when dif-

ferent amounts of training data are available, we es-
tablish INSTANCE training datasets with different sizes
ranging from insufficient for training convergence and
stability (NANO3, ~900 samples), to minimal for con-
vergence (NANO2, ~1.6k samples), through intermedi-
ate sizes (NANO1, ~3k samples; NANO, ~6k samples;
MICRO, ~12k samples; TINY, ~24k samples; SMALL,
~61k samples; MEDIUM, ~163k samples) tomuch larger
than needed for apparent convergence for both pick-
ers (LARGE, ~245k samples). In the following we focus
on results for the NANO2, MICRO and MEDIUM train-
ing datasets as representative of the main evolutions
and features of picker performance across all training
dataset sizes.
Missed S picks are also a problem with the ETHZ

dataset, but apparently much less so with the PNW
dataset. As we do not train on these datasets we do
not remove these potential problem traces (examples of
used ETHZ and PNW waveforms are shown in Supple-
mentary Files S2 and S3, respectively). However, due to
missed S picks, our testing statistics and metrics for S
for the ETHZ dataset are likely degraded. Similar and
other quality problems are likely present in most seis-
mological waveform datasets for machine-learning, as
Münchmeyer et al. (2022) discuss for the datasets pro-
vided in SeisBench. Such errors in the data labels will
adversely affect the rate and quality of model training
and bias the validation and test statistics and metrics,
but similarly for the two picker algorithms, thus high-
lighting their performance in practice.
FilterPicker, like most STA/LTA pickers, requires a

minimum length of background data before any phase
arrivals for statistical stabilization; this length is con-
trolled by the long-term window parameter. For ma-
chine learning training in general, an ample length of
background before arrivals is also needed for random
window-shift, data augmentation to enhance general-
ization in the trained model, and, most importantly, to
avoid that first arrivals are near the same window posi-
tion in all or most training samples. Lack of sufficient
background data before arrivals can impair classical
methods like STA/LTA in comparisons with machine-
learning pickers. The processing workflow described
below addresses this requiredminimum length of back-
ground data. We note also that lack of sufficient back-
ground data before arrivals can preclude pertinent
training and evaluation ofmachine-learning pickers for
real-time and early-warning application, where in prac-
tice an almost unbounded amount of data before an ar-
rival is available, and very little data may be available
after an arrival onset before reaching the last received
data sample.

2.6 Dataset and model configuration, pro-
cessing, training and comparison

To compare the performances of PhaseNet and DKPN
on different test sets we configure and preprocess
datasets and models, train the models and compare
PhaseNet and DKPN P and S arrival predictions, statis-

tics and metrics (see Data and code availability). Care
must be taken at the data generation stage to ensure that
the waveform time-series has sufficient length before
the first label pick for FilterPicker stabilization (FPS);
this length should be greater than the number of sam-
ple points (NFPS) corresponding to the FilterPicker long-
term, time-averaging scale. Figures 2-5 show prepro-
cessing, label and pick prediction waveforms for trace
samples from the INSTANCE, ETHZ and dataset.
The configuration and processingworkflow includes:

1. Load the requested dataset; set the sampling rate to
100 Hz.

2. Optionally select ormask dataset trace sets on pres-
ence of P and S picks, channel code, epicentral dis-
tance, or other available meta-data. (Supplemen-
tary Text T1)

3. For training, randomly split the data into training,
validation and test sets according to a target train-
ing set size (e.g. for our INSTANCE MEDIUM train-
ing dataset: 50% training, 5% validation and 45%
remainder for drawing test samples).

4. Define data generators with identical preprocess-
ing and augmentation steps for training, validation
and testing, the principal steps are:

(a) Get a randomly positioned data window in the
input, 3-component seismograms starting at
least NFPS points before the first pick label,
and with a length of NFPS plus the 3001 points
required for input to the deep-learning mod-
els.

(b) Normalize to the maximum standard-
deviation across the 3-component data.

(c) For DKPN, apply the processing described in
the section “Modified FilterPicker character-
istic functions” to generate the 3-component,
FilterPicker CF time-series, and apply the pro-
cessing described in “Instantaneous modulus
and inclination” to generate the modulus and
inclination time-series. In this study the Fil-
terPicker filter window is set so the longest
period signal analyzed is 2 sec, and the long-
term, recursive-filter time-averaging scale to 4
sec, giving NFPS = 401 point.

(d) For DKPN, cut the firstNFPS (after FilterPicker
stabilization) for all time-series to form a data
window of length 3001 points as required for
input to the deep-learning models.

(e) Create probabilistic, P and S label traces with
the same 3001 point window from picks speci-
fied in the tracemetadata using theprobabilis-
tic labeler function in SeisBench. Each P or S
pick is summed into the corresponding P or
S trace as Gaussian function of amplitude 1.0
and with a fixed variance of 5 points (0.05 sec
for 100 Hz data).
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The training workflow includes:

1. Model and dataset setup following steps 1-4 of the
configuration and processing workflow.

2. Run the training on the training dataset for speci-
fied optimizer and loss functions, learning rate and
number of epochs. In this study the Adam opti-
mizer (Kingma & Ba, 2017), and a cross-entropy
loss function are always used. Train models us-
ing an early-stopping approach governed by a “pa-
tience” parameter indicating the number of epochs
to tolerate without improvement, and a fixed “im-
provement” threshold. If the mean validation loss
over the last two patience length epochs does not
exceed the improvement threshold compared to the
mean development loss over the preceding patience
epochs, the training process is halted. A second
condition for halting the training process is if the
validation loss over the last patience epochs consis-
tently surpasses the training loss, indicating a po-
tential overfitting tendency. In either halting case,
the model weights obtained patience epochs before
the current epoch are utilized. We use this ap-
proach to respect the different, natural learning-
time behavior of the 2 algorithms, and to smoothly
converge to the best possible minima. For details
of the training parameters and loss curves compar-
isons see Supplementary Text S1, Table S1, and File
S4).

The comparison workflow includes:

1. Model and dataset setup following steps 1-4 of the
configuration workflow.

2. Load a trained model and apply it to traces drawn
from the test dataset to obtain prediction probabil-
ity distributions for P and S arrivals.

3. Post-process the probabilistic, P and S prediction
traces with:

(a) 3-point smoothing to suppress rapid oscilla-
tion,

(b) pick detection at peaks of amplitude greater
than specified thresholds and separated by
more than 0.5 sec,

(c) retain the pick time, Tp and amplitude, Ap.

4. Accumulation of the P and S, Gaussian labels and
prediction picks for multiple traces from the test
dataset for calculation of evaluation statistics and
metrics as described in the following.

In this study we repeat the training workflow using
7 different, randomly selected training and validation
subsets of traces for each experiment. We therefore ob-
tain 7 different models and 7 sets of test results for each
individual training dataset size. Wemerge these test re-
sults to reduce the dependence of testing performance
statistics with respect to training dataset selection.

2.7 Evaluation statistics andmetrics
Asabasis for comparisonof PhaseNet andDKPNperfor-
mance on test datasets, and following (Zhu and Beroza,
2018), we count, relative to the labeled P or S arrivals
in the test dataset, the number for P or S of correct
Gaussian predicted arrivals (true positives; TP), incor-
rect predicted arrivals (false positives; FP), and no pre-
diction of a labelled arrival (false negatives; FN). There
may bemultiple FP picks for P or for S on each datawin-
dow. Here, a smoothed, Gaussian predicted P or S ar-
rival is counted as correct when its peak amplitude, Ap,
is greater than a specified threshold and the difference,
ΔTp, between its peak time and the time of a label ar-
rival of the same phase is less than 0.1 sec for P and 0.2
sec for S, which has typically noisier onsets than P ar-
rivals. Zhu and Beroza (2018) use ΔTp ≤ 0.1 for P and S,
and use a threshold Ap ≥ 0.5. In this work, we examine
a range of thresholds 0.1 ≤ Ap ≤ 0.9 to find optimal met-
rics such as F1 score, which vary with training dataset
size, test dataset and for PhaseNet versus DKPN. While
use of a low amplitude threshold leads to a higher rate
of picking, we find that low amplitude predictions gen-
erally correspond to correct arrival picks. Additionally,
filtering of a limited number of false picks can be done
in phase association and hypocenter location process-
ing stages (Kim et al., 2023). For advanced hypocenter
location and other algorithms (e.g., Satriano et al., 2008;
Lomax et al., 2014) the peak amplitude Ap can also be
used for weighting or selection of picks and some mea-
sure of the width of the peak (e.g. at half its height) as a
pick uncertainty.
From the TP, FP, FN statistics, we form the following

metrics for P and for S:
Precision, the proportion of positive arrival predic-

tions that are correct,

P =
TP

TP + FP
(1)

Recall, the proportion of labeled positives that are cor-
rectly predicted,

R =
TP

TP + FN
(2)

and the F1 score, which balances the often opposing,
Precision and Recall metrics through their harmonic
mean,

F1 = 2x
PxR

P + R
(3)

3 Results
We present a set of tests to show and compare the per-
formance of PhaseNet and DKPN for different train-
ing dataset sizes applied to in-domain (INSTANCE) and
cross-domain (ETHZ and PNW) test datasets.

3.1 Test 1 – In-domain
We first compare the in-domain performance of
PhaseNet and DKPN across different training dataset
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Figure6 ComparisonofPhaseNet (PN)andDKPNwith testingon the INSTANCEdataset (in-domain). F1 scoremetricsacross
a range of pick amplitude thresholds for P arrivals and S arrivals for models trained with different size INSTANCE datasets.
Mean,median and upper/lower limits of themean (dashed curves) of F1 for 7 runs eachwith 5,000 evaluation samples drawn
from the test datasets, these samples vary for each training dataset size.

sizes and amplitude thresholds to define correct pre-
dicted picks. We train and test with data samples from
the INSTANCE dataset. Sample INSTANCE waveforms
are presented in Supplementary File S1. The F1metrics
for this test are shown in Figure 6.
For the larger training datasets (e.g. MICRO and

MEDIUM) DKPN and PhaseNet show almost identical
performance, with F1 scores of about 0.9 for P up to
a threshold of about 0.7 and F1 about 0.8 for S up to
thresholds of about 0.4 - 0.5. The reduced performance
of both pickers for S is almost certainly due to difficul-
ties for bothmodels indetecting andpicking the Sonset,
which is often embedded in the P coda and emergent.

For the smaller NANO2 training dataset, the DKPN
and PhaseNet, median P and S F1 scores are slightly re-
duced relative to those with the larger training datasets.
The mean and lower limit of F1 scores, however, show
a significant degradation, likely indicating instability in
training with small datasets and chance of convergence
to an inadequately trained model, even for application
to an in-domain dataset.
Histograms of P and S pick residuals (predicted time

- label time) for PhaseNet and DKPN for a selection of
training data set sizes are shown in Figure 7. For P the
total number of predicted picks within twice ΔTp is gen-
erally similar for PhaseNet and DKPN and independent
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Figure 7 Histograms of P and S pick residuals for selected INSTANCE training dataset sizes tested on the INSTANCE dataset
(in-domain). Results shown for the pick amplitude threshold (Thr) giving the highest F1 score for each case of dataset size
andmethod (DKPN or PhaseNet). Vertical, dashed gray lines show themaximumdifference ΔTp between a pick time and the
corresponding label time (0.1 sec for P and 0.2 sec for S) to declare a correctly predicted arrival for evaluation statistics (TP).
Pick counts show: Number of residuals (number of predicted picks) used in themean and standard-deviation statistics / Total
number of residuals available / Total number of label picks available for the test case. To remove outlier data, the mean and
standard-deviation statistics use trimmed residuals, within twice ΔTp: ± 0.2 sec for P and ± 0.4 sec for S.

of training dataset size, and there is little variation in
the mean of the residuals, which is always near zero, or
for standard deviation with training dataset size. How-
ever, the DKPN P residuals are slightly more concen-
trated and peaked around zero than are the PhaseNet
residuals for NANO2. For S the distribution of resid-
uals and statistics for the two pickers are very similar
and show little variationwith training dataset size, aside
from slightly more concentration of residuals around
zero for the larger training dataset sizes (e.g. MEDIUM).

Figures 2-5 show test results for PhaseNet and DKPN
models trained with the INSTANCE NANO2 dataset and
applied to INSTANCE, ETHZ andPNWtesting trace sam-
ples. These examples illustrate how the FilterPicker
CFs, inclination and modulus relate to and help deter-
mine the probabilistic P and S predictions and picks for
DKPN, and how the amplitude and complexity of proba-
bilistic predictions for PhaseNet and DKPN relate to the
trace noise and to the complexity and impulsiveness of
arrival onsets. Note in particular how theDKPNCF’s for
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Figure 8 Comparison of PhaseNet (PN) andDKPNwith testing on the ETHZ dataset (cross-domain). F1 scoremetrics across
a range of pick amplitude thresholds for P arrivals and S arrivals for models trained with different size INSTANCE datasets.
Mean,median and upper/lower limits of themean (dashed curves) of F1 for 7 runs eachwith 5,000 evaluation samples drawn
from the test dataset. Because some ETHZ traces have missing P or S picks, FP count may be overestimated.

different events and datasets can have a similar overall
form and amplitude even when the corresponding raw
seismograms have very different absolute amplitudes
and frequency content.

3.2 Test 2 – Cross-domain—INSTANCE train-
ing and ETHZ test datasets

A most important, general and realistic use case is
where a pre-trained picker model will be applied cross-
domain—to seismogram waveforms with substantially
different characteristics from the training waveforms.
The differences may be related to recording instru-

ments, data-loggers, available channel types and gain,
wave propagation, site conditions and noise, and the
distance, size, stress-drop and other properties of tar-
get seismic sources. To examine the cross-domain case,
we applymodels trained with the INSTANCE datasets of
different sizes to testing (i.e. application) on waveforms
from the ETHZ and PNW datasets. Sample waveforms
are presented in Supplementary Files S2 and S3. The
resulting F1 metrics across a range of pick amplitude
thresholds for ETHZ test datasets are shown in Figure 8.
For P arrivals, relative to in-domain testing with IN-

STANCE (Test 1; Figure 6), DKPN shows a small reduc-
tion in overall performance and stability (e.g. maxi-

13 SEISMICA | volume 3.1 | 2024



SEISMICA | RESEARCH ARTICLE | Effects on a Deep-Learning, Seismic Arrival-Time Picker of Domain-Knowledge Based Preprocessing of Input Seismograms

Figure 9 Histograms of P and S pick residuals for selected INSTANCE training dataset sizes tested on the ETHZ dataset
(cross-domain). Results shown for the pick amplitude threshold (Thr) giving the highest F1 score for each case of dataset
size andmethod (DKPN or PhaseNet). Vertical, dashed gray lines show themaximumdifference between a pick time and the
corresponding label time (0.1 sec for P and 0.2 sec for S) to declare a correctly predicted arrival for evaluation statistics. Pick
counts show: Number of residuals (number of predicted picks) used in the mean, mode and standard-deviation statistics
(trimmed within twice ΔTp: ± 0.2 sec for P and ± 0.4 sec for S) / Total number of residuals available / Total number of label
picks available for the test case.

mum F1 scores almost always ≥ ~0.8 and converging to
~0.9 for larger training datasets) while PhaseNet shows
a slightly larger reduction in performance (e.g. max-
imum F1 scores around 0.7 for the smaller datasets,
and converging to ~0.85 for larger datasets). With
the smaller training sets (NANO2 and MICRO) DKPN
shows better results than PhaseNet, which indicates
that, for application to ETHZ data, the DKPN model,
with domain-knowledge input processing, has intrinsic
properties that improve generalization and effective P

picking with cross-domain data, as well as allowing use
of smaller training datasets.
For S arrivals (Figure 8), as with Test 1, the perfor-

mance of DKPN and PhaseNet are notably poorer than
for P arrivals, though DKPN performs slightly better for
the two smaller datasets. Relative to in-domain testing
with INSTANCE (Figure 6), both DKPN and PhaseNet
show generally reduced performance (e.g. maximum
F1 scores of ~0.7-0.75 instead of ~0.8) except for an in-
crease in Recall, due to a decrease in false negative
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Figure10 Comparisonof PhaseNet (PN) andDKPNwith testingon thePNWdataset (cross-domain). F1 scoremetrics across
a range of pick amplitude thresholds for P arrivals and S arrivals for models trained with different size INSTANCE datasets.
Mean,median and upper/lower limits of themean (dashed curves) of F1 for 7 runs eachwith 5,000 evaluation samples drawn
from the test dataset. Because some PNW traces have missing P or S picks, FP count may be overestimated.

count (Supplementary Text S2) .
Histograms of P and S pick residuals for PhaseNet

and DKPN are shown in Figure 9. For P, in contrast to
the INSTANCE testing results, the total number of pre-
dicted picks within twice ΔTp increases with increasing
training dataset size and is greater for DKPN than for
PhaseNet. There is little change with respect to train-
ing dataset size in the mean of the residuals, which
is always near zero, or for standard deviation. For P,
DKPN always has a higher count of near-zero residual
picks thanPhaseNet, especially for the smallest training
datasets (e.g. NANO2), in agreement with the evolution
of F1 score and other statistics discussed above. For S,

as with INSTANCE testing, DKPN has a higher count of
near-zero residual picks than PhaseNet for the smaller
training datasets, while for larger training datasets both
models show almost identical performance. Notably,
the total number of predicted pickswithin twice ΔTp de-
creases (DKPN) or is roughly stable (PhaseNet) instead
of increasing with increasing training dataset size as for
P.
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3.3 Test 3 – Cross-domain—INSTANCE train-
ing and PNW test datasets

We examine a second cross-domain case, applying the
models trained with the INSTANCE datasets of different
sizes to testing on waveforms from the PNW dataset.
Relative to INSTANCE and ETHZ, the PNW waveform
dataset is characterized by many trace sets with clear,
impulsive S arrivals at larger S-P times (larger epicen-
tral distance), but also trace sets with missing horizon-
tal channels. Since the DKPN processing requires 3
component trace sets, we only use data for PNWwhich
includes all 3 channels (Supplementary File S3). The
resulting F1 metrics across a range of pick amplitude
thresholds for PNWtest datasets are shown in Figure 10.
For P arrivals, the PNW results are similar to those

for cross-domain testing with ETHZ (Test 2; Figure 8)
with a small reduction in overall performance and sta-
bility relative to in-domain testing with INSTANCE (Test
1; Figure 6) (e.g. maximumF1 scores ~0.8 insteadof ~0.9
for larger datasets) and a small performance increase
of DKPN over PhaseNet for larger training sets (MICRO
and MEDIUM), and a more prominent increase for the
smallest datasets (NANO2).
For S arrivals (Figure 10), as with ETHZ (Test 2; Fig-

ure 8), the performance of DKPN and PhaseNet for the
smallest training dataset, NANO2 is slightly poorer than
in-domain testing with INSTANCE (Test 1; Figure 6),
nearly identical for the MICRO dataset, and, for the
largest dataset, MEDIUM, nearly identical for PhaseNet
and slightly improved for DKPN. These latter results are
surprising for a cross-domain dataset, likely explained
by the high rate in the PNW dataset of clear, impulsive
S arrivals which may resemble well S arrivals captured
most strongly in INSTANCE training, and, for DKPN, by
the sensitivity of the introduced domain knowledge to
impulsive arrivals.
Histograms of P and S pick residuals for PhaseNet

and DKPN for PNW testing are shown in Figure 11. For
P, and similar to cross-domain, ETHZ testing, with in-
creasing training dataset size the total pick rate gener-
ally increases, there is little evolution for mean (always
near zero) and standard-deviation, while DKPN has a
higher count of near-zero residual picks than PhaseNet
for all training dataset sizes. For S, DKPN shows slightly
better statistics and count of near-zero residuals than
PhaseNet in agreement with the evolution of F1 score
and other S statistics discussed above. However, both
PhaseNet and DKPN show a consistent negative mean
residual of almost 0.1 sec, perhaps suggesting that the
impulsiveness of many PNW S onsets relative to typical
S onsets on INSTANCE trainingwaveforms is leading the
INSTANCE trained network to bias and advance the pick
time predictions relative to those for INSTANCE wave-
forms.

4 Discussion
We use classical picker algorithms as domain-
knowledge to transform raw seismogram waveforms
into modified input features for the deep-learning
PhaseNet picker, without otherwise modifying the

picker architecture. We compare the deep-learning
picker with modified input, DKPN, with standard
PhaseNet when both are trained using the same IN-
STANCE data, training strategy and hyper-parameters
and applied to an INSTANCE in-domain and two
cross-domain datasets, ETHZ and PNW.
For P detection and picking, cross-domain applica-

tion to the ETHZ (Test 2; Figure 8) and PNW datasets
(Test 3; Figure 10) shows an improvement in F1 of
around 15% for DKPN over PhaseNet for the small-
est training dataset NANO2. For larger cross-domain
training datasets and for all INSTANCE in-domain test-
ing (Test 1; Figure 6) PhaseNet and DKPN show almost
identical performance. These results suggest that with
smaller size training datasets the domain-knowledge
modified input of the DKPN deep-learning model pro-
vides useful prior information for effective and stable
seismic phase detection and picking. The DKPN net-
work thus does not need to learn this information dur-
ing training (Figure 12), though the basic PhaseNet ar-
chitecture is still capable of efficiently learning equiv-
alent information during training with larger datasets.
In histograms of P pick residuals (Figures 7, 9 and
11), DKPN generally shows a higher count of near-zero
residual picks than PhaseNet, with slight reduction of
this difference for the largest training datasets. This
suggests the domain-knowledge modified input of the
DKPN provides some improvement in the fine-scale on-
set timing of picks over PhaseNet. Overall, besides
pick detection, much of the training for both PhaseNet
and DKPN likely involves refinement of onset timing,
phase identification and other pick characterization
tasks; these are difficult tasks in manual tuning of clas-
sical picker algorithms and perhaps fundamentally bet-
ter addressedwithmachine-learning optimization (Vas-
sallo et al., 2012; Yeck et al., 2020).
The improved DKPN performance for P picking rel-

ative to PhaseNet for the ETHZ and PNW datasets with
smaller training dataset sizes is likely due to the ETHZ
and PNW pre-event noise, event waveforms, and P and
S phase onsets having greater differences from the IN-
STANCE training waveforms than can be accommo-
dated by the generalization of the PhaseNet INSTANCE
training with small datasets. Important differences in
waveforms relative to INSTANCE may include a larger
number of regional events with lower frequency wave-
forms in ETHZ (Supplementary File S2), and the preva-
lence of sharper S onsets in PNW (Supplementary File
S3).
These learning and performance differences indi-

cate that for P picking, relative to purely data-driven
deep-learning pickers such as PhaseNet, DKPN or other
domain-knowledge machine-learning pickers may be
better for small to very small training sets, may gen-
eralize better, e.g. when applied cross-domain to wave-
forms having very different characteristics to the wave-
forms of the training events, andmay provide generally
smaller differences relative to manual pick timing.
In addition, for all NANO2 models (Figure 6, 8, 10),

DKPN is more stable than PhaseNet in P performances
across many threshold levels as indicated by the spread
of upper/lower limits of the mean (dashed curves). This
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Figure 11 Histograms of P and S pick residuals for selected INSTANCE training dataset sizes tested on the ETHZ dataset
(cross-domain). Results shown for the pick amplitude threshold (Thr) giving the highest F1 score for each case of dataset
size andmethod (DKPN or PhaseNet). Vertical, dashed gray lines show themaximumdifference between a pick time and the
corresponding label time (0.1 sec for P and 0.2 sec for S) to declare a correctly predicted arrival for evaluation statistics. Pick
counts show: Number of residuals (number of predicted picks) used in the mean, mode and standard-deviation statistics
(trimmed within twice ΔTp: ± 0.2 sec for P and ± 0.4 sec for S) / Total number of residuals available / Total number of label
picks available for the test case.

means that DKPN is less sensitive to changes in pick
threshold selection, proving to be more assertive about
onset prediction (i.e. sharper prediction probability
functions) even when few training data are available.
DKPN is also less sensitive to training-data selection as
resulting from different random selections across the 7
training-testing experiments, as shown from the upper
and lower bounds of F1-scores that better follow theme-
dian trends.
For S detection and picking, both PhaseNet and

DKPN show lower performance relative to P detec-
tion and picking (Figures 6-11), as also found for the
deep-learning pickers examined in (Münchmeyer et al.,
2022). This reduced performance is most likely due to S
arrivals occurring in the P coda, and to the often emer-
gent and complicated form of S arrival onsets, espe-
cially at regional distances in areas of complex geol-
ogy. For in-domain testing on INSTANCE datasets and
cross-domain ETHZ testing, PhaseNet and DKPN show
nearly identical S performance for all but the smallest
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training datasets. However, for the cross-domain PNW
test dataset DKPN shows slightly better S picking perfor-
mance than PhaseNet across all training dataset sizes.
This result may be related to the PNW dataset, relative
to INSTANCE and ETHZ, having a large number of clear,
impulsive S arrivals, which maymatch well impulsive P
arrivals for which classical pickers such as Filter Picker
are optimized, and thus more easily detected by DKPN.
Training dataset size is an important issue with deep-

learning pickers, as there are few large, well curated
and error-free seismic waveform datasets with reliable,
manual or other, reference picks. Many studies, such
as temporary aftershockmonitoring and short-term ex-
periments, may have manually picked datasets that are
too small for training with pure, data-driven picker
models. Moreover, waveforms for some studies may
have specific characteristics (e.g., in frequency content,
epicentral distance ranges, noise, distribution of mag-
nitudes) that preclude processing with machine learn-
ing methods pretrained with large datasets with differ-
ent waveform characteristics. Here we have used rela-
tively small to moderate size training datasets (~800 to
245k samples) relative to other key studies (e.g. 11k,
65k, 555k, 780k, 1.3M and 4.5M training and evalua-
tion traces for the 6 picker models examined in Münch-
meyer et al., 2022). We have shown that DKPN some-
times outperforms PhaseNet with smaller datasets for
P picking, especially for cross-domain picking of the
ETHZ and PNW datasets, probably due to the prior,
domain-knowledge information on picking inherent
in the DKPN input traces (Figure 12). Thus domain-
knowledge based methods such as DKPN may be espe-
cially useful for studieswith smaller datasets, especially
those with unusual waveform characteristics which ne-
cessitates picker retraining, as well as for when limited
computing time or resources are available. The combi-
nation of domain-knowledge basedmethodswith trans-
fer learning (e.g., Jozinović et al., 2021) may be partic-
ularly useful with small datasets that require retraining
of machine learning pickers.
The FilterPicker CF amplifies and transforms energy

onsets and changes in frequency content into abrupt,
step- or pulse-like waveforms, while remaining fairly
insensitive to absolute amplitudes and frequency con-
tent which vary between events and datasets (Figs 2-5).
Improvements in P picking performance of DKPN over
the purely data-driven PhaseNet may primarily be due
to the similarity between these CF waveforms and the
narrow, Gaussian wavelets of the target, probabilistic,
picks (Fig. 12). To help verify this proposition, we ran
a version of DKPN which retains the 3 channels of raw
waveform input, giving 8 channels total for input. This
change gives almost no difference in the picking results
such as mean andmedian F1 scores, except for a degra-
dation of results for S picking with the smallest train-
ing dataset NANO2, and the 8 channel input leads to in-
creased spread of the upper/lower limits of themean for
the NANO2 and MICRO training datasets. This reduc-
tion in performance suggest the 5 channels of CF’s plus
inclination and modulus waveforms input to DKPN re-
tain the majority of information relevant to picking ef-
fectively contained in the raw waveforms.

The DKPN network thus apparently receives rule-
based, deterministically modified input that resembles
a simple transformation of the required output defin-
ing pick detection, potentially simplifying training and
improving performance and stability, and also provid-
ing an inherent mechanism for generalization. On
the other hand, given a classical picker CF, the de-
sign and optimization of subsequent algorithms for
refining onset-timing, phase identification and other
characterization are difficult and somewhat haphaz-
ard tasks (Lomax et al., 2012; Vassallo et al., 2012).
In DKPN and PhaseNet these subsequent tasks are
performed by the deep-neural-network; indeed, high-
dimensional, stochastically-driven machine-learning is
eminently suited to such tasks. However, when obser-
vations from a network of seismometers are available,
a domain-knowledge, rule-based approach may also be
valuable for pick characterization tasks such as quality
control (Ning et al., 2022). And, in practice, domain-
knowledge is used to improve detection and picking
even with nominally, data-driven, machine-learning
pickers, since many studies apply a high-pass filter to
suppress known microseismic noise at longer period
and amplify arrivals of interest expected at higher fre-
quencies (Mousavi et al., 2019, 2020;Münchmeyer et al.,
2022; Ross et al., 2018b,a; Woollam et al., 2019).
Additional study might investigate the usage of “sim-

pler” and “shallower” model-architectures than that of
PhaseNet, while still feeding the DKPN input or simi-
lar. Such a configuration could help understand the ef-
fects of domain-knowledge onmachine-learningmodel
generalization. In particular, less complex architec-
tures may allow easier setting of meta-parameters dur-
ing the learning stages andbetter explanation of thema-
chine learning models, and produce more robust mod-
els that are easier to debug and improve. However,
if pick characterization tasks other than detection ac-
count formuch of the learning effort during training for
both DKPN and PhaseNet, then the use of CF, inclina-
tion andmodulus waveforms in DKPN is not likely to al-
low reducing the number of layers or otherwise simpli-
fying the underlying CNN architecture inherited from
PhaseNet.
FilterPicker and STA/LTA methods in general require

stabilization after the start of a time-series and after im-
pulsive arrivals; the time of stabilization for FilterPicker
is proportional to the long-term, recursive-filter time-
averaging scale. This stabilization, besides making it
necessary to have sufficient background data before the
first arrival in a time-series, usually degrades picker
sensitivity to arrivals closely followingprevious arrivals,
in particular an S arrival, even when higher amplitude
than the preceding P. This is one reasonwhywe include
in DKPN the instantaneous polarization modulus time-
series, which preserves S amplitude relative to P, and
the inclination time-series, which often changes char-
acter from predominantly up-down to near horizontal
at the S arrival. Future work might investigate if, in
the context of a domain-knowledge, machine-learning
picker, it is possible to modify the FilterPicker CF algo-
rithm to reduce adverse effects of the stabilization with-
out otherwise adversely affecting the overall picker per-
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Figure 12 Results with progression of epoch for models trained with the INSTANCE NANO2 dataset applied to ETHZ trace
samples. Panel a) shows de-meaned and normalized Z, N, E component input seismograms; panel b) normalized, DKPN
FilterPicker Z, N, E CFs, and normalized instantaneous inclination and modulus; and panel c) P (blue) and S (orange) pick
label data (red vertical lines). Panel e) shows PhaseNet (PN) and DKPN Gaussian P (blue) and S (orange) predicted picks after
epoch 15 training. Panel d) shows PhaseNet and DKPN probabilistic P (blue) and S (orange) pick predictions for a sequence
of training epochs; for clarity, the predictions for epochs 1 and 3 are not normalized. For the untrained model (epoch 0) the
predictions are random, non-linearmappings of the input traces. The epoch 0 predictions for DKPN reflect the input CFs and
polarization traces and show a distinct P arrival signature which is not present in the predictions for PhaseNet, which reflect
mainly amplitudes in the near-raw seismograms (continued).
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Figure 12 (Continued) The DKPN probabilistic predictions show in epoch 1 the P arrival as a step-like signal and the S
arrival as a concentrated prediction, in epoch 3 both P and S arrivals as isolated predictions, and from epoch 6 to 15 as stable
predictions, though in epoch 6 the P arrival has both P andSpredictions. PhaseNet obtains an Sbut not P prediction in epoch
3, isolated but noisy P and S predictions starting from epoch 6, and stable predictions between epochs 10 and 15. The slower
evolution of the PhaseNet predictions from near random to clear arrivals through epochs 0-6 support that it is learning both
arrival detection andpicking throughout the trainingprocess. P predictions at the S arrival time for bothPhaseNet andDKPN,
and S predictions at the P arrival for DKPN visible in epochs 3 and 6 are highly suppressed through learning by epoch 10. The
final PhaseNet P and S picks are delayed relative to the label picks, likely due to the emergent amplitude of the arrivals which
is not represented well in the INSTANCE training dataset. The final DKPN picks do not show this delay, likely due to the high
sensitivity of the domain-knowledgepreprocessing (panel b) to changes inwaveformcharacteristics besides amplitude, such
as frequency content.

formance.
Relative to PhaseNet, DKPNhas an increase in overall

training and evaluation time due to the preprocessing
required to derive the 3-component, FilterPicker CFs,
modulus and inclination from the seismogram wave-
forms. However, our calculations in this study show
that the processing time penalty is effectively removed
through code optimization and use of parallel, GPUpro-
cessing. In addition, preprocessing the training dataset
once before training and storing it on disk or in mem-
ory can removemost of the DKPN training time penalty.
Moreover, despite having an increased dimensionality
of input data, DKPN training converges faster (requires
fewer epochs) than PhaseNet (see Supplementary File
S4).

5 Conclusions
Using seismological domain-knowledge, we transform
3-component seismograms into the characteristic func-
tions of a classical, multi-band picker, plus instan-
taneous modulus and inclination. We replace the
near-raw seismogram input of the deep-learning picker
PhaseNet with these transformed traces, forming
DKPN, a modified PhaseNet, and we compare the per-
formance of DKPN and standard PhaseNet with differ-
ent training and testing datasets. DKPN shows some
improvements in performance and generalization over
PhaseNet, and may be applicable with smaller train-
ing datasets. DKPN requires more computation time
than standard PhaseNet due to the additional, domain-
knowledge preprocessing. However, this time penalty
can be removed with code optimization, GPU use,
real-time processing, and storing DKPN preprocessed
waveforms for training. Additionally, DKPN training
time (number of epochs) may be reduced relative to
PhaseNet.
For P arrivals, DKPN shows little or no improve-

ment in performance over PhaseNet in picking the in-
domain, INSTANCEdataset for all training dataset sizes,
and in picking cross-domain ETHZ and PNW datasets
for larger training dataset sizes. These results demon-
strate the power and robustness of the PhaseNet ar-
chitecture for extracting information relevant to pick
detection and characterization from near-raw seismo-
gram waveforms. However, DKPN generally shows im-
proved statistics such as true positive rate and increased
number of picks with small residuals, and sometimes

improved metrics such as F1 score, especially for
small training datasets and for cross-domain testing.
These improvements can be attributed to the addi-
tional information relevant to picking introduced in the
DKPN input data by the rule-based, domain-knowledge
waveform preprocessing. For the purely data-driven
PhaseNet, much of this same picking-specific informa-
tion must be learned by the network in training; the ef-
ficiency and success of this training will depend on the
training dataset being sufficiently large and having sim-
ilar event waveform characteristics to the application
datasets.
The performance of both PhaseNet and DKPN is

worse for picking S arrivals than for P, likelymainly due
to S onsets occurring in the P coda. Both models show
similar S performance for in- and cross-domain pick-
ing on the ETHZdataset, but DKPN shows slightly better
performance than PhaseNet for cross-domain S picking
on the PNW dataset, likely due to the frequent occur-
rence of sharp S onsets on the PNW waveforms which
are less prevalent in the INSTANCE training data.
Overall, our results show that PhaseNet, and perhaps

deep-neural-network pickers in general, have a suffi-
ciently large and complex architecture to learn to ac-
curately map key characteristics of seismogram wave-
forms andphase onset energy into detections andpicks,
including for cross-domain application. This learning
requires comprehensive and high-quality, but not nec-
essarily very large training datasets.
However, given our results, DKPN is of interest for

cross-domain picking when retraining on the target
dataset is not possible, or for cases where training is
needed but can be performed on only a very small
dataset, such as when few manual picks are available.
Further work with DKPN and other, domain-knowledge
augmented machine-learning procedures for picking
and other seismological analyses is warranted to in-
vestigate performance improvements over pure, data-
driven, learning algorithms, especially for small or
highly varied training datasets and for strongly cross-
domain application.
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Abstract Compilations of earthquake moment tensors from global and regional catalogs find pervasive
non-double-couple (NDC) components with a mean deviation from a double-couple (DC) source of around
20%. Their distributions vary only slightly with magnitude, faulting mechanism, or geologic environments.
This consistency suggests that for most earthquakes, especially smaller ones whose rupture processes are
expected to be simpler, the NDC components are largely artifacts of the moment tensor inversion procedure.
This possibility is also supportedby the fact thatNDCcomponents for individual earthquakeswithMw < 6.5 are
only weakly correlated between catalogs. We explore this possibility by generating synthetic seismograms for
the double-couple components of earthquakes around the world using one Earth model and inverting them
with a different Earthmodel. Tomatch thewaveformswith a different Earthmodel, the inversion changes the
mechanisms to include a substantial NDC component while largely preserving the fault geometry (DC com-
ponent). The resulting NDC components have a size and distribution similar to those reported for the earth-
quakes in the Global Centroid Moment Tensor (GCMT) catalog. The fact that numerical experiments replicate
general features of the pervasive NDC components reported in moment tensor catalogs implies that these
components are largely artifacts of the inversions not adequately accounting for the effects of laterally vary-
ing Earth structure.

1 Introduction
Moment tensors (MTs) are a general description of
earthquake sources, providing information beyond a
double-couple (DC) force system representing slip on
a fault plane (Gilbert, 1971). The deployment of global
digital seismic networks allowed development of large
catalogs of moment tensors (e.g., Ekström et al. 2012).
These catalogs have become an important tool in stud-
ies worldwide, including analyzing global platemotions
and deformation in plate boundary zones and within
plates.
As MT catalogs were developed (Dziewonski et al.,

1981), it became clear that many earthquakes showed
non-double-couple (NDC) componentswhose origin be-
came a topic of investigation (Sipkin, 1986; Frohlich,
1994). This effect is evident along many plate bound-
aries (Fig. 1). For example, along the Mid-Atlantic
ridge, many earthquake mechanisms deviate from the
DC mechanisms for pure strike-slip on transforms and
normal faulting on ridge segments (Tréhu et al., 1981).
A NDC component is identified by decomposing a

moment tensor. Diagonalization of the MT yields a
tensor with eigenvalues λ1, λ2 and λ3 on its diagonal,
where λ1 > λ3 > λ2. Subtracting a diagonal matrix
with components equal to the isotropicmoment M iso

0
=

∗Corresponding author: boris@earth.northwestern.edu

(λ1 + λ2 + λ3) /3, representing the source’s volumetric
change, yields the deviatoric moment tensor typically
reported in catalogs. The deviatoric MT has no net vol-
ume change because its trace, the sum of its eigenval-
ues, λ′

1
+ λ′

2
+ λ′

3
= 0.

The decomposition of this deviatoric MT into a DC
and a NDC component (Knopoff and Randall, 1970) de-
scribes the NDC component as a compensated linear
vector dipole (CLVD), three force dipoles with one twice
themagnitudeof theothers, yieldingnovolumechange,
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quantifies the size of the NDC component, the deviation
from a DC source (Dziewonski et al., 1981).
NDC components can arise in several ways. Some ap-

pear to reflect intrinsically complex source processes

1
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Figure 1 The sourcemechanisms of the 62337 earthquakes in the Global CentroidMoment Tensor (GCMT) catalog between
1976 and 2022. Many mechanisms show a substantial non-double couple (NDC) component.

that differ from slip on a planar fault for earthquakes
in specific geologic environments, notably volcanic
areas (e.g., Kanamori and Given, 1982; Ross et al.,
1996; Nettles and Ekström, 1998; Shuler et al., 2013a,b;
Gudmundsson et al., 2016; Sandanbata et al., 2021;
Rodríguez-Cardozo et al., 2021). Others are additive, re-
flecting the combined effect of near-simultaneous rup-
ture on multiple faults with different geometries (e.g.,
Kawakatsu, 1991; Hayes et al., 2010; Hamling et al.,
2017; Scognamiglio et al., 2018; Yang et al., 2021; Ruhl
et al., 2021), or a rupture with changes in geometry
(Wald and Heaton, 1994; Cohee and Beroza, 1994; Pang
et al., 2020). Alternatively, they may be artifactual (Mc-
Namara et al., 2013; Ammon et al., 1994), results of the
inversionwithout geologicmeaning, generatedbynoise
in the waveforms (Šílený et al., 1996; Jechumtálová and
Šílený, 2001), inappropriate seismic station coverage
(Cesca et al., 2006; Ford et al., 2010; Vera Rodriguez
et al., 2011; Domingues et al., 2013), or not accounting
for laterally varying Earth structure during the inver-
sion (Šílený, 2004; Cesca et al., 2006; Rößler et al., 2007).
By comparingMTs in the Global CMTProject (GCMT)

and U.S. Geological Survey (USGS) catalogs, Rösler et al.
(2021) found that the distribution (e.g., mean and stan-
dard deviation) of NDC components in different cata-
logs are quite similar. However, the actual values are
only weakly correlated for events with Mw < 6.5. Be-
cause the catalogs use different inversion procedures,
the poor correlation between theNDC components sug-
gests that they are artifacts. Moreover, using a large
dataset compiled frommultiple global and regional MT
catalogs, Rösler and Stein (2022) found that for earth-
quakes with magnitudes 2.9 < Mw < 8.2, NDC compo-

nents are common,with an average value of 2|ǫ|= 23.2%
that varies only slightly with magnitude. They argued
that this consistency indicates that NDC components
are unlikely to reflect rupture on multiple faults, which
is more likely to occur for large earthquakes (Quigley
et al., 2017). They also found only small differences in
NDC components between earthquakes with different
faulting mechanisms, or in different geologic environ-
ments. These results are interesting in that NDC com-
ponents are often assumed to be most likely in volcanic
and thus extensional environments (Ross et al., 1996;
Julian and Sipkin, 1985; Miller et al., 1998; Nettles and
Ekström, 1998). Hence the consistency suggests that
for most earthquakes, especially smaller ones, the NDC
components do not reflect complex rupture processes
and are therefore artifacts of the moment tensor inver-
sion.
Studies have identified the influence of Earth struc-

ture on moment tensor inversions (Henry et al., 2002;
Hjörleifsdóttir and Ekström, 2010), and attempts have
been made to reduce the uncertainties introduced by
lateral heterogeneity in the Earth in inversions based
on one-dimensional (1D) Earthmodels (Vasyura-Bathke
et al., 2021; Phạm and Tkalčić, 2021). Apart, mo-
ment tensor solutions based on Green’s functions gen-
erated for three-dimensional (3D) Earth models for re-
gional earthquakes have been calculated (Hingee et al.,
2011; Hejrani et al., 2017; Zhu and Zhou, 2016; Wang
and Zhan, 2020; Liu et al., 2004; Jechumtálová and Bu-
lant, 2014; Covellone and Savage, 2012), which, in some
cases, were improved using rotationalmotions (Donner
et al., 2020). Sawade et al. (2022) compiled the CMT3D
moment tensor catalog for global earthquakes with Mw
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≥ 5.5 using a 3D Earth model for the inversion. Its NDC
components are smaller on average than the ones in the
GCMTcatalog, showinghow spuriousNDCcomponents
can be reduced in inversions accounting for lateral vari-
ations in the structure of the Earth.
The availability of multiple moment tensor catalogs

with different inversion procedures allows us to quan-
tify this phenomenon on a global scale, and we explore
whether the distribution of NDC components can be
generated by the MT inversion process by generating
synthetic seismograms for pure DC source processes
and invert them using an approach that simulates the
effect of uncertainties in the Earth structure assumed
for the inversion.

2 Methodology
For our study, we model earthquakes selected from the
Global CentroidMoment Tensor (GCMT) catalog, which
contains about 60,000 earthquakes since 1976 (Ekström
et al., 2012). We classify earthquakes by their faulting
type, following Frohlich (1992). We calculate the plunge
of the P- (most compressive), N- (null), and T-axes (least
compressive) from the eigenvectors of themoment ten-
sors. An earthquake is considered a normal faulting
earthquake if its P-axis plunge satisfies sin2 δP ≥ 2/3
(δP ≥ 54.75◦), strike-slip if its N-axis plunge exceeds
54.75◦, and a thrust fault if its T-axis plunge exceeds
54.75◦ (Saloor and Okal, 2018). If the plunge of none of
the axes exceeds the threshold, an earthquake is con-
sidered oblique faulting. Of the earthquakes in the cat-
alog up to the year 2022, 34.9%have thrustmechanisms,
24.5% are strike-slip, 22.2% have normal faultingmech-
anisms, and 18.4% have oblique-faulting mechanisms.
We thereforemodel nine earthquakeswith thrustmech-
anisms, six with strike-slip mechanisms, five with nor-
mal faultingmechanisms, andfivewith oblique faulting
mechanism, consistent with the fractions in the GCMT
catalog. We choose these 25 earthquakes as representa-
tive of the geologic environment they occurred in, with
a geographical distribution over all continents to avoid
bias due to Earth’s elliptical shape and its rotation (Fig.
2). 22 of them have depths of less than 30km, similar
to the vast majority of earthquakes in the GCMT cata-
log. To avoidmagnitudebias, wemodel the earthquakes
with amomentmagnitudeofMw 7.0, whichensures that
they are detected at stations around the world, but can
be modeled as a point source.
The one-dimensional Preliminary Reference Earth

model (PREM, Dziewonski and Anderson, 1981) is used
by the three global MT catalogs of the Global CMT
Project (Dziewonski et al., 1981; Ekström et al., 2012),
the USGS (Hayes et al., 2009) and the Deutsches Geo-
ForschungsZentrum (GFZ, Joachim Saul, personal com-
munication, 2022) in their inversion procedure. To sim-
ulate the deviation of the Earth model used in the in-
version from the actual Earth structure, we perturb the
one-dimensional model for the generation of synthetic
seismograms. We calculate synthetic seismograms by
way of normal mode summation for a spherically sym-
metric non-rotating Earth and include the effects of at-
tenuation and self-gravitation for both the spheroidal

and toroidal components from angular order 0 to 8000
with a period range of 0 to 20 mHz and a sampling
rate of 1/s. The first 200 dispersion branches are also
included in the synthetic seismogram calculation, and
the moment tensor is incorporated by convolving the
eigenfunctions with the moment tensor components
obtained for the DC component from the MTs as re-
ported in the GCMT catalog. We then invert them us-
ing Green’s functions generated for the unperturbed
PREMmodel. AnyNDC component in the resultingmo-
ment tensors is thus an artifact of the inversion result-
ing from the difference in Earth structure. This pro-
cess simulates current methodology for global catalogs
in which MTs are found using one-dimensional (later-
ally homogeneous) Earth models. Although ideally the
analysiswould involve generating and inverting seismo-
grams for three-dimensional (laterally varying) Earth
models, our approach using a range of perturbations
allows quantifying the effect of laterally varying Earth
structure in the inversion.
We perturb the elastic and anelastic structures of the

Earth model independently while retaining the elastic
moduli K, the bulk modulus, and µ, the shear modulus
(Dahlen and Tromp, 1998, Section 3.6.2) in each layer
from the PREMmodel. We determine µ and K from the
PREM P- and S-wave velocities vpv and vsv, and density
ρ using

(3)

vsv =

√

K

µ
⇒ µ = v2

svρ

vpv =

√

K + 4

3
µ

ρ
⇒ K = ρ

(

v2

pv − 4

3
v2

sv

)

.

Next, we perturb the P-wave velocity vpv by randomly
choosing its value from a Gaussian distribution with
mean vpv and standard deviation 1, 3, 5, and 10%, which
reflect theuncertainties in the velocities (Dalton andEk-
ström, 2006). Keeping K and µ constant, we then deter-
mine the new density in each layer as

(4)ρnew =
K + 4

3
µ

v2
pv, new

from which we determine the new S-wave velocity as

(5)vsv =

√

µ

ρnew

.

Of the 185 layers in the model PREM, nine in the up-
per mantle are anisotropic. For those, η (Dahlen and
Tromp, 1998, Section 8.9) which relates the horizontal
P-wave velocity to the vertical S-wave velocity is given,

(6)η =
F

ρold

(

v2

ph, old − 2v2

sv, old

) ,

from which we obtain F = ηρold

(

v2

ph, old − 2v2

sv, old

)

.
The new horizontal P-wave velocity is then

(7)vph, new =

√

F

ηρnew

+ 2v2
sv, new.
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Figure 2 Earthquakes and seismic stations used in this study. The location and origin time of the earthquakes are listed in
Table 1. Consistent with the fractions in the Global CentroidMoment Tensor (GCMT) catalog, nine of the 25 earthquakes have
a thrust faulting mechanism, six have a strike-slip faulting mechanism, five have a normal faulting mechanism, and 5 have
an oblique faulting mechanism. The 150 seismic stations in the Global Seismographic Network (GSN) network provide good
worldwide station coverage.

Number Date Time Latitude Longitude Depth Mw Faulting Type
1 2005-10-08 03:50:40.8 34.54 73.59 12.0 7.58 thrust
2 2010-05-09 05:59:41.6 3.75 96.02 37.2 7.25 thrust
3 2011-03-11 06:15:45.0 36.13 140.23 29.0 7.89 thrust
4 2015-09-16 22:54:32.9 -31.57 -71.67 17.4 8.27 thrust
5 2016-04-16 23:58:36.9 0.35 -79.93 22.3 7.78 thrust
6 2018-02-25 17:44:44.1 -6.07 142.75 12.0 7.47 thrust
7 2020-06-23 15:29:04.3 15.88 -96.01 21.5 7.38 thrust
8 2021-03-04 19:28:33.2 -29.72 -177.28 33.9 8.07 thrust
9 2021-08-14 11:57:43.5 55.18 -157.64 25.0 7.00 thrust
10 2004-12-23 14:59:04.4 -49.31 161.35 27.5 8.08 strike-slip
11 2015-02-13 18:59:12.2 52.65 -31.9 25.2 7.07 strike-slip
12 2016-08-29 04:29:57.9 -0.05 -17.83 26.8 7.10 strike-slip
13 2019-07-06 03:19:53.0 35.77 -117.6 12.0 7.03 strike-slip
14 2020-01-28 19:10:24.9 19.42 -78.76 23.9 7.69 strike-slip
15 2021-05-21 18:04:13.6 34.59 98.24 12.0 7.42 strike-slip
16 2006-02-22 22:19:07.8 -21.32 33.58 12.0 7.01 normal
17 2007-01-13 04:23:21.2 46.24 154.52 12.0 8.10 normal
18 2015-12-04 22:25:00.1 -47.62 85.09 28.9 7.10 normal
19 2018-12-05 04:18:08.4 -21.95 169.43 17.8 7.53 normal
20 2020-10-30 11:51:27.4 37.91 26.78 12.0 6.99 normal
21 2000-11-16 04:54:56.7 -3.98 152.17 24.0 8.00 oblique
22 2006-10-15 17:07:49.2 19.88 -155.93 48.0 6.71 oblique
23 2013-09-24 11:29:48.0 26.97 65.52 12.0 7.70 oblique
24 2013-11-17 09:04:55.5 -60.27 -46.4 23.8 7.78 oblique
25 2021-01-11 21:32:59.0 51.28 100.44 13.9 6.79 oblique

Table 1 List of earthquakes used in this study as reported in theGCMT catalog, indicating their origin time, location, depths,
magnitude, and faulting type.

The new horizontal S-wave velocity vsh is not re-
stricted by the elastic constants and can thus be per-
turbed independently, similarly to the vertical P-wave
velocity vpv. Because the values related to anelastic
structure are much less understood than the elastic
structure (Karaoǧlu and Romanowicz, 2018), the anelas-

tic structure is perturbed by randomly choosing a value
from Gaussian distributions whose means, 1/Qκ and
1/Qµ, are the inverse of the original P- and S- wave qual-
ity factors, andwhose standard deviations of 25, 50, and
75% thereof are typical for the variations found in atten-
uation tomography studies (e.g., Dalton and Ekström,
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Figure 3 Comparison of the elastic structure of the Earth models used in this study, based on perturbation of model Pre-
liminary Reference Earth Model (PREM)

2006).
Using these perturbed Earth models (Fig. 3), we

generate three-component seismograms for the 150
stations of the Global Seismographic Network (GSN,
Ringler et al., 2022) fromone hour before the event time
until 8000 s after it. This guarantees that the surface
waves are included in the synthetic seismograms for all
stations. For each earthquake we use the fifty closest
stationswhich have an epicentral distance of at least 10◦

to avoid near-source effects (Aki and Richards, 2002).
To invert the seismograms, we use Green’s func-

tions generated for the unperturbed PREM model and
perform a least-squares centroid MT inversion in a
Bayesian framework using BayesISOLA (Vackář et al.,
2017). BayesISOLA finds the moment tensor elements
that give the best-fitting match to the synthetic seismo-
grams in a full-waveform inversion from a linear com-
bination of the Green’s functions with the moment ten-
sor elements as coefficients. We use frequencies from
0.002 to 0.01Hz (i.e., periods between 100 and 500 s),
as commonly used for global moment tensor inver-
sions of large earthquakes (Ekströmet al., 2012;Duputel
et al., 2018; Kanamori andRivera, 1993; Kanamori, 2008;
Hayes et al., 2009), and the covariancematrix of Green’s
functions (Hallo and Gallovič, 2016) to estimate the ef-
fects of uncertainty in the Earth model. We fix the cen-
troid location to the point for which the synthetic seis-
mograms are generated but invert for centroid time in
the range of ±15 s about the centroid time of the syn-
thetic event. We do not allow station-specific time de-
lays as used in the inversion procedures of the GCMT
catalog (Dziewonski et al., 1984). BayesISOLA calcu-
lates the best solution for the moment tensor as well
as the posterior probability density function describing
the uncertainty of the MT elements. Although the un-
certainty might be useful to distinguish whether result-
ing NDC components are real or artifacts of the inver-
sion, we only use the best solution in the comparison of
the results with GCMT catalog, similar to the reported

MTs in this catalog.
Similar to theprocedure of theGCMTcatalog, we con-

strain the isotropic component of theMTs during the in-
version so that the resulting MTs are purely deviatoric
(λ′

1
+ λ′

2
+ λ′

3
= 0). However, in contrast to the GCMT

procedure, we use longer period seismic waves. GCMT
uses surface waves between 50 s and 150 s and mantle
waves between 125 s and 350 s (Ekström et al., 2012). We
do not use surface-waves delay dispersionmaps, but the
inversion procedures are comparable inmost of param-
eters.

3 Results
Figure 4 shows an example of the seismic waveforms
generated for the DC component of earthquake 12 in
figure 2 at station II.SUR in Sutherland, South Africa,
for a perturbed Earth model. Inversion of these seis-
mograms using the unperturbed model PREM results
in a moment tensor with an 8.7% artifactual NDC com-
ponent, such that the waveforms generated for the re-
sultingMT are nearly indistinguishable from those gen-
erated for the DC MT and the perturbed Earth model.
Thus inversionwith a different Earthmodel changes the
mechanism to best match the waveforms at all stations
by introducing a substantial NDC component. Repeat-
ing the process twelve times using different perturbed
models to generate synthetic seismograms and invert-
ing them with the unperturbed model yields a range of
focal mechanisms (Fig. 5) with varying artifactual NDC
components, averaging 4.4% for a perturbation of 5% in
the elastic structure.
The DC component of theMT— the fault geometry —

is generally retrieved well, as measured by the angle Φ
in space required to rotate one set of a moment tensor’s
principal axes into the ones of another (Kagan, 1991).
The angles are generally small, with an average value of
7.8◦, less than the differences betweenmoment tensors
of the GCMT and the USGS for earthquakes of this mag-

5
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Figure 4 a) Stations for the moment tensor inversion of synthetic seismograms generated for the mid-Atlantic ridge earth-
quake of March 14, 1994. We used the fifty closest stations of the GSN network with an epicentral distance of at least 10◦. b)
Synthetic seismogram at station II.SUR (Sutherland, South Africa) generated for the DC component of themoment tensor for
a perturbedmodel PREMwith standarddeviation of 5% in the seismic velocitieswith periods of 100 to 500 s. c) Synthetic seis-
mogram generated for the moment tensor resulting from the inversion performed using Green’s functions generated for the
unperturbed model PREM, compared to the input synthetic seismogram in b). Matching the waveform produces a spurious
NDC component.

Figure 5 Inversion results for the mid-Atlantic ridge earthquake of March 14, 1994. Synthetic seismograms were gener-
ated for a pure double-couple (DC)mechanism and twelve different perturbedmodels based on Preliminary Reference Earth
Model (PREM) and inverted using the unperturbedmodel. The resulting moment tensors (MTs) have very similar DC compo-
nents, but substantial non-double couple (NDC) components (shown as twice as large) that differ in polarity and size.

6
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Figure 6 Inversion results for five inversions of each of the 25 earthquakes with five different perturbations of the elastic,
and four different inversions of the anelastic structure. a) The resulting non-double-couple (NDC) components (2ǫ) depend
primarily on the perturbation of the elastic Earth structure, with anelastic structure having little influence on the size of the
NDC components. b) The angle required to rotate one moment tensor’s set of principal axes into another (Φ) shows similar
dependence on perturbations of the elastic and anelastic structure. The fault geometry is retrievedwell, with rotation angles
generally being smaller than 20◦.

nitude (Rösler et al., 2021). However, the NDC compo-
nents vary significantly in polarity and in size between
-17.1 and 5.6%.

Carrying out five inversions for each of the 25 earth-
quakes with five different perturbations of the elastic
and four perturbations of the anelastic structure each
yields 2500 inversions. The resulting NDC components
depend primarily on the perturbation of the elastic
structure of the Earth model (Fig. 6a). Similarly, the
deviation in fault geometry (Fig. 6b) depends little on
the perturbation of the anelastic structure, further illus-
trating the relative importance of elastic and anelastic
Earth structure on seismic waveforms (Dahlen, 1982).
The values for the rotation angle are generally small,
indicating that the DC component is recovered rela-
tively accurately by inversions that poorly represent the
actual Earth structure, whereas the NDC components
have large uncertainties and are often artifacts of the in-
version.

The NDC components reported in the GCMT cat-
alog average 23.5% for all earthquakes. However,
earthquakes with Mw > 6.5 have, on average, smaller
NDC components (17.2%), which are determined with
greater precision (Rösler et al., 2021, 2023). The NDC
components in our experiment resulting from inade-
quate representation of the Earth structure in the inver-
sion are generally smaller than those of the earthquakes
in the GCMT catalog when perturbing the elastic (Fig.
7a) and the anelastic Earth structure (Fig. 7b) indepen-
dently. However, a perturbation of 10% in the elastic
structure and 75% in the anelastic structure together re-
produces the mean and standard deviation of the dis-
tribution of the NDC components in the GCMT catalog

(Fig. 7c), making it possible to explain the NDC com-
ponents in the GCMT catalog as resulting from not ac-
counting for laterally varying Earth structure. Perturb-
ing the elastic structure of theEarthmodel alone by 10%
without perturbing the anelastic structure results in an
average NDC component of 19.5%, only slightly smaller
than the observed NDC components in the GCMT cata-
log. However, uncertainties in the anelastic structure
are large (Karaoǧlu and Romanowicz, 2018) and can
reach 75% for seismic waves with periods of 100s as
used in this experiment (Dalton and Ekström, 2006).

4 Discussion and Conclusions

Generating synthetic seismograms for the DC compo-
nents of 25 arbitrarily selected earthquakes in theGCMT
catalog using one Earth model and inverting them with
another Earth model gives rise to MTs with NDC com-
ponents because the inversion changes the mechanism
to include a substantial NDC component. Perturbing
both elastic and anelastic Earth structure yields a dis-
tribution of NDC components similar to that of NDC
components reported for the earthquakes in the GCMT
catalog. This process shows the sensitivity of MTs to
the effects of variable Earth structure. This behavior
is expected to be similar, but larger, for shorter periods
than the > 100 s we present, which is presumably why
smaller earthquakes have larger NDC components than
larger earthquakes in global MT catalogs.
These results for global datasets are generally sim-

ilar to those derived for regional data. Stierle et al.
(2014b) found that unconstrained MT inversions allow-
ing an isotropic component produce largerNDCcompo-
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Figure 7 Distribution of non-double couple (NDC) components generated by inverting seismograms generated using a
model with perturbed elastic (a) and anelastic (b) structure using unperturbed Preliminary Reference Earth Model (PREM). A
combined perturbation of elastic and anelastic structure (c) generally reproduces the distribution of NDC components in the
Global Centroid Moment Tensor (GCMT) catalog.

nents than constrained inversions. Stierle et al. (2014a)
found that the aftershocks of the Mw 7.4 Izmit earth-
quake in 1999 had average NDC components of 19.6%.
For the earthquakes of a swarm in 1997 in Czech Repub-
lic, Vavryčuk (2002) and Horálek et al. (2002) reported
a mean deviation from a DC source of 17.3%. These
studies found earthquakes with NDC components of up
to 57.0% and 49.8%, respectively. The MT inversion in
both studies used Green’s functions generated for re-
gional 1D Earth models, using the P- and S-wave ampli-
tudes to stabilize the inversion, thus giving confidence
that these NDC components represent real source pro-
cesses.
NDC components of some earthquakes reflect com-

plex source processes differing from slip on a planar
fault or the combined effect of DC sources on multi-
ple faults with different geometries. However, the fact
that our numerical experiment replicates general fea-
tures of the pervasiveNDC components reported inmo-
ment tensor catalogs implies that these components
are largely artifacts of the inversions not adequately ac-
counting for the effects of laterally varying Earth struc-
ture.
This effect seems similar for the other MT catalogs

we examined, which show comparable NDC compo-
nents. TheMTs in all global catalogs were derived using
the one-dimensional Earth model PREM. However, the
GCMT catalog corrects seismic waveforms for laterally
varying Earth structure along the great-circle path of
surface waves (Dziewonski et al., 1984). This approach
changes the phase spectra, but not the amplitude spec-
tra, and thus does not fully represent the expected ef-
fects of 3D structure.
NDC components are often attributed geologicmean-

ing based on their size (Vavryčuk, 2002; Stierle et al.,
2014a) without further investigation about their origin.
Large NDC components and NDC components of large
earthquakes are in fact more reliably determined in
MT inversions based on 1D Earth models (Rösler et al.,
2023) and are thus more likely to represent real source

processes. However, based on the results of our nu-
merical experiment, the threshold above which they
can be considered real source processes based only on
their size must be placed at 2σ from their global av-
erage of 23.5% at 61.7%, consistent with the results of
Rösler et al. (2023). Earthquakes with real, but smaller
NDC components exist, but require further knowledge
about the geologic setting of the fault rupture occurred
on, or knowledge from multiple MT inversions with
different Earth models to confirm the significance of
NDC components. MT inversions of global catalogs can
be improved and artifactual NDC components reduced
by using Green’s functions generated for a 3D Earth
model. However, Šílený and Vavryčuk (2002) found that
isotropic and compensated linear-vector dipole (CLVD)
components are overestimated for DC sources when in-
verting events with waveforms recorded in anisotropic
structures but assuming isotropy. Therefore, the best
estimates of NDC components require a laterally vary-
ing Earth model including anisotropy (Hjörleifsdóttir
and Ekström, 2010; Sawade et al., 2022).
The results here, combined with the poor correlation

betweenNDC components in different catalogs, suggest
that the pervasive NDC components reported in mo-
ment tensor catalogs are largely artifacts of the inver-
sions not adequately accounting for the effects of later-
ally varying Earth structure. More realistic estimates of
NDC components will thus require inversion methods
that better model the effects of lateral variability which
increase computational cost and are less applicable for
routinely determined MTs.
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Abstract The twomoderate earthquakes that occurred close and to thenorthof theNorthAegeanTrough
(NAT) on 26 September 2020 (Mw5.3) and 16 January 2022 (Mw5.4), both followed by aftershock activity, are
examined. Seismic activity along the NAT and its parallel branches is continuous and remarkable, with nu-
merous strong instrumental (M≥6.0) earthquakes. Yet, the frequency of moderate (5.0≤M<6.0) earthquakes
outside thesemajor fault branches is rather rare and therefore their investigation provides the optimalmeans
to decipher the seismotectonic properties of the broader area. The temporal and spatial proximity of the two
seismic excitations from late September of 2020 through early 2022, intrigues for exhaustive investigation of
seismic activity with the employment of earthquake relocation techniques,moment tensor solutions and sta-
tistical analysis. Our research revealed that this seismic activity purely falls inside theMainshock – Aftershock
type, with fast aftershock decay rates and moderate productivity. According to our findings, the two seismic
sequences, despite their close proximity, exhibit distinctive features as a result of the intricate stress field gen-
erated at the western termination of the NAF system in an extensional domain.

Περίληψη Αντɩκείμενο της μελέτης μɑς είνɑɩ οɩ δύο σεɩσμοί ενδɩɑμέσοʊ μεɣέθοʊς ποʊ έɣɩνɑν πλησίον
κɑɩ ꞵόρεɩɑ της τάɸροʊ τοʊ Β. Αɩɣɑίοʊ στɩς 26 Σεπτεμꞵρίοʊ 2020 (Μw5.3) κɑɩ στɩς 16 Ιɑνοʊɑρίοʊ 2022 (Μw5.4)
μɑζί με τɩς μετɑσεɩσμɩκές τοʊς ɑκολοʊθίες. Η σεɩσμɩκή δρɑστηρɩότητɑ κɑτά μήκος της τάɸροʊ τοʊ Β.
Αɩɣɑίοʊ κɑɩ των πɑράλληλων κλάδων της δεν είνɑɩ σπάνɩɑ, με πολλούς ɩσꭓʊρούς σεɩσμούς (M≥6.0) νɑ έꭓοʊν
κɑτɑɣρɑɸεί κɑτά την ενόρɣɑνη περίοδο της σεɩσμɩκότητɑς. Από την άλλη πλεʊρά, ενδɩɑμέσοʊ μεɣέθοʊς
(5.0≤M<6.0) σεɩσμοί εκτός ɑʊτών των κύρɩων κλάδων σʊμꞵɑίνοʊν πολύ σπάνɩɑ, ως εκ τούτοʊ η μελέτη
τοʊς ɑποτελεί μίɑ πρώτης τάξης εʊκɑɩρίɑ ɣɩɑ την ɑνɑλʊτɩκή ερμηνείɑ των σεɩσμοτεκτονɩκών ɩδɩοτήτων
της εʊρύτερης περɩοꭓής. Η ꭓωρɩκή κɑɩ ꭓρονɩκή εɣɣύτητɑ των δύο σεɩσμɩκών εξάρσεων ποʊ τέθηκε σε
εξέλɩξη ɑπό τɑ τέλη Σεπτεμꞵρίοʊ τοʊ 2022 έως τɩς ɑρꭓές τοʊ 2022 εʊνοεί την ενδελεꭓή δɩερεύνηση της
σεɩσμɩκής δρɑστηρɩότητɑς με τη ꭓρήση τεꭓνɩκών ɣɩɑ τον επɑνɑπροσδɩορɩσμό των εστɩɑκών σʊντετɑɣμένων,
τον κɑθορɩσμό των μηꭓɑνɩσμών ɣένεσης τοʊς κɑɩ στɑτɩστɩκή ɑνάλʊση της σεɩσμɩκότητɑς. Τɑ ɑποτελέσμɑτɑ
της στɑτɩστɩκής ɑνάλʊσης ποʊ πρɑɣμɑτοποɩήθηκε ʊποδεɩκνύεɩ ότɩ οɩ σεɩσμɩκές ɑʊτές εξάρσεɩς ɑκολοʊθούν
τʊπɩκό μοτίꞵο ɑκολοʊθίɑς Κύρɩος σεɩσμός–Μετɑσεɩσμοί, με ʊψηλή ɑπόσꞵεση των ρʊθμών σεɩσμɩκότητɑς
κɑɩ μέτρɩοʊ ꞵɑθμού πɑρɑɣωɣɩκότητɑ. Σύμɸωνɑ με τɑ εʊρήμɑτά μɑς οɩ δύο σεɩσμɩκές ɑκολοʊθίες, πɑρά
τη ꭓωροꭓρονɩκή τοʊς εɣɣύτητɑ πɑροʊσɩάζοʊν δɩɑκρɩτά ꭓɑρɑκτηρɩστɩκά ως ɑποτέλεσμɑ τοʊ περίπλοκοʊ
τοπɩκού κɑθεστώτος τάσεων ποʊ οɸείλετɑɩ στον τερμɑτɩσμό της ζώνης μετɑσꭓημɑτɩσμού της Β. Ανɑτολίɑς
σε ένɑ εɸελκʊστɩκό κɑθεστώς.

Non-technical summary On 26 September 2020 and 16 January 2022 twomoderate earthquakes
(Mw5.3 and Mw5.4, respectively) occurred at the North Aegean Sea, southern of Chalkidiki peninsula. Their
close proximity in space and time and the rare manifestation of such moderate events in the area promotes
their analysis in order to better understand the faults and the state of stress in the broader area. We used the
available seismological stations in the area to enhance the quality of the earthquake catalog and thoroughly
investigated the properties of the two seismic sequences. We found that this activity is not directly related
to the prevailing seismotectonic feature of the area, namely the North Aegean Trough, but it is derived from
secondary features, typically found in the vicinity of such large complex systems.
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1 Introduction
The rollback of the oceanic lithospheric plate of east-
ernMediterranean that subducts beneath the continen-
tal crust of the Aegean microplate (Pichon and Ange-
lier, 1979; Papazachos and Comninakis, 1971) is the
driving mechanism for the fast extensional deforma-
tion in an almost N–S direction of the back arc re-
gion (Konstantinou et al., 2017; Kapetanidis and Kas-
saras, 2019). The westward prolongation of the North
Anatolian Fault (NAF) into the Aegean forms the North
Aegean Trough (NAT) that constitutes the active bound-
ary between the Aegean microplate and the Eurasian
lithospheric plate (inset of Figure 1). McKenzie (1972)
showed that the northward motion of the Arabian plate
pushes the smaller Anatolian plate that is moving west-
erly relative to the Eurasian plate along the NAF, with
an average velocity of about ~24 mm/yr. An additional
N–S deformation of ~11 mm/yr in the Aegean further
enhances this motion, resulting in a total SWmotion of
~41mm/yr of the southAegean relative to Eurasia. More
recent studies (e.g. England et al., 2016; Bitharis et al.,
2023) comply with this overall pattern. A large part
of the deformation occurs seismically, as the Aegean
shows a total seismic slip rate of the order of 20 mm/yr
relative to Eurasia (Papazachos and Kiratzi, 1996). Seis-
micity is intense and continuous in the back arc region
forming specific seismic zones striking almost E–W in
the normal faulting environment and ENE–WSWtoNE–
SWfor the dextral strike-slip and oblique f).aulting seis-
mic zones (Papazachos et al., 1998). Conjugate faulting
sinistral strike-slip faults are also present (Karakostas
et al., 2003) accommodating less frequent M≥6.0 main
shocks as well as moderate (M≥5.0) earthquakes.
Several strong (M≥6.0) historical and instrumental

earthquakes have struck the NAT (Figure 1) since 360
BC (Papazachos and Papazachou, 2003). Their temporal
distribution evidences catalog incompleteness at least
until 1300AD, andafterwardmissing events are the ones
of M<6.5 (Kourouklas et al., 2018). Most recently, the
2014 M6.9 main shock ruptured the middle part of the
NAT (Kiratzi et al., 2016), taking place in a previously
identified seismic gap (Karakostas et al., 1986). The af-
tershock activity was astonishingly weak with a maxi-
mummagnitude aftershockofM4.9. However, thewest-
ern termination of NAT against the Greek mainland ap-
pears to be relatively quiescent (Kourouklas et al., 2018,
2022). The strike-slip faulting of theNAT is confirmedby
the fault plane solutions of the stronger earthquakes in
themost recent part of the instrumental era, when seis-
mological networks were capable to provide adequate
data, such as in the case of the 1983 seismic sequence
(Rocca et al., 1985). The results from waveform mod-
eling performed for the 1968 (M7.5; Pacheco and Sykes
(1992)), 1981 (M6.8) and 1983 (M6.6) earthquakes estab-
lished the dextral strike-slip nature of the major faults
inNorthAegeanwith the axis ofmaximumextension, T,
striking N–S and being nearly horizontal (Kiratzi et al.,
1991).
Because it is difficult to determine the causative faults

of the moderate (M≥5.0) earthquakes, our understand-
ing of the seismogenic setting of the secondary faults in

our study area is rather limited. An M5.8 main shock
occurred in 2013 on one of the ENE–WSW trending
parallel dextral strike-slip fault branches in Northern
Aegean, in the continuation of the 1968 large (M=7.5)
rupture (Drakopoulos and Ekonomides, 1972). Its rich
aftershock sequence was scrutinized and the off–fault
seismicity was perfectly explained with Coulomb stress
changes when the parameters of friction and Skemp-
ton’s coefficients attained values of µ>0.5 and B=0.0,
respectively, implying high fault friction (Karakostas
et al., 2014) Thus, clarifying the properties of the
causative faults of moderate earthquakes is crucial to
reveal the seismogenic structures and their relation to
the major fault zones and evaluate the subsequent seis-
mic hazard.
Microseismicity studies are not common in the study

area, given that active faults are off-shore, and near-
fault instruments are not in operation. The western
termination of NAT was investigated by Hatzfeld et al.
(1999) who confirmed the strike–slip motion which has
probably beenactive since thePliocene. This strike–slip
motion is transferred into normal faulting (with the di-
rection of principal extension being constant) in con-
tinental Greece. Accurate relocation of seismicity dur-
ing 2011–2016 along the NAT yielded a pick of the fo-
cal depth distribution at 8 km diminishing down to 20
km (Konstantinou, 2017). The relocated seismicity de-
fines distinctive clusters, one of which is located inside
our study area, but the spatial distribution is quite dis-
perse and thus not adequate to identify a specific acti-
vated structure.
On 26 September 2020 (at 22:50:24 UTC), an Mw5.3

earthquake occurred (right magenta circle in Figure 1),
to the north of the NE–SW trending western portion of
NAT and very close to its inferred trace, in a way that
it would be considered as associated with failure on
a fault patch along the NAT interface. It occurred in
the middle of the night and was widely felt, alarming
plenty of citizens even at distances greater than 200 km
(EMSC felt reports). The GCMT (Global Centroid Mo-
ment Tensor; https://www.globalcmt.org/) solution sug-
gests strike-slip faulting with one of the nodal planes
striking NE–SW that complies with the sense of motion
along the NAT (focal mechanisms configured with ma-
genta compressional quadrants in Figure 1). The appre-
ciable aftershock activity, however, persistently aligned
in a NW–SE direction in agreement with the strike of
the second nodal plane. These first observations pro-
voked our interest in investigating the characteristics
of the activated structure. Then, fifteen months later,
a second moderate Mw5.4 earthquake occurred on 16
January 2022 (at 11:48:06 UTC) very close to the epicen-
ter of the first 2020 shock (left magenta circle in Figure
1). The 2022 aftershock activity exhibited the same pat-
tern as in 2020, and the second main shock’s GCMT so-
lution implies oblique faulting with the one nodal plane
also striking NW–SE. In this study, we relocate the after-
shocks and determine the fault plane solutions of the
strongest among them. We further study the spatiotem-
poral evolution of the activity and perform statistical
analysis through the application of the Epidemic Type
Aftershock Sequence (ETAS) model.
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Figure 1 Epicentral distribution of M≥4.1 crustal (0≤h≤20 km) earthquakes occurred in northern Aegean Sea from 1975
to 2022 (after Leptokaropoulos et al., 2012), as compiled from the regional parametric earthquake catalog of the Seismo-
logical Station of Geophysics Department of the Aristotle University of Thessaloniki (http://geophysics.geo.auth.gr/ss/cata-
logs_en.html; Aristotle University of Thessaloniki, 1981). The small light green and moderate orange circles depict the epi-
centers of 4.1≤M<5.0 and 5.0≤M<6.0 earthquakes, respectively, and magenta circles the epicenters of for the earthquakes
investigated in this study. White stars display the epicenters of the historical M≥6.5 earthquakes between 1845–1900. Yellow
stars depict epicenters of the M≥6.0 earthquakes occurred during the instrumental era. The available fault plane solutions
of the M≥5.0 earthquakes as taken from Global Centroid Moment Tensor (GCMT; https://www.globalcmt.org/) are plotted as
equal area lower hemisphere projections with the compressional quadrants colored according to their magnitude as before.
Solid thick red line represents themain branch of the North Aegean Trough Fault Zone, whereas the parallel red arrows imply
the right-lateral strike-slip motion. Inset map shows the main seismotectonic features of the Aegean region (solid red lines;
KTFZ: Kefalonia Transform Fault Zone; RTF: Rodos Transform Fault; NAF: North Anatolian Fault).
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2 Seismological Data and Methods

2.1 Earthquake Relocation

An initial earthquake catalog was compiled by retriev-
ing the recordings of theHellenic Unified Seismological
Network (HUSN) after routine analysis accomplished
in the central Seismological Station of the Geophysics
Department of the Aristotle University of Thessaloniki
(http://geophysics.geo.auth.gr/ss/) for earthquakes with
M≥2.5. Additional phase picking and initial location
were performed by the authors of the present study to
achieve the inclusion of lower magnitude events (even
lower than M=1.0) that were detected by stations quite
close to the activated area. In total, 841 earthquakes
were initially located with magnitudes 0.6<M<5.4. For
the earthquake relocation procedure, we used data
from 14 seismological stations at epicentral distances
up to approximately 150 km (Figures S1 & S2). The me-
dian azimuthal gap for all initial locations equals to 108ο
indicating a sufficient station azimuthal coverage, con-
sidering that the activated structures are offshore.
The first step towards improved focal coordinate es-

timation is relocation with the HYPOINVERSE code
(Klein, 2002). This step requires themanually picked P–
and S– phases, a local velocity model, the ratio of com-
pressional to shear wave velocity (Vp/Vs) and the corre-
sponding station time delays. At first, we estimated the
Vp/Vs through theWadati method (Wadati, 1933) by tak-
ing theminimumnumber of phase arrival pairs (P– and
S–) equal to 8 for each event, and the process resulted in
a ratio equal to 1.74 ± 0.007. Similar values were also es-
timated for the broader Aegean region in previous stud-
ies (e.g. Karamanos et al., 2007; Mesimeri et al., 2018;
Andinisari et al., 2020; Karakostas et al., 2021). Next, we
proceeded to the determination of a crustal model us-
ing the VELEST algorithm (Kissling et al., 1994) by test-
ing multiple published models as reference ones (e.g.
Akyol et al., 2006; Karabulut et al., 2006; Konstantinou,
2018). All resultingmodels aftermultiple iterations con-
sistently converged to a similar model (apart from the
first few kilometers where differences could be found)
very close to the model of Karabulut et al. (2006). We
thus decided to adopt this model as a reference one
(Figure S3) and use our derived model (Table 1) for the
relocation procedure. We also added the appropriate
station corrections calculated with the VELEST applica-
tion to incorporate lateral inhomogeneities in the 1-D
crustal model.
We then run the hypoDDprogram (Waldhauser, 2001)

that employs the double difference algorithm (Wald-
hauser and Ellsworth, 2000), to improve the accuracy of
the focal coordinates as they were obtained from HY-
POINVERSE. Travel time differences betweenmanually
picked phases in the earthquake catalog were calcu-
lated, and then we kept event pairs with at least eight
(8) observations, resulting to 32,956 P-phase pairs and
25,870 S-phase pairs (13 links per pair on average) in to-
tal. The differential times data set was analyzed using
five sets with five iterations on each set gradually de-
creasing the residual threshold (secs) and themaximum
distance (km) between catalog linked pairs. The hori-

Depth (km) Vp (km/s)
0.0–2.0 3.56
2.0–4.0 4.32
4.0–7.0 5.43
7.0–14.0 6.08
14.0–20.0 6.22
20.0–26.0 6.55
26.0–29.0 6.8

≥30 7.29

Table 1 P–wave velocity (Vp)model adjusted for the study
area

zontal and vertical errors between the initial and the re-
located catalog indicate a substantial reduction of loca-
tion uncertainty (Figure S4). The final catalog contains
817 relocated earthquakes out of 841 (~97%) that consti-
tuted the initial data set. The 477 earthquakes occurred
before the 2022 main shock and the 340 are the after-
shocks of the second sequence.

2.2 Fault plane solutions
Fault plane solutions of 12 earthquakes with M≥4.0,
which occurred during the whole study period, were
calculated. One of them occurred slightly later, in
April 2022, but in the same area. The moment tensor
inversions were conducted using the Grond software
(Heimann et al., 2018) which operates under the Py-
rocko toolbox framework (Heimann et al., 2017). The
methodology applied within Grond aims to minimize
the misfit between synthetic and observed data by im-
plementing a Bayesian bootstrapping inversion in par-
allel bootstrap chains. In the present case, the bootstrap
algorithm was applied to minimize the L2 norm misfit
for 22000 iterations, 3000 to uniformly sample the solu-
tion space and 19000 for the direct sampling. The num-
ber of parallel bootstrap chains was set equal to 200. We
used the recordings of the regional broadband seismo-
logical stations of HUSN in distances ranging between
50 and 300 km (Figure S1). Green’s functions were cal-
culated for the local velocity model (Table 1) using the
QSEIS program (Wang, 1999). A point sourcemodel was
considered to perform the Bayesian optimization for a
deviatoric moment tensor. Lastly, bandpass filters were
applied, using frequencies between 0.04 and 0.11 Hz
(the corresponding window for each earthquake is pre-
sented in Table 2) and the data fitting was carried out
in the time domain. The NW-SE striking nodal planes
of the focal mechanisms (Table 2; Table S1) exhibit pre-
dominantly sinistral strike-slip sense of motion, rang-
ing from almost pure strike-slip to oblique faulting.
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No Date Origin time Lat
(°)

Long
(°)

Depth
(km) MW

Freq
(Hz)

Strike
(°)

Dip
(°)

Rake
(°) Misfit2

1 2020/09/26 18:39:20 39.959 24.308 21.3 4.3 0.04–0.09 334 86 09 0.135
2 2020/09/26 22:50:25 39.954 24.306 18.9 5.3 0.04–0.08 145 73 -18 0.132
3 2020/09/27 12:22:20 39.983 24.315 11.5 4.4 0.04–0.09 131 51 -42 0.106
4 2020/09/27 12:58:02 39.943 24.320 15.6 4.3 0.04–0.09 339 85 -44 0.175
5 2020/09/27 16:05:08 39.952 24.329 19.1 4.1 0.05–0.10 310 53 -71 0.164
6 2020/09/28 04:12:42 39.943 24.296 18.9 4.7 0.04–0.08 147 76 -07 0.095
7 2022/01/16 11:48:06 39.980 24.292 17.6 5.4 0.04–0.08 125 52 -43 0.100
8 2022/01/16 12:26:19 39.999 24.276 12.7 4.5 0.05–0.09 185 68 18 0.109
9 2022/01/16 13:36:58 39.990 24.302 11.2 4.0 0.05–0.09 132 63 -33 0.144
10 2022/01/16 18:29:27 39.977 24.314 11.7 4.1 0.06–0.1 135 66 -28 0.111
11 2022/01/16 22:32:00 39.989 24.317 12.4 4.3 0.05–0.09 128 65 -31 0.091
12 2022/04/20 00:29:03 39.934 24.331 8.0 4.0 0.06–0.11 336 68 -30 0.124

Table 2 Fault plane solutions calculated for eleven earthquakes of the relocated catalog and one that occurred onemonth
later (No 12). The focal parameters provided correspond to the relocated ones. In the last column, the square of themisfit of
each solution is reported.
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2.3 The Epidemic-Type Aftershock Sequence
(ETAS) model

Short-term temporal properties of both the 2020 and
2022 seismic excitations were studied through the ETAS
stochastic model (Ogata, 1988, 1998). The temporal
ETAS model (Ogata, 1988) expresses the seismicity oc-
currence rate density as the summationof twoparts, the
constant background seismicity rate, µ, assumed time-
independent, and the occurrence density rate of trig-
gered earthquakes, λi(t), and is given by a conditional
intensity function, λ(t):

λ(t) = µ + λi(t) = µ +
∑

[i,ti<t]

Keα(mi−mc)

(c + t − ti)p
, (1)

where K and α are the aftershock productivity param-
eters, c and p are the parameters of the temporal after-
shock decay rate of themodifiedOmori law (Utsu, 1961),
mi is the magnitude of each earthquake occurred at
time ti and mc is the completeness magnitude. The pa-
rameter K represents the intensity of aftershocks gen-
eration above mc triggered by an earthquake with m =
mc, whereas α parameter describes the efficiency of
earthquakes in triggering their own aftershocks. Large
α values [1.3-3.1] indicate that large magnitude earth-
quakes trigger a large number of aftershocks, whereas
small α [0.35-0.85] implies relatively higher triggering
capabilities of small earthquakes. This means that
Mainshock-Aftershock sequences typically tend to have
larger α values, dominated by the main shock mag-
nitude, while a swarm-like activity is characterized by
small α values (Hainzl and Ogata, 2005; Ogata, 1992).
The exponent p of the modified Omori law controls the
aftershocks decay rate, where the decay is becoming
faster as the value of p is increasing. The parameter c

is linkedwith the short-termaftershock incompleteness
soon after the occurrence of a main shock (t = 0), aim-
ing to avoid singularities at occurrence times very close
to t = 0. The five parameters of the model were esti-
mated via the Maximum Likelihood Estimation (MLE)
method using the simulated annealing technique pro-
posed by Lombardi (2015) and implemented through an
algorithmwhich is part of the SEDApackage (Lombardi,
2017).
For themodel evaluation, a residual analysis was per-

formed Ogata (1988, 1998), which offers a qualitative
model evaluation through visual display. Specifically,
the occurrence times, ti, were converted into trans-
formed times, τi, according to the function:

τi =

∫ ti

0

λ(t)dt. (2)

Transformed times, τi, express the number of earth-
quakes that are expected to occur in the time interval
[0, ti]. If the estimated model adequately describes the
temporal seismicity evolution, then transformed data,
so-called residuals, behave like a stationary unit rate
Poisson process. Otherwise, the transformed process
will show some systematic departure from the linear
Poisson process. Positive and negative departures in-

dicate that the estimated model is under- and over-
predicting the observed seismicity, respectively. In
order to evaluate whether the transformed times, τi,
are described by the Poisson process, the one-sample
Kolmogorov-Smirnov test (KS1 test; Massey (1951)) was
applied. More specifically, if τi are modelled by the
unit rate Poisson process, then the transformed earth-
quake interevent times, ti+1 − ti, should be indepen-
dent and identically drawn from an exponential dis-
tribution (Llenos and Michael, 2013). The KS1 test is
implemented under the null hypothesis that the earth-
quake interevent times are following the exponential
distribution based on the p-value returned by the test,
compared with the 0.05 significance level. If p-value is
greater (or lower) than 0.05 then the null hypothesis can
either be rejected or accepted.

3 Results
3.1 Spatiotemporal evolution of seismicity
The number of precisely relocated earthquakes equals
to 817, with 477 of thembelonging to the period starting
from the initiation of the seismic excitation (26 Septem-
ber 2020) until the start of the second seismic sequence
(16 January 2022) and the rest 340 constituting the sec-
ond aftershock sequence. Regarding pre-seismic activ-
ity, only two (2) foreshocks were detected prior to the
first main shock with the largest one occurring 4 hours
in advance (Table 2). Our interpretations on aftershock
activity and the associated active faults can be ensured
by the quality criteria that the relocation procedure has
fulfilled concerning the uncertainty estimation. These
criteria do not prevent from systematic bias, but with
our efforts to approach the velocity structure as best as
possible we are confident that this bias could be consid-
ered small.
We are interested in how seismicity evolved spatially

or temporally in the activated area on the temporal scale
of several months, for which that this activity persisted.
We started our relocated data set since 1 January 2020,
almost 10 months before the first main shock occur-
rence. We may observe that seismicity is quite sparse
with a couple of 2.0<M<2.9 shocks located close to the
first main shock epicenter (green dots since the begin-
ning of the space–time plot up to 26 September 2020,
in Figure 2a) but not close in time for being consid-
ered foreshock activity as part of the nucleation phase.
An Mw4.3 earthquake, instead, occurred about 4 hours
before and in close distance with the main shock (Ta-
ble 2). Intense aftershock activity followed the main
shock on 26 September 2020, extended in an area more
than 15 km long, much larger than the rupture length
of an Mw5.3 main shock, (roughly 6 km) as prescribed
by empirical scaling laws (Wells andCoppersmith, 1994;
Thingbaijam et al., 2017).
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Figure 2 (a) Spatiotemporal distribution of the relocated seismicity since 1 January 2019 up to 1 November 2022. Yellow
stars represent the twomain shocks, red circles the 4.0≤Mw≤4.9, orange circles the 3.0≤M≤3.9, green circles the 2.0≤M≤2.9,
and small black dots the M≤2.0 earthquakes. (b) Histogram of the focal depths with different colors denoting the two after-
shock sets.
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As Figures 2a & 3a show, seismicity is mainly concen-
trated on a 20 km length prolonged zone, with a general
strike of 145° (thick dashed line in Figure 3a). The epi-
central distribution of the two distinct clusters present
a spatial overlap of slightly over 50%. The determined
fault plane solutions unveil the dominance of strike-slip
faulting in the study area given that pure strike-slip (e.g.,
No 1 & 6, Table 2; Figure 3a) and strike-slip with a nor-
mal component (No 2 & 4 & 9-12) focal mechanisms
are present. The complex faulting patterns coming into
play are revealed by the presence of either pure nor-
mal (No 5, Table 2; Figure 3a) or oblique (normal with
a strike-slip component) focal mechanisms (No 3 & 7,
Table 2; Figure 3a).
In Figures 4 & 5 the relocated seismicity of the two

activated structures is shown separately aiming to de-
tail the properties of each seismic sequence. Regard-
ing the 2020 Mw5.3 sequence (Figure 4a), the epicentral
alignment (NW-SE) of the aftershocks is in good agree-
ment with the strike of the one nodal plane of the main
shock focal mechanism. The total length of the acti-
vated area is approximately 15 km, which significantly
exceeds the estimations of frequently used empirical
relationships between main shock magnitude and the
causative fault length (Wells and Coppersmith, 1994;
Thingbaijam et al., 2017). The duration of the intense
aftershock activity was short, with over half of the af-
tershocks occurring within the first week after themain
shock (Figure 3). Moreover, all M≥4.0 aftershocks took
place in less than 3 days (Table 2). An interesting fea-
ture of this seismic sequence is also the occurrence of
a few foreshocks with the strongest among them hav-
ing a magnitude of Mw4.4 (Table 2), placed very close to
the main shock epicenter (Figure 2) although in deeper
parts of the seismogenic layer.
The aftershock activity during the first 2 days defines

a seismogenic zone of 9 km (13 – 22 km) (Figure 4b).
As time advances, however, the inclusion of all earth-
quakes (Figure 4c) evidences an expansion of the after-
shock zone in more shallow depths (~5km). Normal to
the strike cross section encompassing events within the
larger part of the aftershock distribution (3 km of either
side of the cross section) provides a complete picture of
the activated fault plane (Figure 4d). The total depth ex-
tent of the aftershock zone ranges from 6 to 24 km (Fig-
ure 2b).
Shifting our focus to the second seismic sequence that

emerged from the strongest event included in our cat-
alogue (Mw5.4) at the beginning of 2022 we might ob-
serve that the epicentral alignment of the aftershocks is
analogous to the previous case (NW-SE) however their
spatial extent is developed further to the north. The to-
tal length of the activated area, as inferred by the after-
shock epicentral distribution is approximately equal to
10 km (Figures 2a, 5a). The aftershock activity of the
first 2 days occupies a depth range of 9 to 21 km, in-
side a 12 km extent (Figure 5b), with only minimal low-
magnitude events outlying. Figure 5c, which includes
all events at a distance of 1.5 km either side of the nor-
mal cross section, appears to be very similar to the one
of Figure 4b, highlighting the fast decay of the after-
shock rate after the first few days. Moreover, the wider

Figure 3 Seismicity of the study area, since the beginning
of 2019 until the end of 2022. (a) Stars indicate the relo-
cated epicenters of the main shocks, whereas circles de-
note either the relocated aftershock locations or the back-
ground seismicity. All epicenters are scaled in compliance
with the corresponding earthquake magnitudes and color-
coded according to the temporal scale at the bottom of the
figure. Fault plane solutions determined in this study (Ta-
ble 2) are also shown as lower hemisphere equal area pro-
jections, with the compressional quadrants colored in blue.
(b) Temporal evolution of seismicity for the 2019–2022 pe-
riod versus magnitude. Blue, yellow and cyan circles and
shaded areas indicate the pre–2020, 2020 and 2022 seismic
activity. Red solid line depicts the cumulative number of
earthquakes for the same period.
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Figure 4 a) Spatial distribution of the relocated after-
shocks of the Mw5.3main shock on 26 September 2020 (red
star). The epicenters of the aftershocks are shown as cir-
cles of different sizes and colors according to their magni-
tude. The black dashed line shows the general strike of the
epicentral distribution, whereas the constant one signifies
the normal to the strike cross sections including events b)
within 1.5 km either side of the section, during the first 2
days after themain shock, c) within 1.5 km for the entire du-
ration and d) 3.0 km either side of the section, again for the
entire relocated catalog.

normal cross section (Figure 5d) reveals the close prox-
imity of the strongest aftershocks (11-13 km in depth).

3.2 Temporal features from the ETAS model
fitting

The temporal ETAS parameters (µ, K, α, c and p) were
estimated through the MLE method after the determi-
nation of the magnitude of completeness, mc, for the
entire initial earthquake catalog covering the period
2019-2023. Themc was identified through theGoodness-
of-Fit method (GFT; Wiemer and Wyss (2000)), consid-
ering the 95% confidence level of residuals (Figure S5)
and was found equal to mc=1.9 (residuals value equal to
3.66%) resulting to a data set of 470 earthquakes with
m ≥ mc and a b-value equal to 0.78 (b=0.78). The model
was first applied in the entire initial earthquake cata-

Figure 5 a) Spatial distribution of the relocated after-
shocks of the Mw5.4 main shock on 16th January 2022 (red
star). The epicenters of the aftershocks are plotted with cir-
cles of different sizes and colors according to their magni-
tude. The black dashed line shows the general strike of the
epicentral distribution, whereas the constant one signifies
the normal to the strike cross sections including events b)
within 1.5 km either side of the section, during the first 2
days after themain shock, c) within 1.5 km for the entire du-
ration and d) 3.0 km either side of the section, again for the
entire relocated catalog.
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Period µ K α c p Obs. KS1
p-value

2019
–2022 0.046 0.015 1.78 0.030 1.23 470 0.62

01/01/2020
–30/6/2021 0.047 0.017 1.75 0.029 1.17 240 0.60

1/7/2021
–31/12/2022 0.037 0.011 1.86 0.037 1.25 197 0.57

Table 3 Temporal ETAS parameters estimates (µ, K, α,
c and p) for the periods 2019-2022, January 2020-June
2021 and July 2021-December 2022, along with the respec-
tive number of observations and the p-values of the one
sample Kolmogorov-Smirnov goodness-of-fit test (KS1) be-
tween the earthquake interevent times and the exponential
distribution.

log of the period 2019-2022 and then in two additional
and distinctive sub-periods, namely from January 2020
to June 2021 and from July 2021 to December 2022, aim-
ing to compare the temporal properties of the two seis-
mic sequences. The selection of each sub-period was
based on the adequacy of the number of earthquakes
before the occurrence of each excitation, in which the
parameters were estimated, representing the learning
phase of theETASmodel application. The calculatedpa-
rameter values are given in Table 3.
TheETASapplication for the entire period (2019-2022)

ascertained that the model adjusts well the observed
earthquake rate, with slight discrepancies soon after the
occurrence of the 2020 Mw5.3 and 2022 Mw=5.4 main
shocks (Figure 6a). The good fit of the estimated model
in respect to theobservations is highlightedby the resid-
uals analysis application (Figure 6b), since the lines that
depict the expected and the observed number of events
against the transformed times (red and black lines in
Figure 6b, respectively) almost coincide. This latter fact
is confirmed by the result of the KS1 goodness of fit test
shown in Table 3. Specifically, the calculated p-value
of the test is equal to 0.62, much larger than the 0.05
confidence level. The estimated parameters are acquir-
ing values typical for Mainshock-Aftershock sequences
(Ogata, 1992). In more detail, the observed seismicity
during the period from 2019 to 2022 is characterized
by a very low background rate equal to µ=0.046 event/-
day. This means that almost 88% of the total number of
earthquakes are offsprings of the 2020 Mw5.3 and 2022
Mw=5.4 sequences, and only 68 out of the 470 are as-
sumed to be independent. Furthermore, the produc-
tivity parameter, α, was estimated equal to α = 1.78,
indicating alsoMainshock-Aftershock type of sequence,
since Mainshock-Aftershock activity is typically charac-
terized by α values ranging between [1.3-3.1], whereas
swarm-like activity is ascribed to values ranging be-
tween [0.35- 0.85] (Hainzl and Ogata, 2005; Ogata, 1992).
The parameters expressing temporal characteristics, c

and p, attain expected values, in comparison with those
reported in previous studies ranging from 0.03 to 0.07
and from 1.16 to 1.25, respectively (Chu et al., 2011;
Kourouklas et al., 2020).
Placing emphasis on the two sub-periods (January

2020-June 2021 and July 2021-December 2022), when

the Mw5.3 and Mw5.4 main shocks occurred, the small
discrepancies between the observed earthquake rates
and the modeled ones are becoming more explicit (Fig-
ures 6c and 6e, for the January 2020-June 2021 and July
2021-December 2022, respectively). Specifically, it is
observed that the estimated models for both periods
slightly underestimate the earthquake rates soon after
the occurrence of the Mw5.3 and Mw5.4 earthquakes.
This result is also visible from the residual analysis plots
(Figures 6d & 6f), in which the observed transformed
times (red lines in Figures 6d & 6f) slightly deviate from
the unit rate Poisson process (black lines in Figures 6d&
6f). However, the p-values of the KS1 test (p-value=0.60
and 0.57 for the periods January 2020-June 2021 and July
2021-December 2022, respectively; Table 3) are again
much larger than the significance level (0.05), suggest-
ing a good performance of the temporal ETAS model to
the data from a statistical point of view.
Comparison of the parameter estimates of the two

sub-periods (Table 3) shows that throughout the first
one (January 2020-June 2021), during which the Mw5.3
earthquake occurred (September 26th of 2020), the back-
ground rate is estimated equal to µ = 0.047 event/day, a
value almost equal to the entire period estimate). On
the contrary, background rate is found quite smaller
(µ = 0.037 event/day) during the period from July 2021
to December 2022, in which the Mw5.4 earthquake oc-
curred (January 16th of 2022). Both estimated values
are again indicating a clear Mainshock-Aftershock ac-
tivity as well as the estimated values of the productiv-
ity parameter, α, (α = 1.75 and 1.86 for the 1st and the
2nd sub-periods, respectively; Table 3) with the one at-
tached to the second sub-period being higher. Addition-
ally, the estimated value of p parameter of the modified
Omori law is larger in the second sub-period’s applica-
tion (p = 1.17 instead of p = 1.25 for the 1st period) in-
dicating the smaller duration of the second sequence.
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Figure 6 Observed (black lines) and expected by the estimated temporal ETAS model (red lines) cumulative earthquake
number against ordinary (a,c,e) and transformed (b,d,f) time for the periods 2019 – 2022 (a & b, respectively), January 2020 –
June 2021 (c & d, respectively) and July 2021 – December 2022 (e & f, respectively). Magnitudes of earthquakes withm ≥ mc

(right y-axis) against time are shown as pink dots in all subplots.
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4 Discussion
As the westward prolongation of the North Anatolian
Fault (NAF) system into the Aegean Sea, the North
Aegean Trough (NAT) is characterized by dextral strike-
slip faulting. The intense N-S extension of the back-arc
area due to the roll back of the subducted slab in south-
ern Aegean, resulted to a complex transtensional basin
dated back to early Pliocene or Pleistocene. The con-
junction ofmajor strike-slip systemswith awide variety
of secondary structures, especially at fault zone tips or
between linked structures, the damage zones (e.g Petit
and Barquins, 1988; Kim et al., 2004; Kim and Sander-
son, 2006) is very commonly met. The reason behind
their development canbe attributed to stress concentra-
tions (e.g Cox and Scholz, 1988) or to host displacement
alterations along the fault zones (Kim et al., 2000). The
NorthAegean area is characterized by a broad spectrum
of strike-slip damage patterns (Figure 7), with the most
important and relevant to our study area being:
a) Horsetail structures: The western endpoint of the

NAT is characterized by a right-stepping horsetail struc-
ture (red patch in Figure 7) expressed through numer-
ous oblique splays stemming from the main strike-slip
zone forming a number of transtensive basins (Sakellar-
iou et al., 2017).
b) Positive or negative flower structures: Negative

flower structures are found inside most of the sub-
basins bounded by the oblique splays. They consist of
opposing-dip normal fault structures and merge into a
single strike-slip fault at deeper parts (upper left part
rectangle in Figure 7). Positive ones are also present
but outside the area under study, along the south Mar-
mara and the Ganos fault segments, expressing trans-
pressive structures owing their formation to strike-slip
faultswith a reverse component (Rodriguez et al., 2023).
c) Conjugate faults: They are faults that intersect with

the main structure at a high angle (typically more than
60°) and exhibit a sense of displacement opposite to the
dominant one, withwhich they are oftennot connected.
In our case, they represent the sinistral counterparts of
the prevalent dextral strike-slip faults that dominate the
northern Aegean area. Conjugate faults may be com-
bined with branch faults (see below) and create block
rotation (e.g. Nicholson et al., 1986; Kim et al., 2003).
d) Branch faults: They represent shear fractures hav-

ing similar sense of motion as the main strike-slip zone
(dextral strike-slip in our case, blue patch in Figure
7). They can act together with the main zone to create
splays (e.g. Kim et al., 2004) or with other structures and
formmore complex patterns.
Thediversity characterizing the termination of strike-

slip fault systems, especially on such a large scale such
as the NATmakes it very challenging to uncover its fine
details, due to their complex nature and high intercor-
relation. Typical examples are the fault segments asso-
ciated with the two main shocks of this study which are
not included in the simplified tectonicmap of the North
Aegean based on the interpretation of the air gun litho-
spheric profiles by Papanikolaou et al. (2006) as well as
in other studies (e.g. Ferentinos et al., 2018; Sakellariou
and Tsampouraki-Kraounaki, 2019).

Figure 7 Strike-slip damage patterns (schematic illustra-
tions) and their connection to the study area (simplified
map). The green and yellow stars indicate the epicenters of
the main shocks of this study.

Based on our analysis, the activated structures host-
ing the 2020 Mw5.3 and 2022 Mw 5.4 main shocks can
be attributed to conjugate faults at the termination of
the main strike-slip zone, having a considerable ver-
tical component consistent with the extensional char-
acter of the NAF termination (Figure 7). The primary
indications leading to this suggestion are the deter-
mined focal mechanisms of the main shocks and the
stronger aftershocks (Table 2), which indicate an in-
tricate stress field consisting of strike-slip and normal
faulting style. Adding to this, the strike-slip moment
tensor solutions exhibit a left-lateral displacement, as
opposed to the dextral strike-slip motion characteriz-
ing the NAF. Moreover, the spatiotemporal distribution
of aftershocks (Figures 3-5) further demonstrates the
high angle (almost perpendicular) in which the acti-
vated structures lie in comparison to theNAF (Figure 1).
The scenario of a transtensional flower structure can-
not be ruled out given that such systems are closely re-
lated and common to conjugate fault systems. A valid
reason for this argument can be ascribed to the rela-
tive differences of the focal depths of the two sequences
(Figure 2). Even though the spatial distribution of both
aftershock sequences appears to extend in more or less
the same area in map view (Figure 3), the mean fo-
cal depths from the aftershocks originated from the
2020 Mw5.3 sinistral strike-slip main shock are found in
deeper parts compared to those from the 2022 Mw5.4
oblique (λ=-43°; normal with sinistral strike-slip com-
ponent) one. In this case, a depressed area, or even a
pull-apart basin (on a larger scale) is most commonly
formed. Bathymetric maps (Papanikolaou et al. (2006)
and references therein) cannot provide us with a def-
inite answer however our study area is located at the
northern margins of the main North Aegean basin and
more specifically in an area where a bulge is disrupting
the almost linear NE-SW oriented edges of the basin.
Statistical analysis of the short-term clustering fea-

tures of the 2020-2022 excitations highlights their
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Mainshock-Aftershock nature. The estimated tempo-
ral ETAS parameters show non-significant background
seismicity rate changes for both the average model
(2019-2022) and the two sub-period models, which are
referring to the 2020 and2022 sequences, indicating that
the excitation is driven by the regional tectonic load-
ing. An interesting remark arises from the estimated
parameters of the second sequence (2022) modeling,
in which the temporal parameters (c and p) are larger.
These values indicate a faster decay rate compared to
the first sequence’s aftershocks, even though themagni-
tude of the 2022 main shock is larger than the 2020 one.
This remark could be likely explained by the fact that
the study area was recently activated and consequently
rather stress relaxed.
Moreover, the low background rate, the estimated

productivity parameters and the fast aftershock decay
rates in all evaluatedmodels provide an indirect insight
into the properties of the activated fault segments, qual-
ifying them as rather weak. This property characteriz-
ing fault segments in the broader area (including the
main branch of NAT fault zone) has already been sug-
gested by physics-based earthquake simulator results
(Kourouklas et al., 2021).

5 Conclusions
We thoroughly investigated the seismic sequences of
twomoderatemain shocks occurred in the region north
of NAT on 26 September 2020 (Mw5.3) and 16 January
2022 (Mw5.4), by means of their spatiotemporal distri-
bution, moment tensor solutions and statistical analy-
sis. We constrained the dimensions of the rupture areas
(10x10 km2 for the 2020 main shock and 11x10 km2 for
the 2022main shock) based on the relocated early after-
shocks. Fault plane solutions highlight the complexity
of the faulting patterns, with most of them exhibiting
mainly sinistral strike-slip faulting, with some oblique
cases (strike-slip with a normal component) being also
present.
All things considered, we attribute the occurrence of

the investigated seismic sequences as a result of sec-
ondary faulting related to the termination of an active
strike-slip plate boundary, expressed as transtensional
deformation. We may consider these main shocks as a
beneficial example of better recognition of the complex
behavior characterizing the NAT, but through the lens
of seismic hazard, we weigh this kind of events much
less prominent than the overall seismic hazard of the
broader area.
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Abstract Disaster risk is increasing globally. Emerging technologies – Artificial Intelligence, Internet of
Things, and remote sensing – are becomingmore important in supporting disaster risk reduction and enhanc-
ing safety culture. Despite their presumed benefits, most research focuses on their technological potential,
whereas societal issues are rarely reflected. Taking a societal perspective is vital to ensure that these tech-
nologies are developed and operated inways that benefit societies’ resilience, complywith ethical standards,
are inclusive, and address potential risks and challenges. Therefore, wewere particularly interested in under-
standing how societal impacts can be considered and leveraged throughout the development process. Based
on an explorative literature review, we developed a toolbox for professionals working on emerging technolo-
gies in disaster risk reduction. By applying a Delphi study with experts on AI in seismology, we iteratively
adapted and tested the toolbox. The results show that there is a need for guided reflection in order to foster
discussion on the societal impacts. They further indicate a gap in the common understanding of how a tech-
nology is defined andwhat role it should play in disaster risk reduction. That is crucial for developing inclusive
technologiesordefining regulations. Our toolboxwas found tobeuseful for professionals in reflectingon their
developments andmaking technologies societally relevant, thereby enhancing societies’ resilience.To extend
the implementation of the toolbox, it is essential to facilitate additional promotion through avenues such as
workshops and conferences. This process should align with the established framework of project manage-
ment and the policy cycle.

Non-technical summary The frequency and severity of disasters, from both natural hazards such
as flash floods andhumanhazards such as terrorist attacks, are increasing. Newly developed technologies are
one way to improve the prevention of and response to these disasters. Recent research has mainly focused
on the technological issues of those technologies, with a view to analysing their efficiency. Little research has
been conducted to assess whether the technologies help societies in dealing with disasters. This study tries
to fill this gap by proposing a toolbox for professionals who work on and with those technologies to help and
guide them through a reflection process on what the impact of the technology is on societies. The toolbox
was iteratively developed based on a literature review. We tested the toolboxwith experts on AI in seismology
by using an expert elicitation method (Delphi study). The results show that the toolbox is a helpful starting
point for reflection and that the beginning of the discussion needs to be a common understanding on what
these technologies are. Only then can the discussion lead to a fruitful further development of the technology
to help people deal with disasters.

1 Introduction
Disaster risk is increasing globally, through both nat-
ural and anthropogenic hazards such as earthquakes,
wildfires, and terror attacks or chemical accidents (UN-
DRR, 2022). As the climate crisis evolves, natural haz-
ard events will become more intense and more people
will be exposed and negatively affected in the coming
decades (IPCC, 2023). Disaster Risk Reduction (DRR)
measures are indispensable to mitigate those impacts.
The United Nations Office for Disaster Risk Reduction

∗lorena.kuratle@sed.ethz.ch

(UNDRR) has formulated the Sendai Framework for Dis-
aster Risk Reduction for the period 2015 to 2030 as a re-
sponse to the need for proper and collaborative actions
to address the increasing complexity of disasters (Aitsi-
Selmi et al., 2015).

In recent decades, emerging technologies have con-
siderably influenced societies’ safety cultures and, con-
sequently, DRR efforts (ITU, 2019). Emerging tech-
nologies such as Artificial Intelligence (AI), Internet of
Things (IoT), and remote sensing are applied for multi-
ple hazards and for various steps in the disaster man-
agement cycle (ITU, 2019), i.e. prevention, planning,
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and response. Besides enhancing the efficiency and re-
ducing the costs of DRR efforts, emerging technologies
can also increase the digital divide, meaning that these
technologies are not available for everyone and, thus,
could make DRR efforts unjust and only accessible to
certain parts of societies (Shaw, 2020).
To date, little research has been conducted on the so-

cietal impacts of these technologies for DRR. Lucivero
et al. (2011) propose a combination of ethical tools to
assess the expectations on these technologies. Gevaert
et al. (2021) state that there is a need to explore the soci-
etal impacts in order for AI to be fair and just. Gevaert
et al. (2021) and Izumi et al. (2019), for example, call for
more co-production among researchers and developers
when assessing innovation for DRR. This again should
not happen during the last mile, but in the first mile of
the technology development (Shaw, 2020). Profession-
als’ perspectives anduser needs should thus be included
from the beginning to enhance DRR efforts.
With our study, we address this research gap by de-

veloping a toolbox based on an explorative literature
review. The toolbox aims to support professionals (re-
searchers and developers) to reflect on their technolo-
gies with regard to their potential societal impacts, an-
swering the question: “What is the potential role of my
emerging technology in enhancing safety culture and
DRR efforts from a societal perspective?” The toolbox is
a set of guiding questions covering the functionality, us-
ability, and societal issues of a technology and can help
to identify potential gaps or further need for reflection.
We also performed a proof of concept on the example
ofAI in seismology by conducting two rounds of a Delphi
study with experts in the field to evaluate the accuracy
and usability of the toolbox and answer the following
two research questions:
1) Can we iteratively derive a toolbox from literature

to support professionals in reflecting on the societal im-
pacts of a technology in order to enhance safety culture
within DRR?
2) Does this toolbox support professionals in reflect-

ing on the societal impact of a technology for safety cul-
ture within DRR, i) in general and ii) for the example of
AI in seismology?

2 State of the Art
2.1 Safety culture and DRR
Disaster risk reduction describes efforts of preventing
new and reducing as well as managing already exist-
ing risks to enforce resilience (U.N.D.R.R., 2024). Safety
culture as part of DRR considers contextual factors and
describes “the behaviors and actions of individuals in-
clusive of decision-makers both public and private, and
civil society that reflect a commitment to and are con-
cerned with minimizing risk, injury and losses to hu-
man life and the environment” (Marshall, 2020, p5).
Safety culture thus describes societal dynamics that
are manifested and reproduced in individuals’ actions
when it comes to safety and encompasses how people
dealwith disaster anddisaster risk andwhether they ap-
ply safety measures. Consequently, a system, commu-

nity, or society, which is exposed to any risks and haz-
ards reacts differently depending on its existing safety
culture. Therefore, it is crucial to understand local
safety culture to enhance DRR and to successfully im-
plement a technology for DRR. If local safety culture is
neglected, the implementation of DRR measures may
not be successful.

2.2 The role of emerging technologies for
DRR and safety culture

In order for technologies to be successfully used, inclu-
sive, and societally relevant, it is crucial to understand
safety culture and the influence the technology has on
disaster risk reduction. One approach to enhancing
DRR and safety culture lies in innovations (Izumi et al.,
2019), of which emerging technologies are a part, along-
side social innovations such as participation. Emerg-
ing technologies for DRR are understood as technolo-
gies that are broadly used and have the potential to es-
sentially influence the way societies deal with disasters
(Shaw, 2020) and to enhance their resilience (Sakurai
and Shaw, 2021). The focus in this study is on AI, IoT,
and remote sensing, because these three technologies
can be understood as umbrella terms for a broad range
of technologies, and, combined, can increase the im-
pact for DRR (e.g. IoT can be combined with AI for
predicting hazardous events, Furquim et al., 2018). AI
refers to Artificial Intelligence and its broad spectrum
of applications, e.g. machine learning, deep learning,
and natural language processing. IoT describes wire-
less sensor networks that collect data. Remote sensing
relates to the technology used to study objects fromafar,
for example with satellites.

2.2.1 The current application of emerging tech-
nologies for DRR

In Table 1, we summarize different applications of
emerging technologies in DRR, distinguishing between
the technologies AI, IoT, and remote sensing and the fol-
lowing hazards: terror attacks, flash floods, wildfires,
and earthquakes.
Overall, the application and thus the potential of the

different technologies for the different hazards do not
differ significantly. All of the technologies have the po-
tential to enhance data analysis and processing and, to
some extent, forecasting of hazardous events, and are
applied before, during, and after disasters. For all three
technologies, we found only a few literature studies that
assessed the societal impact.

2.2.2 The benefits of emerging technologies
Technological advancements, such as the implementa-
tion and development of AI, through for example ma-
chine learning or deep learning applications, have cre-
ated new possibilities for DRR (ITU, 2019). According
to ITU (2019), AI can improve disaster management by
enhancing the recovery and response time. Further, AI
is used for different hazards (Surya, 2020; Datta et al.,
2022; Khan et al., 2018) and can make disaster man-
agementmore efficient through faster data analysis, for
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Emerging technologies
Hazards Artificial Intelligence Internet of Things Remote Sensing

Terror attacks

Detecting potential terror attacks,
preventing and predicting mass
shootings (Rieland, 2018; Singer,
2022)

Distribution of cheap sensors could
help enhance prediction and detec-
tion of potential terror attacks, and
response to terror attacks in schools
or crowds (Gao, 2016; Alsalat et al.,
2018).

Counter-terroroperationsandmon-
itoring applications, e.g. for military
operations (Majumdar et al.)

Flash floods

Prediction (Mitra et al., 2016) and
forecasting (Costache and Tien Bui,
2019), creating maps for better
risk management of flood hazard
(Arabameri et al., 2020)

Prediction and monitoring
(Furquim et al., 2018; Arshad
et al., 2019), management (Goyal
et al., 2021)

In combination withmachine learn-
ing it is used for prediction (Hussein,
2019) and the monitoring andman-
aging of flash floods (Mishra, 2021).

Wildfires

Improvement of early warning and
prediction of fire patterns and help
with evacuation patterns (Zhao
et al., 2020) Prediction of wildfires
(Guerrero, 2022).

In combination with remote sens-
ing and machine learning it can im-
prove monitoring (Kaur and Sood,
2019), early detection and warning
(Bushnaq et al., 2021; Verma et al.,
2021).

Creation of warning maps (Cao
et al., 2017) and in combination
with machine learning can help
to predict fire spread (Huot et al.,
2022)

Earthquakes
Improvement of aftershock fore-
casts and earthquake early warning
(Wu et al., 2021)

The use of mobile phones (Zam-
brano et al., 2017; Wu et al., 2021)
can help monitor earthquakes
(Taale et al., 2021), and in combina-
tion with machine learning improve
earthquake early warning.

Analysis of damage after an event
(Dong, 2013) and assessment of
ground movements (Rathje and
Franke, 2016)

Table 1 Summary of the different applications of AI, IoT, and remote sensing for terror attacks, flash floods, earthquakes,
and wildfires

example (Sun et al., 2020). AI and big data are also
applied to prevent or react to mass shootings and ter-
ror attacks (e.g. Staniforth and Akhgar, 2015; Rieland,
2018; Singer, 2022; Ionescu et al., 2020) or to model and
predict flash floods (e.g. Costache and Tien Bui, 2019;
Arabameri et al., 2020). Further, Mousavi and Beroza
(2022) have shown that machine learning, deep learn-
ing, andAI applications are alreadybroadly used in seis-
mology and have the potential to significantly influence
the field: i) using deep learning for earthquake early
warning (EEW; Wu et al., 2021); ii) detecting seismic
signals and forecasting seismic activities with machine
learning (Seydoux et al., 2020); and, to a lesser extent
and even controversially, iii) helping to predict earth-
quakes (e.g. Banna et al., 2020; Marhain et al., 2021).
AI applications are also applied for wild fire predictions
and modelling, and evacuation procedures (Zhao et al.,
2020). In short, there are promising AI applications in
all stages of the disaster cycle (before, during, and after
an event) and for multiple hazards.

In order to function properly, AI applications need
data (Sun et al., 2020). One popular and cheap way
to gather data is to use wireless sensor networks, also
called IoT. As (Adeel et al., 2018) and (Ray et al., 2017)
have shown, IoT is a relevant enabler to enhance disas-
ter monitoring and management for multiple hazards
such as earthquakes, terror attacks, and flash floods, of-
ten in combination with machine learning or AI appli-
cations (e.g. Kaur and Sood, 2019; Goyal et al., 2021).
The application of IoT seems very promising for DDR
as it can be used in real time, e.g. for early warning and

rescue operations (Ray et al., 2017). According to ITU
(2019), IoT is also suitable for disaster management be-
cause sensors can be applied in multiple settings and
for different hazards: they can measure and send sig-
nals and warnings from a diverse set of locations (e.g.
from trees, from the ground, in buildings).
Another type of technology used for DRR is remote

sensing. Remote sensing is a technology that is used to
study objects from afar (Kaku, 2019), e.g. using satel-
lite data to gather data and information about an area.
Remote sensing is particularly helpful for DRR because
the acquisition of data can happen very fast and cost-
effectively, and cover a large area (e.g. Bello and Aina,
2014; Novellino et al., 2018). This leads to a more effec-
tive assessment of an area, both before and after a dis-
aster. Remote sensing can also be applied for different
hazards (Bello and Aina, 2014). Mishra (2021), for ex-
ample, has identified the benefits of real-time monitor-
ing of flash floods through remote sensing and the im-
portance of cheap monitoring possibilities, while Dong
(2013) has highlighted the use of remote sensing to eval-
uate the damage after an earthquake.

2.2.3 The barriers to emerging technologies
Despite the numerous benefits described above, liter-
ature indicates possible pitfalls for the use of emerg-
ing technologies for DRR (e.g. Bello and Aina, 2014; Sun
et al., 2020). Generally, there is a lack of accessibility
and integration of ethical and social issues (e.g. Boyd
andCrawford, 2012; Crawford and Finn, 2014; Sun et al.,
2020). Further, as ITU (2019) describes, there is a lack of
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standardization and systemization to ensure their broad
applicability.
The use of emerging technology can also broaden the

digital divide (Shaw, 2020). The digital divide, a term
firstly used by Katz and Aspden (1997) describes the
phenomenon that technological benefits are not acces-
sible to all but only to certain societal groups (Steyaert
and Gould, 2009). Tomake DRRmore inclusive, the dig-
ital divide needs to be narrowed (Shaw, 2020). Regard-
ing the challenges of AI specifically, Sun et al. (2020)
state thatmany barriers arise due to data-related issues:
there is too little or no access to data and there are secu-
rity or ethical issues. However, too much available data
can lead to high computational power required to pro-
cess it, for instance. Additionally, sometimes the results
are not reproducible or not trustworthy and, hence, not
helpful for DRR. (Ogie et al., 2018) further argue that a
lot of factors, suchas local cultures anddecision respon-
sibilities must be considered, what needs resources.
(Gevaert et al., 2021) also describe how AI in DRR still
has unintended ethical issues, e.g. biases arising from
the disconnect between the developers and the commu-
nities.
As regards IoT, it still lacks cost effectiveness, stan-

dardization, and context awareness, meaning that in or-
der to harness the full potential of IoT, there is a need
for contextual knowledge as well as technological im-
provements (Ray et al., 2017). Additionally, these sys-
tems must become more efficient both in data use and
resource management in order to actually enhance dis-
aster management (Adeel et al., 2018).
Remote sensing seems to be especially promising for

enhancing disaster preparedness efforts. However, ac-
cording to Bello and Aina (2014), one major barrier is
creating a system that can be applied to different natu-
ral and anthropogenic hazards. Additionally, the timely
provision of data proves to be challenging (Bello and
Aina, 2014). Novellino et al. (2018) have shown that re-
mote sensing is already applied broadly, with the main
challenge being field verification (i.e. the inclusion of
people affected).

2.3 The societal issues of emerging technolo-
gies

As mentioned above, societal issues have so far been
broadly neglected in the assessment of emerging tech-
nologies’ potential for DRR. This is also confirmed by
a review study on universal design, referring to de-
signs that are usable by everyone with a maximal ben-
efit (Connell et al., 1997). Gjøsæter et al. (2020) con-
clude that despite the efforts of making ICT emergency
technologies more accessible, there is still a gap to de-
sign those technologies for everyone, i.e. every possi-
ble user. Additionally, they highlight that the needs of
diverse stakeholders and a human-centered approach
should be included in the design of technologies for
emergency management. For instance, Petersen et al.
(2023) and Dallo et al. (2022) chose such a path in their
research by including relevant stakeholders in the de-
sign of hazard and risk communication products. This
approach of co-production allows to enhance usability

between developers and users to ensure user-centred
communication, which is necessary for effective haz-
ard and risk communication as well as the usability of
a technology to move from a last-mile to a first-mile ap-
proach (Shaw, 2020). Some scholars such as Petersen
et al. (2023) argue to include the ethical, legal and so-
cial issues in the assessment of those technologies in a
nuanced way in order to actually address them. With
respect to usability, end users need to have a positive
perception of and trust in a technology in order to apply
it and accept the decisions derived from the outputs of
these technologies (Kankanamge et al., 2021). Addition-
ally, the technologies need to fit into existing structures
such as established communication networks, and the
local safety culture, and reflect people’s capacities and
needs. While there are studies about public perception
of emerging technologies in general (e.g. on AI: Kelley
et al., 2021), there is little literature on the public per-
ception of their use for DRR. The acceptance and sup-
port thereof have thus not yet been elicited.
Another societal aspect is inclusiveness, i.e. consider-

ation of the inclusion of vulnerable groups. One way to
bemore inclusive is to adopt an intersectional approach
(Crenshaw, 1991; Vickery, 2017). Applied toDRR, the in-
tersectional approach helps to find the most vulnerable
andmarginalized groups (people of colour, immigrants,
sick, old, disables, queer etc. people) in different dis-
aster contexts by assessing and uncovering intersecting
traits or social variables. (Vickery, 2017). The homog-
enized term “vulnerable” can lead to a neglect of char-
acteristics and traits that have an influence on the out-
comesof a disaster response (Vickery, 2017). It is impor-
tant to acknowledge that every person can bemade vul-
nerable in a disaster, and that this is contextual. Thus,
also the International Organization for Standardization
(ISO) includes the personal circumstances in the assess-
ment of vulnerability (ISO 22395, 2018). Intersectional
awareness helps to understand vulnerability better.
With our study, we aim to close the still existing re-

search gap of including users and considering ethical
implications, by providing professionals (researchers
and developers of these technologies) with guidance for
thinking about the impact of their technology on soci-
eties and for the contextual safety culture. To this end,
we focused on two specific societal issues: (i) the user-
centred perspective in terms of the usability of a tech-
nology; and (ii) inclusiveness, i.e. who benefits from a
technology and who is excluded.

3 Methods and Material

The methods used for this study are shown in Figure 1.
Based on an extensive literature review (section 3.1),
we iteratively developed a toolbox addressing the rele-
vant issues when evaluating the potential of emerging
technologies forDRR.Afterwards, we conducted aproof
of concept by applying a Delphi study with two survey
rounds, which allowed us to improve the toolbox based
on expert feedback (section 3.2).
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Figure 1 Overview of the methodological procedure: literature review, development and adjustment of the toolbox, and
proof of concept with a Delphi study.

Emerging technologies
Hazards Artificial Intelligence Internet of Things Remote Sensing
Terror attacks 6 5 2
Flash floods 4 4 2
Wildfires 4 3 2
Earthquakes 4 4 3

Table 2 Number of articles analysed for the four hazards and three technologies [in total 43 articles]

Overarching categories
Technological potential Practical potential Social potential
Development costs Practicality User needs
Transferability Applicability Accessibility
Functionality User groups Inclusiveness
Reliability Effectiveness Ethical issues

Table 3 The three overarching categories and their associated sub-topics

3.1 Literature review for iterative toolbox
development

We conducted an explorative literature review based on
a search with a number of hazard keywords – earth-
quake(s), flash flood(s), wildfire(s), terror attack(s), dis-
aster(s) – in combination with disaster risk reduction
or disaster management or safety culture or emerging
technologies. We searched on the platforms Google
Scholar and Web of Science, and applied a “snow-
balling” method, i.e. looking at the references of the
identified literature to access more relevant studies
(Greenhalgh and Peacock, 2005). With this literature
review, we mapped the current state of the art for the
role of emerging technologies in DRR. Based on this,
we then iteratively and deductively developed our first
toolbox draft. It should be noted that the literature re-
view yielded only a small number of publications over-
all (see Table 2). In order to gain a broad overview,
we first searched for general literature on technologies
used for DRR and specifically on the societal impact of
those technologies. We found that there was a clear
tendency towards the assessment of functionality and

sometimes users, but little literature on the societal im-
pact, which is why this became one focus within our
toolbox. In order to holistically grasp the potential of
an emerging technology to enhance safety culture, we
focused not only on the societal issues but also on the
practical and technological issues, since these are very
interdependent.
Based on the findings and insights from the litera-

ture review, we developed a first version of the tool-
box. The derived relevant issues for assessing the po-
tential role of emerging technologies to enhance safety
culture were organized in three overarching categories
–technological, practical, and social potential – each
with four associated sub-topics.
In a second round, the chosen studies were analysed

to understandwhat findings, if any, each study provided
with respect to these categories. In every article, we ex-
amined whether or not each of the categories was as-
sessed.
This iterative procedure combined with discussions

with fellow researchers allowed us to complement as-
pects and to merge certain issues. This led to a first
draft of the toolbox ready to be tested in a proof-of-
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Delphi study
Socio-demographics Survey – Round 1 Survey – Round 2
# participants 12 7
Average age 37 years 39 years

Gender
n =8: male
n =2: female
n =2: do not wish to disclose

n =5: male
n =2: female

Place of work

n =1: prefer not to say
n =1: China
n =2: United Kingdom
n =2: USA
n =2: France
n =4: Switzerland

n =1: France
n =3: United Kingdom
n =3: Switzerland

Years in current position

n =1: 5-10 years
n =2: 10-20 years
n =3: more than 20 years
n =6: 1-5 years

n =2: 10-20 years
n =5: 1-5 years

Level of expertise

n =1: no expertise
n =1: high expertise
n =2: very low expertise
n =8: medium expertise

n =1: no expertise
n =1: high expertise
n =5: medium expertise

Research focus

n =1: earthquake forecasting
n =1: earthquake prediction
n =2: none
n =4: earthquake early warning
n =4: rapid impact assessment

n =1: earthquake prediction
n =1 rapid impact assessment
n =4 earthquake early warning

Table 4 Characteristics of participants in the first and second survey rounds

concept study to determine whether it actually allowed
professionals to reflect on the potential of an emerging
technology for DRR. For this we chose the Delphi study
method.

3.2 Delphi study to test the toolbox

By means of a Delphi study, we conducted a proof of
concept of our toolbox and assessed the potential of AI
in seismology. Experts on AI in seismology were re-
cruited based on their proven expertise in the field and
invited to participate in two survey rounds using the on-
line survey toolUnipark(more information about the re-
cruitment and participants can be found in the next sec-
tion). The tool allows for simple, location-independent,
anonymous participation. Anonymity of the partici-
pants is one key characteristic and advantage of the
Delphi study because it reduces the risks of individuals
dominating group discussions, thus pre-empting ma-
nipulation and coercion (Dalkey, 1972).
In both rounds, participants had to rate different

statements (see Sections 3.2.2 and 3.2.3) on a 5-point
Likert scale, from 1=strongly disagree to 5=strongly
agree. We also included open-ended questions to let
them comment on their ratings. Based on the com-
ments provided in the first round, we adjusted or added
new statements to be rated in the second round (Ta-
ble 3).

3.2.1 Participants
For the expert recruitment, we chose to invite around
90 participants via email. Our selection criterion was
that the possible candidates must have written a peer-
reviewed article on AI in seismology within the last
three years. The target was to reach about 15-30 ex-
perts, since this is the number recruited inmost Delphi-
studies (Hsu and Sandford, 2007). Further, we aimed
to reach involve a diverse group of experts. We tried to
counterbalance the Eurocentric bias by inviting experts
from all over the world, specifically also targeting sci-
entists based on the Asian and African continents, and
by inviting experts of all genders. The first attempt to
recruit experts via email was not sufficiently success-
ful. We thus contacted experts through our project net-
works and the expert pool of the Swiss Seismological
Service at ETH Zurich. In the end, we had a total of
12 experts who completed the first survey and 7 experts
completing the second survey. The socio-demographics
of the participants are summarized in Table 4.

3.2.2 First survey round
In the first round, we asked the participants to rank 66
statements about the toolbox and its applicability in as-
sessing the potential of AI in seismology. The state-
ments for the specific case were derived from the lit-
erature and discussions with seismologists. The state-
ments tried to encapsulate the state of the art of AI in
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seismology, which can be summarized as follows:
AI in seismology is used for fast data processing

(Mousavi and Beroza, 2023). This is especially promis-
ing because it seems to be cheaper than previous pro-
cedures used for modelling (Essam et al., 2021). AI can
help enhance EEW (Meier et al., 2020; Iaccarino et al.,
2021; Wu et al., 2021; Datta et al., 2022) and improve
methods to forecast earthquakes (Mousavi and Beroza,
2023; Beroza et al., 2021) using e.g. deep learning (Sey-
doux et al., 2020). AI is also used for rapid impact assess-
ments (Harirchian et al., 2021; Stojadinović et al., 2021).
Some scholars even argue that AI can be used to predict
earthquakes (e.g., Marhain et al., 2021), but this is heav-
ily disputed since predicting the precise location, time,
and magnitude of a future earthquake is not possible at
the current state.
Thus, AI in seismology, with its manifold potential in

DRR, which is still at an early stage of implementation,
offers an ideal case study. Further, the gap in the elici-
tation of the societal impact is also problematic in this
domain.
The rating of the statements was followed by open-

ended questions addressing the experts’ understanding
of AI in seismology and their general opinion on the pil-
lars of the toolbox. We also assessed the experts’ age,
gender, job, and location of research in order to ensure
a diverse set of participants. The survey was pre-tested
by a seismologist and several experts in social sciences.
For the data analysis, we followed the procedure of

Vogel et al. (2019) and used SPSS. While the socio-
demographics were analysed descriptively, the state-
ments were analysed using percentages. We assumed
that consensus about a statement was reached when
more than 70% of the participants gave answers accord-
ing to the categories defined as agreement anddisagree-
ment (Vogel et al., 2019). We defined these by adding
categories 1 and 2 (“Don’t agree at all”, “Don’t agree”) to
indicate disagreement, and categories 4 and 5 (“Agree”
and “Fully agree”) to indicate agreement. Category 3 in-
dicated a neutral position. The open-ended questions
were analysed qualitatively usingWord and an inductive
approach. After analysing the first survey, both quan-
titatively and qualitatively, we found that there was lit-
tle to no consensus on the statements, which made it
difficult to adapt them. Therefore, we chose to adapt
the toolbox based on the insights from the qualitative
analysis and exclude the statements as a whole from the
second survey. This is consistent with the Delphi study
procedure, as defined by Pohl (2020), since we followed
an iterative process and adapted the survey after each
round based on the experts’ answers.

3.2.3 Second survey round

In the second round, the experts from the first round
were asked to evaluate the adapted toolbox and to com-
ment on a concise definition of AI in seismology. The
survey consisted of three parts: (i) a shared definition
of AI; (ii) the adapted toolbox; and (iii) demographic in-
formation. For the data analysis, we again followed the
procedure of Vogel et al. (2019).

4 Results
In sections 4.1 to 4.3, we describe the results of the ex-
plorative literature review and iterative toolbox devel-
opment (section 4.1) and the first (section 4.2) and sec-
ond (section 4.3) rounds of the Delphi study survey. The
in-depth literature review can be found in the supple-
ment in the tables lr1, lr2, and lr 3. The results of the
Delphi study follow the structure of the surveys, starting
with the findings for the toolbox in general and then the
specific case AI in seismology (Supplement, Delphi Sur-
vey (DS) – Round 1). These results show the in-depth
answer to the research questions (section 1) concerning
whether the developed toolbox is applicable and suit-
able for professionals to reflect upon the potential role
of an emerging technology to enhance safety culture.

4.1 Results of the explorative literature re-
view and iterative toolbox development

With our literature review, we iteratively and induc-
tively developed the first solid draft of our toolbox to
test in a Delphi study (Figure 2). The first draft consisted
of three distinct pillars with four categories in each, all
of which can be assessed individually, as shown in Fig-
ure 2. The goal was to holistically cover the role of an
emerging technology in enhancing safety culture. In
addition to the technological and practical issues, we
aimed to elicit the societal impact of a technology, be-
cause very little literature was found on this.

4.1.1 Definition of AI

In the first part of the survey, we asked the experts to de-
fine AI in general and to explain what they thought was
the potential of AI forDRR.We identified three common
thoughts: i) AI is a term used to describe computational
processes that involve learning; ii) AImimics human in-
telligence; and iii) AI is able to process information fast.
Nine out of 12 experts also agreed that AI could help en-
hance DRR, but that this potential should be assessed
when AI has developed further. Based on these find-
ings, we derived a definition for AI in seismology, which
we then presented in the second survey round for the
experts to comment on.

4.1.2 Feedback on toolbox

In the second part of the survey, we presented the first
draft of the toolbox (see Figure 2). Concerning the tool-
box as a whole, 6 out of 12 experts found it difficult
to understand in which context and for what purpose
the toolbox would be used and what the concrete im-
plementation would look like. However, 7 out of 12 ex-
perts stated that it was a good starting point with room
for improvement when it came to context, objectives,
and specific items within the pillars. Additionally, a
general feedback was that the metrics for all the cate-
gories within each pillar should be added, as the follow-
ing statement shows: ”I like these categories and I believe
they are well described. But it will be hard to quantify how
transferable or how limited a technology is (ID10).”
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Figure 2 First draft of the toolbox after the literature review for the first survey round of the Delphi study. The toolbox
was derived from the literature review. It consists of three pillars – technological potential, practical potential, and social
potential. Within these pillars, there are categories that can be assessed independently in order to understand the respective
pillar.

Figure 3 Adapted toolbox based on first round of the Delphi study. Changes are highlighted in red. The adapted toolbox
was presented in this form in the second Delphi study survey round.

We then asked the experts to comment on each pillar
separately. For each pillar, the experts provided general
feedback andwere able to suggest additional issues that
in their opinion were missing.

For the technological potential pillar, in addition to bet-
ter clarifying the purpose and providing metrics, there
was a consensus that the “Developing costs” category
should be expanded to include maintenance and oper-
ational costs as well as benefits, as the following state-
ment underlines: ”[…]. For example cost has no sense if
benefit is not added (ID2).” Besides these costs, the partic-

ipantsmentioned other factors to be added to the pillar,
such as sustainability (see Figure 3).

For the practical potential pillar, the feedbackwas sim-
ilar. Participants said they would like to havemore con-
text in order to better understand the application of the
toolbox. They also suggested extending the focus on
end users, which was considered in the second draft
(Figure 3). The feedback on this pillar also included the
question of what role users should play within the de-
velopment of AI in seismology.
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Figure 4 Statements related to AI in general: agreement is highlighted in green and disagreement in red (>70% agree or
disagree).

Figure 5 Statements concerning the technological potential: agreement is highlighted in green (>70% agree).

As one participant put it: ”It probably really depends on
the intended users/usage scenarios: ’recognize’ a disaster
from data; ’characterize’ the disaster and its potential; sup-
port decision making (different stakeholders/users) – I find
it impossible to assess practicability ’in general’ (ID9).”

4.1.3 Adapted toolbox
Based on the feedback from the experts in the first sur-
vey round,we renamed thepillars: technological poten-
tial became functionality, practical potential became us-
ability, and social potential was renamed societal dimen-
sion. Additionally, we added further relevant categories
andmetrics to assess them, and a description of the pur-
pose and goals of the toolbox. This helpedus strengthen
our main goal of providing experts with guiding ques-
tions to assess the societal impact of a technology they

are developing (see Figure 3).

The comments concerning the social potential pillar
were very diverse. On the one hand, the need for eth-
ical considerations in the development of these tech-
nologies was highlighted. On the other hand, the feed-
back was that the ethical considerations differ depend-
ing on the role of the end users. Some participants also
reflected on the responsibility of the different actors, as
the following statement shows: ”None of this is related to
the tech itself but to the way it is used by the operator. It is
unfair to blame the developer of tech for these issues (ID8).”
These issueswere added to the toolbox, as shown in Fig-
ure 3.
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Figure 6 Statements concerning the practical potential: disagreement is highlighted in red (>70% disagree).

Figure 7 Statements concerning the social potential

4.1.4 The case study

In the third part of the survey, we asked specific ques-
tions concerning AI in seismology and wanted to test
whether our toolbox actually helped the experts to re-
flect upon the societal potential of AI in seismology. The
question In which fields of seismology does AI play an im-
portant role? elicited very diverse answers, ranging from
communication and earthquake early warning to pre-
diction. However, there was a consensus that the use of
AI is still in its beginnings in seismology and that the ac-
celeration of data processing will lead to more achieve-
ments. On the question of the greatest potential, the an-

swers ranged fromdata processing and predicting dam-
age to earthquake prediction.
We also presented statements on the potential of AI in

seismology to ascertain whether the experts found the
toolbox applicable.
The first batch of statements focused on the general

potential of AI in seismology. It is notable that there
were only two instances of clear consensus (see Fig-
ure 4). The experts agreed on the statement that the use
of AI should be critically reviewed, especially in seis-
mology. Further, there was consensus that AI is not a
synonym for deep learning. The statement that AI is a
synonym for machine learning came close to achieving
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Figure 8 Definition of AI in seismology: consensus is highlighted in green (>70% agree).

a consensus (59%). For the other statements, therewere
few indications of a consensus, which suggests that the
experts do not agree on the potential of AI in seismol-
ogy and also that the applications of AI in seismology
are very broad.
Because there was only very little consensus and a

lot of dissent, we chose not to include these statements
in the second round. However, the results of this first
batchwere used to formulate the proposed definition of
AI for the second round of the Delphi study.
The statements concerning the three different pillars

showed only little consensus.
Concerning the technological potential, there was

only one instance of agreement, namely that the avail-
ability of data is a limiting factor for the reliability of the
results (see Figure 5). The statement “AI has a high func-
tionality for rapid impact assessment” almost reached
consensus (67%). Some of the answers show a high de-
gree of neutrality (over 40%).
For the practical potential, the experts agreed that the

use of AI is not limited to the developers (Figure 6). No
other statement achieved a consensus. The closest to
consensus was for the statement “AI is only useful for
specific users such as early adapters” (57%). For this
user-focused category, there were even more neutral
answers than for the technological potential.
For the statements concerning social potential, no

consensus was reached. The statements that came clos-
est to a consensus were “AI models should be more
critically reflected” and “Applications from AI models
in seismology do specifically target vulnerable groups”
(50%). All statements attracted over 30% neutral an-
swers (Figure 7).

4.2 Results of the Delphi study – Second
round

In the second round, 7 of the initial 12 participants filled
out the survey (Table 4). The second survey (Supple-
ment, Delphi Survey – Round 2) was shorter because we
chose to focus on the possible common definition of AI
in seismology and the adapted toolbox as a whole (Fig-
ure 3). Consequently, the experts were no longer asked
to rate statements on the specific case of AI in seismol-

ogy. The new toolbox was again broadly commented on
and the changes were viewed positively. One partici-
pant called it ”a good start for reflection (ID7)”, whichwas
exactly our goal. Still, several experts suggested some
reformulations, renaming, and adjustments, which led
to the final toolbox as shown in Figure 9.

4.2.1 Definition of AI
The definition of AI compiled from the answers of the
first survey round consisted of three parts, which the
experts were able to judge separately (Figure 8):

1) AI models are simulations or imitations of the human
intelligence which are trained with data and are able to
analyse, interpret and learn;

2) AI models will make disaster risk reduction more effi-
cient, robust and more adequate;

3) Within seismology, AI has a high potential in multiple
research areas, specifically for more efficient data processing
and data analysis, but according to experts in the field the
potential should not be overestimated.
Only for the third part of the definition was a con-

sensus reached. The experts agreed that AI has a high
potential within seismology but should not be overesti-
mated.
Multiple comments additionally suggested that the

focus of AI in seismology does not lie in the imitation
of the human brain but rather in computational imple-
mentation and data processing. The following com-
ment by a participant illustrates this: ”I have an issue
still with linking AI to ’simulating/imitating human intel-
ligence’ - I am not an expert in human intelligence, but I be-
lieve that, what exactly that is, is still debated… therefore I
would rather describe AI as computational implementations
of models of learning/reasoning/concluding that are shaped
after current understanding of neural (brain) networks (or
so...) (ID7).”

4.3 Final toolbox
After analysing the results of the second round, we
made two big changes. Firstly, we chose to solely anal-
yse the enhancement of safety culture and not safety
culture within DRR and not DRR overall. The rationale
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Figure 9 Toolbox to assess the potential of emerging technologies for DRR and safety culture developed in an iterative
process consisting of literature review and two Delphi study survey rounds

behind this was that only if the contextual safety cul-
ture is improved, DRR effort are/become effective, as re-
alized within the literature review. (see Safety culture
and DRR). Secondly, we chose to remove the metrics
from the categories. The reasons were that the toolbox
should be directly applicable and not require in-depth
studies for each category in each pillar. To this end, we
formulated questions that can be answered for the anal-
ysis (Figure 9). To summarize, we again formulate the
main goal of each pillar.
The final toolbox (Figure 9) consists of the following

three pillars designed to holistically assess the potential
role of an emerging technology in enhancing safety cul-
ture:
Functionality: Does it work?
The functionality pillar describes whether a technology
functions properly during its whole lifespan and con-
tributes to enhancing existing DRR efforts. It can be
evaluated by testing the technology in existing applica-
tions in laboratory or real-world settings.

Usability: Is it used/usable?
The usability pillar describes whether a technology is
usable and applicable by different targeted end users

(context-independent), and specifically assesses the ac-
tive use and the intended use of a technology.
Societal dimension: What does it mean for society?
The societal dimension pillar analyses the contribution
of AI to DRR from a societal and ethical perspective. It
addresses possible ethical issues such as misuse of the
technology.

5 Discussion
Based on a literature review and aDelphi study, wewere
able to develop a toolbox to support professionals (de-
velopers and researchers) in the systematic reflection
on the societal impact of the technology they are devel-
oping, implementing, or operating, considering safety
culture in order to improve disaster risk reduction.
In the following, we explain how the iterative steps of

the Delphi-study has confirmed our findings of the liter-
ature review (section 5.1). Further, we discuss how our
toolbox could be applied within the project and policy
cycle in order to ensure the effective use of the toolbox
(section 5.2). Last, we critically reflect on the limitations
of our study and discuss future research (section 5.3).
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5.1 The comparison of the literature review
and Delphi-study

Our toolbox is designed to help professionals to re-
flect on the technologies’ contribution to enhancing so-
cietal benefits, encouraging collective actions towards
an enhanced safety culture and including marginal-
ized groups within society. The importance of includ-
ing societal issues emerged from both the literature re-
view and the Delphi study. Past research on the po-
tential of technologies for DRR has mainly focused on
the functionality and the usability of those and thereby
neglected the societal perspective and their impact on
safety culture. The insights from the Delphi study sup-
port this finding, with the statements about the techno-
logical and practical potential generating most consen-
sus. At the same time, fewer neutral answerswere given
in these areas (see Figure 6 and Figure 7), indicating a
shared scientific understanding.
The International Telecommunication Union (ITU,

2019) conclude in their assessment that disruptive
emerging technologies for DRR are improving disas-
ter management but that further research is required
to ensure large-scale impacts. With particular regard
to increasing societal impacts, they recommend foster-
ing public outreach, i.e. consideration of the purpose
and specific target audience, and partnerships between
academia and the private sector to improve disaster
management overall (ITU, 2019). This is also stressed
in the literature review of Gjøsæter et al. (2020) In addi-
tion, our study shows that experts are interested in re-
flecting on their technologies, but emphasize that this
is not just their responsibility but the task of all actors
involved in the development, implementation, deploy-
ment, and use of a technology. This is indicated by the
neutral answers for the practical and social potential
statements (see Figure 6 and Figure 7). Our toolbox thus
consists of questions that are applicable for all actors in-
volved.
The literature review demonstrated that clear defini-

tions of the technologies looked at are lacking: the ap-
plications of AI, IoT, and remote sensing are very broad
and this is why there is only a tendency towards a com-
mon understanding. However, distinct definitions are
required in order to be able to discuss the societal im-
pacts of a technology. Consequently, a common under-
standing needs to be strengthened through further so-
cietal and scientific cooperation. This will form the ba-
sis for, among other things, drawing up regulations and
policies for the development and application of AI (Ha-
rasimiuk and Braun, 2021), IoT and remote sensing in
order to enhance safety culture.
It is therefore not surprising that AI in seismology is

also lacking a common definition, as hinted by the lit-
erature review and the Delphi study. Despite the fact
that most respondents called themselves experts on AI
in seismology, they did not provide the same definition.
Given the broad range of possible applications of AI in
seismology and the different specializations of the re-
spondents, this seems logical (e.g. Mousavi and Beroza,
2023). Still, the results show that the experts agree on
some of the potential and the limitations of AI in seis-

mology. Hence, AI in seismology cannot be reduced to
just a single definition but rather should be discussed
in the context of each application, with its limitations
and pitfalls, and should not be overestimated (Mousavi
and Beroza, 2022). In order to understand the potential
of AI in seismology to enhance safety culture, the first
step should be to understand which specific application
of a technology is discussed. Given the variety of def-
initions, the toolbox and its categories are kept broad,
while still serving as a catalyst for critical reflection on
the issues under discussion and enabling an assessment
of the potential in each specific application.
Still, the comparison of our literature review and the

Delphi study shows that we were able to iteratively de-
rive a toolbox which can support professionals in re-
flecting the societal impacts for safety culture of the
technology they use. The specific case study of AI has
shown that the toolbox does support professionals.

5.2 The implementation of the toolbox

To reach the purpose of being further developed, the
toolbox should be actively used. This can only be
achieved if the toolbox is known. One possibility would
be organizing workshops with practitioners, by doing
more outreach, possiblywith the ITU, in order to ensure
further development and, in the end, possibly standard-
ization.
Further, existing research indicates that co-

production of knowledge is required to improve
DRR measures (Ismail-Zadeh et al., 2016; Izumi et al.,
2019), i.e. involving stakeholders from the beginning
following the first-mile principle (Shaw, 2020) and
strengthening the collaboration between science and
society (ITU, 2019). The evaluation of the three pillars
– functionality, usability, and societal dimension – of
our toolbox within the Delphi-study indicates the same:
there is a need for a guided discussion and reflection
on the consequences of a technology in the scientific
community as well as societies to increase awareness,
which the toolbox can facilitate by guiding relevant
stakeholders in their reflection from the outset.
Once the toolbox is known, potential areas of influ-

ence must be identified. To this end, we linked the el-
ements of the toolbox to the policy cycle adapted from
Schubert and Klein (2020), as well as the project cycle
adapted from the EuropeanCommission (2004); see Fig-
ure 10.
Setting the agenda firstly is crucial in the project ini-

tiation: in this step the goal to enhance safety culture
is manifested, and hence the goal to use the toolbox in
the process. With the second step, the formulation of
the policy, the different foci of the use of the technol-
ogy and thus the application of the different pillars of
the toolbox is chosen. This then leads to the third step,
the decision where the time to reflect is spent. In the
two final steps, the implementation and the evaluation
of the technology happens, once again with the reflec-
tion guidance of the toolbox. All these steps happen co-
operatively, co-productively, and iteratively, both first-
mile to last-mile.
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Figure 10 Application of the toolbox (black squares) in the policy cycle (adapted from Schubert and Klein, 2020, blue ar-
rows) and the project management cycle (adapted from European Commission, 2004, blue squares).

5.3 Limitations and next steps

Our study has several limitations that could be ad-
dressed in future research.
Our explorative literature review was not conducted

fully systematically but rather iteratively, meaning that
there was a broad timeframe and limited sample cho-
sen. However, the literature review was solely needed
to identify the categories forming the basis of the tool-
box and to grasp the state of the art of these technolo-
gies inDRRand to thendevelop thefirst solid draftof the
toolbox. Further, through the expert elicitation (Delphi
study), we aimed to overcome these issues by gathering
more knowledge and reviewing these results.
TheDelphi study is a provenmethod for eliciting con-

sensus and dissent among experts and identifying po-
tential achievements and developments in the future
(Dalkey and Helmer, 1963). A key benefit of themethod
is that experts around the world can be involved. This
was not fully achieved with our sample. We involved
experts from different nations, but not from all con-
tinents and mainly from the European Union and the
United States, so the results may have a Eurocentric
bias. One explanation could be that the development of
these technologies is still lagging in African and Latin
American countries because there are other priorities
for DRR. Additionally, we only conducted two rounds,
since little consensus was found for the different state-
ments. Our findings indicate the diversity of the topic,
as even after two rounds there was still little consensus.
However, the experts’ answers show some tendencies of
opinions and needs. This outcome can be explained by
the broadness of the topic but also by the sample size
and the participants’ characteristics, which are two key
limitations within this study. The sample was fairly di-
verse in terms of the specific research fields of seismol-

ogy, despite a specific target group being formulated for
recruitment. This does not, however, delegitimize the
results (Hsu and Sandford, 2007), because the diversity
of the group can reveal additional tendencies. It seems
that, in order to understand the impacts of these tech-
nologies, rather than focusing on a common definition,
case studies are helpful to understand the impact of us-
ing these technologies for society.

TheDelphi study is an appropriate tool to explore pol-
icy needs. In the two survey rounds, this was achieved
both by showing the differences in the understanding
of AI for seismology but also by further developing the
toolbox andfindingmore guiding questions to elicit ten-
dencies as to whether a technology actually enhances
DRR and safety culture. These policy needs could be
fulfilled by applying a standardized tool for the inclu-
sion of societal matters or targeted funding of research
on those matters. Additionally, further research should
be conducted with case studies on the other technolo-
gies, as well as the different pillars of the toolbox, i.e.
the societal dimension and the usability. To this end,
it would be beneficial to conduct studies that explore
both the acceptance and practical utility of the toolbox,
thereby gaining a comprehensive understanding of its
usability. Further, to advance the toolbox, it must be ac-
tively used and applied by professionals and there must
be continuous evaluation of how vulnerability and in-
clusiveness can be addressed in a technologically fast-
evolving world.
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6 Conclusion
Emerging technologies suchasAI, IoT, and remote sens-
ing are applied inmany different fields and can support
societies in dealingwith disasters. So far, research look-
ing at the practical and societal issues related to emerg-
ing technologies for DRR has been limited. This study
thus iteratively and inductively developed and tested a
toolbox for professionals including developers and re-
searchers, allowing them to critically reflect on and as-
sess thepractical and societal impacts of a technology in
the context of DRR and safety culture. The toolbox em-
powers professionals to enhance the accessibility and
applicability of their technologies, considering also the
needs of vulnerable groups, and encourages a shift in
technology assessments from the last to the first mile.
Consequently, the societal perspective becomes an in-
tegral part of all phases, encompassing the design, de-
velopment, implementation, and deployment of a tech-
nology.
Our case study onAI in seismologyhas illustrated that

the developed toolbox can indeed help andmotivate sci-
entists and developers to reflect on the societal issues
related to their developments in the context of DRR, but
reveals that there is a need for more common under-
standing and definitions of these technologies, in order
for them to be discussed among different professionals.
These technologies have been found to have great po-

tential to enhance DRR and safety culture. We therefore
encourage professionals and research groups to use the
toolbox for their evaluations of emerging technologies
and to further adjust it based on new research findings,
since it is a rapidly evolving field and the application al-
ways depends on the specific cultural contexts.
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Abstract It is increasingly common for seismic networks to operate multiple independent automatic al-
gorithms to characterise earthquakes in real-time, suchas in earthquakeearlywarning (EEW)or even standard
network practice. Commonly used methods to select the best solution at a given time are simple and use ad
hoc rules. An absolutemeasure of howwell a solution (event origin andmagnitude)matches theobservations
by the goodness-of-fit between the observed and predicted envelopes is a robust and independent metric to
select optimal solutions. We propose such a measure that is calculated as a combination of amplitude and
cross-correlation fit. This metric can be used to determine when a preferred solution reaches an appropriate
confidence level for alerting, or indeed to compare two (or more) different event characterisations directly.
We demonstrate that our approach can also be used to suppress false alarms commonly seen at seismic net-
works. Tests using the 10 largest earthquakes in Switzerland between 2013 and 2020, and events that caused
false alarms demonstrate that our approach can effectively prefer solutions with small errors in location and
magnitude, and can clearly identify and discard false origins or incorrect magnitudes, at all time scales, start-
ing with the first event characterisation.

1 Introduction
Over recent decades, earthquake early warning (EEW)
algorithms have been continuously developed and EEW
systems have become operational in many regions
around the world (e.g. Cremen and Galasso, 2020; Allen
and Melgar, 2019; Clinton et al., 2016). The goal of EEW
is to rapidly estimate developing ground shaking from
an ongoing earthquake at a specific location or region,
thus providing users with the opportunity to take action
before strong ground motions arrive and hence min-
imise the impact of the shaking.
The Swiss Seismological Service (SED) at Eidgenös-

sische Technische Hochschule (ETH) Zurich has been
actively engaged in the development and implementa-
tion of EEW algorithms for over a decade (e.g. Massin
et al., 2021; Behr et al., 2016), including the Virtual Seis-
mologist (VS; Cua, 2005; Cua and Heaton, 2007) and
Finite-Fault Rupture Detector (FinDer; Böse et al., 2012,
2015, 2018, 2023) algorithms. Operationally, these algo-
rithms are integrated asmodules within the earthquake
monitoring platform SeisComP - a technical framework
named the ETHZ-SED SeisComP EEW system (ESE;
Massin et al., 2021). Both of these algorithms estimate
the earthquake source parameters (location and mag-
nitude) which are then used to estimate ground shak-
ing at a set of locations or a region. In the current im-
plementation, the VS algorithm provides a predictive
magnitude, based on the recorded amplitudes and rapid
point-source earthquake location provided through ex-

∗Corresponding author: dario.jozinovic@sed.ethz.ch

isting SeisComP modules. FinDer provides an estimate
of the best-fitting line-source model by comparing the
peak ground acceleration (PGA) values at stations to a
set of pre-generated templates. Both algorithms pro-
vide independent estimates of the earthquake source
parameters. Differences in their performance during
an earthquake can arise from the properties of the seis-
mic source (magnitude, source complexity); the net-
work geometry; the data quality (e.g. both algorithms
are sensitive to spikes and metadata errors), and con-
temporary seismicity. A systembuilding onmultiple in-
dependent algorithms, like ESE, is more robust and tol-
erant to failure (Massin et al., 2021).
Like the majority of seismic networks, the SED also

uses the SeisComP framework for routine automated
monitoring, and also operates a suite of automatic de-
tectors (simple STA/LTA and post-detectors) and loca-
tors (scautoloc and scanloc) that target different types
of seismicity and use different velocity models. Fur-
ther, as more and more stations trigger, each ‘pipeline’
produces updated origins. This means that for an on-
going, even moderate event, the automatic system pro-
vides a highly dynamic output with many tens of dif-
ferent origins. Providing solutions from a few stations
allows small events to be identified and the earliest
solutions for large events. Allowing frequent updates
as more phase picks arrive means better accuracy can
be achieved as the energy from the seismic event pro-
gresses across the seismic network
However, havingmultiple sourceparameter solutions

requires a method capable of preferring or combining
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them. At the SED, we currently use a location score
based only on origin parameters (such as number of
picks, azimuthal gap, etc.), that does not take magni-
tude into account. Other approaches are available, for
example by simply using a weighted average of the so-
lution parameters (Kohler et al., 2020). Minson et al.
(2017) propose a more complex approach in which a
constrained least squares fit between observed and pre-
dicted acceleration waveform envelopes from all the
stations in the network is calculated. This is done for
each algorithm solution and used to estimate the rela-
tive probability for single solutions or their combina-
tions being correct, with the sum of the probabilities
summing to 1. Furthermore, a ‘no event’ solution, for
which the predicted envelopes are equal to zero, is used
to obtain the probability of no earthquake existing, cor-
responding to a false alarm. The method allows the
preference or combination of the ground motion pre-
dictions according to the relative probabilities assigned.
However, it does not provide a measure for the quality
of a solution, only its relative quality compared to other
possible solutions.
Motivated by the approach of Minson et al. (2017), in

this study we also compare the observed and predicted
envelopes. We employ the same envelope functions
(Cua, 2005)with appropriate adjustments to Switzerland
(see the Electronic Supplement to this article). How-
ever, instead of calculating the relative probabilities of
solutions from the given algorithms being correct, we
provide an absolute goodness-of-fit measure associated
with each source parameter estimate, which can then
be used to select the preferred solution (i.e. the loca-
tion, magnitude and origin time) and to check if this
solution reaches a pre-defined threshold for alerting.
Also, instead of a least squares fit between the observed
and predicted envelopes, our approach uses the com-
bination of amplitude fit and cross-correlation between
the envelopes, requiring that amplitude and shape fit
well but allowing for some timing error, for example in
the velocity model. We also do not set the noise level of
the predicted envelopes to zero but to the median noise
level at the stations used in this study.
Our approach can be implemented in EEW systems

as well as in general seismic observatory practice. It
can be used to compare multiple available automated
seismic solutions, irrespective of the source algorithm
and model, and to provide a preferred origin and mag-
nitude. Crucially, it can also be used to compare both
point-source (as provided by standard SeisComP loca-
tors) and finite-source (as provided by FinDer) solu-
tions, since it can support different distancemetrics, in-
cluding hypocentral or rupture distances.
We test our method on a set of earthquakes and

false alarms that occurred in real-time processing at the
SED since 2013. The algorithm can successfully prefer
source parameter estimates that are close to the net-
work solution with both early solutions including only
seconds of data at closest stations, as well as using the
full data from a large network. We find it is particularly
effective in suppressing processing blunders from sig-
nificant errors in automated locations or significantly
elevated magnitudes that are regular issues in seismic

network monitoring.

2 Methods
Our proposed method is based on the comparison of
observed and predicted velocity waveform envelopes
(Fig. 1) at a set of seismic stations. We obtain the ob-
served earthquake envelopes (following the approachof
Cua, 2005), computed by the sceewenv SeisComPmodule
(Massin et al., 2021), which provides continuous real-
time streams of envelope values (Behr et al., 2016). En-
velope computation in sceewenv involves the following
sequential steps: correct for the gain and baseline off-
set and check for a clipped signal (neglecting the sen-
sor if has a saturated signal); compute the root-mean-
square of the twohorizontal components to obtain a sin-
gle combined horizontal component, integrate to veloc-
ity (if needed); apply a 4th order Butterworth high pass
filter with a corner frequency of 3 s; and, compute the
maximum absolute amplitude within 1 s intervals.
We calculate the predicted envelopes following the

Cua (2005) relationship, using magnitude, hypocentral
distance and site class (either “rock” or “soil”). To at-
tribute the site class to the stations used in this study,
when available, we used the EC8 ground types (Eu-
rocode 8, 2005) available from the SED stations website
(Swiss Seismological Service At ETH Zurich, 1983). EC8
ground types are categorised as rock for EC8 ground
types A and B) or soil for all other EC8 ground types
and as default in the absence of EC8 type. The relation-
ship then outputs P and S waveform envelopes, which
start at earthquake origin timewith a specified duration
that matches the time window of the available station
waveform. The Cua (2005) predicted envelopes were
calibrated using data from southern California, which
consisted of about 30,000 records (vertical and hori-
zontal acceleration, velocity, and displacement) from
70 southern California earthquakes (2 ≤ M ≤ 7.3)
recorded within 200 km from the earthquake source.
However, for the subset of Swiss earthquakes we used,
we observed (Figure S7 in the electronic supplement)
that these predicted envelopes often do not fit the ob-
served shaking well and visual checks showed a sys-
tematic overpredicting of the observed shaking. There-
fore we decided to scale the predicted envelopes using
the GMM developed by Cauzzi et al. (2015) for Switzer-
land (see also Edwards and Fäh, 2013). This approach
reduced the difference in peaks between observed and
predicted envelopes (Figure S7 in the electronic supple-
ment). While this significantly improved the overall en-
velope fit, we still found that themaxima of the P-waves
(especially at the closest stations) were higher in the ob-
served data. We then further adapted the predicted en-
velopes using a station-specific S-P scaling andmultipli-
cation of the P-wave amplitude with an ad-hoc scaling
factor. Further details are given in the Electronic Sup-
plement.
We then compute the goodness-of-fit, G, of the ob-

served and predicted (parts of the) waveform envelopes
for each station S at time t as

G(S, t) = 100 ·
√

A(S, t) · C(S, t) (1)
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Figure1 Comparisonbetween true (with accompanyingwaveform) andpredictedenvelopes for (a) an earthquakeand (b) a
false alarm. The subplot a) shows the comparison for an event ofM 3.5 at a station 31 km from the hypocentre. The subplot b)
shows the comparison for a false M 3.5 at 151 km hypocentral distance, caused by a teleseismic earthquake (M 8.2 in Mexico)

where A(S, t) is the amplitude fit, and C(S, t) is the
normalised zero-shift cross-correlation between the ob-
served and predicted envelopes that start at time t0 and
end at time t, where t0 can be an arbitrarily defined en-
velope start time (e.g. earthquake origin time, P-arrival
at the closest station, etc.). The amplitude fit, A(S, t), is
calculated as

A(S, t) = 1 − (
o(S, t) − m(S, t)

o(S, t) + m(S, t)
)2 (2)

where o(S,t) and m(S,t) are the peak amplitudes of the
observed and predicted envelope at time t, respec-

tively. We decided to compare only the maxima of
the observed and predicted envelopes as we are mod-
elling the difference in envelope shapes using the cross-
correlation fit, C(S, t), calculated as

C(S, t) =

∑n

i=1 O(S, t)iM(S, t)(i)
√

∑n

i=1 O(S, t)2
j

√

∑n

i=1 M(S, t)2
i

(3)

where O(S, t) andM(S,t) are observed and predicted en-
velopes at time t, respectively, and n is the number of
samples (seconds) in the envelope. While using C(S, t)
increases the processing time of our algorithm (which

3 SEISMICA | volume 3.1 | 2024



SEISMICA | RESEARCH ARTICLE | Selection of Optimal Source Parameters Using Ground Motion Envelopes

Figure 2 The amplitude fit function A(S, t) in equation 2. The curves show the value of the fit, depending on the difference
between the observed (o) and predicted (m) peak values. The predicted values are fixed (dotted vertical line) for 3 different
values (3 colours). The amplitude fit A is shown for different observed amplitudes for each of the 3 fixed predicted values.
Note that the shape of A is scale-invariant on a log scale.

still remains insignificant), it allows us to address possi-
ble (unrealistically) good amplitude fits for certain com-
binations of both wrong magnitude and distance that
can produce similar amplitudemaxima as the observed
data (e.g. for an M 5.5 earthquake at 50 km distance the
predicted PGV is 0.0054 m/s and for an M 5 earthquake
at 25 km distance the predicted PGV is 0.0055 m/s), but
can be easily discriminated by the envelope shape.
The functional form of A(S, t) in equation 2 was cho-

sen because of its symmetric fit with exponential decay
(Fig. 2) as a function of the difference between o(S,t)
andm(S,t). Furthermore, we opted to use the functional
form of A(S, t) in equation 2 over a least-squares-fit as
used in Minson et al. (2017) because the value of A(S,t)
is bounded between 0 and 1 and depends on relative dif-
ferences in predicted and observed amplitudes rather
than absolute values (i.e. larger amplitudes do not af-
fect the fit disproportionately). Crucially, this produces
a bounded absolute fit measure that is independent of
earthquake size, allowing us to prefer the best magni-
tude and location estimate (although it systematically
penalises weakermotions - for example for an observed
ground motion of 2 mm/s, predicted ground motions 1
mm/s and 4 mm/s both provide the same A(S,t) value).
Finally, the mean goodness-of-fit across all included

stations at time t is calculated and used as the mea-
sure of the goodness-of-fit for the given source param-
eters. The same procedure is applied again for both ex-
isting and new source parameter estimates asmore and
more data arrives from already included and newly in-

troduced stations - resulting in a goodness-of-fit metric
that evolves over time. We then choose the solutionwith
the highest mean goodness-of-fit, i.e. that best fits the
observed ground motions, as our preferred solution.
In practice, at any given time t, we only use stations

where the predicted or observed earthquake ground-
motion envelopes are non-zero - that is those stations
within a certain distance, dependent on time t, from the
hypocenter (or rupture plane). The duration of the pre-
dicted envelopematches the available data from the ob-
served stations at time t. In this manner, the method
can account for differing data latencies from seismic
stations if operated in real-time. A further benefit of
this approach is that it reducesprocessing timeanddoes
not allow the fit between observed and predicted noise
(which is hard to model, and is station or sensor spe-
cific) to affect the final goodness-of-fit measure.

3 Data
Weevaluate the performance of the proposed algorithm
in two separate tests using data collected by the Swiss
seismicnetwork. This first is a retrospective analysis us-
ing recentmoderate earthquakes. The second test anal-
yses a set of significant false earthquake alerts that were
produced in recent years. We explore both (1) how sen-
sitive our method is at identifying differences in loca-
tion and magnitudes, and (2) how effective it is at iden-
tifying false alarms. All tests are performedusing differ-
ent window lengths after the P-wave arrival at the clos-
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Figure 3 Map of the stations (network codes CH, C4) and the 10 Swiss earthquakes (Table 1 for details of the events) used
in the analysis. Some earthquakes have very similar locations, so their markers overlap on the map.

Date (UTC) Latitude (°N) Longitude (°E) Magnitude (Mlh) Depth (km)
2020-11-10 T 12:53 46.9 9.12 3.9 1.7
2020-10-25 T 19:43 46.9 9.12 4.3 1.4
2020-10-25 T 19:35 46.91 9.12 3.6 1.4
2017-07-01 T 08:10 46.49 7.1 4.3 4.3
2017-03-06 T 20:12 46.91 8.93 4.6 4.2
2016-10-24 T 14:44 46.34 7.58 4.1 8.2
2016-10-07 T 07:27 46.51 9.54 3.8 10
2013-12-27 T 07:08 47.06 9.5 3.7 6.2
2013-12-12 T 00:59 47.06 9.49 4.1 5.9
2013-07-20 T 03:30 47.42 9.32 3.5 4.5

Table 1 Earthquakes used in this study.

est station, ranging from t=1 s to t=40 s. We conduct
our tests using the earthquakes and stations located in
Switzerland, a sufficiently small region for which 40 s
long waveforms provide enough input data to our algo-
rithm. The sample of recent earthquakes includes the
ten largest events that occurred in Switzerland between
2013 and 2020 (Table 1; Fig. 3), with events magnitudes
ranging from 3.5 to 4.6 and depths of 1.4 to 10 km.
The sample of 20 false alarms (Table 2) comprises

real events (quarry blasts and regional or teleseismic
earthquakes) andnon-existing events (i.e. noise bursts),
that were assignedwrong (or any in case of non-existing
events) locations and magnitudes due to combinations
of false triggers during routine monitoring. These
events typically were released to the public (e.g. on so-
cialmedia platforms) by the alerting system at the Swiss
Seismic Network. Alerts are released for automatic so-
lutionswithM>2.5 and an epicenter lying inside or close

to Switzerland that reach the quality threshold based on
the SED ’location score’. Currently, solutions (including
false alarms) are generated using the scautopick mod-
ule in SeisComP, using aminimumof 6 associated picks.
The SED ’location score’ (Diehl et al., 2015) takes into
account the distribution of pick residuals, location az-
imuthal gap, location RMS, and the number of arrivals
used for location.
We obtain the earthquake and station metadata from

the ETHZ dataset in the SeisBench package (Woollam
et al., 2022). The ETHZ dataset is derived from 1)
the National Earthquake Catalogue of Switzerland (see
Data and Resources section) for earthquake informa-
tion; and 2) the ETH EIDA node for seismic waveform
data and metadata. Seismic stations used are from
network code CH (Swiss Seismological Service At ETH
Zurich, 1983) and C4 (C.E.R.N., 2016), comprising 178
stations. See Figure 3 for stations and events. The false

5 SEISMICA | volume 3.1 | 2024



SEISMICA | RESEARCH ARTICLE | Selection of Optimal Source Parameters Using Ground Motion Envelopes

Real event Date False Lati-
tude (°N)

False Longi-
tude (°E)

False mag-
nitude

False depth
(km)

Quarry Blast (M=1.6) 46 km from false alarm location 12.06.2019 47.09 7.53 2.8 39.9
Quarry Blast (M=1.5) 140 km from false alarm location 26.08.2020 47.14 9.01 2.8 10
Quarry Blast (M=2) 0 km from false location 1.10.2020 47.53 8.18 2.5 6.4
Quarry Blast (M=1.7) 38 km from false location 5.11.2020 47.31 7.81 2.6 37.7
Quarry Blast (M=0.9) 105 km from false location 01.07.2022 47.17 7.19 2.9 10

M6.4 in Crete, Greece, 1584 km from false location 12.10.2013 46.72 11.46 3.6 12.3
M5.2 in Greece, 1274 km from false location 30.03.2019 46.37 11.21 3.1 27.8
M5.2 in Greece, 2042 km from false location 30.01.2020 46.83 8.94 2.6 76.2
M5.3 in Crete, Greece, 1993 km from false location 23.05.2020. 46.53 8.35 2.6 54.4
M5.4 event in Greece, 1664 km from false location 18.12.2021 46.06 8.27 2.6 27.4
M5.1 event in southern Italy, 916 km from false location 31.10.2022 46 8.19 2.8 3.6

M7.9 in Papua New Guinea, 119° from false location 22.01.2017 46.97 10.31 3.3 61.2
M8.2 in Chiapas, Mexico, 90° from false location 08.09.2017 46.38 11.78 3.5 22.8
M6.8 in Fiji, 151° from false location 18.11.2018 46.78 8.84 2.8 58.1
M7.1 in Anchorage, Alaska, 71° from false location 30.11.2018 46.35 10.18 3.6 3
M6.7 in Fiji, 152° from false location 01.09.2019. 46.69 9.57 2.7 36.5

Non-existing event 11.01.2019 44.82 8.13 3.7 27.6
Non-existing event 05.07.2019 46.54 9.38 3.2 10
M3.6 event, 115 km from false location 25.10.2020 47.48 7.85 2.7 5.9
M3.7 event in Albstadt, Germany, 248 km from false location 21.03.2021 46.51 6.9 2.5 28.5

Table 2 False alarms used in this study.

alarms are representative examples collected from the
operational experience during past years.
The observed earthquake envelopes have been calcu-

lated by the sceewenv module in SeisComP, as described
in theMethods 2 section. We calculate the predicted en-
velopes following theCua (2005) relationship (details ex-
plained in the Electronic Supplement). We set the noise
in the envelope templates equal to 10−7 m/s (corre-
sponding to themedian noise level at the stations used).
When calculating the goodness-of-fit for an earthquake
we choose the P-arrival at the closest station as the start
time t0 of the envelopes.

4 Results and Discussion
In order to evaluate the performance of our pro-
posed algorithm in the scope of EEW, we calculate the
mean goodness-of-fit for 10 large Swiss earthquakes (de-
scribed in the data section) using awide range of pertur-
bations of the true source parameters, at different times
after the event can be first identified. This test assesses
the sensitivity of the algorithm to errors in the source
parameters. Specifically, we perturb the cataloguemag-
nitude (varying between -1 and 1 in increments of 0.1
magnitude units, with additional gross perturbations of
-1.5 and 1.3 magnitude units; the perturbations are cor-
responding to Mpredicted −Mtrue) and catalogue epicen-
tral location (by distances of 0, 1, 3, 5, 10, 15, 20, 25, 30,
100, and 150 km), and calculate the goodness-of-fit for
all possible combinations of these perturbations. We
do not perturb the origin time, though origin time er-

rors can have a strong impact on the goodness of fit. Al-
gorithms that do not provide strong constraints on the
origin times can be penalised by this metric, and fur-
ther work is required to address this. We conduct the
same analysis for various input window lengths, from
windows that end 2s after the data has reached the 1st
station, to 40s after, spanning the entire time window
from the earliest possible EEW solution using the min-
imum available data from the fewest stations, to a final
automatic location based on the full waveform from the
entire network. To perturb the epicentral location, we
randomly vary the latitude and longitude of the epicen-
tre in a manner that satisfies the required distance per-
turbation.

Figure 4 and Figure 5 show the results of all the per-
mutedmagnitude-distance pairs for input windows that
end 4 and 20 s after the first P-arrival, respectively. Fig-
ures S1 (2 s), S2 (3 s), S3 (7 s), and S4 (40 s) in the
Electronic Supplement show the same calculations for
a wider range of time windows. Ourmethod would pro-
vide robust discrimination to larger errors in magni-
tude and location already at 4 s after the first P-arrival
time (Figure 4). Even at this early stage, the method
prefers a solution with correct source parameters (i.e.
the one with zero perturbation in magnitude and dis-
tance). While smaller errors in distance (less than
10 km) and magnitude (less than 0.5 magnitude units)
around the true solution also have relatively high fit val-
ues (close to or higher than 55), we can see that the fit
falls significantly as the perturbation in bothmagnitude
and distance increases. Increasing the window length
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Figure 4 Average goodness-of-fit for differentmagnitude-epicentral distance perturbation pairs averaged taken over all 10
events in Table 1 using an input time window ending 4 seconds after the P-arrival at the closest station. The columns and
rows show the errors in the source location (km) and magnitude, respectively. The small star in front of a number is used to
mark the goodness-of-fit value higher than 55.

Figure 5 Same as Figure 4 for an input time window ending 20 seconds after the first P-arrival at the closest station

(Figure 5) improves the absolute fit for solutions with
small magnitude and distance perturbations. Further-
more, there is an improvement in sensitivity to mag-
nitude perturbations (i.e. the fit for larger magnitude
errors is decreasing compared to the shorter time win-
dow). However, in terms of location error, the sensitiv-
ity deteriorates slightly. This can be explained by the
inclusion of more distant stations into the goodness-of-
fit calculation. Figure S5 in the electronic supplement
presents the same results as Figure 5, after 20 s, except

only stations up to 50km from the epicenter are used.
Formore distant stations, a small change in hypocentral
distance does not have a large effect on envelope am-
plitude. Furthermore, for solutions with significant dis-
tance errors, the observed increase in the goodness-of-
fit value at longer time windows is also a consequence
of the inclusion into the GOF calculation of 1) more dis-
tant stations for which the predicted amplitudes are of-
ten close to the noise level (Figure S6a), and 2) the sta-
tions for which the true and false epicentre can be at a
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Figure 6 The variation of the goodness-of-fit for the individual earthquakes in Table 1, over time, assuming the correct
location andmagnitude. The rows show the window length after the P-arrival at the closest station, and the column headers
show the date, the magnitude of the earthquake, the travel times for the first station T(1), and the difference between the
travel times at the first and the fourth stations T(1)-T(4). The hatched cells show the times when the P-waves would not yet
have reached 4 stations - i.e. before an EEW alert could be released. The small star in the right bottom corner of the cell is
used to mark the goodness-of-fit value higher than 55.

similar distance (Figure S6b), e.g. a station halfway be-
tween the true and false epicentre.
For the purpose of the current study, we consider 55

as the goodness-of-fit threshold which we would use to
define a solution acceptable. However, a more in-depth
analysis in real-time testing (as discussed later in the
text) is required to define a threshold which wouldmin-
imize false alerts while allowing for selection of good
solutions.
Figures S1, S2, S3 and S4, presenting different time

windows, show similar patterns as in Figures 4 and 5.
However, at very short time windows, the goodness of
fit does not always increase with time - at 2 s fit values at
and close to the correct solution are higher than at 3 s, 4
s or 7s. This is a consequence of having a smaller num-
ber of stations in the goodness-of-fit calculation (for the
shorter time windows) which have a strong individual
influence on the final goodness-of-fit metric.
Figure 6 summarises the evolution in goodness of fit

over time for the correct or perfect solution (i.e. us-
ing the network derived location andmagnitude, so dis-
tance and magnitude error are zero) for each of the 10
largest individual events. The same general variations
seen for the combined events persist for the individ-
ual events. At 1 s, solutions are often missing (none
of the stations have their amplitudes above the ampli-
tude threshold) or have a very poor fit. Note in the col-
umn header, the time after the origin time of the 1st
and 4th pick is provided for each event. This time dif-
ference is a proxy for the very earliest time an EEW so-
lution could be available using a network-type EEW ap-
proach like for VS or FinDer. For the dense Swiss net-
work, this value ranges from 0.3 to 4 s - and in many
cases, a first solution would be available only 2 s af-
ter the 1st arrival. In Figure 6, shaded cells indicate
when the goodness of fit would be computed before
a 4-station EEW solution is possible. In the first few
seconds, we also observe strong goodness-of-fit varia-
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tions for individual earthquakes, which is mostly a con-
sequence of the wrong travel times predicted through
the envelope prediction relationship (we did not adapt
the travel times to Switzerland). The goodness-of-fit im-
proves for all of the individual earthquakes over time,
and for themajority of themconverges to a similar value
when longer time windows are used. If we take 55 as a
goodness-of-fit threshold valuewe can see that the algo-
rithm would prefer the correct solution from the time
the first EEW alert has been issued for 7 events, while
for 3 events it would take 9 and 12 s to reach the thresh-
old.
Figures 7 to 10 show the result of the goodness-of-

fit for the false alarm origins listed in Table 2. The
method again shows good performance, it would allow
for false alarm discrimination in practically all cases.
Themethod provides extremely low goodness-of-fit val-
ues (mostly zero) for all the examples of quarry blasts
causing false alarms except one (Figure 7). The ex-
ample with the high goodness-of-fit value - just reach-
ing the 55 threshold for some window lengths - actu-
ally had the correct location, though themagnitude was
overestimated by 0.5 magnitude units, making it by far
the ‘least wrong’ of all the examples. The goodness of
fit values over time for these examples are consistent
with the previous Figures 4, 5 and S1-S4. Extremely low
goodness-of-fit results are also observed for false alarms
caused by events close to Swiss borders and for false
alarms without a specific event being the cause of the
false alarm (both types in Figure 10). The algorithm can
also clearly discriminate against the false alarms caused
by teleseismic and regional earthquakes (Figures 8 and
9). We can also see that the goodness-of-fit tends to in-
crease with increasing time window length for some of
the false alarms. As noted before, this results from the
inclusion of more distant stations into the calculation
for which the predicted envelope amplitudes are close
to the noise level. It should be noted that a goodness-
of-fit value of zero was assigned in cases when no sta-
tions reached the required threshold level (explained at
the beginning of the chapter). The predicted envelopes
do not include event type. However, the efficacy of the
method on different event types is demonstrated in Fig-
ures 7 to 10.
The method is shown to be highly effective, with

favourable results observed almost immediately (2 s)
after the P-wave arrival at the first station. This sug-
gests our goodness-of-fitmetric canbeused to select the
preferred of multiple EEW solutions in real-time. The
method not only ranks the EEW solutions but also pro-
vides a measure of their absolute quality, which can be
used to decide whether any of the solutions is accept-
able for emitting an alert. The goodness-of-fit does in-
crease for all solutions (even very wrong ones) with the
increase of the input window length (i.e. adding more
stations). This, however, could be tackled by adjusting
the goodness-of-fit thresholdwith the increase of the in-
put window length, or by weighting the stations accord-
ing to the distance from the (predicted) epicentre.
The algorithm successfully penalises significant er-

rors in both magnitude and location. Since the ap-
proach is based on matching the actually observed

ground motions, it allows for the integration of loca-
tion and magnitude accuracy estimates into a single
quality value. Hence, it provides an independent and
fair comparison of very different algorithms, including
those that produce a point-source solution with those
that produce line-source solutions (for which we could
use e.g. the Joyner-Boore distance metric). The results
also show that the method effectively suppresses false
alarms. We expect that this approach, if integrated into
real-time monitoring frameworks, will surpass the per-
formance of the traditional metrics that combine sim-
ple parameters (e.g. the number of picks, RMS, az-
imuthal gap, etc.) and hence can replace them.
A challenge with this method is that the background

station noise can be above the predicted ground mo-
tions, especially when analysing signals from small
earthquakes. High background noise can come from
anthropogenic sources or indeed sensor noise if the
sensor quality is limited, for example from MEMS ac-
celerometers. In these cases, the final goodness-of-fit
value can be dominated by the noise rather than the sig-
nal. In this study, we simplify the predicted noise mod-
elling by using the median noise level of the stations
used in the analysis, which is a reasonable assump-
tion given the overall high quality of the Swiss network.
However, for more heterogeneous networks it may be
needed to make the noise modelling more station- or
sensor-specific.
In actual network operations, we would restrict the

station selection to only stations with predicted P-
arrivals. However, in our study using perturbed dis-
tance andmagnitude errors, we could not select the sta-
tions based on the predicted P-arrival times as we did
not have the difference in origin times for the differ-
ent distance perturbations. Thuswe only select stations
close to the real (catalogue) and predicted hypocen-
ter using the previously described amplitude threshold.
Applying this selection allows the cross-correlation fit
to decrease the influence of noisy stations on the final
goodness-of-fit.
Future improvement in the station selection proce-

dure could come from weighting the stations so as to
ensure themost relevant stations have the highest influ-
enceon thefinal goodness-of-fit. This couldbe achieved
by 1) weighting the stations according to their epicen-
tral distance which would reduce the effect of distant
stations that have the predicted ground motions close
to the noise level and, in a reasonably homogeneously
spaced network, are usually more numerous than the
more important stations near the epicenter; and 2)
down-weighting stations located in spatial clusters as to
limit the influence of areas with a high density of sta-
tions. Weighting, however, could also have a negative
effect (e.g. for large location errors, weighting by dis-
tance from the predicted epicenter could downweight
important stations near the real epicenter) and requires
a detailed analysis of the whole network and the indi-
vidual stations when implementing the algorithm. We
expect that adopting a weighting procedure will allow
us to reduce the effect of distant stations increasing of
overall goodness-of-fit for wrong solutions as can be ob-
served between Figures 4 and 5. This will also allow
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Figure 7 The goodness-of-fit for the false alarms in Table 2. The column header shows the date of the event (as a proxy
for ID); the false magnitude M(F); the true magnitude M(T); and distance error De if caused by a real event. The first columns
shows the length of the input timewindow (in seconds) after the first theoretical P-arrival (using the false location). The small
star in front of a number is used to mark the goodness-of-fit value higher than 55. The results are grouped according to the
source of the false alarm; here, for false alarms caused by quarry blasts.

Figure 8 Same as Fig. 7, for false alarms caused by regional earthquakes in the Mediterranean.

Figure 9 Same as Fig. 7, for false alarms caused by teleseisms.
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Figure10 Sameas Fig. 7, for other false alarms. The first 2 aremislocations close toSwitzerland from larger regional events,
the second 2 are from non-existing events.

us tomore precisely select the goodness-of-fit threshold
which we would use to accept a solution.
The processing time of the algorithm (on a personal

laptop - Lenovo ThinkPad T14 Gen 2a) was on average
0.65 s per earthquake (tested on the 10 Swiss earth-
quakes) without significant variation when using dif-
ferent window lengths. This means that the process-
ing time is dominated by loading the observed and
predicted envelopes from disk - the calculation of the
goodness-of-fit took on average 0.003 s when the en-
velopes were loaded into the memory. The main im-
provement in the processing time can then be achieved
by loading the envelope data faster (e.g. loading only
the envelopes from the triggered stations - in the exper-
iment we loaded the envelopes from all the stations).
Our approach is applicable to any monitoring sys-

tem, though it relies on having an appropriate set of
predicted envelopes for the seismicity beingmonitored.
For Switzerland, as described in the Supplement, we
used the original envelope prediction relationship de-
veloped by Cua (2005) that was developed using data
from Southern California, with modifications to adapt
it for Switzerland. Direct application of the method to
other regions would likely require customising the en-
velopes for the specific region or accepting a reduced
performance in terms of goodness-of-fit values. Fur-
thermore, it is unclear howwell the envelope prediction
relationships apply to large (bigger than M 6.5) earth-
quakes, which could affect the goodness-of-fit values for
those events. Some preliminary tests on this topic have
been done (Yamada and Heaton, 2008), but more exten-
sive testing is required to confirm these results. Tomake
the method more general, our next steps in improving
the method will include developing a more general en-
velope prediction method developed on a global earth-
quake dataset with a significant representation of large
events (ideally uniform across magnitudes).
The tests in this study were not done in real-time, i.e.

we did not account for actual station latencies. On the
other hand, we were using only the stations from the
CH and C4 networks, meaning that more data could be
available from other networks. We were also missing

the real-time trigger information and had to rely on an
amplitude threshold as a proxy for triggered stations
which could allow non-relevant stations to enter the fi-
nal goodness-of-fit value. Having real-time information
about the event origin time (for the correct or false so-
lutions) will actually improve the performance, as it al-
lows us to select stations based on expected P-arrivals,
i.e. only those that are relevant. As noted before, a sta-
tion weighting procedure will be explored to increase
the effect of relevant stations on the overall goodness-
of-fit. We relied on the travel times calculated using
the original envelope prediction relationship, which re-
sulted in wrong start (onset) times for some of the en-
velopes. Finally, we expect that the errors in timing/sig-
nal quality/metadata could strongly affect the results
of the method. The test of the influence of these er-
rors on the results of the method will be made during
the real-time implementation of themethod, where un-
planned errors can occur. Given all the unknowns just
described, the real-time implementation of the method
will also allow us to understand the performance of the
method during times of normal (i.e. low magnitude)
seismicity. Therefore, real-time testing of our method
is necessary to further confirm it as a practical tool for
seismic networks and EEWsystems which is the crucial
next step in the implementation of the algorithmat SED.

5 Conclusions
We have developed an algorithm that allows the pre-
ferred location and magnitude selection for EEW and
real-time seismic processing and can be used to sup-
press false alarms. The algorithmcomputes a goodness-
of-fit between emerging observed velocity waveform
envelopes at multiple stations in a seismic network and
those predicted by the given origin andmagnitude. Our
algorithm has been developed and tested on 10 Swiss
earthquakes with magnitudes from 3.5 to 4.6, and on 20
events that caused false alarms inside the Swiss mon-
itoring network. Results in this study suggest the pro-
posed algorithm can operate effectively in EEWsystems
as well as in routine seismic processing. Strong perfor-
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mance is observed for a range of input window lengths,
starting from a few seconds after the P-wave arrival at
the first station to longer input window lengths, making
the algorithm highly suitable for real-time use. The in-
corporation of themethod into a real-time environment
brings more challenges beyond just the calculation of
the goodness-of-fit. However, themethod can bring sig-
nificant benefits to operational (EEW and earthquake
monitoring) systems, justifying the effort needed to im-
plement it. Future improvements will include: im-
proving amplitude fits by re-calibrating the envelope
functions using recently collected data, potentially in-
cluding regionalisation; improving the predicted onset
times; and weighting (clusters of) stations (especially at
distance).

Data and code availability
The observed envelope data and the envelope templates
of (Cua, 2005, , not-adapted to Switzerland) are available
at https://zenodo.org/records/10037549, together with
the Python code. The station amplification factors,
needed for GMM calculations when adapting the pre-
dicted envelopes to Switzerland are available at https:
//stations.seismo.ethz.ch/en/home/ (ETH Zurich, Swiss
Seismological Service, 2015). The earthquake and sta-
tionmetadata are available through the ETHZ dataset in
SeisBench (Woollam et al., 2022).
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Abstract TheGulf of Aqabaearthquakeoccurredon22November 1995 in theNorthernRedSeaand is the
largest instrumentally recorded earthquake in the region to date. The event was extensively studied during
the initial years following its occurrence. However, it remained unclear which of the many faults in the gulf
were activated during the earthquake. We present results from multi-array back projection that we use to
informBayesian kinematic rupturemodels constrained by geodetic and teleseismic data. Our results indicate
that most of the moment release was on the Aragonese fault via left-lateral strike slip and shallow normal
faulting that may have been dynamically triggered by an early rupture phase on the Arnona fault. We also
identified a predominantly normal-fault segment on the eastern shore of the gulf that was activated in the
event. We dismiss the previously proposed hypothesis of a co-seismic sub-event on the western shore of the
gulf and confirm that observed deformation can be rather attributed to post-seismic activity. In conclusion,
the gulf shows many signs of active tectonic extension. Therefore, more events close to the shorelines are to
be expected in the future and should be considered when conducting infrastructure projects in the region.

Non-technical summary The 1995 Gulf of Aqaba earthquakewas a significant event that has been
reexamined using a modern, multifaceted approach. By combining space geodetic satellite data and seismic
waveform data, we have gained amore complete understanding of the earthquake, while taking into account
potential errors in our analysis. Our results show that during the 1995 earthquake, three faults were activated
across distinct fault segments: the Arnona fault in the south, the adjacent Aragonese fault in the north, and an
undisclosed fault on the eastern shore of the gulf. These faults exhibitedpredominantly horizontalmotionbut
also revealed a significant vertical component, underscoring the extension of the gulf. This discovery holds
profound implications, particularly given the considerable infrastructure projects currently underway in the
Gulf of Aqaba, i.e. within NEOM. In light of these developments, it is evident that earthquake modeling in the
region is of paramount importance. The findings from this study underscore the necessity for updated hazard
assessments and the establishment of plausible scenarios for potential future earthquakes.

1 Introduction
The Gulf of Aqaba is located at the southern end of the
Dead Sea fault, which is a left-lateral transform fault sys-
tem with an estimated average slip rate of ∼ 5 ± 1
mm/yr during the Holocene (Le Béon et al., 2012;
Lefevre et al., 2018). Geodetic observations show that
the current left-lateral interseismicmotion in the gulf is
similar to that of theDead Sea fault, with a small amount
of opening across the gulf (ArRajehi et al., 2010; Li et al.,
2021; Castro-Perdomo et al., 2022; Viltres et al., 2022).
This transtensional motion has resulted in a complex
tectonic setting of several transform faults and pull-
apart basinswithin the 180-km-longGulf of Aqaba (Ben-
Avraham, 1985; Ribot et al., 2021, Fig.1). The area has

∗Corresponding author: vasbath@gfz-potsdam.de

also been the seismically most active part of the Dead
Sea transform fault with persistent micro-earthquake
activity, several seismic swarms, and major events in
the past several decades (e.g., Klinger et al., 1999).
The 22 November 1995 (gCMT time 04:15:26.2) Gulf

of Aqaba earthquake (Mw 7.2) is the largest instru-
mentally recorded event in the northern Red Sea and
along the entire 1000-km-long Dead Sea transform fault
system (Fig. 1). Multiple studies on the earthquake
have been published with both point and finite-fault
models estimated, either from seismic data (Pinar and
Türkelli, 1997; Klinger et al., 1999; Hofstetter et al.,
2003) or geodetic data (Klinger et al., 2000; Baer et al.,
2001; Shamir et al., 2003; Baer et al., 2008, Supplement
Tab. S2, Fig.1). Due to the use of different datasets and
the complex tectonic setting, the derivedmodels are di-
verse and have high epistemic uncertainty, to the point
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Figure 1 Map of the Gulf of Aqaba and previously estimated finite and point source solutions (from the list compiled in
Supplement Tab. S2). The Gulf of Aqaba consists of three pull-apart basins fromNorth to South; the Elat Deep, the Aragonese
Deep and the Dakar-Tiran Deep bounded by threemain strike-slip faults (white) and normal faults (black) (Ribot et al., 2021).
Focal mechanisms of the 1995 event (sizes scaled by magnitude, Supplement Tab. S2) are color coded by the respective
location of estimated point (dots) or finite sources (rectangles) in the maps. The upper right inset shows a zoom-in to the
epicentral region, where on-land normal faulting (black) attributed to the 1995 event was mapped on the East coast of the
Gulf (Lefevre, 2018). The four black focal mechanisms are selected aftershocks to the Gulf of Aqaba earthquake potentially
contributing to post-seismic deformation (Hofstetter et al., 2003; Baer et al., 2008). Shaded topography is from SRTM3 (Farr
et al., 2007) andbathymetry data is from (Ribot et al., 2021). AgF- Aragonese Fault, AnF- Arnona Fault, EF- Elat Fault, DF- Dakar
Fault. The yellow star shows the epicentre of theGulf of Aqaba earthquake as determinedby gCMT. The upper left inset shows
the region of interest (red) at the southern Dead Sea transform fault system (modified from Castro-Perdomo et al. (2022)).
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that there is no clear consensus on the rupture pro-
cess of the earthquake. Nonetheless, most of the stud-
ies found that the majority of the seismic moment was
released on the Aragonese Fault (AgF) in the central
part of the gulf (Fig. 1). However, visible complexities
in teleseismic broadband waveforms and in surface-
displacement maps derived from interferometric syn-
thetic aperture radar (InSAR) suggest a more complex
multi-fault rupture in the gulf. Based on the teleseis-
mic waveform data complexity, different number of
sub-events and candidates of potentially activated faults
have been proposed, which involve the Elat Fault (EF),
the Arnona Fault (AnF) and the Dakar Fault (DF), as well
as theAragonese Fault (Pinar andTürkelli, 1997; Klinger
et al., 1999; Shamir et al., 2003).

The sparsity of available near-field geodetic data and
far-field seismic data makes it difficult to study the de-
tails of the earthquake rupture process. The main fault
rupture was off-shore within the gulf and InSAR data
are, therefore, not available in the near-field of the
earthquake (Klinger et al., 2000; Baer et al., 2001, 2008).
Also, the roughly N-S striking orientations of the in-
volved faults limit the capability of obtaining the full
surface displacement field with InSAR, as radar line-of-
sight (LOS) observations are not very sensitive to the
predominant North-South coseismic surface displace-
ments. Furthermore, SAR-image acquisitions were in-
frequent and irregular in this region in the 1990s (Sup-
plement Tab. S1). Finally, notable post-seismic activ-
ity, particularly aftershocks, were reported on the Egyp-
tian side of the gulf near the town of Nuweiba (Klinger
et al., 1999; Baer et al., 2008). Therefore, the co-seismic
displacement field cannot be clearly isolated from sec-
ondary deformation processes after the earthquake.
These challenges contribute to the uncertainties of esti-
mated geodetic fault-slip models and probably in part
explain the large differences between them (Supple-
ment Tab. S2).

Seismic data analysis of the earthquake also faces
challenges. At the time of the earthquake, the regional
networks of seismic stations were sparse and seismic
data were not easily shared between the four countries
bordering the gulf (Saudi Arabia, Egypt, Israel, Jordan).
Therefore, spatially uneven station geometry was used
by the different agencies to locate the aftershock se-
quence of the earthquake (Hofstetter et al., 2003). Con-
sequently, locations and faulting mechanisms of after-
shocks are associated with large uncertainties (Abdel
Fattah et al., 1997; Hofstetter et al., 2003).

With independent information on the location of the
main fault rupture, identified and mapped based on
data from a recent multibeam bathymetric survey (Ri-
bot et al., 2021), with previously unused geodetic data,
and applying multi-array teleseismic backprojection,
we here derive a refined kinematic finite-fault rupture
model for the Gulf of Aqaba earthquake using Bayesian
inference combining geodetic and seismic data. This
allows us to obtain a clearer picture of the rupture
propagation during the earthquake.

2 Data and Methods
We use two main methods to study the rupture evolu-
tion of the 1995 Gulf of Aqaba earthquake: multi-array
teleseismicbackprojection (BP) andBayesiankinematic
earthquake source inference. We use the results ob-
tained from the BP as a-priori information to parame-
terize the fault geometry and to constrain the parameter
solution space for the source inference.

2.1 Multi-array backprojection
We applied multi-array teleseismic BP to image the
spatio-temporal evolution of the rupture of the 1995
Aqaba earthquake. In traditional BP seismic record-
ings of a single array of seismic stations are win-
dowed, aligned and stacked with respect to theoreti-
cal traveltimes calculated from a layered Earth struc-
ture model for a horizontal grid of potential source lo-
cations (Krüger andOhrnberger, 2005; Ishii et al., 2005).
This procedure involves no assumption on the fault ge-
ometry and allows space-time imaging of coherent seis-
mic energy radiation (Kiser and Ishii, 2017) through so-
called semblance maps. Note that semblance ampli-
tudes have no direct physical relation to the amount
of fault slip, but semblance maps indicate where radi-
ated seismic energy of a certain slowness is coherently
emitted. Coherent high-frequency seismic energy radi-
ation is expected near the hypocenter in case of an ener-
getic rupture onset and near asperities (patches of high
slip), representing (abrupt) changes in earthquake rup-
ture speed (Madariaga, 1977; Spudich and Frazer, 1984;
Ide, 2002; Okuwaki and Yagi, 2018). Therefore, map-
ping the occurrence of high-frequency seismic radia-
tion allows to highlight changes in the fault geometry
and to assess the evolution and complexity of the earth-
quake rupture process independently from the source
inversion. Instead of conducting a classical single large-
array backprojection, we used multiple small-scale ar-
rays for backprojection. Here, we outline the method
only briefly, further details can be found in Steinberg
et al. (2022).
We used a multi-array backprojection approach by

clustering the available seismic stations using the k-
means algorithm (Steinhaus, 1956) into many small vir-
tual arrays (Rössler et al., 2010). We considered all
globally available broad-band stations with waveform
records between 23◦ and 93◦ distance from the earth-
quake epicenter, to have all near-field terms attenu-
ated and to avoid triplications. Each virtual array has a
unique set of stations and aminimum of 4 stations with
a maximum array aperture of 3.5◦. For the 1995 Gulf of
Aqaba earthquake we ended up with 14 virtual arrays,
with the smallest and largest arrays consisting of 4 and
26 stations, respectively (Fig. S1a). We only used the ver-
tical component of velocitywaveform records and back-
projected with respect to the expected arrival times of
the P-phase. Unfortunately, the sparse station config-
uration did not allow to also use the S-phase. We then
calculated the semblance for each virtual array apply-
ing a phase-weighted stacking method (Schimmel and
Paulssen, 1997). Semblance is a dimensionless mea-
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  1995/06/08 - 1996/05/23
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Figure 2 a, c, d) Coseismic interferograms and b) azimuth pixel-offsets derived from SAR data (Supplement Tab. S1) and
used for the fault geometry and finite-fault inference. Long and short arrows indicate the flight- and line-of-sight (LOS) di-
rections of the satellite and the radar, respectively. Note that the data of track 254 are L-band data from the JERS-1, whereas
the other are C-band data from the ERS-1/2 satellites. Bold black text labels indicate the satellite track numbers of the differ-
ent datasets. The bottom right panel shows the primary and secondary SAR image acquisition dates for each track (format
YYYY/MM/DD).

sure of coherence of waveforms at an array and can be
multiplied, similar to a likelihood (Rössler et al., 2010).
Therefore, we obtained the multi-array semblance by
multiplication of all semblances (Steinberg et al., 2022).

Three-dimensional wave propagation effects that
cannot be described by the assumed AK-135 1-D lay-
ered Earth structuremodel (Kennett and Engdahl, 1991)
cause shifts in the wave arrival time and these in turn
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bias the semblance map. To mitigate this effect and
to reduce the absolute location error of the multi-array
semblancemapwe estimate empirical travel time shifts
and calibrate the waveform data before stacking at each
station (Palo et al., 2014; Ishii et al., 2007; Meng et al.,
2016; Fan and Shearer, 2017). We estimated these travel
time shifts by maximizing the semblance for each vir-
tual array based on a spatially close aftershock to the
1995 Gulf of Aqaba earthquake, the Mw 5.7 earthquake
from 23.11.1995, 18:07:17 at 29.333◦N, 34.749◦E (USGS
location).

2.1.1 Configuration for the Gulf of Aqaba earth-
quake

For the Gulf of Aqaba earthquake we backprojected
moving time windows of 6s length every 2s on point lo-
cations of a horizontal gridwith a spacing of 0.05 degree
(∼5 km) at a depth of 18 km. We downsampled the seis-
mic recordings to a common 10Hz and we bandpass fil-
tered the data, above the corner frequency of 0.15 Hz
and up to 1.5Hz. Following this process, we thus focus
only on the high-frequency coherent emissions. The
waveform records were then stacked for each time-step
with respect to the calibrated theoretical arrival time for
each considered grid point.

2.1.2 Backprojection uncertainty
To quantify the spatial and temporal accuracy of the
multi-array BP results we follow a bootstrapping ap-
proach (Wang et al., 2016; Meng et al., 2012) on the
semblance calculation at each timestep by perturbing
seismic-wave travel times uniform randomly between
±2s for each virtual array and additionally between
±0.2s for each station. This process allows assessing the
influence of wavepath effects on the multi-array sem-
blance. We thus obtain an ensemble of bootstrapped
multi-array semblancemaps onwhichquantiles of sem-
blance can be calculated. To document the uncertain-
ties associated with the BP results we display multi-
array semblance maps for each timestep, in which
semblance maps show all possible coherent seismic-
radiation locations for each timestep on the considered
grid.

2.2 Bayesian kinematic finite fault inference
We use the Bayesian Earthquake Analysis Tool (BEAT,
Vasyura-Bathke et al., 2019) and apply the step-wise
inference strategy of Vasyura-Bathke et al. (2020)
on surface-displacement maps derived from synthetic
aperture radar (SAR) and on broadband teleseismic
waveforms to infer distributions of earthquake source
parameters that explain the observations within the
range of associated uncertainty. First, based on geode-
tic and seismic data we estimate the geometry of
the involved faults assuming rectangular planar fault-
surfaces with uniform slip. Then, we use only the
geodetic data to estimate spatially variable final (static)
slip on the geometry of inferred faults. Finally, we use
the thus obtained static slip distribution to inform the
Bayesian inference for the kinematic rupture evolution

of the earthquake based on both the geodetic and seis-
mic data, which we refer to as the finite-fault inference
in the following.
Assuming a 1-D layered elastic half-space for the

Earth structure (Khrepy et al., 2016), we calculate
Green’s functions (GFs) with 1 km spacing (Heimann
et al., 2019) for the geodetic and the teleseismic data
using the codes PSGRN/PSCMP (Wang et al., 2006) and
QSSP (Wang et al., 2017), respectively. Sampling fre-
quencies for the seismicGFs are 1Hzand4Hz for the ge-
ometry and finite-fault inferences, respectively. To as-
sess the fit of synthetic data dsyn to the observed dataset
dobs of waveforms and/or displacement maps we cal-
culate the weighted variance-reduction (VR, Cohee and
Beroza, 1994):

(1)V R =

(

1 −
(dobs − dsyn)C−1(dobs − dsyn)

dobsC−1dobs

)

∗ 100

where C−1 is the inverse of the data covariance matrix.
The closer the VR is to 100% the better the data are ex-
plained by the synthetics.

2.2.1 SAR data
We derived surface-displacement maps from five in-
terferometric pairs of synthetic aperture radar (SAR)
data and one SAR pixel offset map (Fig. 2) by using
the GAMMA software (Wegmüller, 1998). Topographic
phases have been evaluated and removed from the in-
terferogramsbasedon the SRTMdigital elevationmodel
(Farr et al., 2007). To increase the signal-to-noise ratio
(SNR) the interferograms have beenmultilooked to ∼90
mx 90mpixels and filteredwith an adaptive phase filter
(Goldstein andWerner, 1998). Finally, the filtered inter-
ferometric phases were unwrapped using a minimum
cost flowalgorithm (Chen andZebker, 2001). Toprepare
the data for parameter inference, we reduced the num-
ber of pixels in the unwrapped interferograms by us-
ing the quadtree subsampling algorithm (Jónsson et al.,
2002) and estimated the full data variance-covariance
matrix following Sudhaus and Jónsson (2009) and Isken
et al. (2017). The data from tracks 254 and 114 (Fig. 2)
have not been used before in previous studies of this
earthquake (Supplement Tab. S2). Note that due to ir-
regular acquisition times (Supplement Tab. S1), the in-
terferograms contain up to 24 and 21months of pre- and
post-seismic deformation, respectively. The influence
of possible secondary sources of deformation on esti-
mated parameters is discussed in sec. 4.3.

2.2.2 Teleseismic data
We used data from 27 broad-band seismic stations at
teleseismic distances of 26.5◦ − 91.0◦ and 29.5◦ − 87.0◦

for the P and S wave data, respectively (Fig. S1,c & d).
The data have been restituted to displacement and ro-
tated to the radial, transverse and vertical (RTZ) source-
receiver geometry. We applied band-pass filtering to
contain waves with periods of 100s to 20s and 100s to 2s
(i.e. band-pass filter between 0.01-0.05 Hz and 0.01-0.5
Hz) for the geometry and finite-fault inferences, respec-
tively.
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2.2.3 Inference of fault geometry
We estimated geometry and fault-slip kinematics of
rectangular fault segments considering the following
parameters for each fault segment: depth, length,
width, slip, strike-, dip- and rake-angles. Assum-
ing a half-cosinuidal source time function (STF, Lay
et al., 2010)we also estimatednucleation-times and slip-
duration of each fault segment. The top-center points
of the fault segments have been fixed to be located on
the mapped faults and surface ruptures of the earth-
quake (Ribot et al., 2021; Lefevre, 2018, i.e. faults an-
notated AgF, AnF and mapped ruptures in Fig. 1). In ad-
dition, we estimated hierarchical parameters for each
interferogram, i.e. an offset and two ramp parameters
(in the azimuth- and range directions) tomitigate effects
of long wavelength atmospheric phase delays as well as
inaccurate satellite orbit geometries. For the teleseis-
mic data we estimated time shifts for each seismic sta-
tion and waveform (P and S) to partially account for er-
rors in the Green’s Functions caused by lateral Earth-
structure heterogeneities (Mustać et al., 2020; Vasyura-
Bathke et al., 2021). We also estimated a noise-scaling
parameter for each dataset residual to account for data
and theory errors (Vasyura-Bathke et al., 2020, 2021).
This setup yielded a total of 138 random variables, sam-
pled from uniform distributions, to be constrained for
the inference solution space which we explore using a
sequential Monte-Carlo algorithm (Moral et al., 2006;
Minson et al., 2013; Vasyura-Bathke et al., 2020).

2.2.4 Finite-fault inference
We employed the results from the geometry inference
and fixed the fault segments geometry to the maxi-
mum a-posterior (MAP) solution. We then extended
the fault segments in length and width in each di-
rection, as fault dimensions are commonly underesti-
mated applying the uniform-slip assumption, and dis-
cretized the fault segments with rectangular patches
of 5.0 km. In total, we inferred >700 uniform dis-
tributed unknown parameters that comprise the slip in
strike-parallel and down-dip directions, rupture dura-
tion, and rupture velocity on each patch. In addition,
we estimated Laplacian smoothness regularization fac-
tors in conjunction with the location and time of sepa-
rate rupture-nucleation points, i.e. one for each fault
segment. We constrained the prior for the rupture-
nucleation times for each fault segment based on a-
priori information from the back-projection semblance
maps. While we fixed the previously determined ramp
parameters, we estimated noise-scaling factors for each
dataset as well as the time shifts for each waveform ap-
plying sequential Monte Carlo sampling of the solution
space.

3 Results
3.1 Backprojection source imaging
Our backprojection results (Fig. 3a)map several regions
of coherent high-frequency seismic energy radiation
moving from south to north along the Gulf of Aqaba.

The initial high-frequency energy was coherently radi-
ated at -8 to -4 s with respect to gCMT time 04:15:26 near
the southern end of the Aragonese fault (AgF), followed
by an apparent gap of seismic radiation with a duration
of around 6 s (Fig. 3). Subsequently, high-frequency en-
ergy was radiated on the adjacent northern continua-
tion of the AgF at around 2-4 s and on the east coast of
the Gulf at 4-6 s, nearby the observed surface fractures
reported by Lefevre (2018). Finally, seismic radiation
was again likely generated on the AgF migrating north-
ward between 6-12 s. The high-frequency energy radi-
ation at 10-12 s is possibly an artefact of the processing
and discussed in detail in sec. 4.2.2.

3.2 Geometry of fault segments
We defined two fault-geometry setups, each with a dif-
ferent number of fault segments, to investigate the im-
pact of additional source complexity for explaining the
data. The first fault geometry comprises two fault seg-
ments: a single long off-shore segment on the AgF
and a short on-shore segment located on the eastern
gulf coast where surface ruptures have been mapped
Lefevre (2018) and where we found coherent high-
frequency energy radiation in the semblance maps
(Fig. 3). The second fault-geometry setup comprises
three fault segments, two shorter off-shore segments
(on AgF and AnF) and the segment on the eastern shore
(Fig. 3). We then estimate the fault geometric param-
eters, strike-angle, dip-angle, width and length, while
other inferred parameters, such as slip, nucleation-time
and slip-duration were included to not bias the estima-
tion of the fault geometric parameters. Their inferred
posterior probability densities (PPD) thus provide ini-
tial estimates only, as they were refined in the following
finite-fault inference.

3.2.1 Two fault segments
For the fault-model setup comprising two fault seg-
ments (Fig. 3a) the posterior ensembles show that the
first segment (offshore, red) is well constrained. It dips
∼70◦-72◦ towards west, and has length L of ∼50-53 km
and width W >26 km (Supplement Fig. S2). The second
segment on the eastern shore of the Gulf (blue) is poorly
constrained and dips ∼80 to 90◦ towards west. The PPD
for fault lengthL (between 5 - 8km) is constrainedby the
prior information of the surface structures at the lower
end of the distribution (Supplement Fig. S3). Whereas,
the fault widths of above 9-10 km are more likely. The
fault strike-angle was constrained to be between 200-
210◦ based on the a priori structural information, hence
the PPD was truncated at 200◦. While the offshore seg-
ment shows well constrained strike-slip motion (rake-
angle of −7◦ to −6◦) the eastern segment shows mostly
dip-slip (rake-angle of ≤ −80◦). The weighted variance
reductions (VRs; Eq. 1) of the geodetic data are∼60% for
most of the interferometric pairs (Supplement Figs. S4,
S5), but lower for the amplitude offsets that are over-
all noisy. Highest correlated residuals are located on
the western shore of the Gulf. In general, the VRs for
seismic data are high for P and S phases, i.e. between
75 − 95% (Supplement Figs. S6, S7). However, there are
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Figure 3 Results of the backprojection analysis showing the temporal evolution of multi-array semblance with respect to
the global centroid moment tensor time 04:15:26. Thick colored contour lines show the 90% quantile of the ensemble of
multi-array semblances (white-to-gray areas), whereas thin contour lines indicate the subsequent 60% and 30% quantiles.
Coloring and annotation of fault structures is identical to Fig.1, slightly modified after Lefevre (2018) and Ribot et al. (2021).
Thecolored rectanglesare thea) twoandb) three fault segmentsused for theestimationof the ruptureevolution, expanded in
size from the estimated faulty geometry (thin gray rectangles), and the colored stars show the respective estimated rupture
nucleation points on each segment. c) Ensemble of multi-array semblances projected along the axis of the gulf (strike of
18◦ East of North) referenced with respect to the earliest semblance between -8 and -6 s. Dashed black lines indicate steady
rupture velocities of 3, 4 and 5 km/swhile shaded grey lines showaveraged velocities for thewhole ensemble of semblances.

a few stations that show remarkably lowvariance reduc-
tions, e.g. KMBO and BOSA (Fig. 4a).

3.2.2 Three fault segments

For the fault-geometry setup comprising three seg-
ments (Fig. 3b) the strike and dip angles of the north-
ern segment (AgF) are well constrained at ∼198◦ and
75 − 76◦, respectively. The strike- and dip-angles of the
southern segment (AnF) hits the chosen upper bound
of the prior distribution at 215◦ and 70◦ constrained
by geologic information (Ribot et al., 2021, Figs. S8,
S9). While the northern segment shows predominantly
strike-slip motion, the southern segment (AnF) has
a larger normal component of slip (rake-angle of ∼-
50◦ to -48◦) compared to the northern segment (rake-
angle of ∼-9◦). The eastern on-shore segment (green)
again shows predominantly normal slip (rake-angle of
∼-75◦), Fig. S10). The variance-reduction (VR) values
for three out of six geodetic datasets are higher by 5-
12% (up to ∼76%) compared to the two-segment ge-
ometry (Supplement Figs. S11 and S12). For the seis-
mic data the variance reductions are in general only

slightly higher to those of the two-segment case. Sta-
tions KMBO.Z and BOSA.Z that showed low VRs for the
two-segment setup have up to 70% higher variance re-
ductions for the three-segment model. Moreover, other
stations that show complexity in early P-phase arrivals
(MSEY.Z, TATO.Z, HYB.Z) are explained significantly
better in terms of amplitude and number of wave cy-
cles, although in terms ofVR these are only 5-7% higher
(Fig. 4a). These improvements in VRs in comparison to
the two-segments setup are significant and support the
notion of geometrically complex faulting off-shore on
the AnF and the AgF.

3.3 Finite-fault inference
3.3.1 Two fault segments
For the ensemble of two-segment finite-fault solutions,
rupture initiates on the offshore segment at around
-9.5 s to -8.2 s (wrt. gCMT time 04:15:26; Fig. 5a,b) be-
tween 25.5 km and 29.8 km depth, and then spreads
unilaterally northeast across the segment. The onshore
segment starts rupturing at ∼8-8.9 s, nucleating at shal-
low depth of around 1.0 km to 5.2 km and propagating
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Figure 4 Waveform fits of several selected stations for the a) geometry and b) finite-fault inversion inference of the 1995
Gulf of Aqaba earthquake. The solid gray lines show the filtered data of the vertical component tapered around the P-wave
arrival. The red continuous lines show the synthetic waveforms derived from the MAP solution, whereas, brownish shaded
colors indicate the synthetic waveforms derived from the full posterior ensemble of parameters.

unilaterally across the fault. The highest values of fault
slip (> 1.8m) occur from the surface to a depth of∼9 km
on the central part of the offshore segment along a dis-
tance of ∼25 km. While fault motion is mostly strike-
slip, some shallow slip with significant normal com-
ponent is found. The timing and thus the velocity of
the inferred rupture front towards north is consistent
with the semblance maps from the BP, i.e. the rup-
ture front reaches the region with high slip amplitude
at ∼4 s. Themoment-rate function reveals that seismic-
moment release started gradually and linearly (Fig. 5a)
and reached its maximum with several sharp peaks be-
tween ∼6-8 s. This is followed by a fast decay of mo-
ment release until ∼24-25 s. The geodetic data have an
average VR of 49.9 − 52.3% (Supplement Figs. S15, S16),
where the amplitude offsetswith the highest noise show
the lowest VR. Most noticeable residuals are again lo-
cated on the western shore of the Gulf. Seismic data are
well explained with an average VR of 74.2 − 77.8% (Sup-
plement Figs. S17, S18). Here, both P and S phases are
well modelled in general, but amplitudes of the main
pulse and early P-phases are often biased resulting in

lowVRs of 36−60%, e.g. SJG.Z,MDT.Z,MSEY.Z (Fig. 4b).

3.3.2 Three fault segments

In the ensemble of three-segment finite-fault solutions,
rupture initiates on the southern segment at around
-8.2 s to -7.8 s (wrt. gCMT time 04:15:26; Figs. 6a,b, 7) be-
tween 18.8 km and 22.5 km depth, and spreads unilater-
ally towards the Northeast across the segment. The sec-
ond rupture then nucleates on the northern segment at
∼-1.5 s to -1.1 s between 19.3 km and 23.2 km depth and
propagates in rather unilateral direction. Finally, the
third, eastern segment starts rupturing between 3.7 s
and 3.9 s at 4.7-9.4 km depth with unilateral rupture to-
wards the down-dip direction (see also video in supple-
ment). The slip is dominantly left-lateral on the south-
ern and northern segments, but there is a notable nor-
mal component on all three segments (Fig. 6b). While
the normal component is large at greater depths on the
southern segment, it is high at shallow depths on the
northern and eastern segments, respectively. The re-
gion with largest slip of >1.8 m, a length of ∼25 km
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Figure 6 Same as Fig. 5, except for the case of three fault segments.
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Figure7 Estimated slip-amplitudedistribution for the three fault-segment case in 3Dperspective view. Greyish colors show
the back-projection semblance maps from Fig. 3. Thin black lines show coastlines and country borders. A video of the tem-
poral rupture evolution can be found in the supplement.

and is located near the southern end of the northern
segment, extending from the surface downwards to∼9-
15 km depth. On the southern segment, maximum slip
is∼1mclose to the hypocentre at depths between 15 km
and 22.5 km. Themoment release started gradually and
increased rapidly once the northern segment started
rupturing (Fig. 6a). Most of the moment had been re-
leased at ∼20s. The rupture velocity is noticeably faster
on the southern segment ∼3.2-4.7 km/s compared to
that on the northern segment ∼2.4-3.5 km/s. It is slow-
est on the eastern segment∼2.3-3.7 km/s (Figs. 6b, S19).
In general, rupture velocity is better constrained close
to the rupture nucleation points compared to further
away.
Overall the geodetic data are slightly better explained

by the three-segment model rather than by the two-
segment setupwith an averageVRbetween 53.7−55.9%.
The largest residuals are located on the western shore
of the Gulf (Supplement Figs. S20, S21). Seismic data
are similar or slightly better explained than for the two-
segmentmodelwith anaverageVRbetween 77.7−80.1%
(Supplement Figs. S22, S23). Most noticeable improve-
ments (change in VRs between ∼10-40%) to the two-
segment setup are for P-phases in the amplitudes of
early arrivals e.g. SJG.Z, BOSA.Z, KOG.Z (Supplement
Figs. S22) as well as for the main pulse, e.g. MDT.Z,
MSEY.Z.

4 Discussion
Wederivedkinematic finite-fault rupturemodels for the
1995 Gulf of Aqaba earthquake that were estimated, to
our knowledge, for the first time by the joint use of
geodetic and seismic data through Bayesian inference.
Taking into account only the ability of the presented

model(s) to explain the data in terms of variance reduc-
tion allows to reach a conclusive answer on the suit-
ability of either the two or the three fault segment se-
tups. While the three-segment setup only slightly bet-
ter explains the geodetic data, it significantly better ex-
plains the seismic data. Calculating the Bayesian Infor-
mation Criterion (BIC, Schwarz, 1978) for both models
revealed that the three-segment configuration with 718
unknown parameters (153 patches) had a lower value
than the two-segment configuration with 762 unknown
parameters (162 patches). This result supports the use
of the three fault segment configuration. Still, there
are features in the two-segment geometry setup that are
preferable to the other and vice versa. In the following
section we discuss these features in detail.

4.1 Fault geometry
We find that geometric fault complexity approximated
by the three-segment model is needed to explain espe-
cially early seismic phases. These indicate rupture on
the northern end of the AnF, dipping westward towards
the Aragonese Deep. For the gulf our inferred fault ge-
ometry shows a westward inclined segment along the
entire fault length, although it wasmapped in the south
to be dipping eastward towards the AragoneseDeep and
to be dipping westward towards the Elat Deep in the
north (Ribot et al., 2021). Through forward modeling
we tested the possibility for a vertical or eastward in-
clined southern end of the AgF segment (Fig. S24). It
is highly unlikely that an eastward inclined fault has
been activated during the earthquake as it would cause
a clear data misfit on the eastern coast of the Gulf, as-
suming a fault segment dipping with 80◦ towards the
East. Assuming a vertical fault segment does not cause
as large a misfit to the geodetic data (Fig. S24a,b), but
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the seismic data (Fig. S24c) is poorly explained on the
Z-components. In conclusion, we propose that the
Aragonese fault is curved in along-strike direction and
that it is dipping westwards in the north and that it is
subvertical close to the Aragonese Deep in the south.
Depending on the amount of fault curvature on the in-
ferred fault segments (which we assumed as planar in
ourmodels), the inferred distribution of slipmay there-
fore be biased (Dutta et al., 2021).

4.2 Temporal rupture evolution
4.2.1 Artefacts in Finite Fault Inference
According to our source-inference results, several uni-
lateral rupture fronts on the AnF and AgF, illustrated
by the three-segment fault geometry, better explain the
seismic data than a single unilateral rupture front in-
volving only the AgF. However, there are second or-
der features in the inferred kinematic finite fault se-
tups that could rather be attributed to artifacts, poten-
tially caused by theory error. Firstly, the deep rupture
nucleation on the lower edges of the offshore faults in
both fault-geometry models at depth >∼22-25 km is
rather unrealistic as the crustal thickness in the Gulf
is reported to be ∼20 km. Secondly, the moment rate
functions (Figs. 5a, 6a) show a long tail of moment
release up to a total rupture duration of ∼30 s. This
may be at least partially a result of the assumed sinu-
soidal functional form of the local source-time function
on each fault patch (Meier et al., 2017). An alternative
source-time function more consistent with earthquake
rupture dynamics, e.g. the regularized Yoffee function
(Tinti et al., 2005), may result in a shorter estimated to-
tal moment-rate function which would be more consis-
tent with the apparent rupture duration of∼20 s imaged
by BP. Thirdly, the rupture velocity on the onshore seg-
ment for the two-segment setup is very slow ∼2 km/s
and consequently, the rupture duration of that fault seg-
ment is long compared to its size (Kanamori and Brod-
sky, 2004). However, rupture-velocity and duration are
source parameters which are potentially biased or in-
fluenced due to over-fitting to compensate some of the
theory error. To improve this, the kinematic evolution
of the rupture could be better resolved by utilising re-
gional seismic data, which would likely reduce bias and
artifacts in the estimated parameters.

4.2.2 Implications from back-projection
The employed BP method maps the coherent seismic
radiation of P-wave energy related to changes in fault
geometry and changes in rupture velocity, rather than
the amount of fault-slip. Therefore, BP semblance is in-
dicative of rupture nucleation, rupture arrest and kinks
or bends in the fault geometry, however, the semblance
values are not directly proportional to radiated seismic
energy. The BP semblance map indicates a complex
change of coherent energy radiation during the rupture
process, and to first order resembles the inferred finite-
fault models. Rupture velocities obtained from the BP
results agreewith those inferred in thefinite-fault inver-
sions: 3.3-3.7 km/s around the southern fault segment,

3.5-4.2 km/s around the northern fault segment and 2.8-
3.3 km/s on the eastern fault segment.
One apparent discrepancy in the BP results compared

to the inferred rupture models is the last mapped sem-
blance at 18-20 s after rupture onset at the northern end
of the AgF, onshore. These semblances may indicate
that some fault segments in the north of the Gulf, such
as the EF, slipped during the earthquake or that rupture
was shallower or deeper than the depth of the grid used
for the BP. No studies have reported a fault segment
rupture this far north on the EF. Therefore, a mismap-
ping of this semblance seems likely. Previous studies
have shown that the choice of grid depth and the de-
viation of the source depth from the grid depth have a
strong effect on the location of the mapped semblance
(Steinberg et al., 2022; Daout et al., 2020), so this seems
to be the likely cause. However, waveform coda and
depth phases can also contaminate the BP results, espe-
cially in the later stages of the rupture process. In par-
ticular, depth phases may have relatively large ampli-
tudes compared to direct phases, yet, for shallow earth-
quakes these phases arrive close in time in the seismic
records. This results in unwanted side lobes either in
parallel or at an acute angle to the fault depending on
the station-array geometries. This effect can only be
suppressed by using multi-phase semblance (Steinberg
et al., 2022), which is hindered for the 1995Gulf ofAqaba
earthquake by limited data availability. Furthermore,
the depth phase separation is challenging, particularly
for strike-slip earthquakes that generate relatively large
sP phases. Therefore, caution is necessary when inter-
preting the semblance maps of the later time steps in
the BP.
To compare the two inferred kinematic finite-fault

models to the BP results we carry out synthetic BPs
on synthetic waveforms calculated by using the model
parameters of the two- and three-segment finite-fault
models (Fig. 8a, b). We used the same station setup and
data processing as for the real data BP. Synthetic wave-
forms were calculated at a sample rate of 4Hz using a
Green’s function store calculated with QSEIS and the
AK-135 Earth structure model (Kennett and Engdahl,
1991). For both synthetic BPs we observe early bilat-
eral rupture due to the abrupt stopping of the rupture
at the model-fault edges. The observed semblance map
of the real data BP at the northern end of the Gulf was
not reproduced by the synthetic BP of either finite fault
model.
The simple kinematic model used to calculate the

synthetics produces sharper start and stop phases than
actually observed (Steinberg et al., 2022), as the mod-
elled fault ends abruptly, whereas in nature therewould
be tapering. Furthermore, the synthetic semblance
maps produce much sharper semblance patches in
comparison to the real data backprojection. The reason
for this is due to the lack of data noise in the synthetic
backprojection and, the fact that semblance is mapped
onto a single fixed depth, which causes a blurred sem-
blance in the real data backprojection.
In the synthetic BP of the two-segment finite-fault

model the apparent rupture velocities are slow com-
pared to the real data BP. The synthetic BP of the three-
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a) b)

Figure 8 Results of backprojection analysis of synthetic waveform data generated based on the MAP model of the a) two-
segment and b) three-segment setups showing the temporal evolution of multi-array semblance with respect to the global
centroid moment tensor time 04:15:26. Details are similar to Fig. 3

segment finite fault model (Fig. 8b) is in better agree-
ment with the observed BP results (Fig. 3b), especially
for the complicated semblance distribution in the cen-
ter portion of the AgF. These probably indicate a change
in rupture speed or fault geometry, e.g. in the form of a
fault bend. The synthetic BP of the three fault segments
also agreeswell with observed complexity of semblance
mapping in the area of the eastern fault segment.

4.2.3 Rupture nucleation and fault segmentation

Our scenario with multiple rupture episodes, such as
in the three-segment setup where rupture began on the
AnF and subsequently propagated to the AgF, shows
that rupture speed on the AnF is too slow for nucle-
ation on the AgF to be triggered by unilateral rupture
on the AnF or by the arrival of S-waves. The distance be-
tween the nucleation point on the AgF segment, which
has a nucleation time of ∼1.5 s and the rupture front
on the AnF segment at the same time, we estimate a
rupture jumping distance between ∼11-37 km. This
is on the order of the 20 km jumping distance postu-
lated for the 2016 Mw 7.8 Kaikoura earthquake (Cesca
et al., 2017; Shi et al., 2017) and larger than previously
proposed maximum jumping distances of 3-4 km (Wes-
nousky, 2006). However, the rupture nucleation on the
AgF could have been caused by dynamic triggering of
P-waves emitted during the early stages of the AnF seg-

ment rupture. The P-wave velocity is between ∼6.5 and
6.9 km/s (Khrepy et al., 2016), such that a theoretical
travel-time of ∼3.5-5.5 s would be required between nu-
cleation points (Fig. 9; distance of 27-32 km). The dif-
ference between inferred nucleation times in our three-
segment setup as well as the temporal difference be-
tween the BP semblancemaps are∼6-7 s (Figs. 3-5), and
thus they are within a plausible range for this required
travel time. UsingQSEISwe simulated the seismicwave-
field generated by slip on all patches of the first fault-
segment and then received at the second nucleation
point. This allows for estimating the dynamic Coulomb
stress imposed at the nucleation point on the second
fault segment (Fig. 9). The second rupture on the north-
ern segment initiated at a Coulomb stress change of ∼

0.3MPawhich is consistentwithpreviously reporteddy-
namic Coulomb stress changes needed to trigger earth-
quake rupture (e.g. Antonioli et al., 2006). Thus, it seems
plausible that rupture on theAgF segmentwas triggered
by the early pulses of deformation associated with the
seismic phases that have been emitted from the AnF
segment. Another possibility is that a small, unresolved
normal-fault segment acted as an intermediary and fa-
cilitated an apparent jump of the rupture. However, this
would require that the rupture process on this small
normal-fault segmentwas very smooth and did not emit
any start or stop phases that could be resolved through
backprojection using the available data.
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Figure 9 Time-dependent Coulomb stress changes at the second nucleation point of the three-segment fault geometry
imposed by all source patches from the southern fault segment. The blue and red boxesmark the uncertainty of the inferred
nucleation time of the southern and northern fault segments, respectively. The area indicated by the black box marks the
windowof theoretical P-wave arrival times (for the posterior ensemble ofmodels) for a P-wave traveling from the hypocenter
to the second nucleation point on the northern fault-segment. The shaded grey box marks the interval of inferred Coulomb
stress-change during the initiation time of the northern fault segment.

4.3 Secondary sources of deformation
Residual displacements of pixel offsets and interfer-
ograms are in general relatively high (Supplement
Figs. S11, S12), especially on the western coast of the
Gulf. On the other hand, residuals of seismic wave-
forms are low (Figs. S17, S18, S22, S23). Interferometric
pairs cover significant time-spans where the secondary
acquisitions have been acquired 5-6 months after the
mainshock (Supplement Tab. S1). During this time,
post-seismic deformation processes have occurred that
are not included in the presented co-seismic kinematic
finite-fault models. Especially, four shallow normal
faulting aftershocks with magnitudes Mw ≥ 3.9 (Baer
et al., 2008, Supplement Tab. S2) have been reported
(Hofstetter et al., 2003) on the western coast of the Gulf
where the large residual deformation is present in the
SAR data (Figs.1, S20, S21). In conjunction with post-
seismic deformation such as afterslip (Baer et al., 2008)
these can account for∼5-7 cmof displacement, which is
the bulk part of residual displacements in the interfero-
grams. Thus, the joint inference of seismic and geode-
tic data played an important role for disseminating the
contribution of these signals.

4.4 Ground-motion map from finite fault in-
ference

The surface effects of an earthquake on infrastructure
and population are typically evaluated using ground
motionmaps. The inferences from our finite fault mod-
elling of the 1995 Aqaba earthquake can be used to pro-
duce an informed estimate of realistic peak-ground ve-
locity (PGV) predictions for this particular earthquake.
These may then serve as a basis for scenario calcula-
tions for seismic hazard assessment in the region.
We calculated a deterministic physics-based ground-

motion map by simulating the seismic wavefield based
on the spatiotemporal rupture evolution of the three-
segment fault model (Fig. 6, Dahm et al., 2018). For
the wavefield simulation we calculate Green’s functions
with QSEIS (Wang, 1999) with a sample rate of 20Hz at
a dense set of virtual receivers (1 km spacing) assuming
the 1D-layered elastic Earth structure model used also
in our FFI (Khrepy et al., 2016). We considered site ef-
fects through the shear-wave velocity in the thirty me-
ters below Earth surface, Vs30, derived from the topo-
graphic slope as a proxy (Wald and Allen, 2007). We cal-
culate the amplification ratioA30 between the predicted
Vs30 and the shear-wave velocity of the uppermost layer
resulting from our Green’s functions. After bandpass
filtering the simulated waveforms between 1-8Hz and
subsequent rotation to the RTZ coordinate system the
expected PGV at each grid point is calculated from the
maximum of the geometric mean of the absolute hor-
izontal components R and T (Wald and Allen, 2007).
The predicted PGV’s (Fig.10) close to the source region
reach 2m/s. Adjacent areas at intermediate distances of
∼20 km perpendicular to the source region of the main
active fault (red), whichhas thehighest inferred amount
of slip, still have predicted PGV values of up to 0.5m/s.
The rupture directivity of the Gulf of Aqaba earthquake
was toward north, and hence the shaking in the north-
ern gulf is stronger than in the southern gulf and adja-
cent coastal regions.

4.5 Comparison to publishedmodels
Earlier studies (Pinar and Türkelli, 1997; Klinger et al.,
1999; Hofstetter et al., 2003; Shamir et al., 2003; Baer
et al., 2008) modelled the Aragonese fault as a single
planar fault, similar to the offshore segment of our two-
segment fault geometry setup. In published finite-fault
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Figure 10 Map of estimated peak ground velocity (PGV) from seismic wavefield simulation (frequency range 1-8 Hz) for our
three-segment rupture model of the 1995 Gulf of Aqaba earthquake. The colored rectangles mark the three fault segments.
The black rectangle shows the zoom-in around the area of the urban project NEOM; note the different scale of colormap in
the zoom-in. ”The Line” (brown) is a ∼ 170 km long city under construction. Coloring and annotation of fault structures is
identical to Fig.1.

slip models the large-slip area is located at depth be-
tween 5 and 15 km and peak slip-amplitudes are larger
by ∼1 m (Hofstetter et al., 2003; Baer et al., 2008) com-
pared to our result (Fig. 5b, 6b). In contrast to pub-
lished models our slip models show a notable compo-
nent of normal slip at shallow depths to ∼8 km depth.
While our findings are in line with most of the previ-
ous studies that the earthquake consisted of several sub-
events (Fig. 1, Supplement Tab. S2), they differ in the
locations of the sub-events (Pinar and Türkelli, 1997;
Klinger et al., 1999). While our three-segment model
supports the proposed hypothesis that rupture initiated
on the AnF in the south and then jumped to the AgF
it does not support continued jumping to the EF in the
north. Our results support that the deformation on the
western coast of theGulf was largely due to post-seismic
deformation and aftershocks (Baer et al., 2008) rather
than co-seismic mainshock slip. This post-seismic ac-
tivity was predominantly characterised by vertical sur-
face displacements, i.e. subsidence 20 km north of
Nuweiba (Fig. S25). Furthermore, we propose that a
fault segment on the eastern shore of theGulfwas active
during the mainshock. Although, the inference of tele-

seismic and geodetic data do not allow to constrain this
segment well, the BP results and themapped structures
(Fig. 1) indicate active faulting there. All these findings,
i.e. shallow normal slip, normal faulting sub-event on
the eastern shore and post-seismic normal faulting on
the western shore are indicative of active tectonic ex-
tension during and after the Gulf of Aqaba earthquake.
While the inferred moment-rate function of our two-

segment setup is similar to the one obtained by Hof-
stetter et al. (2003), i.e. roughly triangular symmetric
with a rupture duration of ∼25 s; the inferred moment-
rate function for our three-segment setup is more sim-
ilar to that of Pinar and Türkelli (1997). The total
estimated moment magnitudes of our two and three-
segment models are 7.24 and 7.27, respectively, which
is slightly greater than previous estimates of 7.04-7.21
(Tab. S1).

5 Conclusions
We imaged the rupture of the 1995 Gulf of Aqaba
earthquake using teleseismic multi-array backprojec-
tion. Mapped fault structures were used as prior infor-
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mation to constrain the location of activated faults in
the gulf. We also estimated the kinematic finite-fault
rupture evolution of the Aqaba 1995 earthquake using
geodetic and teleseismic data jointly within a Bayesian
inference process. We find that most of the rupture
has occurred on the offshore west-dipping Aragonese
fault which is curved in the along-strike direction. How-
ever, rupture initiated on the west-dipping Arnona fault
south of the Aragonese fault. The temporal rupture evo-
lution is complex and the inversion results support uni-
lateral rupture originating close to the northern end of
the Arnona fault and jumping over to the Aragonese
fault that then again ruptured unilaterally towards the
north. The backprojection results support this case.
The earlier rupture in the south could have dynami-
cally triggered the rupture on the Aragonese fault. In
contrast to earlier studies we argue that a small on-
shore fault segment on the eastern coast of the gulf was
seismically active during the event. While the event
was predominantly strike-slip our models show that a
significant portion of normal slip must have occurred
along the Arnona and Aragonese faults. In conjunc-
tion with the sub-event on the eastern shore and post-
seismic normal faulting on the western shore, our re-
sults suggest active tectonic extension of the gulf. Over-
all, this study presents new earthquake rupture models
that describe the temporal rupture evolution of the 1995
Gulf of Aqaba earthquake. Especially, the postulated dy-
namic triggering between the fault segments should be
taken into account for hazardmodels in the area, as this
shows that seismic moment can be released faster over
a shorter amount of time than during a purely unilat-
eral rupture. Given large infrastructure projects such
as NEOM that are actively being developed in vicinity
of the Gulf of Aqaba with its geometrically complicated
active fault system, themodelling of earthquakes in the
region is important for updated and informed hazard
assessment and for establishing scenarios of potential
future earthquakes.
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PyOcto: A high-throughput seismic phase associator
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Abstract Seismic phase association is an essential task for characterising seismicity: given a collection
of phase picks, identify all seismic events in the data. In recent years, machine learning pickers have lead
to a rapid growth in the number of seismic phase picks. Even though new associators have been suggested,
these suffer from long runtimes and sensitivity issues when faced with dense seismic sequences. Here we
introduce PyOcto, a novel phase associator tackling these issues. PyOcto uses 4D space-time partitioning and
can employ homogeneous and 1D velocity models. We benchmark PyOcto against popular state of the art
associators on two synthetic scenarios and a real, dense aftershock sequence. PyOcto consistently achieves
detection sensitivities on par or above current algorithms. Furthermore, its runtime is consistently at least
10 times lower, with many scenarios reaching speedup factors above 50. On the challenging 2014 Iquique
earthquake sequence, PyOcto achieves excellent detection capability while maintaining a speedup factor of
at least 70 against the other models. PyOcto is available as an open source tool for Python on Github and
through PyPI.

1 Introduction
One of the fundamental tasks in seismology is creat-
ing detailed seismicity catalogs. Highly complete cat-
alogs can reveal, for example, spatial migrations, lock-
ing patterns, or changes in seismicity rate (González-
Vidal et al., 2023; Moutote et al., 2023; Tan et al., 2021).
The standard workflow for event detection consists of
two steps: phase picking and phase association. The
phasepicking step identifies the times of seismic phases
arrivals in continuous waveforms. The phase associa-
tion step aims to find consistent sets of picks that can
be associated to a seismic source, called an event. This
grouping enables downstream analysis steps requiring
multi-station data, for example, location or magnitude
estimation. In addition, phase association helps to
identify and discard spurious picks.
Traditional phase association algorithms often rely

on greedy, combinatorial strategies (Johnson et al.,
1995). However, these approaches scale poorly with an
increasing number of picks. While this has already be-
come a challenge due to the growing number of seis-
mic stations in large-scale deployments, the problem
has been supercharged with the advent of highly sensi-
tive, deep-learning-based seismic phase pickers. Deep-
learning-based pickers employ neural network models
and are trained onmillions ofmanually labeled seismic
phase picks. They outperform traditional picking mod-
els substantially in terms of sensitivity and pick preci-
sion (ZhuandBeroza, 2019;Mousavi et al., 2020;Münch-
meyer et al., 2022).
To deal with this flood of phase picks, in recent years,

a wave of new phase association algorithms have been
published. These approaches range from improved

∗Corresponding author: munchmej@univ-grenoble-alpes.fr

grid-search strategies to complex deep learning archi-
tectures. We review the main contributions in the sub-
sequent background section. However, we first discuss
the main challenges and performance indicators for
seismic phase associators.
The key metric for seismic phase associators is the

quality at which they recover seismic events. This in-
cludes two aspects: the fraction of events being recov-
ered, i.e. true positive rate or recall, and the fraction of
identified events being incorrect, i.e. false positive rate.
Usually a tuning parameter can be used to trade-off be-
tween thosemetrics: either a higher recallwith a higher
rate of false positives or a lower recall with lower false
positive rate. The second metric concerns the same
questions on pick level: howmany picks have been cor-
rectly associated and how many picks have incorrectly
been associated. Similar trade-offs to the event metrics
exist. As ground-truth catalogs for seismicity are not
available, seismic phase associators are usually evalu-
ated on synthetic data, i.e., phase picks predicted using
travel time calculation and random noise picks. In ad-
dition, models are tested qualitatively on real-world ex-
ample scenarios without ground-truth.
A metric often disregarded is the run time of the al-

gorithms. However, given the ever-growing number of
picks, we consider this metric essential to understand
the scalability of current algorithms and their applica-
bility to large scale deployments. Run time issues make
some of the current associators non-applicable to such
deployments, as we show in our examples where some
associators did not complete associating a single day of
phase picks within 48 hours.
While the recently published associators improve on

all of these metrics when faced with large collections
of seismic picks, our experiments show that associators
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are still a limiting factor when building seismicity cat-
alogs. This refers to both the precision and recall of
events and picks, and the run times, with several asso-
ciators requiring much more time for association than
the phase pickers for picking. For this reasons, we pro-
pose PyOcto, a novel Python-based associator inspired
by the Octotree data structure. PyOcto is based on the
idea of dividing space-time into potential origins. It
achieves fast run times by only exploring promising ori-
gin regions, making it a high-throughout phase associ-
ator. PyOcto is available as an open source code with a
range of different input and output interfaces for easy
use.

2 Related work
Before describing the PyOcto architecture, we intro-
duce the most popular novel seismic phase association
methods published within the last years. All described
algorithms rely on first arriving P and S phase picks
without taking into account later phases. REAL (Zhang
et al., 2019) is an optimized grid-search algorithm. In-
stead of searching a full space-time grid, REAL is based
on the assumption that a station close to the event will
record the first P pick. Starting with one P pick, a grid
search is performed in a volume around the picking sta-
tions. This reduces the search space from the whole
study area to a smaller volume. In addition, it removes
the timedimension from the search, as the approximate
origin time for each potential origin can be inferred
from the starting pick. REAL can use homogeneous and
1D velocity models.
HEX (Woollam et al., 2020) is a hyperbolic phase as-

sociator. Assuming a homogeneous velocity model, it
postulates that the picks of one event need to occur on
a hyperbola. HEX uses the probabilistic RANSAC algo-
rithm to fit such hyperbolas to the picks. In this algo-
rithm, random candidate sets of picks are drawn and a
hyperbola is fit. If the hyperbola contains sufficiently
many picks, an event is declared.
GaMMA (Zhu et al., 2022) is based on a similar as-

sumption of a hyperbolic moveout but uses a differ-
ent optimisation scheme. The method interprets the
picks as a Gaussian mixture with each event a differ-
ent mixture component. GaMMA uses an expectation-
maximization (EM) algorithm for optimizing the clus-
ters. As run times for the EM algorithm grow substan-
tially superlinearly with the number of picks, GaMMA
uses DBSCAN (Ester et al., 1996) to group picks before
applying the EM algorithm to each cluster. GaMMA
was originally published with a homogeneous velocity
model but has later been extended to support 1D mod-
els too. Ross et al. (2023) proposed Neuma, a general-
isation of GaMMA using an Eikonet (Smith et al., 2020)
to enable arbitrary 3D velocitymodels instead of the ho-
mogeneous velocity model.
In addition to these optimization based algorithms,

several deep learning models have been proposed for
phase association. PhaseLink (Ross et al., 2019) uses a
recurrent neural network applied to pick times, phase
type and station locations to identify pairwise associ-
ations between picks. It then employs an aggregation

step to infer consensus sets of matching phases that
correspond to event detections. GENIE (McBrearty and
Beroza, 2023) uses a Graph Neural Network. Similar to
PhaseLink, GENIE uses the arrival time, phase type and
station location as inputs. In contrast to PhaseLink, GE-
NIE treats all picks jointly and outputs the full associa-
tion result from the neural network. Both GENIE and
PhaseLink are trained on synthetic data generated us-
ing 1D velocity models. The training step needs to be
conducted once for each target region, afterwards the
models can be applied to arbitrary amounts of data.
Deep learning methods differ fundamentally from clas-
sical approaches as their actual application relies on de-
tecting patterns rather than applying some travel time
based approach. While these patterns are clearly based
on travel times, this can make the models harder to de-
bug and interpret. On the other hand, it brings advan-
tages such as the ability to identify which collections of
picking/non-picking stations might be reasonable.

3 Methods

Figure 1 Schematic view of the full PyOcto pipeline. The
picks are split by time into base nodes. For each base node,
the grey box is executed. Several of these boxes can be ex-
ecuted in parallel. Within each box, the space partitioning
algorithm (see Figure 2) and the localisation/pick matching
steps are conducted. Events are output and finally dedupli-
cated.

In the following sections we present the PyOcto asso-
ciator. We start with the core algorithms and then dis-
cuss details, optimisations and implementation details.
A schematic overview of the full associator is provided
in Figure 1. Throughout the description we add the pa-
rameter names used in the implementation in italics in
brackets to allow easier cross-referencing.

3.1 Core algorithm
PyOcto is based on partitioning space-time into cells.
The key idea is to mimic a grid-search associator while
only looking at “useful” grid cells. We achieve this by us-
ing a data structure inspired by anoctotreewith an addi-
tional time axis. The data structure consists of a collec-
tion of 4D volumes (3D in space, 1D in time), that wewill
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Figure 2 Schematic view of the gridding scheme with only one spatial dimension and the time dimension. Picks are indi-
cated by crosses, the station locations are marked on the left by black triangles. Two events are contained, marked by red
stars with P (solid) and S (dashed) moveout shown in black. The background shows the gridding with each cells shading
corresponding to the number of picks per area . Only cells with at least 6 matching P picks and 6 matching S picks were ex-
plored. For each area, only the smallest cell explored is shown, i.e., all larger cells explored before in the same region are not
visualised.

call nodes in the following to highlight the resemblance
of a tree data structure. We show a simplified version
of this with only one space axis in Figure 2. Each vol-
ume/node V is associated to the list of picks picks(V )
that could have originated from the node. More for-
mally, let V be a node and (s, t) a pick at station s at time
t.1 We write

(s, t) ∈ picks(V ) ⇔ ∃(x0, t0) ∈ V : t0 + tt(x0, s) = t + ǫ
(1)

with tt(x0, s) the travel time from the originx0 to the sta-
tion s. We include an ǫ to indicate that the equation only
needs to hold up to a given uncertainty (tolerance). This
uncertainty takes into account inaccuracies in the ve-
locity model and the pick times. For simplicity, PyOcto
uses a fixed tolerance threshold that is identical for all
picks.
There are two crucial insights about the definition of

picks belonging to a node. First, while for each pick
there exists a location/time in the node where it could
have originated, this location/time might be different
for each pick. Therefore, a set of picks originating from
a node is not a sufficient condition for associating these
picks into an event. This becomes obvious when look-
ing at very large nodes. On the other hand, it is a nec-
essary condition, i.e., if there is an event with suffi-
ciently many picks in the dataset, there must be a node
that contains all these picks. Second, the assignment of
picks to nodes is not unique. A pick might be contained
inmultiple nodes, even if thesenodes are disjoint. How-
ever, only few nodes will contain enough picks to pro-

1For simplicity we omit the phase of the pick here. The inclusion of phase
type is natural and only involves taking different travel time models for P and
S waves.

duce an event. The key idea of PyOcto is to cleverly iden-
tify these nodes.
PyOcto starts with a large node spanning the whole

study area and a long time. All picks recorded during
this time (with adjustments for boundary effects) can be
assigned to the node. We initialize a list of active nodes
with this node. The association then repeatedly takes
the active node with the highest number of picks and
performs one of the following actions:

• if the node can not create an event anymore: dis-
card node

• if the node is small enough: try creating an event
• otherwise: split the node and add children to the
list of active nodes

We use a priority queue for the list of active nodes to ef-
ficiently retrieve the node with the highest number of
picks. In the following, we describe the different ac-
tions.
Splitting a node: The most common action is split-

ting a node. For this action, we split the node V into two
disjoint children V1 and V2, such that V = V1 ∪ V2. We
split V in half along the coordinate axis in which V has
the largest extent. To compare the time axis, we multi-
ply it with a constant velocity, by default 5 km/s.
We then build the sets picks(V1) and picks(V2) by it-

erating over all candidates in picks(V ). This check can
easily be performed using equation (1). As noted before
a pick can be assigned to both of these sets at the same
time.
Discarding a node: Essential for the high perfor-

mance of PyOcto is to discard nodes early if they can
not produce an event anymore. For this, we use the fol-
lowing criteria:
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• minimum number of total picks (n_picks)
• minimum number of P picks (n_p_picks)
• minimum number of S picks (n_s_picks)
• minimum number of stations with both P and S
picks (n_p_and_s_picks)

All thresholds are configurable and should be adjusted
to the dataset. As a subvolume can never contain more
picks than the parent node, once a node violates any of
these criteria it cannot create an event anymore and can
be discarded.
Creating an event: If a cell is smaller than a prede-

fined threshold along all axes (min_node_size), PyOcto
tries to create an event. For this, we locate an event
based on all picks in a cell. The full localisation pro-
cedure is described in Section 3.2. We then identify
whether all picks fit the determined location and re-
move potential outliers. These outliers might occur as
not all picks in the node need to necessarily stem from
the same source location/time. In addition, we scan
all other picks to identify if further picks are consistent
with the list of picks. This operation can be performed
efficiently using a binary search in time. We add these
picks to the list of picks. This procedure is repeatedmul-
tiple times (refinement_iterations), by default 3, to stab-
lise the event. If at any point in this iteration the picks
do not fulfill the conditions for nodes outlined above,
the event creation is stopped as unsuccessful.
Even though the node already gives a preliminary

location and station set, the location procedure is re-
quired for multiple reasons. First, while the node
groups a candidate set of picks, there is no guarantee
that all of these can be associated to a common origin.
Second, the optimal location for a set of picks does not
necessarily need to fall within the node, in particular,
because the same set of picks can be contained in mul-
tiple nodes. This is also the reason why it might be pos-
sible to associate additional picks to the location. While
traversing the nodes by number of picks makes it likely
to select nodes already containing the majority of picks
for an event, this can not be guaranteed in face of spu-
rious picks.
In contrast to some other associators (e.g., GaMMA),

PyOcto can not use amplitude information for asso-
ciation. However, obtaining accurate amplitudes for
events at low signal-to-noise levels, as for the majority
of events detected with deep learning, is challenging.
From our anecdotal experiments on real data, we did
not see amajor advantage from the use of amplitude in-
formation.

3.2 Localisation procedure
To identify the most likely origin for a set of picks, we
use the equal differential-time (EDT) loss (Lomax et al.,
2000). Compared to an L2 loss on the travel time resid-
ual, the EDT loss has two advantages. First, it is inde-
pendent of the origin time, thereby reducing the search
space. Second, it ismore stable against outlier picks. As
we expect outliers to be contained in our pick set, this is
a useful property for our application.

To find theminimumof the EDT loss, we use a greedy
algorithm. A greedy algorithm is a heuristic mak-
ing locally optimal decisions. While such algorithms
do not necessarily find the global optimum, they usu-
ally show excellent runtimes. Starting with the whole
study volume, we split the volume in half k times (loca-
tion_split_depth) into 2k subvolumes. For each subvol-
ume, we calculate the EDT loss at the volume center.
From the volume with the lowest EDT loss, we go up l
splits (location_split_return). This volume, with a size of
1/2k−l of the original volume is used as the new start for
the search and we repeat the splitting and search pro-
cedure. We iterate this step until the volume reaches a
predefined size (min_node_size_location).
This greedy algorithm has a trade-off between accu-

racy and runtime. When splitting the volume into only
few pieces and only using a low l, this leads to low run-
time but potentially suboptimal minima. On the other
hand, too fine splitting in each step will increase run-
times at virtually no gains in location accuracy. We set
the default to k = 6 and l = 4, but make the parame-
ter individually configurable. We note that insufficient
values for k and l can lead to striping artifacts, i.e., lo-
cations at the edges of larger volumes caused by insuf-
ficient sampling.

3.3 Velocity models
At its core, PyOcto relies on travel times. These travel
times need to be obtained from seismic velocity mod-
els. Two types of queries occur in the PyOcto algo-
rithm. First and most commonly, volume queries of
type (s, t) ∈ picks(V ), i.e., identifying if a pick can
originate from a volume. Second, for the localisation
algorithm, traditional travel times between the pro-
posed origin and the station are required. Both of
these querieswill be executed in very highnumbers and
therefore need to be implemented efficiently.
PyOcto implements two velocity models, a homoge-

neous model and a 1D layered model. For the homo-
geneous model, we assume constant P and S velocities.
To solve the volume query, we identify the earliest and
latest times a pick from the volume could arrive at the
station. The earliest time is achieved by the earliest ori-
gin time in the volume plus the travel time to the clos-
est point in the volume. Similarly the latest time can be
derived using the point with the highest distance to the
station. For a homogeneous velocity model, the deriva-
tion of the travel times from a fixed origin are trivial us-
ing Pythagoras theorem. Both queries run in constant
time.
For the layered velocity model, we use a precalcula-

tion step to substantially improve performance. First,
we calculate P and S arrival times on a dense grid us-
ing an eikonal solver. This step takes a few seconds but
only needs to be run once. For extracting travel times
we run 2D bilinear interpolation between the 4 closest
grid nodes. For the area queries, i.e., if a pick can re-
sult from a volume we use the observation that for a 1D
velocity model, the shortest travel time must be at the
closest epicentral distance and the longest travel time
at the furthest. However, it is not a priori clear at which
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depth these times occur. Potential candidates are the
shallowest and deepest points of the queried depth in-
terval, plus all local extrema within the depth interval.
Local extrema are regarded in depth direction, e.g., at
a fixed distance a depth is a local minimum if the travel
times both directly above and below it are larger. To ef-
ficiently query the local extrema, we cache all local ex-
trema at each distance. As for typical velocity models
each distance has at most a handful of local extrema,
they can simply all be checked when necessary. In ad-
dition, to correct for station elevation, we add an eleva-
tion correction based on a constant velocity and vertical
incidence. While this is an approximation, errors are
negligble for association purposes.
PyOcto does not support 3D velocity models as

performing efficient, i.e., constant run time, volume
queries as required for the splitting algorithm is non-
trivial. This is identical to most common algorithms,
that are limited to homogeneous or 1D models. In con-
trast, deep learning models are able to use arbitrar-
ily complex models (Ross et al., 2019; McBrearty and
Beroza, 2023). PyOcto supports different velocity mod-
els between the splitting and the localisation step. In
principle, it would be easy to extend at least the locali-
sation step to 3D models. However, we have not tested
this and only expect substantial improvements for re-
gions with velocity structures strongly deviating from a
layered model.
PyOcto supports station terms, i.e., constant time off-

sets for phase arrivals at a station, which can occur due
to local structure. We implement additive station terms,
i.e., the station term is added to thepredicted travel time
from the velocity model. This is the same sign conven-
tion as used by NonLinLoc (Lomax et al., 2000). Station
terms are not determined dynamically but have to be
defined before running the association. However, they
can be obtained by iteratively running PyOcto and in-
ferring station terms from the residuals of the previous
run.
For efficient calculation of distances, PyOcto relies

on local coordinate transforms. By default, we suggest
transverse Mercator projections. The transformation
from latitude and longitude values to local coordinates
needs to be performed only once before the association
step. While distance measures will become inaccurate
for very large study areas, we did not observe any issues
in our case studies with diameters up to ∼ 1500 km.

3.4 Initialisation
As described in the introduction of the algorithm, the
association starts with a node spanning the whole study
area. In principle, this node could also span the whole
study time. However, in practice this is suboptimal be-
cause it will require several costly splits along the time
axis that aremostly trivial. Instead, we do not start with
a single node but with a list of base nodes.
Each base node spans the whole study area but only a

part of the time. For this, we split the time into regularly
spaced segments, by default 20 minutes long (time_slic-
ing). The segments overlap by a short buffer time win-
dow (time_before). Each segment is then filled with all

picks that originate during the segment. With a buffer
time roughly equivalent to the maximum travel time
through the study area, this ensures that each event is
contained completely in at least one base node.
As two subsequent base nodes might both contain

most picks for one event, the early splitting might lead
to duplicate events. For this reason, we deduplicate
the events after all base nodes have been processed.
To avoid issues from inaccurate estimates of location
or origin time, we base the deduplication exclusively
on the set of picks. If two events share more than
a fixed number of picks (max_pick_overlap), the event
with fewer picks is discarded. We note that we al-
low some level of intersection to avoid discarding non-
identical events. This might lead to some picks being
assigned to multiple events, which is not possible for
events within one time slice.

3.5 Optimisations
While the splitting algorithm with early stopping is a
solid basis for an efficient algorithm, several points
need to be taken into account thatmight affect runtime.
Before going into details, we review the general run-
time principles. While a formal analysis of algorithm
complexity is difficult, we can make several observa-
tions. First, run time crucially depends on the number
of nodes processed. It is therefore essential to stop the
processing of each branch of the search tree as early
as possible. Second, location procedures are expensive
as they require many travel time queries. They should
therefore not be triggered too often. Based on these ob-
servations, we define multiple optimisations.
As a first optimisation, PyOcto keeps track of all picks

that have already been assigned to events. Once a pick
has been assigned to an event, it is not considered any-
more and removed from all nodes. Without these picks,
the adjacent nodes most likely will not fulfill the neces-
sary minimum number of picks. This step substantially
improves runtime, as events will usually produce many
adjacent nodeswithhighnumbers of pickswhichdonot
need to be processed multiple times.
The second observation treats the case of a group of

picks that can not be associated to a common origin.
This happens if the origin determined from the group
of picks does not correspond to sufficiently many picks,
i.e., depends on the tolerance for matching picks and
the required number of picks for an event. As trying
to create an event from these picks does not yield a con-
sistent origin, these picks are notmarked as used. How-
ever, oftenmany neighboring cells contain the same set
of picks, leading to repeated but useless tries of locat-
ing the same set of picks. To mitigate this situation, we
cache all sets of picks that have been processed as can-
didate sets for localisation. If a set has been processed
before, it will be skipped in the next try. Note that this
optimisation onlyworks because the location search de-
pends only on the pick set but not on the location of a
node.
The last optimisation is relevant in the case of a large

number of stations with spurious picks. With a grow-
ing number of stations, it becomes likely that a set of
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distant stations by chance produces picks that can be
associated. This does not only lead to false detections
but also substantially increases run time. At the same
time, these false events are easy to identify manually
because of the inconsistent pick pattern, i.e., the exis-
tence ofmanynon-picking stations between the picking
stations.
To remove this issue, we introduce two distance con-

ditions, a relative and an absolute condition. The abso-
lute condition is a simple cutoff on the maximum dis-
tance between stations and sources for the space parti-
tioning (association_cutoff_distance). This condition ex-
cludes picks too far from a given cell when checking if
the pick could have originated there. However, in the
localisation and pick matching step, all picks are taken
into account, ensuring that the output contains all as-
sociated picks even at larger distance. This condition
is most helpful in large, homogeneous networks and
in networks without large amounts of out-of-network
events. By default, no maximum distance is set to ac-
count for the different scales at which PyOcto might be
applied.
For the case of inhomogeneous networks or networks

with substantial out-of-network events, we introduce a
relative distance condition, based on the assumption
that it is unlikely for a station to detect an event if many
closer stations did not detect it. For every distance
from a volume, we can calculate the fraction of stations
within this distance that have at least one pick com-
pared to the total number of stations. We then identify
the maximum distance where this fraction is still above
a predefined threshold (min_pick_fraction). All picks
at stations above this threshold are removed. As the
nodes have a spatial extent, for each station we choose
the distance maximizing the number of retained picks.
This means that for stations with picks we use themini-
mumdistance to the nodewhile for all other stationswe
use the maximum distance. The default value for this
threshold is 0.25, i.e., allowing for many close stations
without picks.
While this optimization yields substantial runtime

improvements for datasets with high numbers of sta-
tions, it comes at a cost. To check the condition, at every
node the distance to all existing stations needs to be cal-
culated. For small deployments, associations by chance
are anyhow unlikely, rendering the additional runtime
mostly useless. The optimisation can therefore be deac-
tivated.
Lastly, PyOcto uses a memory protection strategy. As

PyOcto processes nodes ordered by their number of
picks, it needs to always hold a queue of active nodes.
This can, in the worst case, degrade into a breadth-
first search, which is very memory intensive. There-
fore, once the total number of nodes exceeds a prede-
fined threshold (queue_memory_protection_dfs_size), Py-
Octo processes the next nodes using depth-first search.
This is highly memory efficient, as only the current call
stack needs to be kept inmemory. At the same time, this
can lead to increased run times. We speed the search up
by still always traversing greedily into the larger of the
two children of a node. In our experiments, the mem-
ory protection was only required for very large sets of

picks in short times (≫100,000 picks per day).

3.6 Implementation
PyOcto is implemented in Python and C++. The inter-
face of PyOcto is implemented in Python to provide an
accessible interface in a common scripting language.
Inputs and outputs are passed as Pandas data frames.
PyOcto has a slim set of dependencies. The back-
end of PyOcto is implemented in C++. The functions
are natively embedded into Python using pybind11.
The association function is parallelised using pthreads.
Parallelisation is achieved by assigning base nodes to
threads. This causes very lowsynchronisationoverhead
as only the basenode queue and the event list are shared
between threads. The list of used picks is not shared
between threads, instead events are deduplicated at the
end of the association step. By default, PyOcto uses all
available threads. However, the thread count can be set
manually (n_threads).
To allow an easy experimentation with PyOcto, the

software implements several compatibility interfaces:

• a function to read the input format from GaMMA
(Zhu et al., 2022)

• a function to read the input format from REAL
(Zhang et al., 2019)

• a function to process SeisBench picks (Woollam
et al., 2022)

• a function to use obspy Inventory objects as input
(Beyreuther et al., 2010)

• an output interface for NonLinLoc (Lomax et al.,
2000)

• an automated selection strategy for local coordi-
nate transforms

PyOcto is available as open source code under MIT
license, a permissive open-source license. Pre-built
wheels for Linux,MacOS, andWindows are available on
PyPI and can be installed using pip (see Data and Code
availability for details). The PyOcto code is modular to
allow for easy extension. Such extensions could, for ex-
ample, include pick-specific uncertainties or more ac-
curate calculation of topography corrections.

4 Benchmark on synthetic catalogs
4.1 Setup
To quantitatively assess the quality of PyOcto, we test
it on synthetic catalogs. We use two complementary
scenarios: (i) uniformly distributed seismicity in a shal-
low layer; (ii) realistic subduction zone seismicity (Fig-
ure S1). We compare the proposed PyOcto algorithm
to two established associators: GaMMA and REAL. We
choose these algorithms as they havewell-documented,
open-source implementations and have both been used
in numerous application cases already (Wilding et al.,
2023; González-Vidal et al., 2023; Tan et al., 2021; Liu
et al., 2020). We do not compare PyOcto against any
deep learning associator, as optimizing these associa-
tors requires substantially more parameter choices and
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Figure 3 Synthetic evaluation of the different associators in the shallow seismicity scenario. Each associator is indicated
by a color. For themissing/additional picks, missing picks are indicatedwith a bar below 0, additional picks with a bar above
0. Missing results due to exceeded runtimes are indicated by grey Xs. A result for REAL 1Dwith 100 events and 1.0 noise is not
available as themodel reproducibly crashedwith a segmentation fault. All results in numerical form are reported in Table S4.
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Figure 4 Synthetic evaluation of the different associators in the subduction scenario. For further details see the caption of
Figure 3. All results in numerical form are reported in Table S4.
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Table 1 Dataset statistics for the subduction scenario. We do not differentiate between P and S picks as both are generated
in almost equal number. The picks per station include the noise picks.

Events Noise Event picks Noise picks Total picks Avg. picks per event Avg. picks per station

100 0.3 2,241 672 2,913 22.41 145.65
100 1.0 2,331 2,331 4,662 23.31 233.10
100 3.0 2,142 6,426 8,568 21.42 428.40
500 0.3 11,414 3,424 14,838 22.83 741.90
500 1.0 11,194 11,194 22,388 22.39 1119.40
500 3.0 10,818 32,454 43,272 21.64 2163.60

2,000 0.3 45,544 13,663 59,207 22.77 2960.35
2,000 1.0 45,011 45,011 90,022 22.51 4501.10
2,000 3.0 45,213 135,639 180,852 22.61 9042.60

a fair comparison is therefore harder to guarantee. Note
that this study is not intended as a full-scale bench-
mark of seismic phase associators as this would be out
of scope for the paper. Instead, we restrict ourselves to
this smaller-scale case study.
Both scenarios use the same procedure for data gen-

eration. Each test case consists of one day of seismicity
with a predefined number of events and a predefined
noise rate. For each event, we draw a source time uni-
formly within the day and draw a location and a mag-
nitude from the distributions described below. Based
on the magnitude and hypocentral distance, we esti-
mate detection probabilities at each station. From these
probabilities we randomly select whether a station has
a P and an S arrival using correlated Bernoulli variables
with correlation 0.5 between the twophases (see supple-
ment Section S1). We predict travel-times using a 1D ve-
locity model from Graeber and Asch (1999). To each in-
dividual travel-time we add a Gaussian random normal
variable with a standard deviation of 0.4 s, but at least
1 % of the total travel time. Finally, we add noise picks
not associated to any event to the data set. The number
of noise picks is defined as the product of the number of
event picks times the user-defined noise rate. For each
pick, the phase, time and station are drawn according to
a uniform random distribution. We use event numbers
of 100, 500 and 2000, and noise rates of 0.3, 1.0 and 3.0.
We compare PyOcto to GaMMA and REAL. For each

model, we manually selected reasonable parameters.
All parameters are reported in Tables S1, S2, and S3.
For each associator, we report results for the versions
with homogeneous velocity models and 1D layered ve-
locitymodels. Weprovide the associatorswith the same
velocity model we used for data generation. We there-
fore expect slightly too optimistic performance results
for the 1D models, however, the comparison between
these models should still provide reasonable results.
For all associators we require at least 10 picks for an

event detection. We furthermore require at least 4 sta-
tions with both P and S pick for REAL and PyOcto. We
do not enforce the last condition for GaMMA as the op-
tion is not implemented. We ensure that all events in
our synthetic catalogs fulfill these conditions.
We evaluate the associators based on 6 metrics: pre-

cision, recall, F1 score, missing picks per event, incor-

rectly associated picks per event, and run time. Preci-
sion is the fraction of cataloged events among all detec-
tions. Recall is the fraction of events detected among
all cataloged events. F1 score is the harmonic mean
of precision and recall. To calculate these metrics, we
define matches between cataloged and detected events
through their picks. A cataloged event A and a detected
event B are considered a match if at least 60 % of the
picks of A are also picks of B and vice versa. We use
a pick-based matching instead of a location- and time-
based matching as it is more stable for high event den-
sities.
We execute the test on 16 virtual CPU cores with 8

physical cores and 64 GB main memory. We measure
runtimes from the invocation to the output of the mod-
els. We do not measure data-independent preprocess-
ing steps such as velocity model building as these steps
only need to be executed once in an application sce-
nario. As an exception, the times for GaMMA with 1D
velocity model includes the time for the eikonal solver
(∼3 s), as the step can not be executed separately. Exact
machine configurations can vary slightly between tests,
therefore the reported runtimes should be interpreted
rather as an indication than an exact measure. We limit
the total aggregated runtime of all tests per associator
to 48 h. All tests not finished at this point are reported
as missing.

4.2 Uniform shallow seismicity
As a first scenario, we study shallow seismicity. We
use 100 stations arranged in a 10x10 grid with a sta-
tion spacing of 0.2◦ × 0.2◦. Event locations are ran-
domly distributed within the network with a depth up
to 30 km. No out-of-network events are generated. Mag-
nitudes are generated from a Gutenberg-Richter distri-
bution with a minimum magnitude of 0.5 and b = 1.
Dataset statistics are reported in Table 2.
Figure 3 shows the performance metrics for the shal-

low scenario. Full results in numerical form can be
found in Table S4. PyOcto and REAL obtained results
for all cases with both the homogeneous and the 1D ve-
locity model. GaMMA did not provide solutions for the
cases after 500 events and a noise factor of 1.0 as the
computation did not finish within the 48 h time limit.
In all cases, PyOcto achieves the highest F1 score
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Table 2 Dataset statistics for the shallow seismicity scenario. We do not differentiate between P and S picks as both are
generated in almost equal number. The picks per station include the noise picks.

Events Noise Event picks Noise picks Total picks Avg. picks per event Avg. picks per station

100 0.3 4,047 1,214 5,261 40.47 52.61
100 1.0 4,894 4,894 9,788 48.94 97.88
100 3.0 5,257 15,771 21,028 52.57 210.28
500 0.3 25,658 7,697 33,355 51.32 333.55
500 1.0 24,525 24,525 49,050 49.05 490.50
500 3.0 23,646 70,938 94,584 47.29 945.84

2,000 0.3 101,614 30,484 132,098 50.81 1320.98
2,000 1.0 98,680 98,680 197,360 49.34 1973.60
2,000 3.0 94,710 284,130 378,840 47.35 3788.40

or a result within 0.01 F1 score of the best model.
The 1D model slightly outperforms the homogeneous
model. REAL with a homogeneous model achieved a
slightly worse performance, followed by REAL with a
1D model. GaMMA shows a clear degradation in F1
score with growing number of event or noise picks
but still achieves good performance (F1 ≥ 0.89) for all
cases where solutions were obtained. For the case with
2000 events and a noise factor of 3.0, REAL (homoge-
neous, 0.84) performs best, closely followed by PyOcto
(1D, 0.83), REAL (1D, 0.74), and PyOcto (homogeneous,
0.67). We suspect that REAL shows slightly better per-
formance here because the actual grid search is less
affected by noise picks than the approximation using
space partitioning used in PyOcto. We note that this
case is extremely challenging with each station report-
ing on average one pick every 23 s.
Up to 500 events and a noise rate of 1.0, PyOcto (1D

andhomogeneous) andGaMMA (1Dandhomogeneous)
are very exact in terms of picks with few additional or
missed picks. In contrast, REAL (homogeneous) misses
roughly 3 picks per event, REAL (1D) between 5 and 10.
While we are not fully certain about the missed picks,
we assume it is because REAL discards picks based on
the ratio between station residuals and event residuals,
i.e., a low average pick residual for an event will lead to
discarding picks with higher residuals even if their ab-
solute value is not excessively high. We note that the
number of missed picks for REAL could likely be re-
duced through targeted parameter tuning. For config-
urations with high numbers of events, in particular, in
conjunction with high noise, REAL and PyOcto both in-
clude false picks with the events. PyOcto includesmore
false picks than REAL, again likely related to selection
criteria. The homogeneous version of PyOcto produces
about 1.5 times as many false picks as the 1D variant,
likely because of the overall higher tolerance value nec-
essary to mitigate the less accurate velocity model.
In terms of run time, PyOcto substantially outper-

forms GaMMA and REAL in all cases. The run time
factor between PyOcto and the next-fastest methods ex-
ceeds 10 in almost all cases, often even reaching factors
of 20 and above. Run times for the homogeneous and
the 1D velocitymodel for PyOcto are almost identical in
all cases. We suspect that while the travel time lookup

for the 1Dvelocitymodel is slightlymore expensive than
for the homogeneousmodel, this effect is offset bymore
focused origins from the better travel times, leading to
fewer nodes that need to be explored. Probably owing
to the same better focus, for GaMMA the 1D model is
usually faster than the homogeneous model by a factor
of 3 to 10.

4.3 Subduction zone
For the subduction zone scenario, we base our cata-
log on the IPOC network (GFZ German Research Centre
For Geosciences and Institut Des SciencesDe L’Univers-
CentreNationalDeLaRechercheCNRS-INSU, 2006) and
the catalog by Sippl et al. (2018). We chose the deploy-
ment and the catalog as a typical example of a well-
instrumented, highly active subduction zone with di-
verse seismicity. We draw event locations and event
magnitudes independently from the catalog. Weuse the
IPOC stations, in total 20 stations. The study area covers
approximately 5◦ North-South and 3◦ East-West up to a
depth of 200 km. Out-of-network seismicity is located
up to 1◦ from the network. This is a typical challenge for
associators in subduction zones where offshore events
will occur substantially outside the network. Dataset
statistic are reported in Table 1.
The results in the subduction scenario largely mirror

the ones from the shallow scenario but with nuanced
differences that we point out in the following (Figure 4,
Table S4). First, the difference between 1D and homo-
geneous models is more pronounced with 1D models
clearly outperforming homogeneous models in terms
of F1 score. Furthermore, the homogeneous models
(GaMMA, REAL, and PyOcto) consistently miss around
2.5 picks per event. This highlights that the assumption
of a homogeneous velocitymodel is insufficient for sub-
duction zones. Nonetheless, PyOcto and REAL with ho-
mogeneous velocity model still achieve F1 scores con-
sistently above 0.93 for cases with up to 500 events. In
contrast, GaMMAperforms clearlyworse than the other
models already at 100 events per day and it substantially
degrades further above. This happens for GaMMAwith
ahomogeneous velocitymodel andwith a 1Dmodel. We
suspect that the degradation forGaMMA is related to the
optimisation strategy that is susceptible to local min-
ima. At high numbers of picks, the loss landscape will
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look very rough, leading to unfavourable convergence
properties. This ismore pronounced for the subduction
scenario than the shallow scenario, as local minima are
particularly likely among the depth axis.
Second, among the 1D models, PyOcto outperforms

REAL and GaMMA more clearly than in the shallow
case. It consistently exhibits a higher F1 score and
lower numbers of missed and false picks. Even at 2000
events with a noise rate of 3.0 (with a pick per station on
average every 9.5 s), PyOcto still achieves an F1 score of
0.57.
Third, run time differences are even more pro-

nounced with PyOcto outperforming REAL often by a
factor of 1000. This is caused by the larger search grid
required by REAL to handle the depth and the out-of-
network events. We note that we already reduce the im-
pact of the larger grid size for REAL by using a larger
grid spacing for the subduction scenario. In contrast,
PyOcto can easily handle large search domains due to
its splitting approach that scales logarithmically with
volume. For the subduction scenario, PyOcto with a
1D model in most cases only needs about half the time
of PyOcto with a homogeneous velocity model. This
suggests that the more accurate velocity model leads to
fewer nodes needing to be explored. GaMMA with a
homogeneous velocity structure shows competitive run
times compared to PyOcto and REAL for cases with 100
events but run times substantially exceed the ones of
REAL (and thus even more PyOcto) at 500 events and
above. With a 1D velocity model, GaMMA runtimes
are close to the ones of PyOcto as well for 500 events
with noise levels of 0.3 or 1.0, however, at the cost of
lower F1 scores. No solutions for 2000 events and noise
rates of 1.0 and 3.0 could be obtained with the homo-
geneous version of GaMMA. The 1D model provides a
solution for 1.0 noise, however with low F1 score and
a runtime above one day. We suspect that a key limita-
tion for GaMMA is the DBSCAN algorithm that is used to
group the picks before the expectationmaximization al-
gorithm. For very dense sequences, this algorithm fails
to break up the picks into small enough clusters, and
larger clusters take substantially longer to associate.

5 Application to the 2014 Iquique se-
quence

In addition to the synthetic tests, we evaluate the dif-
ferent associators on a real scenario. For this, we study
the 2014 Iquique sequence. Starting with an 8 month
long slow slip transient, the 2014 Iquique sequence con-
tained amagnitude 6.6 foreshock on 16thMarch and the
mainshock on the evening of 1st April (Socquet et al.,
2017; Soto et al., 2019). We look at the time between 15th
March 2014 and 15thApril 2014. This time span includes
the largest foreshock, the mainshock, and the phase of
most intensive aftershock activity. For this study, we
use data from the 20 stations in the CX network. We
note that generally more stations from other networks
are available in the area. However, as we do not aim to
produce a comprehensive catalog but rather to test the
associators, we restrict ourselves to the high-quality CX
stations.

Using the CX data, we build a small earthquake detec-
tion workflow. First, we pick P and S arrivals in the con-
tinuous waveforms using PhaseNet (Zhu and Beroza,
2019) trained on INSTANCE (Michelini et al., 2021) using
SeisBench (Woollam et al., 2022). We use a pick thresh-
old of 0.05 for both P and S waves, i.e., every pick that
has a confidence value above 0.05 assigned to it by the
deep learning picker is treated as an arrival. This is in-
tentionally a very low threshold to further stress test
the associators. Second, we pass the picks to each as-
sociator to obtain catalogs. For the homogeneous ve-
locity model, we use 7.0 km/h (P) and 4.0 km/h (S), for
the 1D model the one from Graeber and Asch (1999).
All remaining parameters are provides in Tables S1, S2
and S3. For each associator, we provide picks in daily
chunks. As in our benchmark, we require at least 10
picks and 4 stations with both P and S pick. We note that
this is an extremely simplistic catalog generation work-
flow that misses essential postprocessing steps, such as
absolute and relative relocation or magnitude estima-
tion. However, it is sufficient to investigate the differ-
ence between the associators.
For this analysis, we compare PyOcto (1D and homo-

geneous model), REAL (1D and homogeneous model),
and GaMMA (homogeneous model). We exclude
GaMMA with a 1D model, as the model failed to con-
verge for ∼30% of the days given 24 h compute time
per day. We reproduced this behaviour multiple times
to rule out stochastic artifacts. No configurations have
been changed between GaMMA with a homogeneous
model and the 1D model except for the velocity model.
A visualisation of the partial catalog obtained using
GaMMA with a 1D model is available in Figure S2.
Figure 5 shows the seismicity in the IPOC area, in-

cluding Northern Chile, as determined with the differ-
ent associators. All catalogs clearly show the main fea-
tures of the seismicity: an intense cluster of events
around the Iquiquemainshock in the North-West, mod-
erate seismicity along the subducting slab, and a strong
band of deeper seismicity. Table 3 shows statistics for
the number of events per catalog, the number of asso-
ciated picks and the fraction of total picks associated.
Overall, the PyOcto and REAL catalogs are largest, with
the catalogs fromREALcontaining slightlymore events.
For both PyOcto and REAL, the catalogs with homoge-
neous velocity models are slightly larger. This is most
likely related to the different choice in travel time tol-
erances. The catalog from GaMMA is about a quarter
smaller. Overall, PyOcto and REAL associated between
43 % and 46 % of all picks while GaMMA associated
34 %. We note that this does not imply that all remain-
ing picks are incorrect, asmanymight stem fromevents
that have not been recorded at sufficiently many sta-
tions to meet the quality control criteria or even be as-
sociated.
Figure 6 shows the daily number of events and the av-

erage number of P and S picks per event per day. Across
all days, the number of events is very similar between
all variants of REAL and PyOcto, with PyOcto always de-
tecting slightlymore events thanREAL in the early parts
of the aftershock sequence. GaMMA consistently finds
fewer events, with the absolute and relative difference
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Figure 5 Catalogs generated for the Iquique sequence (15th March 2014 to 15th April 2014) using different phase asso-
ciators. We visualize the output locations as provided by the associators. Please note that in a comprehensive workflow,
absolute and relative relocation techniques should be used as a refinement step. Cross section plots are shown in Figure S3.
The station configuration is shown in Figure S1.

becoming particularly large on days with high seismic-
ity rate. This indicates that GaMMA is less able to deal
with high rates of seismicity. Notably, for all models
the number of detected events stays almost constant for
four days after themainshock. As typically a clear decay
in the number of aftershocks in this time frame would
be expected, this suggests that all models miss events
during these days. Our results can not distinguish if this

is a limitation of the picking model or the association
models.
Looking at the average number of picks per event, the

only noticeable difference between the associators is
that REAL consistently finds about 0.6 S picks more per
event than PyOcto (Figure 6). Differences in the num-
ber of picks are related to the tolerance criteria applied
for matching the picks to origins. As the different asso-
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Table 3 Catalog statistics for the Iquique sequence catalog with different associators. The table shows the number of
events, picks per event, the fraction of associated picks among all picks, and the total number of picks. We abbreviate picks
per event as ppe. Times refer to average run times per day of data.

Associator Events Ppe P ppe S ppe Associated P associated S associated Total picks Time [s]

GaMMA 12,718 16.92 9.90 7.02 0.34 0.31 0.39 634,647 1021
PyOcto 16,660 16.77 9.62 7.15 0.44 0.39 0.52 634,647 12
PyOcto1D 16,362 16.56 9.49 7.06 0.43 0.39 0.50 634,647 15
REAL 16,747 17.35 9.66 7.69 0.46 0.40 0.56 634,647 1487
REAL1D 16,489 17.51 9.78 7.73 0.46 0.40 0.55 634,647 1557

Figure 6 Daily earthquake rates, daily number of associ-
ated P picks per event, and daily number of associated S
picks for the catalogs generated using the different associ-
ators. Vertical black lines indicate the times of the largest
foreshock and the mainshock.

ciators use slightly different criteria, it is hard to achieve
identical settings. Therefore, the difference in number
of picks is likely related to the choice of tolerance pa-
rameters. It is difficult to quantify how many of the ad-
ditional picks are correct or false picks.
An interesting aspect is the temporal development of

picks per event. Overall, the number of P picks per
event seems to correlate slightly positivelywith the total

number of events. For the S picks, the rate of associa-
tion also follows systematic patterns across all associa-
tors, but a correlation with the number of events is not
as apparent. We suggest that the shifts in the number of
associated picks are related to the picker performance
over time,which is in turn affectedby the event distribu-
tion. More large events will cause more impulsive, i.e.,
easier to detect arrivals. At the same time, a higher seis-
micity rate will also cause higher noise levels, making
phase detection and picking overall more challenging.
While this study does not focus on the location accu-

racy of different associators, as we do not perceive this
as themain output of the phase associators, we still pro-
vide a brief analysis of our findings in the Iquique se-
quence. Each method produces a distinct signature of
location artifacts (Figures 5 and S3). GaMMA features
a substantial number of shallow detections not present
in the other catalogs. These are primarily misloca-
tions, likely caused by the initialisation of the sources
for the expectation-maximization algorithm at the sur-
face. They occur primarily outside the network. REAL
shows clear gridding artifacts caused by the discretisa-
tion of the search grid. Finer search-grids would reduce
this effect, but come at a substantial compute cost, with
halving the grid-space leading to roughly 8 times longer
run time. PyOcto shows line-shaped artifacts, however,
these are particularly visible with regard to event depth.
These stripes are caused by failures in the minimiza-
tion of the EDT loss in the localization procedure. The
artifact is more pronounced for the homogeneous ve-
locity model than the 1D velocity model, likely because
the EDT loss is more focused for the 1D model. Stripes
could be reduced or eliminated by increasing the sam-
pling depth in the octotree search for localization. How-
ever, this would lead to increased runtime. In conclu-
sion, while all associators give a good overview of the
general spatial patterns of the seismicity, the locations
should only be treated as preliminary estimates. For
accurate location, absolute or relative relocation tools,
e.g., NonLinLoc (Lomax et al., 2000) or HypoDD (Wald-
hauser, 2001), should be employed.
We measured average runtimes per day for each as-

sociator. As in the synthetic benchmark, PyOcto was
by far the fastest, taking 12 s (homogeneous) / 15 s
(1D model). Gamma took about 17 minutes per day,
REAL took 25 minutes (homogeneous) / 26 minutes (1D
model). Thismeans a speed-up factor of 70 to 130 for Py-
Octo compared to the baselines. As a reference, loading
the waveform data from disk and picking it took around
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60 to 90 s per day. This means that in this scenario, run
times forPyOcto association areoneorder ofmagnitude
below the times for picking, while for the other associa-
tors the association largely dominates the total run time.
To analyse the influence of the minimum required

number of picks on the catalog, we conducted addi-
tional tests requiring only 7 (instead of 10) total picks
per event and only 3 (instead of 4) stations with both P
and S pick. The results are shown in Figures S4, S5 and
S6. Overall, the results show the same trends as with
the more strict requirements. The number of events
increases by around 15 % to 30 %, depending on the
associator. In this configuration, PyOcto consistently
finds more events than both GaMMA and REAL. On the
other hand, the seismicity now also appears substan-
tially more scattered for all associators. It is unclear,
to which degree this is caused by incorrect associations
or by less accurate locations from the lower number of
picks. The runtimes of the three associators stay largely
unaffected by the change in pick requirements.

6 Conclusion

In this paper, we introduced PyOcto, a novel seismic
phase associator based on space-time partitioning. We
tested PyOcto in two distinct synthetic earthquake sce-
narios with different numbers of events and different
noise levels. PyOcto consistenly showed detection per-
formance on par or even superior to the state of the art
approaches GaMMA and REAL. At the same time, Py-
Octo achieves substantial speedups, often with factors
above 50. We furthermore compared the algorithms
on the challenging 2014 Iquique sequence. Here too,
PyOcto produces a very complete seismicity catalog.
Similar to the synthetic cases, PyOcto again achieves
a speedup of above 70 compared to the other associa-
tors, with phase association taking substantially shorter
time than the phase picking. This makes the algorithm
future-proof in face of ever-growing seismic networks
and potentially more sensisitive, future phase pickers.
PyOcto is available as an open-source tool.
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Abstract Many regions of the Earth’s mantle are seismically anisotropic, including portions of the
lowermost mantle, which may indicate deformation due to convective flow. The splitting of ScS phases,
which reflect once off the core-mantle boundary (CMB), is commonlymeasured to identify lowermostmantle
anisotropy, although some challenges exist. Here, we use global wavefield simulations to evaluate commonly
used approaches to inferring a lowermost mantle contribution to ScS splitting. We show that due to effects
of the CMB reflection, only the epicentral distance range between 60

◦ and 70
◦ is appropriate for ScS splitting

measurements. For this distance range, splitting is diagnostic of deep mantle anisotropy if no upper man-
tle anisotropy is present; however, if ScS is also split due to upper mantle anisotropy, the reliable diagnosis
of deep mantle anisotropy is challenging. Moreover, even in the case of a homogeneously anisotropic deep
mantle region sampled from a single azimuth by multiple ScS waves with different source polarizations (in
absence of upper mantle anisotropy), different apparent fast directions are produced. We suggest that ScS
splitting should only be measured at “null” stations and conduct such an analysis worldwide. Our results
indicate that seismic anisotropy is globally widespread in the deepmantle.

1 Introduction
Convective flow in Earth can lead to the preferential
alignment of minerals, causing waves to travel through
the material with different speeds dependent on prop-
agation and polarization directions, a property called
seismic anisotropy (e.g., Silver and Chan, 1991; Long
and Becker, 2010). Analogous to optical birefringence,
shear waves split into a fast and a slow traveling com-
ponent in seismically anisotropic materials (e.g., Silver
and Chan, 1991). Seismic anisotropy has been found
to be most prominent in the upper and lower layers
of Earth’s mantle, while it is almost absent in the bulk
of the lower mantle (e.g., Panning and Romanowicz,
2006; Chang et al., 2015). For example, anisotropy has
been measured in Earth’s crust (e.g., Barruol and Kern,
1996; Haws et al., 2023), the upper mantle (e.g., Silver,
1996; Savage, 1999; Zhu et al., 2020), the mantle transi-
tion zone (e.g., Yuan and Beghein, 2014; Chang and Fer-
reira, 2019) and the uppermost lower mantle (e.g., Fo-
ley and Long, 2011; Mohiuddin et al., 2015). Moreover,
the lowermost 200-300 km of the mantle, also called D′′,
is anisotropic in many places (e.g., Kendall and Silver,
1996; Garnero and Lay, 1997; Nowacki et al., 2010; Reiss
et al., 2019; Nowacki and Cottaar, 2021;Wolf et al., 2024;
see summary by Wolf et al., 2023c).
On average, seismic anisotropy in Earth’s upperman-

tle is stronger than at the base of the mantle (e.g., Pan-
ning and Romanowicz, 2006; French and Romanow-
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icz, 2014). It is thus challenging to measure seismic
anisotropy in the lowermost mantle because the po-
tential contribution of upper mantle anisotropy to ev-
ery seismogram needs to be accounted for, as the seis-
mic waves used to infer D′′ anisotropy travel through
the upper as well as the deepest mantle (e.g., Wolf
et al., 2022b). To account for the upper mantle contri-
bution, multiple techniques have been developed, most
of which rely on comparisons of the shear wave split-
ting contribution to multiple seismic waves. A pop-
ular method to infer deep mantle anisotropy is from
differential splitting of the SKS and SKKS phase (e.g.,
Wang and Wen, 2004; Niu and Perez, 2004; Long, 2009;
Reiss et al., 2019; Wolf et al., 2024). SKS and SKKS have
very similar raypaths through the upper mantle and a
much larger spatial raypath separation in the lower-
most mantle. Therefore, large differences in SKS and
SKKS splitting for the same source-receiver pair must
be due to lowermost mantle anisotropy (e.g., Niu and
Perez, 2004; Wang and Wen, 2004). Alternatively, the
splitting of SKS and Sdiff can be compared. If SKS is
not influenced by seismic anisotropy but Sdiff clearly
is, this is evidence for deep mantle anisotropy caus-
ing splitting of Sdiff (Cottaar and Romanowicz, 2013;
Wolf et al., 2023b; Wolf and Long, 2023). The ad-
vantage of measurements using SKS, SKKS and Sdiff
waves is that the source-side anisotropy contribution in
the upper mantle is either erased by the P-to-SV con-
version at the core-mantle boundary (CMB; SKS and
SKKS) or, under certain conditions, negligible (Sdiff;
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Wolf et al., 2023b). A technique that explicitly accounts
for source-side and receiver-side anisotropy is S-ScS dif-
ferential splitting (Wookey et al., 2005). After apply-
ing explicit ray-theoretical corrections to S and ScS for
known receiver-side anisotropy, source-side anisotropy
can be measured from the corrected S phase. After
correcting ScS for the source-side contribution, the re-
maining anisotropy contribution to ScS must be due to
D′′ anisotropy (Wookey et al., 2005b; Nowacki et al.,
2010; Creasy et al., 2017; Pisconti et al., 2023).
These differential splitting techniques make a num-

ber of assumptions, typically in the context of ray the-
ory. These assumptions have been tested using global
wavefield simulations. For example, the interpretation
of differential SVdiff-SHdiff travel times as being uniquely
indicative of D′′ anisotropy has been questioned (Ko-
matitsch et al., 2010; Borgeaud et al., 2016; Parisi et al.,
2018) as isotropic models can induce SVdiff-SHdiff travel
time differences under certain circumstances. The SKS-
SKKSdifferential splitting technique, on the other hand,
has largely been shown to reliably detect anisotropy if
certain caveats are considered (Tesoniero et al., 2020;
Wolf et al., 2022b; see also, Lin et al., 2014). Nowacki
and Wookey (2016) pointed out that some of the ray-
theoretical assumptions do not always hold for the S-
ScS differential splitting technique, especially in case
of heterogeneous anisotropy. In particular the assump-
tion of a horizontal ScS raypath through D′′ is a signifi-
cant oversimplification. Additionally,Wolf et al. (2022b)
showed that the phase shift of the radial component of
ScS due to the reflection off the mantle-core interface
needs to be explicitly considered to accurately measure
ScS splitting. Also, Parisi et al. (2018) demonstrated that
differential ScS SV-SH travel times can be produced by
isotropic structure at distances > 90◦. Some of these
challenges could successfully be resolved; for example,
the horizontal raypath assumption has been avoided
in recent S-ScS differential splitting studies (e.g., Pis-
conti et al., 2023; Asplet et al., 2023). However, there
still are many open questions, the answers to which
will help our ability to use ScS to measure deep mantle
anisotropy.
In this work, we assess in detail how ScS waves can

be used to measure D′′ anisotropy. To do so, we ad-
dress several questions. First, we analyze the effects of
the CMB reflection on the polarization of ScS, and how
they influence the measured ScS splitting parameters.
Second, we use global wavefield simulations to investi-
gatewhether andhowapparent shear-wave splitting can
be produced for isotropic input models. Here we use
the term ‘shear-wave splitting measurements’ to refer
to themeasurement of splitting parameters (delay time,
fast polarization direction, splitting intensity) and not
simply to differential SV-SH delay times. (This distinc-
tion is important, because shear-wave splitting defined
in this way includes requirements regarding the wave-
form’s shape.) Third, we analyze how well the source-
side correction of the S-ScS splitting technique works in
light of the polarization effects on ScS due to its CMB
reflection and the slightly different raypaths of S and
ScS in the source-side upper mantle. Fourth, we assess
the accuracy of explicit ScS receiver-side anisotropy cor-

rections using a realistic forward modeling framework.
Putting all these insights together, we suggest a strat-
egy for inferring deepmantle anisotropy from the shear
wave splitting of ScS waves. Fifth, we apply this strategy
globally to analyze deep mantle anisotropy using suit-
able broadband seismic stations. We find evidence for
seismic anisotropy in regions that have been analyzed
in previous studies, such as beneath the northern Pa-
cific Ocean, the Caribbean and northern Asia, but we
also identify deepmantle anisotropy inpreviously unex-
plored regions such as beneath southern Russia and the
southwestern Pacific Ocean. Finally, we discuss ways
forward to improve the reliability of ScS splitting mea-
surements and interpretations for D′′ anisotropy stud-
ies.

2 Methods
2.1 Global wavefield simulations
We use the global wavefield modeling code AxiSEM3D
(Leng et al., 2016; 2019) in this work. While the code
can handle arbitrary three dimensional inputmodels, it
calculates synthetic seismograms very efficiently in ax-
isymmetric inputmodels, at the same speed as the older
AxiSEM code (Nissen-Meyer et al., 2014). We mostly
conduct simulations using axisymmetric models such
as isotropic PREM (Dziewonski and Anderson, 1981),
which we always use as background model, following
our previous work (e.g., Wolf et al., 2022a). We always
consider PREM-attenuation andEarth’s ellipticity in our
simulations. In some simulations (see below), we re-
place PREM’s mantle velocity structure with the tomo-
graphic model S40RTS (Ritsema et al., 2011). We carry
out numerical experiments with and without seismic
anisotropy in the lowermost and/or upper mantle. In
all simulations presented in this work, we compute syn-
thetic seismograms down to minimum periods of 5 s.
Our source-receiver configuration is shown in Fig-

ure 1a. We place a strike-slip earthquake at the north
pole and stations at epicentral distances of 60◦ to 100◦

(spaced in 1◦ distance increments) between longitudes
0◦ to 90◦ (spaced in 10◦ increments). We choose event
depths of either 100 m or 500 km. A strike-slip focal
mechanism is selected such that the initial source po-
larization of S and ScS is purely SH for longitudes 0◦ and
90◦ and purely SV for longitude 45◦ (Figure 1). For each
candidate event depth, we conduct three types of simu-
lations:

1. Isotropic simulations:

(a) using isotropic PREM (Figure 1b) as input
model;

(b) incorporating modified velocities in the low-
ermost 150 km of the mantle, replacing those
of PREM (Figure 1b);

(c) incorporating a 3D tomography model
(S40RTS) in the mantle, replacing PREM
velocities.

2. Anisotropic simulations with lowermost mantle
anisotropy:
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Figure 1 Source-receiver configuration and inputmodels of synthetic simulations. (a) Source and receivers: The strike-slip
event (see text) is shown as a yellow star; stations are represented as dots, colored by longitude (which corresponds to the
initial polarization of the arrivingwave). (b) Lowermostmantle velocity as a function of depth for thePREMmodel, PREMwith
3% reduced (dotted line), and 3% increased velocities (dashed line). All these scenarios are used in our synthetic modeling.
(c) Upper hemisphere representations of the elastic tensors (bridgmanite, post-perovskite) used in simulations in which we
incorporate deep mantle anisotropy (at the depths shown below each elastic tensor plot). The elastic tensors were taken
from the elastic tensor library of Creasy et al. (2020). The color scale shows the percentage of S-wave anisotropy as a function
of direction. The maximum percentage is shown at the bottom and depends on the elastic tensor. The small black sticks
indicate the fast polarization direction of the S wave for the corresponding propagation direction. The black ‘O’ represents
the shear-plane normal and ‘X’ the shear direction. The lowermostmantle elastic tensors are oriented such that robust shear-
wave splitting measurements can be obtained. (d) Similar to panel (c), for upper mantle source-side anisotropy. The elastic
tensor rotation performed in this work is indicated by arrows. The HTI elastic tensor was calculated using MSAT (Walker and
Wookey, 2012) and the olivine type-A elastic tensor was taken from Karato (2008).

(a) incorporating bridgmanite (Br) anisotropy in
the lowermost 150 km of the mantle;

(b) incorporating post-perovskite (Ppv)
anisotropy in the lowermost 175 km of
the mantle.

These elastic tensors were taken from Creasy et al.
(2020) and are displayed as upper hemisphere rep-
resentations in Figure 1c. The use of these elastic
tensors leads to slightly different lowermostmantle
velocities than PREM. The main goal of these sim-
ulations is to evaluate the influence of realistic low-
ermost mantle anisotropy on ScS seismic waves;
the isotropic effects are analyzed in the previous set
of simulations.

3. Anisotropic simulations with upper mantle
anisotropy:

(a) using horizontal transverse isotropy (HTI) in
the upper mantle (Figure 1d). The HTI elastic

tensor is calculated using MSAT (Walker and
Wookey, 2012) and incorporated at the depth
range of 24 km to 204 km.

(b) using olivine (A-type fabric) anisotropy in the
uppermantle (Figure 1d). The elastic tensor is
fromKarato (2008) and the anisotropy is incor-
porated at the depth range of 24 km to 170 km.

In both cases, the anisotropy in the upper mantle
leads to a maximum delay time of ∼1.5 s. In order
to sample anisotropy from different directions, the
elastic tensors are rotated around the vertical axis
(with respect to their representations in Figure 1d)
for different simulations. Due to its symmetry, the
HTI elastic tensor is only rotated by angles of 0◦

to 80◦ (in 10◦ increments), while the olivine elastic
tensor is rotated between 0◦ to 340◦ (in 20◦ incre-
ments).

Synthetic radial and transverse seismograms as a
function of distance (for PREM as inputmodel), aligned
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Figure 2 Synthetic waveforms as a function of distance for stations placed along longitude 70◦ (Figure 1), with sketch of
relevant seismic phases. (a) Radial component displacement waveforms, plotted at every 1◦ distance increment. Incom-
ing high-amplitude seismic phases are marked with colored lines. (b) Same as panel (a) for the transverse component. (c)
Schematic diagrams of raypaths through Earth for the seismic phases marked in panels (a) and (b). The source is shown as a
yellow star and the station, at an epicentral distance of 70◦, as a red triangle.

on the predicted ScS arrival, are shown in Figure 2a,b.
At an epicentral distance of around 75◦, interference
from the PS and PPS phases, which arrive very close
together in time at these distances, can be observed.
Additionally, some SP energy (which arrives contempo-
raneously to PS for a 0 km deep source) likely arrives
on the radial component. While PS interference can
be observed in the record section shown in Figure 2,
the phase is not observable at this distance range for
events with focal depths deeper than 200 km, although
some PPS energy may still be relevant. For distances
> 80◦, ScS starts to merge with S. For distances < 70◦

and > 63◦, SKS and ScS arrive almost contemporane-
ously, although it is unclear whether SKS has a suffi-
ciently large amplitude to noticeably influence ScS. (A
partial answer to this question will be discussed in Sec-
tion 4.) The raypaths of the seismic phases that may po-
tentially interfere with ScS are shown in a cross-section
in Figure 2c.

2.2 Shear wave splittingmeasurements

Shear wave splitting, which is analogous to optical bire-
fringence, is a consequence of seismic anisotropy. A
shear wave that travels through an anisotropic medium
splits into a fast and a slow component. The time lag
between these components is called δt and the polar-
ization direction of the fast traveling wave is usually re-
ferred to asφwhenmeasured clockwise from the north,
or φ′ (Nowacki et al., 2010) whenmeasuredwith respect
the incoming wave’s backazimuth. Another quantity
that is frequently used is the splitting intensity (Chevrot,
2000), SI, which yields a scalar value indicating the
splitting strength on an individual seismogram. The

splitting intensity is defined as:

SI = −2
Pol90(t)Pol′

0(t)

|Pol′

0(t)|2
≈ δt sin(−2φ′) , (1)

with Pol′

0(t) denoting the time derivative of the com-
ponent in the direction of initial polarization, whereas
Pol90(t) is the horizontal seismogram component ori-
ented 90◦ away from the incoming wave’s primary po-
larization.
We determine the splitting parameters (φ, δt) using a

modified version of the SplitRacer software (Reiss and
Rümpker, 2017), which is the same version previously
used by Wolf et al. (2022b). This version estimates the
initial polarization of the incoming wave, through par-
ticle motion analysis, as ScS waves are not typically ini-
tially SV-polarized. SplitRacer calculates the splitting
parameters (φ, δt) using the transverse energy mini-
mization technique (Silver and Chan, 1991), incorporat-
ing a corrected calculation of the 95% confidence inter-
vals (Walsh et al., 2013). Whenever we apply source-
side anisotropy corrections for the S-ScS differential
splitting technique, we measure source-side anisotropy
splitting parameters with SplitRacer. Then, we use a
code to correct the ScS phase for these source-side split-
ting parameters, following the algorithm described in
Wolf et al. (2022b), which is based onwork fromWookey
et al. (2005). In this algorithm, we also calculate split-
ting parameters using the transverse energy minimiza-
tion technique, building upon an implementation from
Creasy et al. (2017). For all these measurements, we
consider (φ, δt) measurements well-constrained if the
95% confidence intervals are smaller than ±25◦ for φ,
±0.8 s for δt and±0.5 for SI. Beforemeasuring splitting
parameters, we filter our seismograms retaining peri-
ods between 5 s and 15 s (unless specified differently).
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Polarizations are determined from the seismograms at
longer periods (8-25 s) from the long axis of the particle
motion ellipse.

3 SV reflection coefficients of ScS at
the CMB

In order to understand the potential effects of the CMB
reflection on ScS phases, we solve the equations of
Chapman (2004) to calculate SVreflection coefficients of
ScS at the CMB for PREM velocity structure in the whole
mantle, as well as for 3 % reduced and increased veloci-
tieswith respect to PREM in the lowermost 150 km of the
mantle (Figure 3). Such velocity variations are realistic
for Earth’s faster and slower lowermost mantle regions
(e.g., Ritsema et al., 2011). We also explore variations of
the reflection coefficients as a function of source depth
and do not find any substantial differences compared to
the 0 km case shown in Figure 3. We do not compute SH
reflection coefficients as the shear wave velocity in the
outer core is zero and SH does not couple with P; there-
fore, all SH energy will be reflected without a phase or
amplitude change. Several observations can be made
from Figure 3:

• For distances < ∼60◦, SV amplitudes are strongly
reduced after the reflection. For example, at an epi-
central distance of∼30◦ SVloses∼70 % of its ampli-
tude. This pattern depends on the lowermost man-
tle velocity and is therefore only possible to account
for exactly if the velocity structure at the reflection
point is well known. While the SVamplitude effects
are complicated, for most distances < ∼60◦ the SV
phase shift is simple and close to 180◦ (Figure 3).

• For epicentral distances < 10◦, SV will simply un-
dergo a sign-flipwith amplitudes almost unaffected
by the reflection.

• For epicentral distances > ∼60◦, SV amplitudes
are largely unchanged by the reflection and the SV
phase shift is between 160◦ and 180◦, depending on
distance and deep mantle velocity structure (Fig-
ure 3). Because of this,Wolf et al. (2022b) suggested
that the description of SV behavior at distances >
∼60◦ as a simple sign-flip is accurate enough for the
purpose of ScS splitting measurements.

Our analysis of distance-dependent SV reflection co-
efficients for ScS shows that it is difficult to infer the
presence of deep mantle anisotropy for ScS waves at
epicentral distances < ∼60◦. For these epicentral dis-
tances, relative SV-SH amplitudes will be strongly in-
fluenced by the deep mantle velocity structure of the
region under study, which needs to be precisely ac-
counted for. However, this appears challenging, as the
deep mantle velocity structure in any particular deep
mantle region is often poorly known. We therefore fo-
cus our following analysis on epicentral distances >
60◦, which is the most frequently used distance range.
For example, the S-ScS differential splitting technique
has been suggested to be applicable at a distance range
between 60◦ and 85◦ (Wookey et al., 2005). There are

also multiple previous studies that have analyzed the
behavior of S and ScS waves at distances > ∼85◦ (e.g.,
Kendall and Silver, 1996; Pulliam and Sen, 1998; Fouch
et al., 2001) to infer deep mantle anisotropy.

4 S and ScS polarizations in isotropic
input models

Next, we analyze S and ScS polarizations at epicen-
tral distances between 60◦ and 100◦ using global wave-
field simulations. We conduct synthetic simulations for
PREM velocity structure in the whole mantle as well as
for 3 % increased and reduced velocities above the CMB
(Figure 1a). In Figure 4, we show measured S polar-
izations for different initial source polarizations of the
wave and source depths of 100 m and 500 km. The re-
sults are only weakly influenced by the lowermostman-
tle velocity, but do depend on source depth for distances
> 90◦. Figure 2 shows that the S wave polarizations are
relatively unaffected by interference fromother seismic
phases at distances < 80◦, but start to be influenced by
ScS at greater distances. Accordingly, measured S po-
larizations agree very well with the initial source polar-
izations for distances < 80◦ (Figure 4). For larger dis-
tances, S polarizations are influenced by ScS but still
largely agree with the initial source polarization (Fig-
ure 4).
For ScS, the pattern of measured polarizations as a

function of distance is more complicated (Figure 3). At
epicentral distances between 60◦ and 70◦, ScS initial po-
larizations are approximately opposite the S wave po-
larization as controlled by the source (Figure 5) due to
the approximate SV sign-flip (Figure 3). However, be-
cause the sign-flip of SV is not exact (Figure 3), and be-
cause of the potential interference with SKS in some
of the epicentral distance range (Figure 2), this pat-
tern is by no means perfect. These two effects are
hard to distinguish; however, analyzing them in isola-
tion is not required to understand the conditions un-
der which ScS can be used for analyses of lowermost
mantle anisotropy, which is the main goal of this study.
For distances between 73◦ and 79◦, interference with
PS can lead to estimated polarizations close to SV (Fig-
ure 5a). For deep sources (Figure 5b), no PS energy ar-
rives; however, PPS and SPmay still influence ScS wave-
forms around this distance range. Exceptions are ob-
served at the stations at azimuths for which the initial
polarization is purely SH, as the (P)PS amplitude is zero
for them (Figure 5). For distances > 80◦, S and ScS
merge, with S dominating, leading to polarizations that
are close to the S initial source polarization (Figure 5).
These overall patterns hold for all the different lower-
most mantle velocities that we tested (Figure 5).
Considering these results, it appears challenging to

measure deep mantle anisotropy reliably from ScS for
distances at which the PPS or PS phase potentially inter-
feres with ScS. This corresponds to a distance range be-
tween 73◦ and 79◦ for shallow events (e.g., Figure 5) and
to distances down as close as 70◦ for an event depth of
150 km. For events deeper than∼200 km no PS phase ar-
rives at these distances, but PPS may have an influence
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on seismic waveforms down to 70◦ epicentral distance.
Similarly, if shear wave splitting ismeasured from S/ScS

for distances∼ > 80◦, it should be considered that the S
initial polarization likely dominates, but ScS influences
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thewaveforms andhorizontal component amplitude ra-
tios.

5 Apparent shear-wave splitting in
isotropic input models

We have shown how the CMB reflection and phase in-
terferences can influence the polarization of ScS. How-
ever, it remains unclear whether such effects can result
in apparent shear wave splitting. To test this, we con-
duct synthetic simulations in isotropic input models as
introduced in Section 2.1.
For PREM synthetics, calculated for a focal depth of

100 m, non-null splitting intensities can be reproduced,
although we do not measure well-constrained splitting
parameters (φ, δt) (Figure 6a). If the source is placed in a
depth of 500 km, however, apparently well-constrained
(φ, δt) values can be measured at distances between
90◦ and 94◦ (Figure 6b). Some of these measurements
may be identified as null splitting, but not all of them.
For PREM+S40RTS, on the other hand, apparently well-
constrained (φ, δt) values are mainly obtained for dis-

tances> 94◦ (although there is also someapparent split-
ting at smaller distances). The reason for the apparent
splitting is phase interference; for example, the inter-
action between S and ScS (Figure 2), which arrive at ap-
proximately the same time for distances > 90◦. The
transverse components of S and ScS are generally very
similar at these distances, as the transverse ScS compo-
nent is largely unaffected by the reflection. However,
the radial ScS component will be approximately sign-
flipped compared to S (Figure 3) and potentially have a
slightly different amplitude; the details of the phase’s
behavior depend on lowermost mantle velocity struc-
ture and the event depth (Figure 3). If these waveform
distortions affect transverse and radial components in a
way that the energyon thePol componenthas the shape
of the time derivative of the Pol90 component, apparent
splitting results.

We show an example of apparent shear-wave splitting
from simulations using isotropic PREM+S40RTS with a
source at 100 m depth in Figure 7. The Pol90 compo-
nent has approximately the shape of the Pol0 compo-
nent time derivative (Figure 7a) and the particle motion
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looks elliptical (Figure 7b), mimicking shear wave split-
ting due to seismic anisotropy. Accordingly, the appar-
ent estimated splitting parameters are well-constrained
(Figure 7c).
Our results so far indicate that measurements of

shear-wave splitting for epicentral distances< 60◦ need
to carefully consider the SV reflection coefficient at the
CMB for ScS, which will depend on the deep mantle
velocity structure of the region under study. Addition-
ally, distances between 70◦ and 80◦ cannot be used for
ScS splitting measurements if (P)PS or SP may be in-
terfering. For distances > 80◦, S and ScS merge (Fig-
ure 2), making it challenging to distinguish between
these phases in seismograms. Apparent splitting of
the combined S/ScS phase can be produced in isotropic
structure (Figures 6 and 7). Therefore, themost promis-
ing distance range to measure ScS splitting due to deep
mantle anisotropy is between 60◦ and 70◦.

6 Shear wave splitting in models that
incorporate deepmantle anisotropy

We next test the effects of deep mantle anisotropy on
measured ScS splitting in absence of upper mantle
anisotropy, incorporating Br (Figure 8a) and Ppv (Fig-
ure 8b) anisotropy in the lowermost mantle, replacing
PREM velocity structure (see Section 2.1). In Figure 8
we showmeasured shearwave splitting parameters (SI;
φ′, δt) from ScS as a function of epicentral distance
and initial source polarization. Due to the aforemen-
tioned challenges at many epicentral distances, we fo-
cus on shear wave splitting measured at distances be-
tween 60◦ and 70◦. In this distance range, we measure
manywell-constrained (φ′, δt) values for our anisotropic
input models (Figure 8). The seismic anisotropy in the
inputmodel is incorporated such that it is sampled from
the same direction independent of azimuth. However,
we can observe a large spread of measured φ′ values
for both elastic tensors we tested. The reason for this
is that the measured splitting is a combination of the
splitting accumulated on both legs of the ScS raypath
through D′′ (Figure 8c). The initial polarization of ScS
depends on its azimuth in our simulations, and this ini-
tial polarizationaffects how thewave is split onboth legs
of the raypath. This situation is analogous to splitting
frommultiple layers of anisotropy in the upper mantle,
which produces apparent splitting that depends on az-
imuth (Silver and Savage, 1994; Silver and Long, 2011).
Therefore, it is logical that measured fast polarizations
are not the same, even though the same deep mantle
anisotropy is sampled. As a consequence, if ScS split-
ting due to D′′ anisotropy is measured from a certain
sampling direction for any given lowermost mantle re-
gion, ScS splitting parameters (φ, δt) cannot be expected
to be the same for different events, unless the events all
have similar initial polarizations. Therefore, the mean
splitting measurement as often determined in ScS split-
ting studies (e.g., Nowacki et al., 2010; Wolf et al., 2019;
Pisconti et al., 2023) does not have a clear meaning
for the interpretation of mantle flow directions, since
the same measurement can be obtained for a variety

of anisotropy scenarios and initial polarizations of the
wave.

7 Correction of ScS for source-side
anisotropy contribution inferred
from S

The S-ScS differential splitting technique isolates the
lowermost mantle anisotropy contribution to ScS by
correcting the ScS waveform for the influence of
receiver-side and source-side anisotropy in the up-
per mantle (Wookey et al., 2005). The source-side
anisotropy contribution is inferred from the S wave-
form,which has beenfirst corrected for the influence of
receiver-side anisotropy. The assumptions made in this
process are that S and ScS raypaths through the upper
mantle are sufficiently similar that both phases experi-
ence the same splitting due to uppermantle anisotropy,
and that their initial source polarizations are also simi-
lar. In the most extreme case, for a source-receiver dis-
tance of 60◦ and a surface event, S and ScS raypaths are
up to 250 km apart at the bottom of the transition zone,
so that the assumption that S and ScS raypaths are suffi-
ciently close together may only be valid in cases of rela-
tively generally homogeneous uppermantle anisotropy.
To account for the CMB reflection, Wolf et al. (2022b)
suggested approximating the phase shift of ScSSV as a
simple sign-flip of the radial component. More accu-
rate corrections would be challenging, given that the
precise phase shift depends on the deepmantle velocity
structure near the ScS reflection point (Figure 3). Addi-
tionally, our results for a distance range close to 60◦, at
which the PREM-predicted phase shift corresponds to a
precise sign-flip (Figure 3), do not indicate that ScS split-
ting measurements could be substantially improved by
implementing the PREM-predicted phase shift. Using
this assumption,Wolf et al. (2022b) showed that approx-
imate source-side splitting parameters for ScS can in-
deed be inferred from S. These splitting parameters can
then be used to correct ScSwaveforms after a correction
for receiver side anisotropy has been applied (Wookey
et al., 2005).
Measurements of the polarization of the S phase can

be used to predict ScS polarization in the epicentral dis-
tance interval between 60◦ and 70◦. Since the backaz-
imuth is always zero for our source-receiver configura-
tion (Figure 1a) and the radial ScS component is approx-
imately a sign-flipped version of the S radial component
(Figure 2), the sum of the S and the ScS polarizations
must be approximately zero.
Figure 9 explores how accurately, under the assump-

tions described above, ScS splitting due to source-side
anisotropy can be predicted from the splitting of the
corresponding S phase. We do not incorporate any
receiver-side or deep mantle anisotropy in these simu-
lations. We measure S and ScS polarizations and split-
ting parameters (φ, δt). Then, we determine the dif-
ference between the ScS splitting parameters and those
predicted from the S phase. Figure 9a shows an ex-
ample for olivine anisotropy in the source-side upper
mantle, with the elastic tensor rotated by 60◦ around
the vertical axis (Section 2.1). The measured polariza-
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tions and fast polarization directions of ScS are differ-
ent than those predicted from S by up to ∼35◦ and δt
differs by up to 2 s. Summary histograms for all the re-
sults obtained using a range of different rotation angles
for the anisotropy geometry (Section 2.1) are shown in
Figure 9b. These results indicate that substantial differ-
ences between predicted source-side anisotropy associ-
ated splitting parameters from S andmeasured splitting
parameters for ScS are common. Also, the assumption
of a radial component sign-flip of ScS caused by the re-
flection is imperfect, sometimes leading to polarization
differences of up to 50◦.

Next, we systematically apply the source-side
anisotropy splitting parameters, as inferred from S, to
the ScS phase and then measure ScS splitting. If the
source-side anisotropy correction was accurate, we
would expect to measure null residual splitting from
ScS as we did not incorporate deep mantle anisotropy
in our simulations. (Recall that these simulations only
include upper mantle anisotropy near the source.)

We define null measurements here as splitting mea-
surements which have δt-values smaller than 0.3 s, or
a 95% confidence interval that overlaps with values
< 0.3 s. This definition leads to few well-constrained
(φ, δt)-measurements with δt < 0.5 s in Figure 10.
We find that for the HTI elastic tensor, only ∼63 % of
the measured ScS splitting parameters are null after
applying the source-side correction (Figure 10a). For
olivine, this value is only ∼23 %, meaning that in ∼77 %
of the cases apparent D′′ splitting is introduced by
applying the source-side correction (Figure 10b).

The reason that the source-side anisotropy correction
is not generally accurate is that the source-side con-
tribution for ScS cannot accurately be inferred from
S. In Figure 11 we show retrieved δt values for well-
constrained ScS splitting measurements after account-
ing for source-side anisotropy inferred from S. If ScS
source-side splitting parameters are used to correct ScS,
in 98 % of the cases no apparent D′′ splitting is intro-
duced (Figure 11a), showing that our correction pro-
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medians as solid blue lines.

cedure works well if splitting is perfectly known. We
can use these insights to suggest three different strate-
gies for accounting for source-side anisotropy. First,
we can restrict measurements of ScS splitting to cases
for which S source-side splitting is null (Figure 11b).
Second, we can minimize the influence of source-side
upper mantle anisotropy by only measuring ScS split-
ting from deep seismic events. However, the presence
of seismic anisotropy has been suggested in the upper-
most lowermantle, particularly in subduction zoneshas
been suggested by several studies (e.g., Foley and Long,
2011; Lynner and Long, 2015; Mohiuddin et al., 2015).
Therefore, such an approach would not necessarily (al-
ways) be reliable. Third, we can apply a source-side
anisotropy correction if we measure a ScS polarization
that is within 10◦ of the expected initial polarization for
a sign-flip of the ScS radial component Figure 11c). In
90 % of these cases, null D′′ splitting is correctly pre-
dicted from ScS if measured S source-side splitting is
null (Figure 11b), suggesting that these strategies al-
low for the accurate consideration of source-side split-

ting in certain cases. In contrast, explicit source-side
anisotropy corrections are inaccurate when these con-
ditions are notmet, evenwhen ensuring that the ScS po-
larization is as expected from S (Figure 11c).

8 Correction of ScS for receiver-side
anisotropy contribution inferred
from SKS

As discussed in Section 7, we nowbetter understand the
strengths and weaknesses of the source-side correction
for shear wave splitting; however, the receiver-side cor-
rections remain to be explored. We next use a realis-
tic synthetic setup to test the accuracy of receiver-side
corrections. We again incorporate olivine A-type (Fig-
ure 1c) anisotropy in the upper mantle and infer up-
per mantle shear wave splitting parameters from the
SKS seismic phase recorded at an epicentral distance
of 100◦. We fit a sin(2θ)-curve to the SKS SI values as
a function of backazimuth, as commonly done for real
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data (e.g., Chevrot, 2000; Monteiller and Chevrot, 2010).
These results are shown in Figure 12a. The determined
best-fitting splitting parameters are then used to cor-
rect ScS for the effect of anisotropy beneath the receiver
for simulations that only include uppermantle receiver-
side anisotropy. For approximately 40 % of robust ScS
measurements (for the setup shown in Figure 1) the
measured splitting is null (Figure 12b), as expected. For
the remaining 60 % of robust measurements, a variety
of φ′ and δt values are obtained (Figure 12b). This exer-
cise demonstrates that explicit receiver-side corrections
for upper mantle anisotropy beneath the receiver are
likely unreliable in real data. The challenges are likely
to be particularly given that splitting patterns as a func-
tion of backazimuth are often substantially more com-
plicated than in this simple synthetic scenario.

An example of a robust (but artificial) ScS splitting
measurement obtained after correcting for receiver-
side anisotropy determined using SKS phases is shown
in Figure 13. This particular case corresponds to a sce-
nario in which the olivine A-type elastic tensor is sam-
pled from a backazimuth of 80◦ in Figure 12a. It is ap-
parent that the sin(2θ)-fit is imperfect for this backaz-
imuth (Figure 12a), which is why the corrected wave-
form (Figure 13a) appears substantially split, the par-
ticle motion (Figure 13b) mimics splitting, and split-
ting parameters are well-constrained with very tight

uncertainty intervals (Figure 13c), despite the lack of
D′′ anisotropy in this simulation.
While we conduct thesemeasurements for ScS in this

work, our calculations are similarly applicable for the
measurement of S splitting after correcting for receiver-
side anisotropy inferred from SKS, which is commonly
done to infer seismic anisotropy in the transition zone
in subduction zones (e.g., Russo et al., 2010; Mohiuddin
et al., 2015; Eakin et al., 2018). One potential way to deal
with this challenge may be to correct for upper mantle
splitting beneath the receiver determined using other
phases measured at the same backazimuth, preferably
for the same source-receiver configuration. However,
this appears challenging for ScS distance between 60◦

and 70◦, as there is no obvious additional phase that
could be used for such an approach.

9 Discussion
9.1 How to infer D′′ anisotropy from ScS

splittingmeasurements
We have shown that D′′ anisotropy is challenging to in-
fer from ScS waves that arrive at epicentral distances
< 60◦, because CMB reflection coefficients for the SV
component will strongly depend on the deepmantle ve-
locity structure close to the ScS reflection point (Fig-
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ure 3). Therefore, polarization directions of ScS, as well
as apparent Pol/Pol90 amplitude ratios, will be influ-
enced by effects other than seismic anisotropy. For epi-
central distances between 70◦ and 80◦, the ScS arrival
may potentially be contaminated by (P)PS or SP (Fig-
ures 2 and 5), which strongly influences ScS polariza-
tions (Figure 5). This can, in some cases, cause appar-
ent ScS splitting in absence of seismic anisotropy (Fig-
ure 6c). For even larger distances, S and ScS merge
(Figures 2, 4 and 5), which can lead to effects that
mimic splitting, even for simple isotropic models such
as isotropic PREM (Figure 6). Apparent splitting caused
by isotropic effects at these distances can be indistin-
guishable from shear wave splitting caused by lower-
mostmantle anisotropy, with thewaveform shape of the
Pol90 component approximately agreeing with the time
derivative of the Pol0 component (Figure 7). Therefore,
we suggest that ScS shear wave splitting measurements
are difficult to reliably perform for epicentral distances
> 70◦ and for most epicentral distances < 60◦ (with the
exception, perhaps, of almost vertical incidence angles
for small distances).

In the candidate epicentral distance range between
60◦ and 70◦ for ScS splitting measurements, the
receiver- and source-side anisotropy influence is often
explicitly corrected to extract the lowermost mantle
contribution. However, we have shown that explicit
upper mantle anisotropy corrections can be unreliable
(Figures 10 to 13) and therefore recommend only us-
ing ScS waves for which both source-side and receiver-
side anisotropy are null. Practically, this means that
ScS splitting measurements should only be applied at
null stations for S-ScS pairs forwhich S source-side split-
ting is null. While these precautions mean that a much
smaller number of S-ScS pairs are available for D′′ split-
ting studies, they are likely to result in significantly
higher-quality estimates of ScS splitting due to lower-
most mantle anisotropy.

9.2 Global measurements of ScS splitting
due to deepmantle anisotropy

We apply our strategy for estimating D′′-associated ScS
splitting measurements worldwide at the null stations
reported by Lynner and Long (2013) and Walpole et al.
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(2014). We use all seismic events with moment mag-
nitude > 5.7 in an epicentral distance range between
60◦ and 70◦ that occurred after January 1, 1990. The
raypath coverage for all source-receiver pairs for which
we could obtainwell-constrained ScS splittingmeasure-
ments is shown in Figure 14. Following the recommen-

dations developed here, we only interpret ScS splitting
as being indicative of deep mantle anisotropy if the S
phase for the same source-receiver pair is not split. An
example splitting measurement for such a S-ScS pair is
presented in Figure 15.
We follow our suggested procedure to calculate split-
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sources for which well-constrained D′′ anisotropy associated SI values could be obtained. Great circle raypaths are shown
as gray lines.

ting parameters to all our seismic data for null stations.
All ScS splitting measurements due to lowermost man-
tle anisotropy are shown in map view in Figure 16. In
some cases only well-constrained splitting intensities
can be obtained. In other cases, splitting parameters
(φ′, δt) can also be reliably measured. We can identify
four different deepmantle regionsA-D that showat least
some evidence for anisotropy (Figure 16). Overall, we
find evidence for seismic anisotropy in all regions in
which ray coverage is good, suggesting that lowermost
mantle anisotropy is likely widespread. These regions
include central Asia (A), southeast Asia (B), northeast
Russia/Alaska (C), and the Caribbean (D). North of re-
gion A, multiple studies have previously reported seis-
mic anisotropy in D′′ (e.g., Wookey and Kendall, 2008;
Creasy et al., 2021). Our results for this raypath corridor
approximately agree with the φ′ values of 35◦ reported
by Creasy et al. (2021) but are different than those from
Wookey and Kendall (2008), who reported φ′ ≈ −7◦.
However, as mentioned above, φ′ values depend on the
initial polarization of the ScS wave, which is why we
cannot necessarily expect to obtain the same φ′ values
for a particular region if the ScS initial polarizations in
the dataset vary. Grund and Ritter (2018), Thomas and
Kendall (2002) and Wolf et al. (2022b) also identified
lowermost mantle anisotropy in some parts of region
A using a different methodology. These measurements
are hard to directly compare with ours; however, these
studies are consistent with our finding of D′′ anisotropy
here.
Deep mantle anisotropy in region B has not been

previously studied. We find the lowermost mantle in
this region to be generally anisotropic; however, the
strength of splitting due to seismic anisotropy varies
(Figure 16). φ′-values tend to be close to 0◦ in most
cases, but this – on its own – is an insufficient con-
straint on the geometry of anisotropy without taking
into account thewave’s initial polarization. The ScS ray-
paths through D′′, shown in the inset for region B (Fig-
ure 16), are close to the edge of the Pacific LLVP and
show evidence for seismic anisotropy. This agrees with

the finding of other studies that seismic anisotropy is
often strong close to such edges (e.g., Wang and Wen,
2004; Lynner and Long; 2014; Deng et al., 2017, Reiss
et al.; 2019; Wolf and Long; 2023).
Much of region C has been found to be anisotropic in

previous studies (e.g., Wookey et al., 2005; Asplet et al.,
2020, 2023; Suzuki et al., 2021; Wolf and Long; 2022;
Wolf et al., 2023a; 2024). Direct comparisons to many
of these studies are difficult because they used differ-
entmethods to infer the presence of seismic anisotropy.
Wookey et al. (2005) used S-ScS differential splitting to
investigate the west portion of region C. Additionally,
seismic anisotropy has been detected in the western
part of region C using multiple different methods (e.g.,
Wolf and Long, 2022; Asplet et al., 2023), which include
S-ScS and SKS-SKKS differential splitting as well as Sdiff
splitting. Notably, we also detect particularly strong
seismic anisotropy in this region.
Seismic anisotropy in region D has been identified by

a large number of previous studies (e.g., Kendall and
Silver, 1996; Rokosky et al., 2004, 2006; Garnero et al.,
2004; Maupin et al., 2005; Nowacki et al., 2010). The
study by Nowacki et al. (2010) also used S-ScS differen-
tial splittingmeasurements. Interestingly, we find split-
ting due to seismic anisotropy to be strong beneath cen-
tral America and almost absent further to the east (Fig-
ure 16). In the northwest part of region D, shear wave
splitting isweakaswell, while it is substantially stronger
in the southwest (Figure 16). To the east of region D we
obtain fivemeasurements that consistently show no ev-
idence for splitting due to deep mantle anisotropy , and
whose initial polarizations differ by up to 40◦. There-
fore, we find the deep mantle in this region to likely be
isotropic, in disagreement with the findings of Pisconti
et al. (2023).
Due to the constraints thatwe impose in our approach

to the measurement of ScS splitting, a large majority
of seismograms cannot be used to reliably measure ScS
splitting due to lowermost mantle anisotropy. A back-
of-the-envelope calculation suggests that approximately
15million three-component seismograms are currently
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publicly available for seismic events withmomentmag-
nitudes over 6.0. In this work, we obtain ∼130 ro-
bust ScS splittingmeasurements for seismic eventswith
suchmomentmagnitudes, using all null stations known
to us (which may not be all that exist). Following this
line of reasoning, under the constraints used in this
study, only one out of every 100,000 seismograms is ex-
pected to yield a robust ScS splitting measurement of
lowermost mantle anisotropy – a very small minority of
available data. However, with the suggestions we put
forward in Section 10, it may be possible increase this
number.

9.3 Interpretations of ScS splitting measure-
ments due to deepmantle anisotropy

Our work demonstrates that when multiple sets of
splitting parameters (φ, δt) due to lowermost mantle
anisotropy can be estimated in a particular region,
a significant spread of these values can be expected
(Figure 8). The reason is that the measured (φ, δt)-
values do not only depend on the nature of deep man-
tle anisotropy but also on the initial polarization of ScS.
Therefore, themeasurement scatter shown in Figure 16
does not imply that measurements are unreliable be-
cause displayingmeasurements inmap projection does
not account for the wave’s initial polarization. In fact,
all SI measurements that are plotted on top of each
other in Figure 16 and whose SI values differ have at
least somewhat different initial polarizations. In order
to thoroughly characterize the geometry of deep man-

tle seismic anisotropy measured from ScS waves, a suf-
ficient number of splitting measurements is needed to
allow for forward modeling or inversions that explicitly
consider the initial polarization of each wave. Practi-
cally, a sufficient number of measurements may be dif-
ficult to obtain in many regions, given the substantial
restrictions imposed to correctly account for potential
upper mantle contributions.
One potential way to make use of ScS splitting mea-

surements to constrain the geometry of anisotropy as
opposed to merely using them as an anisotropy detec-
tor is to interpret them along with other independent
constraints, such as SKS-SKKSdifferential splitting (e.g.,
Asplet et al., 2023), D′′ reflection polarities (e.g., Pis-
conti et al., 2023), or Sdiff splitting (e.g., Wolf et al.,
2023b). When multiple constraints are available, ray-
theoretical forwardmodeling (e.g.,Wolf et al., 2019; Pis-
conti et al., 2023), full-wave simulations (e.g.,Wolf et al.,
2022a; 2022b), or inversions of ScS waveforms (Asplet
et al., 2023) can potentially shed light on deformation
in the deep mantle.

10 Ways forward
Wehave shown that it can be difficult to infer deepman-
tle anisotropy from ScS splitting measurements due to
potential contamination fromuppermantle anisotropy,
which is difficult to account for. We have suggested a
strategy of avoiding explicit upper mantle anisotropy
corrections going forward by focusing on null stations
and S-ScS pairs forwhich S is not split due to source-side
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upper mantle anisotropy. Crucial for this approach will
be the identification of more null stations worldwide.
In this work, we have used the null stations identified
by Lynner and Long (2013) and Walpole et al. (2014);
however, more null stations likely exist. Given the in-
creased availability of seismic data since these two stud-
ies were published, it appears worthwhile to automat-
ically and uniformly analyze all available broadband
data to search for null stations, for example using an ap-
proach similar to Walpole et al. (2014).
Another possibility to increase the number of ScS

splitting measurements due to deep mantle anisotropy
is to usebeamforming,whichhas only recently beenap-
plied in shear wave splitting studies (Wolf et al., 2023a).
It has been shown that a beamforming approach effec-
tively averages the upper mantle anisotropy contribu-
tion across the individual stations used to construct the
beam (Wolf et al., 2023a). Therefore, it is possible to
intentionally select stations such that the upper mantle
anisotropy contribution to the beam beneath the array
on the receiver side is effectively null. For such a station
configuration, ScS splitting can be measured if the cor-
responding S beam splitting for the same source-array
combination is null, indicating the absence of source-
side anisotropy.
Interpretations of ScS splitting results in terms of

anisotropic geometry will continue to be challenging.
For such interpretations, the initial polarization of ScS
will have to be explicitly considered. This has effectively

beendonebyAsplet et al. (2023) by ensuring that ScSpo-
larizations (approximately) agree with the backazimuth
(through analysis of particle motions), although they
used explicit upper mantle anisotropy corrections in
their approach. At least in theory one could even go fur-
ther: Seismic anisotropy in the lowermostmantle could
be characterized by analyzing splitting intensities as a
function of initial polarization forwaves that sample the
same lowermost mantle portion. However, given that
we are dealing with two-layer splitting, this requires a
much larger number ofmeasurements thanwehave ob-
tained for any particular region in this study (Figure 16).
Most previous studies have not explicitly taken into ac-
count the ScS polarization and operated under the as-
sumption that splitting due toD′′ anisotropy should lead
to the same (φ′, δt) values for the same region and sam-
pling direction (e.g., Creasy et al., 2017;Wolf et al., 2019;
Pisconti et al., 2023).
If a sufficient number of ScS splitting measurements

from earthquakes with different initial source polariza-
tions can be obtained for a given set of raypaths sam-
pling D′′, a two-layer inversion for splitting parameters
on the down- and upgoing leg of the raypath appears
promising. Such an approach can be applied analo-
gously to two-layer splitting analysis for the upperman-
tle (e.g., Silver and Savage, 1994; Wolfe and Silver, 1998;
Aragon et al., 2017; Link et al., 2022). In our study, un-
fortunately, the number ofwell-constrained (φ, δt)mea-
surements in any particular region is insufficient for the
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implementation of such an approach. As mentioned
above, SI scattering is often straightforward to explain
by different initial polarizations; in contrast, a precise
characterization of the seismic anisotropy is challeng-
ing unless a large number of SI values for the same re-
gion can be obtained. Much easier is the detection of
isotropic regions through initial polarization analysis,
such as the isotropic region east of region D. The reason
is that no more than a handful of null measurements
with mutually different initial polarizations need to be
obtained for the reliable characterization of an isotropic
lowermost mantle region.
Going forward, it will also be important to com-

bine ScS constraints with constraints from other seis-
mic phases, whether waveform inversions (e.g., Asplet
et al., 2023) or ray-theoretical forward modeling (e.g.,
Ford et al., 2015; Wolf et al., 2019; Pisconti et al., 2023)
approaches are used. Given the issues that have been
pointed out with the use of ray-theoretical assumptions
(Nowacki andWookey, 2016;Wolf et al., 2022a), it will be
preferable tomove away from ray-theory in future stud-
ies and make use of available full-wave modeling tools,
including AxiSEM3D.

11 Conclusions
Using global wavefield simulations and calculations of
ScS reflection coefficients, we have explored how ScS
polarizations are affected by the CMB reflection. We
find that measured ScS polarizations at the receiver, de-
pend not only on the initial source polarization, but also
on the deep mantle velocity structure at the reflection
point and on the epicentral distance under considera-
tion. In particular, in the epicentral distance between
60◦ and 70◦, the CMB reflection can be well approxi-
mated as a sign-flip of SV, while SH is unaltered. For
distances close than 60◦, SV amplitudes are affected by
the reflection, and for distances above 70◦, apparent
shear wave splitting can be introduced for isotropic in-
put models due to phase interference, for example with
S. Therefore, the distance range suitable for ScS split-
ting measurements is 60◦ to 70◦.
If ScS shear wave splitting is caused by lowermost

mantle anisotropy, the measured apparent splitting
parameters are substantially influenced by the initial
source polarization of the wave. The reason is that each
leg of the ScS raypath throughD′′ (downgoing andupgo-
ing) experience splitting separately. Therefore, for any
D′′ region that is sampled from the same direction by
multiple ScSwaves, wewould expect tomeasure a range
of apparent splitting parameters that depend on the ini-
tial polarizations of the ScS waves. We have shown that
if an anisotropy contribution on the source side is in-
ferred from S splitting and then used to correct the ScS
waveform, in many cases apparent D′′ splitting can be
introduced. Similar issues exist for explicit receiver-
side corrections. Therefore, we suggest a strategy that
only uses null stations to infer deep mantle anisotropy
from ScS. Measurements of ScS splitting at null stations
should only be attributed to deep mantle anisotropy if
the measured S splitting for the same source-receiver
pair is null. We have applied this analysis strategy glob-

ally and detected deep mantle seismic anisotropy in
multiple regions around the Earth, including regions
that have not been shown to be anisotropic before, for
example, southern Russia and the southwestern Pacific
Ocean.
Going forward, to improve D′′ anisotropy sampling

using ScS, the identification of more null stations and
the implementation of beamforming approaches in
terms of the geometry of anisotropy will be helpful. In-
terpretations of ScS splitting going beyond using ScS
as a simple anisotropy detector will need to consider
the initial polarization of each ScS wave as well as po-
tentially different splitting on the two ScS raypath legs
through D′′. While this approach is not typically in-
corporated in ScS splitting studies at present, it holds
promise for gaining insight into the geometry of the
anisotropy, and thus flow at the base of the mantle.
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Abstract Teleseismic shear-wave splitting analyses are often performed by reversing the splitting pro-
cess through the application of frequency- or time-domain operations aimed at minimizing the transverse-
component energy of waveforms. These operations yield two splitting parameters, φ (fast-axis orientation)
and δt (delay time). In this study, we investigate the applicability of a baseline recurrent neural network, SWS-
Net, for determining the splitting parameters from pre-selected waveform windows. Due to the scarcity of
sufficiently labelled realwaveformdata, we generate our own synthetic dataset to train themodel. Themodel
is capable of determiningφ and δtwith a rootmean squared error (RMSE) of 9.7◦ and 0.14 s on noisy synthetic
test data. The application to real data involves a deconvolution step to homogenize thewaveforms. When ap-
plied to data from the USArray dataset, the results exhibit similar patterns to those found in previous studies
with mean absolute differences of 9.6◦ and 0.16 s in the calculation of φ and δt, respectively.

1 Introduction
The analysis of seismic anisotropy serves as a unique
tool for investigating the elusive dynamic processes
occurring within the Earth’s mantle. Inferring verti-
cally and laterally varying anisotropic structures from
surface-recorded seismic waveforms can provide vital
constraints for geodynamic models of mantle deforma-
tion and flow. The study of teleseismic shear-wave split-
ting (SWS), a technique in use for over three decades,
provides key insights about seismic anisotropy, aiding
in the analysis of the dynamic processes within Earth’s
interior (Long and Silver, 2009; Reiss and Rümpker,
2017; Savage, 1999; Silver and Chan, 1991).
Two primary mechanisms contribute to the devel-

opment of seismic anisotropy in the Earth’s mantle:
strain-induced lattice preferred orientation (LPO) of up-
per mantle minerals such as olivine (resulting from dif-
ferential motion between the lithosphere and astheno-
sphere, and mantle flow) (Silver and Chan, 1991) and
shape preferred orientation due to the presence of ver-
tically aligned fluid-filled fractures, cracks, andmicroc-
racks (Holtzman and Kendall, 2010).

∗Corresponding author: rumpker@geophysik.uni-frankfurt.de

When a shear wave enters an anisotropic medium,
it is split into two orthogonally polarized components
that propagate at different speeds. This phenomenon
can be described by two splitting parameters: the fast
axis orientation (the polarization direction of the faster
wave) φ, and the time delay between the two com-
ponents δt. While φ represents the orientation of
the anisotropic materials, δt measures the strength of
anisotropy and the extent of the anisotropic material.
Teleseismicphases are typically employed to investigate
the anisotropic properties of the Earth. The most fre-
quently used phases include SKS, SKKS, and PKS, and
are collectively referred to as XKS phases. The con-
version of these waves at the core-mantle boundary re-
sults in polarization in the direction of the back-azimuth
(Jia et al., 2021; Liu and Gao, 2013; Reiss and Rümpker,
2017).

Several software codes have been developed to de-
termine the splitting parameters φ and δt through grid
search or correlation approaches. Examples of such
codes can be found in the works of Silver and Chan
(1991) such as Liu and Gao (2013); Savage et al. (2010);
Teanby et al. (2004); Wüstefeld et al. (2008); Wuestefeld
et al. (2010); Hudson et al. (2023).(Semi-)automatic ap-
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proaches were recently suggested by Reiss and Rümp-
ker (2017) and Link et al. (2022).
In this paper, we present a baseline model that

demonstrates the potential of Deep Learning for the
analysis of shear-wave splitting. In a recent study,
Zhang and Gao (2022) utilized a Convolutional Neural
Network (CNN) for waveform classification to automat-
ically select reliable SWS measurements. However, to
the best of our knowledge, a comprehensive analysis to
infer anisotropic splitting parameters using deep learn-
ing has not yet been presented. Here, we introduce a
deep learning model called SWSNet (Shear-Wave Split-
ting Network) to determine the splitting parameters
from pre-selected waveform windows which are used
by Link et al. (2022) for their analysis. Due to the lack
of sufficient labelled data, the model is trained on syn-
thetic data, simulated under the assumption of a single
anisotropic layer (as is the case with traditional meth-
ods). A series of deconvolution and reconvolution steps
are applied to both the real data and the synthetic data
to ensuremaximumresemblance. Wedemonstrate that
SWSNet can produce results comparable to those of pre-
vious studies such as Liu et al. (2014) when applied to
real data from the USArray and obtain mean absolute
differences of 9.6◦ and 0.16 s in the calculation of φ and
δt, respectively.
The major contributions of this paper can be sum-

marised as follows: (i) to the best of our knowledge
this is the first work to explore the applicability of
deep learning in determining splitting parameters from
waveforms; (ii) as we do not have sufficient labelled real
data, we use synthetic data to train our model; (iii) a
novel deconvolution and reconvolution approach is ap-
plied to remove the source and path effects from the
real data to bridge the gapbetween ideal syntheticwave-
forms and real waveforms.

2 Methods and Results
For our study we use a supervised learning approach,
which is a machine learning paradigm that relies on la-
belled data for training a model. The Deep Learning
model we use learns to map the waveforms to the cor-
responding labels (in our case φ and δt) by minimising
the difference between the true and predicted labels de-
fined by the loss function.
In principle, labelledwaveformdata from shear-wave

splitting analyses is available from publications and
data archives (see e.g., Barruol et al., 2009). However,
for our purposes, the amount of available data is lim-
ited, and the labelling may not be as uniform as would
be required for efficient training. In order to overcome
this limitation, we will use synthetic data as an alter-
native. Ideally, the generated synthetic waveforms will
mimic the properties and characteristics of real data.

2.1 Modeling shear-wave splitting
In our approach, we consider waveform effects due to
a single anisotropic layer, which is characterized by a
horizontal symmetry axis (referred to as the “fast axis”
and oriented at an angle φ measured clockwise from

North). A vertically incident shear wave splits into hori-
zontally polarized fast and slow components, where the
fast component aligns parallel to the symmetry axis,
while the slow component is oriented perpendicular to
it. Generally, these two quasi-shear waves propagate at
different speeds, resulting in a separation by the delay
time, δt, as they travel through the layer. A graphical
representation of the coordinate systems used is given
in Figure S1.
The equations to describe shear-wave splitting in

layered structures have recently been summarized by
Rümpker et al. (2023). In the frequency domain, the
radial and transverse displacement components, after
passing through the layer, can be expressed as
(

u
(r)
1

u
(t)
1

)

=

(

cos θ + i sin θ cos 2α i sin θ sin 2α
i sin θ sin 2α cos θ − i sin θ cos 2α
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(r)
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(t)
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where θ = ωδt/2, α = β − φ is the angular dif-
ference between back-azimuth and fast axis, and in-
dex 0 denotes waveforms before passing through the
anisotropic layer. For XKS phases in a radially symmet-
ric Earth, we can assume that u

(t)
0 = 0 upon entering

the (first) anisotropic layer on the receiver-side leg of
the ray path, such that
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1 = (cos θ + i sin θ cos 2α) u
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Note, that for relatively long periods, T ≫ δt (to first
order in θ), this simplifies to
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2
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where the factor iω yields a derivative of the radial-
component waveform and the amplitude is modulated
by sin 2α. We will use this formulation in the develop-
ment of our deconvolution approach, to be discussed in
subsequent sections.

2.2 Deep Learning Analysis - Synthetic Data
Weuse synthetic data to train ourmodel. The radial and
transverse waveforms are generated with a sampling
frequency of 50 Hz for back-azimuths between 0 − 360◦

and fast axis φ ranging between 0 − 180◦. Consequently
α can vary between 0 − 180◦, since φ and φ + 180◦ rep-
resent the same fast axis orientation. We allow for pos-
sible values of δt between 0.2-2.0 seconds. Note that δt
characterizes the anisotropy within the layer and is not
equal to an “apparent” delay time which could be much
larger (e.g. Silver and Savage, 1994). A total of 106 wave-
forms are used for the training process; this dataset is
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Figure 1 The architecture of SWSNet. Themodel takes as input the (deconvolved) transverse component and comprises of
two blocks of 1D convolution and Maxpooling operations seperated by a Dropout layer with drop rate 30%, and followed by
a bi-directional LSTM layers. The final outputs are the normalised values of α (αnorm) and δt (δtnorm) and the probability of
the measurement being non-null.

split in a ratio of 80:20 for training and validation pur-
poses.
Combinations of δt and φ are chosen from uniform

random distributions for the ranges described above.
We experiment with Convolutional layers (Kiranyaz
et al., 2015), Bi-directional Long Short-Term Memory
(Bi-LSTM) (Hochreiter and Schmidhuber, 1997) layers
and a combination of both. Convolutional layers have
been established to be effective at feature-extraction,
while Bi-LSTMs are known for their ability to detect
temporal dependence between these features. The
model hyperparameters (such as the number of layers,
the kernel size of filters in the convolutional layers, the
dimensionality of the LSTM layers, the activation func-
tions to be used etc.) are chosen by experimenting to
maximise the model performance on validation data.
Each 1D convolutional layer used has a Rectified Lin-
ear Unit (ReLU) activation function (Agarap, 2018). The
model outputs three values corresponding to the prob-
ability of the measurement being non-null and the nor-
malised predictions for δt and φ. The normalization
of the target variables ensures that the mean squared
error loss calculated for them are of the same order;
this helps in the convergence of the loss function during
backpropagation. Here, any measurement with α < 2,
88 < α < 92, and α > 178 is considered a null measure-
ment. Since it is impossible for the model to discrimi-
nate between α = 0◦, α = 90◦ and α = 180◦, the trans-
verse component energy for all these cases being zero,
we find that defining a non-null class helps the model
learn to estimate α. A rectified linear-unit (ReLU) acti-
vation function (Agarap, 2018) is used for layers predict-
ing α and δt while a sigmoid function is used to output
the probability corresponding the measurement being
non-null. A schematic example of such an architecture
is shown in Figure 1 (note that Figure 1 shows the final
architecture of SWSNet described is section 2.4); amore

detailed diagram is provided in the Supplementary in-
formation (Figure S7).
The model is trained using the Adam Optimiser

(Kingma andBa, 2014). Weuse a batch size of 256. Mean
squared error and binary cross-entropy are used as loss
functions for regression and classification respectively.
Apart from using Maxpooling (Nagi et al., 2011) and
Dropout (Srivastava et al., 2014) layers in the model ar-
chitecture, early stopping (Prechelt, 2012) is used to fur-
ther prevent overfitting, whereby training stops if vali-
dation loss does not decrease for 8 consecutive epochs.
With this condition the model trains for 35 epochs.

2.2.1 Results - Synthetic Data
We train the Neural Network on a dataset with noise ap-
plied independently to the fast and slow components.
Two types of noise are experimented with– random and
Gaussian. The noise level is chosen from a random nor-
mal distribution withmean 30% and standard deviation
10%. Some examples for these datasets can be found
in Figures S2 and S3 in the Supplementary Materials.
Figure 2 (a) and (b) show the results when the model
trained on synthetic datawith randomnoise is tested on
an independent test dataset also with random noise. As
can be seen from Figure 2, the deep learningmodel has
RMSE 5.9◦ and 0.12 s in the predictions of α and δt re-
spectively. The corresponding figure (S4) for data with
Gaussian noise is provided as Supplementary informa-
tion.

2.3 Application to real data fromUSArray
Weapply ourmodel to pre-selectedwaveforms from the
USArray dataset and compare our results with Liu et al.
(2014) and those calculated by the automatic Splitracer
toolbox proposed by Link et al. (2022). To make sure
that only meaningful results are used in the calculation
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Figure2 The relationbetweenground truthandpredictions for (a)αand (b) δtwhen themodel trainedonsynthetic training
data contaminated with random noise is tested on synthetic test data contaminated by random noise; comparison between
station-wise averages of (c) α and (d) δt calculated using the deep learning model and those given by Liu et al. (2014). (The
corresponding figure for data contaminated with Gaussian noise can be found in the Supplementary Materials.)

of station averages, we perform a quality check on the
estimationsmade by the neural network on givenwave-
forms. We perform splitting inversion using the split-
ting parameters predicted by the neural network and
check the percentage reduction in the transverse com-
ponent energy (sumof squaredamplitudes) as proposed
by Silver and Chan (1991). An experimentally chosen
threshold of 60% reduction in transverse component of
energy is used to select thewaveforms to be used for cal-
culating station-wise averages for splitting parameters.

2.3.1 Direct application of the Model

When the model trained on the synthetic data is di-
rectly applied to the real data (radial and transverse
components), the station-wise averages obtained for the
splitting parameters differ significantly from those pre-
sented by Liu et al. (2014), as shown in Figure 2(c) and
(d) (and also, S4 (c) and (d)). This happens as real wave-
forms look significantly different from the synthetic
data. Thus a direct application of the trained model
to the real waveforms renders unusable results. This
necessitates an intermediate step to bridge the gap be-
tween the synthetic and real waveforms.

2.4 Deconvolution approach

Observed real waveforms are not only affected by
anisotropic layering but may vary significantly due to
different source mechanisms (and path effects). This
poses a challenge to the training of the deep learn-
ing model, as it is not computationally feasible to
include all waveform variations that may arise from
different source mechanisms and complexities of the
medium. Here, we choose a deconvolution approach
to mitigate source effects and “homogenize” the wave-
forms. This method is similar to the one utilized
in receiver-function processing, for instance Langston
(1979); Owens et al. (1984); Ammon (1991).

We deconvolve both the radial and transverse com-
ponents by the radial component. In the frequency-
domain, in view of eq. (5), the procedure applied to real
data can be described as follows:

(6)u
(r)
∗ = u

(r)
1 /u

(r)
1

= 1
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δt

2
sin 2α

Note that we assumed u
(r)
0 /u

(r)
1 ≃ 1 in the derivation

of eq. (7). This implies that the radial-component
waveform is a sufficient representation of the incoming
waveform (before it enters the anisotropic layer), which
further limits the applicability to waveforms with peri-
odsmuch longer than δt (T ≫ δt). The value of 1 for the
radial component in the frequencydomain corresponds
to a δ-function in the time domain. For the transverse
component, the factor iω causes a time-domain deriva-
tive (of the unsplit waveform) with amplitude modu-
lated by sin 2α. In a second step, the deconvolved com-
ponents can now be convolved with a reference wave-
form, such as the normalised derivative of an exponen-
tial function (Figure S5, also shown in the radial compo-
nent of Figure 6 described in Section 2.5), to yield a uni-
form radial component, and standard transverse com-
ponent that depends on the two splitting parameters.
Figure S6 shows the appearance of the transverse com-
ponent for different α and δt pairs.
For real data, first the waveforms within the selected

timewindows are resampled at 50Hz and then themean
is removed. For both the real and synthetic data the fol-
lowing steps are applied:

• AHanningwindow is applied to smoothen the tran-
sition to zero amplitude at the boundaries of the
time window.

• The data is zero-padded to have a uniform total of
2000 time samples corresponding to a 40 s timewin-
dow.

• A butterworth lowpass filter with corner frequency
of 1 Hz is applied to suppress higher-frequency
noise.

• The radial component is deconvolved from both
the radial and transverse components as per equa-
tions 6 and 7.

• The clean waveform shown in Figure S6 (also
shown in the radial component of Figure 6 de-
scribed in Section 2.5) is convolved with both
the deconvolved waveforms (radial and transverse
components).

• A Hanning window is applied to reduce the effect
of possible sinusoidal “ringing” on the transverse
component of the reconvolved data.

• The waveform is cropped to the central 10 seconds.

• Another Hanning window is applied followed by
the normalisation of the data such that the absolute
maximum amplitude in the transverse component
is 1.

Figure 3 demonstrates the effectiveness of this
method in uniforming the waveforms: while the two

waveformswith very close splitting parameters look sig-
nificantly different due to different source mechanism
and path effects, upon applying the deconvolution and
reconvolution method described above, they look al-
most the same.
With this approach it is only the transverse com-

ponent that carries meaningful information about the
splitting parameters. Therefore we retrain our model
on the transverse component of the de/reconvolved syn-
thetic waveforms. Once again we experiment with dif-
ferent model architectures and hyperparameters; we
find the best performing model to be the one shown
in Figure 1. This model will henceforth be called the
SWSNet (shear-wave splitting network). A detailed de-
scription of the hyperparameters used can be seen in
Figure S7. As the input data structure is relatively sim-
ple a deeper network does not improve the results and a
simple network is sufficient. Please note that the labels
corresponding to α and δt are always scaled to be in the
range 0-1 as this is known to benefit learning. A train-
ing data size of 106 waveforms is experimentally found
to be optimum (Figure S8).
Once again, we experiment with both random and

Gaussiannoise. Theperformanceof SWSNet on the syn-
thetic dataset can be seen in Figure 4, and the corre-
sponding figure for the Gaussian noise case is shown in
Supplementary Materials (Figure S9). It can be noted
here that the performance on the synthetic data wors-
ens in comparison to Figure 2. This is because a major
difference in the deconvolution approach, as compared
to the method discussed in Section 2.2, is that when
we train the model on the deconvolved data, only the
transverse component carries the relevant information.
Hence, the model is trained only on this component, as
opposed to the previous method where both the radial
and transverse components were used. Using two com-
ponents might help the model learn the noise charac-
teristics in the data, resulting in a smaller spread in the
predicted parameters. However, despite this deteriora-
tion in performance on the synthetic test data, the use
of the deconvolution method leads to much better gen-
eralizability when applied to real-world data, as will be
seen in the subsequent discussion and in Figure 7.

2.5 Application to USArray
We apply our final SWSNet to the real data from USAr-
ray. The method used to find the station-wise averages
is the same as described in Section 2.3; we experiment
with the threshold for energy reduction once again, to
choose the optimum threshold for our calculations. A
threshold of 60% is determined to be optimum based
on our observation in Figure 5 as it results in relatively
lower mean absolute differences in the station-wise av-
erages of both splitting parameters, while still retaining
a good number of stations.
This leaves us with 8699 acceptable waveforms out of

a total of 106323 (≃ 8.2%). This number is very similar to
the 7.6% waveforms marked as ‘good’ category by Link
et al. (2022). Some examples of SWSNet’s performance
on individual waveforms can be seen in Figure 6 and the
corresponding splitting parameters are summarised in
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Figure 3 Two example waveforms with splitting parameters calculated by Link et al. (2022) very close to each other (top
panels). The bottom panels show the corresponding waveforms after undergoing the deconvolution and reconvolution pro-
cess described in Section 2.4. While the waveforms in their original form look significantly different due to their respective
source mechanism, deconvolution makes them look almost the same, thereby eliminating the source and path effects.

Figure 4 The performance of SWSNet on the synthetic test dataset when including the deconvolution approach. Both the
training and test datasets are contaminated by random noise, with noise level chosen from a random normal distribution
with mean 30% and standard deviation 10%.

Table 1. One can see the similarity between parameters
calculated by SplitRacer, used in Link et al. (2022), and
those calculated by SWSNet. A more detailed compari-
son with grid search results is included in table S1.
Figure 7 shows a visual representation of the station-

averages of the splitting parameters calculated by SWS-
Net and Liu et al. (2014). Unlike Link et al. (2022), Liu
et al. (2014) does not employ a joint splitting analysis, al-
lowing for amoredirect comparisonwith our approach,
as it is also based on averaging results from individ-
ual split phases at a given station. Please note that this
model is trained on data with random noise. The re-
sults for a model trained on Gaussian noise can be seen
in Figure S10. While the performance of the models
trained on random and Gaussian noise have compara-
ble performance on the corresponding synthetic test

dataset, we observe throughout our experiments that
the models trained on data with random noise fit the
real data better. We suspect that this is because it is eas-
ier for the model to overfit the data with Gaussian noise
during training as compared to when the noise is com-
pletely random. We also show the comparison between
SWSNet and Link et al. (2022) in Figure S11.

3 Discussion
We apply the transverse energy reduction thresholds to
SWSNet calculations when calculating station averages.
This results in different sets of waveforms being used
by this study and by Liu et al. (2014) for these calcula-
tions. However, in cases ofmulti-layer anisotropy, there
is a strong dependence of splitting parameters on back-
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Figure 5 The effect of using different thresholds for energy reduction in the transverse component energy on the final cal-
culation of the station averages. Based on these observations, a threshold of 60% is determined to be optimum. It results
in relatively lower mean absolute differences in the station-wise averages of both splitting parameters, while still retaining a
good number of stations.

Table 1 A comparison between splitting parameters for individual waveforms shown in Figure 6, calculated by Link et al.
(2022) and SWSNet. A detailed comparison between grid search results, results from Link et al. (2022) and SWSNet can be
found in table S1 in the Supplementary Information.

Event ID φ(◦) φ(◦) δt (s) δt (s)
(Link et al., 2022) (SWSNet) (Link et al., 2022) (SWSNet)

Y13A2008-05-09T22:15:04SKS 45 49.1 1.33 1.11
P59A2014-08-18T02:55:43SKS 86 88.4 0.82 0.80
121A2018-07-13T10:10:08SKS 9 12.7 1.02 1.03
D25K2017-07-15T12:35:42SKKS 66 71.5 1.44 1.50

azimuth, observed at many locations in the Western/-
Central U.S, which could significantly affect the split-
ting analysis if the events included are not identical.. As
such, efforts were made to keep our method free of any
requirements of prior knowledge; hence, the threshold
was applied for the selection of waveforms irrespective
of whether they were used in the calculations by Liu
et al. (2014). To understand what the comparison would
look like when using the samewaveforms in both calcu-
lations, we examined a subset of waveforms included in
both the station-average calculations by Liu et al. (2014)
and in the data used for SWSNet calculations. We re-
calculated the station averages using just this data and
conducted a comparison similar to Figure 5. This fig-
ure has been added to the supplementary materials as
Figure S12. As expected, we found a closer alignment
of the station averages in this case. Furthermore, we
compared the splitting parameters calculated by SWS-
Net and those published by Liu et al. (2014) for individ-
ual waveforms, finding that the mean absolute differ-
ence for φ and δt are 11.08◦ and 0.239 s respectively.
As a further step to evaluate SWSNet’s performance in

a multi-layer anisotropy case, we tested it on synthetic
waveform data generated by considering two layers of
anisotropy with the following two sets of splitting pa-
rameters:

1. φ1 = 20◦, δt1 = 1.0 s and φ2 = 70◦, δt2 = 1.0 s

2. φ1 = 20◦, δt1 = 1.5 s and φ2 = 110◦, δt2 = 0.5 s

where φ1 and δt1 represent the fast-axis orientation and
time-delay in the first (lower) anisotropic layer, respec-
tively, and φ2 and δt2 represent the fast-axis orienta-
tion and time-delay in the second (upper) anisotropic
layer, respectively. Note that in the second case, the fast
axes are perpendicular, such that the model effectively
corresponds to a model with a single anisotropic layer.
The resulting effective delay time is given by the differ-
ence between the delay times in each layer. We com-
pare the variation of the splitting parameters with back-
azimuth to the theoretical curves calculated as per Sil-
ver and Savage (1994) (Figure 8). We find a good agree-
ment between the expected apparent splitting param-
eters and those predicted by SWSNet, except when the
resulting transverse components are very small. These
small components correspond to null measurements
(indicated by the gray patches in Figure 8) and are at-
tributed by SWSNet to small (case 1) or variable (case
2) delay times. It is further interesting to note that the
largest delay times predicted by SWSNet (2 s) agree with
maximumdelay times used in the training data for a sin-
gle layer.

We further explore the different factors that affect the
station-averaged results, and find the predominant fac-
tor to be the number of acceptable measurements for a
given station, whereby the difference between the sta-
tion averaged splitting parameters calculated by SWS-
Net and those from Liu et al. (2014) diminishes with an
increased number of acceptable measurements corre-
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Figure 6 Examples of applying SWSNet to deconvolved real waveforms from the USArray Dataset. The left panel displays
the original radial and transverse waveforms. The right panel shows a comparison between the deconvolved real waveforms
and the synthetic counterparts, which are generated using the splitting parameters as predicted by SWSNet. The compari-
son reveals that the radial components are identical, as expected, while the transverse components exhibit a high degree of
similarity. The corresponding splitting parameters can be found in Table 1.

sponding to a station (Figure S13).

We also compare our method against a simple grid
search algorithm that, like previous studies, finds the
splitting parameters for which (upon waveform inver-
sion) the energy in the transverse component is the low-
est. The grid search is done between 0.2-2 seconds for
δt and 0-180◦ forα, with a grid spacing of 0.1 second and
1◦, respectively. Weplot the energy distributions for dif-
ferent combinations of α and δt for five randomly cho-
sen events from five different stations, and find the pa-
rameters calculated by SWSNet to be quite close to those
foundby grid search andwhat is calculated byLink et al.
(2022) (Figure S14). We further observe that grid search
on average takes 3-6 times the amount of time taken
by SWSNet to calculate splitting parameters for a single
waveform.

4 Conclusion
In this study we introduce a baseline deep learning
model SWSNet that has the potential to replace grid
search methods used by previous studies to find split-
ting parameters for a waveform. Due to the dearth
of labelled real data we train the model on synthetic
data. We demonstrate that a direct application ofmodel
trained on the synthetic waveforms to real waveforms
does not work well, the real waveform being affected by
source mechanisms and path effects. This is resolved
by using a deconvolution approach to minimise the dif-
ference between real and synthetic data. We retrain the
model on transverse components of deconvolved syn-
thetic waveforms contaminated by random noise, and
show that the model learns to perform reasonably well
in identifying the splitting parameters for such wave-
forms. We then apply our model to pre-selected wave-
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Figure 7 (a) Splitting parameters calculated by SWSNet (b) Splitting parameters calculated by Liu et al. (2014). The ori-
entation of the straight lines is representative of the fast axis orientation while the length represents delay time. A similar
general pattern is observed in both cases. (c) Station-wise comparison between φ calculated by SWSNet and Liu et al. (2014)
(d) Station-wise comparison between δt calculated by SWSNet and Liu et al. (2014)

forms from the USArray dataset and show that the sta-
tion averages calculated using SWSNet follow the same
general trends as previous studies. We observe that the
robustness of the proposed method increases with in-
creased number of measurements for a given station.

The current version of the model is trained entirely
on synthetic data, but in future versions real data can
be added to the training set for improved representa-
tion. We would like to reiterate that the approach pre-
sented in this work is a baseline method to establish
deep learning as a potential candidate for shear wave
splitting studies. There are several avenues to further
improve the results that would be explored in the future
such as using a deeper model or using more complex
data, for example, by considering multiple anisotropic
layers insteadof one. Onemajor drawbackof basic neu-
ral networks is their inability to provide uncertainty es-
timates Gawlikowski et al. (2023); therefore, providing
uncertainty estimates would be another important av-
enue to explore in the future.
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Abstract Comparison of geodetic slip-deficit rateswith geologic fault slip rates onmajor strike-slip faults
reveals marked differences in patterns of elastic strain accumulation on tectonically isolated faults relative
to faults that are embedded within more complex plate-boundary fault systems. Specifically, we show that
faults that extend through tectonically complex systems characterizedbymultiple,mechanically complemen-
tary faults (that is, different faults that are all accommodating the same deformation field), which we refer to
as high-Coefficient of Complexity (or high-CoCo) faults, exhibit ratios between geodetic and geologic rates
that vary and that depend on the displacement scales over which the geologic slip rates are averaged. This
indicates that elastic strain accumulation rates on these faults change significantly through time, which in
turn suggests that the rates of ductile shear beneath the seismogenic portion of faults also vary through time.
This is consistent with models in which mechanically complementary faults trade off slip in time and space
in response to varying mechanical and stress conditions on the different component faults. In marked con-
trast, structurally isolated (or low-CoCo) faults exhibit geologic slip rates that are similar togeodetic slip-deficit
rates, regardless of the displacement and time scales overwhich the slip rates are averaged. Such faults expe-
rience relatively constant geologic fault slip rates aswell as constant strain accumulation rate (aside frombrief,
rapid post-seismic intervals). This suggests that low-CoCo faults “keep up” with the rate imposed by the rela-
tive plate-boundary condition, since they are the only structures in their respective plate-boundary zone that
can effectively accommodate the imposed steady plate motion. We hypothesize that the discrepancies be-
tween the small-displacement average geologic slip rates and geodetic slip-deficit ratesmay provide ameans
of assessing a switch ofmodes for some high-CoCo faults, transitioning from a slowmode to a fastermode, or
vice versa. If so, the differences between geologic slip rates and geodetic slip-deficit rates on high-CoCo faults
may indicate changes in a fault’s behavior that could be used to refine next-generation probabilistic seismic
hazard assessments.

Non-technical summary Geodetic slip-deficit rates record how much elastic strain energy accu-
mulates along a fault, whereas geologic slip rates record the actual slip that occurred throughout multiple
earthquakes along that fault during release of the stored elastic strain energy. We look at multiple active
faults within strike-slip plate boundary fault systems, and compare geodetic slip-deficit rates with geologic
slip rates averaged over different fault displacement scales. We find that these values tend to be similar for
isolated faults at all scales, whereas they differ in structurally complex fault systems. We conclude that both
the accumulation and release of elastic strain energy is constant on faults embedded in simple settings, but
varies in complex fault systems.

1 Introduction
Unravelling the relationship between geologic fault slip
rates and rates of strain accumulation as measured by
geodesy is critically important for developing a better
understanding of the mechanics of faults and the seis-
mic hazards that they pose. Whereas somemajor faults

∗Corresponding author: gauriau@usc.edu

exhibit constant behavior, with relatively steady geo-
logic slip rates spanning a range of time and displace-
ment scales (e.g., Kozacı et al., 2009, 2011; Berryman
et al., 2012; Salisbury et al., 2018; Grant Ludwig et al.,
2019), other faults exhibit highly irregular slip rates
through time, with centennial to millennial periods of
relatively fast slip rate spanningmultiple earthquake cy-
cles, separated by prolonged periods of slower or no slip
rate (e.g., Benedetti et al., 2002; Friedrich et al., 2003;

1
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Bull et al., 2006; Dolan et al., 2016; Hatem et al., 2020;
Zinke et al., 2017, 2019, 2021).
Elastic strain accumulation rates inferred from anal-

ysis of geodetic data reflect the shearing velocity of the
seismogenic faults’ underlying ductile roots, and have
been suggested to be relatively constant beyond the
single-earthquake scale (i.e., once fast post-seismic and
slower interseismic rates have been averaged out). In-
deed, comparisons of geodetic slip-deficit and geologic
rates have beenused to infer near-constant interseismic
rates. For example, in one of the largest such compi-
lations to date, Meade et al. (2013) compared geologic
fault slip rates and geodetic slip-deficit rates for 15 ma-
jor continental strike-slip faults around theworld. Their
results suggest that, as an ensemble, these faults exhibit
a near 1:1 relationship (with a slope of 0.94 ± 0.09) be-
tween geologic and geodetic rates. Slight differences
between the datasets could be attributable to short-
lived periods of higher-than-average strain accumula-
tion during the post-seismic period. The geologic rates
used as inputs into the analysis of Meade et al. (2013)
span a huge range of displacement and time scales,
fromas small as ~13m to as large as ~600m, and as short
as 2 ky to as long as 160ky. We recently presented results
that demonstrate that, for faults that lie within complex
plate-boundary fault networks, geologic slip rates vary
depending on the displacement scale over which the
slip rate is estimated; on the other hand, structurally
isolated faults that accommodate most of the relative
motion within simple plate boundaries exhibit stead-
ier slip rates (Gauriau and Dolan, 2021). These obser-
vations lead us to explore the possibility that differ-
ences between geodetic slip-deficit rates and geologic
slip rates might also be sensitive to the relative com-
plexity of the surrounding fault network. If they are,
this would require that geodetic-geologic rate compar-
isons consider time and displacement scales overwhich
incremental slip rates are averaged, as well as the rela-
tive structural complexity of the surrounding fault sys-
tem, especially in structurally complex plate bound-
aries (e.g., northern and southern California, Marlbor-
ough fault system in New Zealand), that are character-
ized by multiple, mechanically complementary faults.
In this paper, we explore the potential constancy, or

lack thereof, of the elastic strain accumulation rate pat-
terns on active strike-slip faults. Specifically, we aim to
investigate the relative constancy and potential variabil-
ity of elastic strain accumulation rates on faults char-
acterized by temporally constant geologic slip rates, on
the one hand, and faults that exhibit temporally vari-
able geologic slip rates, on the other. Comparing elastic
strain accumulation rates derived fromgeodesywith ge-
ologic slip rates has been done in several studies (e.g.,
Kozacı et al., 2009; Meade et al., 2013; Tong et al., 2014;
Dolan and Meade, 2017; Evans et al., 2016) but never
in light of the relative complexity of the plate-boundary
fault systems being considered.

2 Studied faults and terminology
In this study, we use the recently developed Coeffi-
cient of Complexity (CoCo)method (Gauriau andDolan,

2021), which quantifies the relative structural complex-
ity of the fault network surrounding a fault of interest
by integrating the density and displacement rates of the
faults in the plate-boundary network at a specific radius
(here, 100 km) around the site of interest. The method
is illustrated in Figure 1. We use CoCo values calcu-
lated for 18 major strike-slip faults for which both ge-
ologic incremental slip-rate records and geodetic slip-
deficit rates are available (Figure 2, Table 1). In total, we
work with 24 different fault sites where these two kinds
of data are available and approximately collocated. The
comparison of the CoCo values for all sites is then en-
abled by the standardization of the CoCo values by the
respective plate-motion rate, totaled for the observation
area of 100 kmradius. This allowsdirect comparisons of
the intensity of fault activity in different plate-boundary
fault networks that move at different relative plate mo-
tion rates.
We divide the available geologic slip-rate data into

two groups: large-displacement slip rates and small-
displacement slip rates (usually referred to as “long-
term” and “short-term” slip rates, respectively), which
are averaged over large (> ~50 m) and small (< ~50
m) displacements, respectively (Table 1). The reasons
for this are twofold: (a) This allows us to discuss fast-
and slow-slipping faults with comparable parameters
and hence by considering similar numbers of earth-
quakes on faults that have widely different recurrence
intervals, and (b) displacement, not time, may be what
matters most in terms of the mechanisms governing
fault behavior in complex plate-boundary fault systems
(Dolan et al., 2007; Cawood andDolan, submitted;Dolan
et al., 2024). In addition, we use the terms “geodetic
slip-deficit rates” to refer to any rate that was obtained
on the basis of space geodetic measurements of sur-
face ground displacement over multi-annual to decadal
time scales, such as Global Positioning System (GPS) or
Interferometric Synthetic Aperture Radar (InSAR), and
which has been modeled to characterize the most re-
cent rate of elastic strain accumulation for the studied
strike-slip faults.

3 Consideration of elapsed time since
most recent event relative to sam-
pling geodetic slip-deficit rates

In order to evaluate potential differences in behavior
of faults embedded within structurally simple fault sys-
tems (i.e., low-CoCo faults) versus faults embedded
within structurally complex fault networks (i.e., high-
CoCo faults), we compare geodetic slip-deficit rateswith
geologic fault slip rates that are averaged over both
small displacements and large displacements. We first
introduce a few key considerations that allow us to
carry out this comparison between geodetic and geo-
logic data.
The interseismic geodetic data used in this papermay

derive from different sampling times throughout the
earthquake cycle. Although we have no precise control
over where exactly the examined faults lie in their elas-
tic strain cycles, we can inmost instances document the
elapsed time since their most recent event (MRE),

2
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Fault Section/
Site #

SD slip
rate
(mm/yr)

Time range
of SD slip
rate (ky)

Displace-
ment of SD
slip rate (m)

References for
SD slip rate

LD slip
rate
(mm/yr)

Time range
of LD slip
rate (ky)

Displace-
ment of LD
slip rate (m)

References for
LD slip rate

Geodetic
rate
(mm/yr)

References for
geodetic rate

Plate
rate
(mm/yr)

References

Garlock Central 1 14+2.2
−1.8

1.9 26 +3.5
−2.5

(Dolan et al.,
2016) 8.8 ± 1.0 8.0 ± 0.9 70 ± 7 (Fougere et al.,

2023) 2.61 ± 3.00

(Evans, 2017b)

49

(Dolan et al.,
2016); (McGill and
Sieh, 1993; Evans,
2017a)

San
Andreas

Mojave 2 28.8 +1.5
−0.8

1.007 +0.028
−0.050

~29
(Weldon et al.,
2004; Dolan
et al., 2016)

30.9 +2.9
−2.5

1.49 ± 0.13 46 (Weldon et al.,
2004) 15.12±2.78 49

(Weldon et al.,
2004; Dolan et al.,
2016; Evans,
2017a)

Carrizo
Plain 3 31.6 +9.0

−6.6
0.38 ± 0.06 12 ± 1 (Salisbury et al.,

2018) 36 ± 1 ~3.5 128 ± 1 Grant-Ludwig
et al. (2019) 35.65±5.11 39

(Grant Ludwig
et al., 2019; Salis-
bury et al., 2018;
Sieh and Jahns,
1984; Noriega
et al., 2006)

San
Jacinto

Clare-
mont 4 12.8 - 18.3 2.05 ± 0.12 25 - 30 (Onderdonk

et al., 2015) 13.18±4.61 49
(Onderdonk et al.,
2015; Evans,
2017b)

Owens
Valley 5 0.5-2.1 §

(Haddon et al.,
2016) and refer-
ences therein

2.8-4.5 55-80 235 ± 15 (Kirby et al.,
2008) 2.71 ± 1.38 12

(Kirby et al., 2008;
Haddon et al.,
2016; Evans,
2017a)

Calico Central 6 1.6 ± 0.2 650 ± 100 900 ± 200 (Oskin et al.,
2007) 7.42 ± 3.44 49

(Oskin et al.,
2004, 2008; Evans,
2017a)

Hope Conway 7 8.2 +5.4
−3.0

ca. 1.1 12 ± 2 (Hatem et al.,
2020) 15.2 +2.2

−2.4
ca. 13.8 210 ± 15 (Hatem et al.,

2020) 5.8 +1.8
−1.1

(Johnson et al.,
2022)

39
(Hatem et al.,
2020; Johnson
et al., 2022)

Wairau
Branch
River
Dunbeath

8 4.5 ± 1.0 * 3.3 ± 0.4 15 ± 2.6 (Zinke et al.,
2021) 4.9 ± 0.4 11.9 +1.0

−0.8
58.5 ± 2 (Zinke et al.,

2021) 2.8 +2.4
−0.8

(Zinke et al., 2021;
Johnson et al.,
2022)

Clarence Tophouse
Road 9 2.0 ± 0.4 4.5 +0.8

−0.7
9.0 ± 1.0 (Zinke et al.,

2019) 4.2 ± 0.5 11.2 ± 1.3 47.0 ± 3.0 (Zinke et al.,
2019) 8.6 +1.4

−1.1

(Zinke et al., 2019;
Johnson et al.,
2022)

Awatere Saxton
River 10 4.2 +1.2

−1.0
1.8 ± 0.3 9.5 ± 1.0 (Zinke et al.,

2017) 5.6 +0.8
−0.6

12.9 +1.2
−1.0

72.5 ± 7.5 (Zinke et al.,
2017) 1.9 +2.2

−0.8

(Zinke et al., 2017;
Johnson et al.,
2022)

Alpine Southern 11 29.6 +4.5
−2.5

270 8000 (Barth et al.,
2014) 29.1 +1.1

−3.2

(Berryman et al.,
2012; Page et al.,
2018; Wallace
et al., 2012)

Table 1 Continued on next page
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Fault Section/
Site #

SD slip
rate
(mm/yr)

Time range
of SD slip
rate (ky)

Displace-
ment of SD
slip rate (m)

References for
SD slip rate

LD slip
rate
(mm/yr)

Time range
of LD slip
rate (ky)

Displace-
ment of LD
slip rate (m)

References for
LD slip rate

Geodetic
rate
(mm/yr)

References for
geodetic rate

Plate
rate
(mm/yr)

References

Dead
Sea

Wadi
Araba
Valley

12 3.8 - 6.1 2 - 4.2 13.2 ± 1.0 (Klinger et al.,
2000) 4 ± 2 140 ± 31 300-900 (Klinger et al.,

2000) 5.0 ± 0.2
(Gomez et al.,
2020) 7

(Klinger et al.,
2000; Niemi et al.,
2001; Hamiel
et al., 2018)

Beteiha 13 3.5 ± 0.2 $ 1.472 5.2 ± 0.3 (Wechsler et al.,
2018) 4.8 ± 0.3

(Wechsler et al.,
2018; Masson
et al., 2015)

Yam-
mouneh 14 3.5 - 7.5 6 - 10 40 ± 5 (Daëron et al.,

2004) 2.7-7.3 12 - 27 80 ± 8 (Daëron et al.,
2004) 2.5 ± 0.5

(Daëron et al.,
2004; Gomez
et al., 2003, 2007)

Queen
Char-
lotte

15 52.9 ± 3.2 17 ± 0.7 900 ± 40 (Brothers et al.,
2020) 46.3 ± 0.6 (Elliott and

Freymueller,
2020)

55

(Brothers et al.,
2020; Elliott and
Freymueller,
2020)

Denali Central 16 12.1 ± 1.7 12.0 ± 1.3 /
11.9 ± 1.3 # 144 ± 14 (Matmon et al.,

2006) 7.0 ± 0.3 17

(Matmon et al.,
2006; Elliott and
Freymueller,
2020; Bender
et al., 2023)

Western 17 10.4 ± 3.0 2.4 ± 0.3 25 +5
−7

(Matmon et al.,
2006) 9.4 ± 1.6 16.8 ± 1.8 158 ± 14 (Matmon et al.,

2006) 7.75 ± 0.3 17

(Matmon et al.,
2006; Elliott and
Freymueller,
2020; Bender
et al., 2023)

Table 1 Continued on next page
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Fault Section/
Site #

SD slip
rate
(mm/yr)

Time range
of SD slip
rate (ky)

Displace-
ment of SD
slip rate (m)

References for
SD slip rate

LD slip
rate
(mm/yr)

Time range
of LD slip
rate (ky)

Displace-
ment of LD
slip rate (m)

References for
LD slip rate

Geodetic
rate
(mm/yr)

References for
geodetic rate

Plate
rate
(mm/yr)

References

Altyn
Tagh Central 18 9.4 ± 0.9 ¤ 5.889 – 5.658 54 ± 5 (Cowgill, 2007) 9.4 ± 2.3 16.6 ± 3.9 156 ± 10 (Cowgill et al.,

2009) 9 ± 4 (Bendick et al.,
2000) 11.2

(Cowgill, 2007;
Cowgill et al.,
2009; Bendick
et al., 2000; Shen
et al., 2001; He
et al., 2013; Zhang
et al., 2007)

Kunlun Central
Western 19 10.7 ± 2.2 2.885 ± 0.285 31 ± 2 (Haibing et al.,

2005) 10.6 ± 1.8 5.96 ± 0.450 63 ± 5 (Haibing et al.,
2005) 11.3 ± 3.5 (Zhao et al.,

2022) 12

(Van Der Woerd
et al., 2002; Haib-
ing et al., 2005;
Kirby et al., 2007)

Haiyuan Lao-
hushan 20 3.7 ± 0.6 9 - 11 32 - 42 (Liu et al., 2022) 4.8 ± 0.2 15 - 17 73 - 79 (Liu et al., 2022) 5.6 +1.3

−1.1

(Daout et al.,
2016) 6.5

(Liu et al., 2018; Li
et al., 2009; Shao
et al., 2020)

North
Anato-
lian

Demir
Tepe
Eksik

21 16.8 ± 0.1 * 0.988 15.3 ± 0.1 (Kondo et al.,
2010) 20.5 ± 5.5 2 - 2.5 46 ± 10 (Kozacı et al.,

2007) 20.5
(DeVries et al.,
2016)

21
(Kozacı et al.,
2007; Hubert-
Ferrari et al., 2002)

Tah-
taköprü 22 18.6 +3.5

−3.3
~3 55 ± 10 (Kozacı et al.,

2009) 21.2 - 21.5 21 (Kozacı et al.,
2009)

Northern
/ Ganos 23 15 ± 6 2.5 ± 0.5 35.4 ± 1.5 (Meghraoui

et al., 2012) 18.5+10.9
−5.9

490 ± 100 >~8000 (Kurt et al.,
2013) 28.6 27

(Meghraoui et al.,
2012; Kurt et al.,
2013)

East
Anato-
lian

Pazarcık,
Tevekkelli 24 5.6 ± 0.3 17.8 101 ± 5

(Yönlü and
Karabacak,
2023)

10.3 ± 0.6 (Aktug et al.,
2016) 10

(Güvercin et al.,
2022; Reilinger
et al., 2006)

Table 1 Summary of data from the different fault sections used in this study, including small-displacement (SD), large-displacement (LD) averaged geologic slip rates with
corresponding time and displacement ranges over which they are averaged, and geodetic slip-deficit rates. The rate values are reported as they were in their original source
publications, unless specified otherwise.
* rate calculated between MRE and given offset marker
§ based on several studies cited in Haddon et al. (2016), with offsets ranging from 3m (1 earthquake) to 19 m, and respective ages ranging from 600 years ago and 25 ka
$ averaged over the past four historical earthquakes
# first age relates to boulder samples, second age refers to sediment samples (10Be technique)
¤ using their upper-terrace reconstruction (Cowgill et al., 2009), as for the small-displacement slip rate
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as well as an estimate of their mean earthquake recur-
rence interval. For a majority of the faults we study,
it has been at least 100 years since the MRE, as docu-
mented historically (e.g., the 1717 Alpine fault earth-
quake, the 1857 Fort Tejon earthquake on the San An-
dreas fault, the 1872OwensValley earthquake) or on the
basis of paleoseismological evidence (e.g., the ca. 1800-
1840 CE earthquake on the Conway section of the Hope
fault; Hatem et al., 2019). In a few instances, the MRE
occurred more recently, such as the series of earth-
quakes on the North Anatolian fault between 1939 and
1999 (Barka, 1992; Barka et al., 2002), the 2002 Denali
earthquake (Haeussler, 2004), or the Kahramanmaraş
earthquake (e.g., Barbot et al., 2023) that occurred in
Februray 2023 on the East Anatolian fault (for which we
use a geodetic rate that was acquired before the earth-
quake).

Table S1 summarizes the MRE dates and the avail-
able mean recurrence intervals for the fault locations
we study. In most of the examples, we are well into at
least the middle part of the elastic strain accumulation
cycle, likely well past any rapid post-seismic deforma-
tion (with the possible exceptions of the 1992 Landers,
1999 Izmit, 1999 Düzce, 1999 Hector Mine, and 2002 De-
nali earthquakes).

4 Relative structural complexity of
the surrounding fault network in in-
terpretation of geodetic slip-deficit
rate and geologic slip-rate compar-
isons

In our original formulation of the CoCometric (Gauriau
and Dolan, 2021), we categorized faults as either low-
or high-CoCo. To determine the CoCo metric for each
fault study site, we apply a system inwhichwe recognize
that the degree of structural complexity surrounding a
fault is a continuum, with no hard boundary between
high- and low-CoCo faults. Whereas many of the faults
we study can be readily categorized as either high-CoCo
faults (e.g., the Hope fault or the Mojave section of the
San Andreas fault) or low-CoCo faults (e.g., the south-
ern Alpine fault, the central San Andreas fault), some of
the faults exhibit intermediate CoCo values reflecting a
surrounding plate-boundary zone that shows minor to
moderate complexity. The two faults that fall in this in-
between area are the Central Denali fault (16), charac-
terizedby a standardizedCoCo value of 1.62·10-2 yr-1 and
the Altyn Tagh fault (18), characterized by a standard-
ized CoCo value of 1.56·10-2 yr-1. Based on these two val-
ues, we use a standardized CoCo value of 1.6·10-2 yr-1 as
the dividing line betweenwhatwewill refer to hereafter
as low- and high-CoCo faults. With this boundary de-
fined, we can explore the behaviors exhibited by these
two categories of faults, as shown in Figure 2b, c (see
Figure 3 for standardized CoCo values of all faults).

5 Comparison of geologic slip rates
and geodetically based slip-deficit
rates on strike-slip faults

Figure 2 illustrates the comparison between geologic
and geodetic slip-deficit rates for the 24 different sites
on the studied strike-slip faults. It reveals marked
differences in the consistency of the values of the
geodetic/geologic-rate pairs for high-CoCo faults rela-
tive to low-CoCo faults. Specifically, comparison of
geodetic slip-deficit rates with large-displacement and
small-displacement average geologic slip rates (dis-
played as squares and circles, respectively, in Figure 2)
reveals that these rates are similar for faults character-
ized by low CoCo values (displayed in blue in Figure 2),
whereas they differ for the faults characterized by high
CoCo values (displayed in red in Figure 2). This ob-
servation is a corollary to the main conclusion of our
previous study (Gauriau and Dolan, 2021), in which we
showed that low-CoCo faults slip at relatively constant
rates through time whereas high-CoCo faults exhibit
long-term slip rates that are potentially different from
the slip rates averaged over small displacements. In
other words, the displacement over which the slip rate
is averaged does not matter for low-CoCo faults, since
any geologic slip rate will give the same value. In con-
trast, geologic slip rates for high-CoCo faults that are av-
eraged over one particular displacement rangemay dif-
fer from the slip rate averaged over a different displace-
ment range.
Figure 2a shows a comparison of geologic slip rates

and geodetic slip-deficit rates. Figure 2b shows that
low-CoCo strike-slip fault sites plot on (or near) the
1:1 line, reflecting the similarity of their short-term
geodetic strain accumulation rates andboth their small-
displacement and large-displacement geologic strain-
release rates. This can be further illustrated statisti-
cally, since the coefficient of determination obtained
from an ordinary least squares regression for the low-
CoCo faults is 0.983 for geologic rates averaged over
large displacements, and 0.978 for geologic rates aver-
aged over small displacements (Figure S1). Assuming
a linear relationship between geologic slip rates and
geodetic slip-deficit rates going through the origin, we
find scaling lines with best-fit slopes and respective 1σ
confidence of 0.945 ± 0.028 and 1.103 ± 0.050 for the low-
CoCo faults using the large-displacement and small-
displacement average geologic rates, respectively (see
Figure S1a and b). These results show that for these low-
CoCo faults, geodetic rates provide a reliable proxy for
the geologic slip rate of the fault of interest.
That geodetic slip-deficit rates are a reliable proxy

for geologic slip rate is not the case for high-CoCo
faults (Figure 2c). Specifically, there is wide dispersion
amongst the geodetic slip-deficit and both large- and
small-displacement geologic slip rates (Figure 3). This
observation requires that geodetic slip-deficit rates can-
not be used as a proxy for geologic rates for high-CoCo
faults, whether the rate is averaged over small displace-
ments or large displacements. For these high-CoCo
faults, the coefficient of determination obtained from
an ordinary least squares regression between geologic

6
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Figure 1 Schematic explanation of the rationale of the Coefficient of Complexity (CoCo) analysis for a hypothetical fault
network. The calculation of CoCo for a given radius is shown on top. The radius over which CoCo is calculated is 100 km.
Withina structurally complex fault system (numerous, and relatively fast-slipping faults), shown to the left, theCoCovaluewill
behigher thanwithina structurally simple fault system (fewor zeroneighboring faults), shown to the right. Thequantification
of complexity, done with the CoCo analysis, correlates with the relative steadiness of geologic slip-rate record, as shown in
our recent study (Gauriau and Dolan, 2021).

rates and geodetic slip-deficit rates is 0.396 for geologic
rates averaged over large displacements, and 0.350 for
geologic rates averaged over small displacements (Fig-
ure S1c, d). Scaling lines between geologic rates and
geodetic rates for these faults, assuming a linear rela-
tionship going through the origin (as in Meade et al.,
2013) are characterized by the best-fit slopes of 0.751
± 0.162, using the small-displacement geologic rates,
and 0.696 ± 0.140, using the large-displacement geo-
logic rates (Figure S1c and d). These linear regressions
seem to imply a global trend where geologic slip rates
are faster than geodetic slip-deficit rates, but we suggest
that these best-fit slope values are not meaningful, and
are rather artifacts of the current limited state of avail-
able data. Reinforcing this idea is the observation that
the dispersion of the data, shown by the standard devia-
tions of the best-fit slopes, demonstrates that there is no
good correlation between geodetic slip-deficit and geo-
logic slip rates for high-CoCo faults. Figure 3 further il-
lustrates this result, by displaying the ratio between the
geodetic slip-deficit rates and the geologic rates aver-
aged over large or small displacements. Figure 3b plots

a measure of distance from the data points to the 1:1 ra-
tio line with varying CoCo values, and emphasizes the
dispersion of the data for higher-CoCo faults (see de-
tails of the dispersion calculation in the Supplementary
Materials); the relatively sharp increase in dispersion at
standardized CoCo ~0.0015-0.002 yr-1 likely reflects the
presence of major secondary faults that can accommo-
date significant portion of relative plate motions.

7
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Figure 2 Geodetic slip-deficit rate and geologic slip-rate comparisons formajor strike-slip faults. The geologic rates are shown as either averaged over a large displacement, or over
a small displacement. The data points are color-coded according to their respective values of the Coefficient of Complexity (CoCo), standardized by the plate rate contained within
a 100 km radius, as defined in Gauriau and Dolan (2021). The strike-slip faults considered in this study are: (1) Garlock, (2) San Andreas, Mojave segment, (3) San Andreas, Carrizo
Plain segment, (4) San Jacinto, Claremont segment, (5) Owens Valley, (6) Calico, (7) Hope, (8) Wairau, (9) Clarence, (10) Awatere, (11) Alpine, (12) Dead Sea, Wadi Araba Valley, (13)
Dead Sea, Beteiha, (14) Yammouneh, (15) Queen Charlotte, (16) Denali, central section, (17) Denali, western section, (18) Altyn Tagh, (19) Kunlun, (20) Haiyuan, (21) North Anatolian,
Demir Tepe, (22) North Anatolian, Tahtaköprü, (23) Northern North Anatolian, (24) East Anatolian, Pazarcık (references listed in Table 1). (a) shows all the compiled faults in the same
diagram. (b) shows all faults characterized by CoCo values that are less than 0.0016 yr-1 (referred to as low-CoCo faults). (c) shows all faults characterized by CoCo values that are
more than 0.0016 yr-1 (referred to as high-CoCo faults).
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6 Fault loading rates…
6.1 …are constant on low-CoCo faults
Our analysis reveals that low-CoCo faults are character-
ized by geodetic rate/geologic rate ratios very close to
one, regardless of the displacement scale over which
the geologic slip rate is measured (Figures 2, 3). Ge-
ologic slip rates estimated from offset landforms at
widely different displacements are the same for these
faults, showing that the elastic strain release remains
constant over the time intervals over which these dis-
placements have accumulated. Furthermore, the cur-
rent elastic strain accumulation rate (as constrained by
the geodetic slip-deficit rate) is equal to strain release
rates (as constrained by geologic slip rates) at all mea-
sured displacement scales. This indicates that for these
faults, the elastic strain accumulation rate provided by
the geodetic slip-deficit rate remains constant during
the interseismic period (Figure 4), following the short-
duration periods of fast post-seismic deformation at the
beginning of each cycle, as originally noted by Meade
et al. (2013).

6.2 …vary on high-CoCo faults
In contrast, high-CoCo faults, embedded within more
complex structural settings, display no consistent rela-
tionship between geodetic slip-deficit and geologic slip
rates. As noted above, these results reinforce the point
that geodetic slip-deficit rates cannot be used as reli-
able proxies for geologic slip rates on high-CoCo faults.
Moreover, although the mismatch between geodetic
slip-deficit rates and small-displacement geologic slip
rates could conceivably be due to short-term variations
in fault slip rate, the mismatch between geodetic slip-
deficit rates and large-displacement geologic slip rates,
which are averaged over >50 to hundreds of meters of
slip (see Table 1) and numerous individual earthquakes,
and will thus average over any shorter-term/smaller-
displacement accelerations or decelerations of fault
slip, indicates that elastic strain accumulation rates on
the high-CoCo faults must vary through time. Specifi-
cally, at these large-displacement scales, the fault slip
rate spanning numerous earthquakes will provide a ro-
bust estimate of the average rate of strain release on that
fault through time. Insofar as the elastic strain accumu-
lation ratemust equal the elastic strain release rate (i.e.,
fault slip) over long time intervals, the mismatch that
we document between geodetic slip-deficit rates and
geologic slip rates averaged over large displacements
requires that elastic strain accumulation rates as mea-
sured by geodetic slip-deficit rates must vary through
time.
Further examination of the results displayed in Fig-

ure 3 helps us distinguish several types of behaviors
amongst the high-CoCo faults. Those behaviors can be
defined depending on whether the geodetic slip-deficit
rate is equal to, slower than, or faster than either the
large-displacement average geologic rate, or the small-
displacement average geologic rate (Figure 4).
These differences between geodetic and geologic

rates reveal the following fundamental point: Faults for

which the current loading rate does not equal the aver-
age large-displacement geologic slip rate overly a duc-
tile shear zone that must be creeping at either a slower
or a faster rate than the long-term average slip rate. If,
furthermore, the geodetic rate differs from the small-
displacement rate, the rate of elastic strain accumula-
tion consequently has to vary over the same periods of
accelerations and decelerations that are averaged over
in these small-displacement geologic rate values.
We suggest that using the mismatches between

geodetic slip-deficit and small-displacement geologic
rates can help us infer the current behavior of the
faults that may be most representative of the near-
future likelihood of major earthquake recurrence. Mis-
matches between elastic strain accumulation rates and
small-displacement geological rates reveal three differ-
ent modes for the high-CoCo faults. These are: faults
that are storing elastic strain energy more slowly than
their small-displacement geologic slip rates; faults that
exhibit a current rate of elastic strain accumulation that
is faster than the small-displacement geologic slip rate;
and faults in which the geodetic slip-deficit rate approx-
imately equals the youngest average geologic slip rate.
In the following, we describe the details of the behavior
of faults that fall within these three categories and dis-
cuss a model that attempts to explain the observations
in terms of faults switching from one mode to another.
In the first case, geodetic slip-deficit rates are slower

than the small-displacement (short-term) geologic slip
ratesmeasured on these faults. The Garlock (numbered
1 in Figures 2 and 3), theMojave segment of the San An-
dreas (2), Wairau (8), Hope (9), Awatere (10), and Yam-
mouneh (14) faults are all characterized by geodetic rate
values that are slower than their respective geologic slip
rates (both large- and small-displacement). For exam-
ple, the central Garlock fault experienced a cluster of
four large earthquakes between 0.5 and 2.0 ka (Daw-
son et al., 2003), resulting in a small-displacement (26
m) slip rate averaged over these four events through to
the present of 14

+2.2
−1.8 mm/yr (Dolan et al., 2016). Model-

ing of geodetic data consistently yields very slow rates
of elastic strain accumulation on the central Garlock
fault, with a best estimate of ~2.6mm/yr (Evans, 2017b),
potentially including almost no elastic strain accumu-
lation. In contrast, the large-displacement (long-term)
slip rate averaged over the most recent 70 m of slip
on this section of the Garlock fault is 8.8±1.0 mm/yr
(Fougere et al., 2023, submitted). While this is slower
than the small-displacement geologic rate, it is at least
three times faster than the current rate of elastic strain
accumulation. Thismismatch suggests that the Garlock
fault has recently entered into a “slow” mode of elas-
tic strain accumulation, likely as a result of a decreased
shearing rate on the underlying ductile shear zone. But
why is the youngest, small-displacement rate so fast?
We suggest that the switch in behavior of the Garlock
fault from the 0.5 – 2 ka “fast” mode ended with the fi-
nal earthquake in the cluster, either because the fault
(including the upper seismogenic part and the ductile
shear zone roots) strengthened during the fast period
encompassing the four-event cluster and became more
difficult to slip (Dolan et al., 2007; Cawood and Dolan,
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Figure 3 Variations of geodetic to geologic slip-rate ratios against CoCo values standardized by plate rate over a 100 km
radius. (a) Ratios of geodetic slip-deficit rate to geologic rate plotted against CoCo. The geologic rate values are averagedover
large or small displacement (as in Figure 2). The numbering of the fault sites is referred to in Figure 2 and Table 1. The dashed
arrows refer to a ratio of geodetic/geologic rate that would reach infinity, with a geological rate close or equal to 0 mm/yr, if
the fault has not slipped for a long time since the MRE (see text for details). (b) Diagram showing the dispersion of the ratio
(geodetic to geologic rates) values varyingwith the CoCo values. The higher the CoCo value, themore scattered the data (i.e.,
the farther from the 1:1 ratio line they tend to plot). Themeasure of the dispersion is detailed in the SupplementaryMaterials.
Although we cannot calculate an exact CoCo value for the Queen Charlotte fault (15), because of our inability to include all
active faultswithin a 100 km radius of the slip-rate site, we assign it a CoCo value of zero, since this fault accommodates >95%
of the total Pacific/North America plate-motion rate (NUVEL-1A; DeMets and Dixon, 1999).

submitted), and/or because the Garlock fault has ex-
hausted what Dolan et al. (2024) refer to as the “crustal
strain capacitor” (similar to Mencin et al. (2016) “strain
reservoir”), that is, the shear strain stored in the crust
surrounding this section of the Garlock fault. In this
view, the current slip rate (or, equivalently in this con-
text, the “most recent geologic slip rate”) of the Garlock
fault since the most recent earthquake (MRE) ca. 500
years ago has been 0 mm/yr, reflecting the current very
slow rate of elastic strain accumulation on the Garlock
fault.

Similarly, the geodetic slip-deficit rate on the Wairau

fault in New Zealand (2.8
+2.4
−0.8 mm/yr; Johnson et al.,

2022) is slower than the small-displacement rate of
4.5±1.0mm/yr (Zinke et al., 2021), calculated for thepre-
ceding fast period of slip between a geomorphic offset
dated at ca. 5.4 ka and the ca. 2 ka MRE. This con-
trast highlights a period of fast slip on the fault dur-
ing this time interval. Yet, 2,000 years have elapsed
since theMREon theWairau fault (relative to an average
Holocene recurrence interval of ca. 1,000 years Nicol
and Dissen, 2018), which we suggest indicates a “most
recent geologic slip rate” since the MRE of 0 mm/yr.
Thus, the averaging of the small-displacement rate over
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Figure 4 Observed modes of fault behavior, with time shown as the horizontal dimension of the block, and with relative
slip rate displayed with a color gradient. In (a), we show that whatever the time over which its behavior is averaged, a low-
CoCo fault’s slip rate is constant and thus equals its elastic strain accumulation rate, as shown in the left hand-side, hence
the same color at each point in time and in the brittle and ductile parts of the fault. Note that we are not considering single-
earthquake time scales. In contrast, high-CoCo faults (b and c) exhibit several types of behaviors, as discussed in the text. In
(b), we illustrate a fault that has a short-term (small-displacement) geologic slip rate that is slower than its long-term (large-
displacement) rate. For this fault, the current elastic strain accumulation (ductile shear of the ductile roots) is slower than
the short-term geologic slip rate, and therefore might be entering what we refer to as a slow mode. In (c), we show another
example of a fault whose long-term geologic slip rate is faster than its short-term geologic slip rate. This fault is entering a
fast mode since its elastic strain accumulation is much faster than its short-term geologic slip rate.

the past 5,400 years through to thepresentmaybemask-
ing a switch of the Wairau fault from a fast mode be-
tween 2 and 5 ka, to the current slowmode that has pre-
vailed since the MRE at 2 ka. In both the Wairau and
Garlock faults examples, if we were to use the inferred
most recent geologic slip rate of 0 mm/yr as the best
representation of the small-displacement slip rate, the
geodetic/small-displacement rate ratios would soar, as
the dashed arrows in Figure 3a illustrate.

Another example is the Yammouneh fault (14), which
has a geodetic slip-deficit rate (2.5±0.5 mm/yr; Gomez
et al., 2020) that is much slower than its small-

displacement slip rate (5.5±2.0 mm/yr; Daëron et al.,
2004) (Figure 3). The Yammouneh fault might therefore
also be experiencing a slowmode since theMRE in 1202
C.E. (Daëron et al., 2007, Table S1).

Although the small-displacement slip-rate of the
Hope fault (8.2

+5.4
−3.0 mm/yr; Hatem et al., 2020) is likely

faster than the geodetic slip-deficit rate estimate (5.8
+1.8
−1.1

mm/yr; Johnson et al., 2022), their respective 2σ un-
certainties overlap (Table 1), which does not allow us
to strongly affirm a potential switch of mode for this
fault. However, the difference between these estimates
might suggest that theHope fault is currently in a slower
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Figure 5 Schematic illustration of modes of behavior defined in this paper, according to the CoCo values and the geodet-
ic/geologic rate ratio, and their potential meaning in terms of near-future hazard.

mode, and may have exhausted its strain capacitor in
the past five earthquakes, which generated 20-30 m of
fault slip over the past ~1,500 years (Hatem et al., 2019,
2020). The thus-reduced shear stress stored in the crust
surrounding the Hope fault might explain the lack of
significant slip on the Hope fault in the 2016 Kaikōura
earthquake sequence (e.g., Hamling et al., 2017), de-
spite its proximity to the faults that initially ruptured
in the sequence. Indeed, both Ulrich et al. (2019) and
Nicol et al. (2023) have suggested that the lack of signifi-
cant 2016 coseismic slip on the Hope fault could be due
to the low stresses in play across the Hope fault prior to
the Kaikōura earthquake.

A final example is the Mojave section of the San An-
dreas fault (SAFm), which is characterized by an elas-
tic strain accumulation rate (15.1±2.3 mm/yr; Evans,
2017b) that is much slower than its small-displacement
slip rate (~27-29mm/yr;Weldon et al., 2004; Dolan et al.,
2016) (Figures 3, 4, Table 1). The MRE occurred 167
years ago on the SAFm, whereas the mean recurrence
interval for this stretch of the fault is about 100 years
(e.g., Scharer et al., 2017). The absence of any earth-
quakes since the 1857 MRE led to much speculation in
earlier decades, when some scientists suggested that
the SAFm was “overdue” (e.g., Weldon and Sieh, 1985).

These early ideas of earthquake recurrence patterns
were based on the assumption of steady elastic strain
accumulation rates. If, instead, elastic strain accumula-
tion rates vary, as we show here, then the long elapsed
time since the 1857 earthquake may at least partially be
a consequence of reduced loading rates in this section
of the SAF, as reflected in the current geodetic rate. All
of this suggests that the SAFm (2) may have entered a
“quieter mode”.

Apartial, potential alternative explanation for this sit-
uation was provided in Hearn et al. (2013) and Hearn
(2022), who suggested that some of this slow elastic
strain deformation rate on the SAFm might be due to
a so-called “ghost transient” related to long-term visco-
elastic relaxation of the lithospheric mantle and lower
crust following the 1857 Fort Tejon earthquake. How-
ever, this would only explain 5 mm/yr of the apparent
~14 mm/yr difference between the geodetic slip-deficit
rate and the small-displacement slip rate. In marked
contrast to the SAFm, Hearn et al. (2013) also noted that
there is no such “ghost transient” associated with the
Garlock fault, which ruptured most recently in 1450-
1640 CE (Dawson et al., 2003).

Our analysis reveals another type of behavior, in
which faults exhibit geodetic slip-deficit rates that are
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faster than their geologic slip rates. We suggest that
these faults may have switched from a slow mode to
a fast mode. This behavior characterizes the Clarence
fault (9), the northern Dead Sea fault (nDSF - 13), the
northern strand of the North Anatolian fault system
(nNAF - 23), and the Pazarcık segment of the East
Anatolian fault (EAF – 24) (Figure 3). The Clarence
fault (9) has a geodetic slip-deficit rate (8.6

+1.5
−1.1 mm/yr;

Johnson et al., 2022) that is faster than both its small-
displacement and large-displacement geologic rates, al-
though its small-displacement slip rate (2.0 ± 0.4mm/yr)
is half as fast as its large-displacement slip rate (4.2
± 0.5 mm/yr; Zinke et al., 2019). Similarly, the nDSF
stores elastic strain energy at a rate of 4.8 ± 0.3 mm/yr
(Gomez et al., 2020) and is characterized by a slower
small-displacement slip rate of 3.5 ± 0.2 mm/yr (Wech-
sler et al., 2018). For the nNAF, considering the large un-
certainties on the large-displacement geologic slip rate
(18.5

+10.9
−5.9 mm/yr, measured over a 500 My time scale;

Kurt et al., 2013), we cannot confidently infer that it is
slower than the reported geodetic slip-deficit rate (28.6
mm/yr; DeVries et al., 2016), but we can more confi-
dently state that the small-displacement geologic rate
(15 ± 6 mm/yr; Meghraoui et al., 2012) is slower that the
geodetic rate, as suggested by Dolan and Meade (2017).
The EAF (24) has a geodetic slip-deficit rate (10.3 ± 0.6
mm/yr; Aktug et al., 2016) that is nearly twice as fast as
the available large-displacement geologic slip rate (5.6
± 0.3 mm/yr; Yönlü and Karabacak, 2023). Notably, this
section of the EAF ruptured in the 2023 Mw 7.8 Kahra-
manmaraş earthquake.
The Calico fault (6) may also fall within this type of

behavior, with a switch from a previous slow mode to
a current faster mode. Although the data currently
available for the Calico fault do not allow us to in-
fer a small-displacement slip rate, the current loading
rate (7.4±3.4 mm/yr; Evans, 2017b) is much faster than
its large-displacement slip rate (1.6±0.2 mm/yr; Oskin
et al., 2007) (Figure 3). Specifically, the Calico fault has
generated four surface-rupturing earthquakes within
the past ~9,000 years (Ganev et al., 2010), which coincide
with periods of clustered moment release identified on
other faults in the eastern California shear zone (ECSZ)
(Rockwell et al., 2000). The MRE on the Calico fault oc-
curred sometime between 0.6 and 2 ka, likely as part of
an ongoing cluster of earthquakes that has been occur-
ring over the past 1-1.5 ky in the ECSZ (Rockwell et al.,
2000), including most recently the 1872 Owens Valley,
1992 Landers, 1999 Hector Mine, and 2019 Ridgecrest
earthquakes. Geodetic data suggest that theCalico fault,
and potentially other nearby faults in the ECSZ, are
likely experiencing a period of anomalously fast load-
ing (Oskin et al., 2007; Dolan et al., 2007), as originally
suggested by Peltzer et al. (2001), and further discussed
by Oskin et al. (2008). Peltzer et al. (2001) showed that
active dextral shear associated with the ECSZ extends
across the Garlock fault, which does not exhibit any ac-
cumulation of left-lateral shear strain energy, empha-
sizing the idea that the Garlock fault has entered a slow
mode (Evans et al., 2016; Evans, 2017a). These observa-
tions are consistent with kinematic models that suggest
that the Garlock fault is currently storing and releasing

elastic strain energy atmuch slower-than-average rates,
whereas the ECSZ subsystem is storing and releasing
energy at faster-than-average rates (Dolan et al., 2007,
2016; Hatem and Dolan, 2018; Peltzer et al., 2001). Far-
ther north in the ECSZ-Walker Lane system, the Owens
Valley fault exhibits a geodetic slip-deficit rate estimate
(2.7±1.4 mm/yr; Evans, 2017b) that may be faster than
its small-displacement slip-rate (1.3±0.8 mm/yr; Had-
don et al., 2016), consistent with a period of faster-than-
average elastic strain accumulation. It is worth noting
however, that these rate estimates overlap at 95% un-
certainty (Table 1).

In addition to these behaviors, the San Jacinto fault
(4) exhibits a small-displacement geologic slip rate
(15.6±2.3 mm/yr; Onderdonk et al., 2015) that is simi-
lar to the current loading rate (13.2±4.6 mm/yr; Evans,
2017b) within 2σ uncertainties. However, there is
currently no well-constrained, large-displacement (>
50 m) geologic slip rate available for the San Jacinto
fault. Thus, the similarity of the geodetic and small-
displacement geologic rates might suggest that the San
Jacinto fault may have been captured in the middle of
either a fast period (i.e., cluster) or a slow period, but in
the absence of a large-displacement slip rate, we cannot
say definitively which.

It is worth noting that the slip rate of high-CoCo faults
doesnot seem to affect their behavior; both fast-slipping
and slow-slipping high-CoCo faults exhibit significant
dispersion of geodetic/geologic ratios. Dispersion anal-
ysis indicates that fast-slipping, high-CoCo faults ex-
hibit larger dispersion of geodetic/geologic ratios than
for slower-slipping high-CoCo faults (see Supplemen-
tary Materials), contrary to what Cowie et al. (2012) ob-
tained from their simulations of elastic interactions be-
tween growing faults. However, we suspect that the
dispersion values we determine are not particularly
meaningful given the dearth of slip-rate data from fast-
slipping, high-CoCo faults.

One key element to highlight is the potential diffi-
culty in capturing any switches from fast to slow mode
(or vice versa) with the available incremental fault slip-
rate data, which in some instances may not be detailed
enough over the appropriate displacement intervals to
capture these switches inmode. This challengewill typ-
ically lie in the resolution at which the increments of
the incremental slip-rate record are obtained, and if the
slip-rate data are not detailed enough over the appro-
priate time and displacement intervals, the switches in
mode may not be observable. Assuming, however, that
the input data we use in this study provide sufficient in-
formation to constrain the timing of these switches in
mode, our results imply that the elastic strain accumu-
lation rate keeps up with or controls fast and slow fault
slip periods, which challenges the suggestion by Wel-
don et al. (2004) that the strain release rate varies while
the strain accumulation rate does not (i.e., their “strain-
predictable behavior”).
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7 Ductile shear zone behavior…

7.1 …on high-CoCo faults

The variations in strain accumulation rate described
above likely record variations in the rate of shear along
the ductile shear zone roots of seismogenic faults. Here
we discuss the mechanisms that might control the be-
havior of ductile shear zones on high-CoCo faults.
The different behaviors exhibited by the high-CoCo

faults can be explained by mechanisms that occur at
the plate-boundary scale, such as the shared accommo-
dation of slip in complex plate-boundary structural set-
tings (Peltzer et al., 2001; Dolan et al., 2016), aswell as by
mechanisms at the scale of the fault zone, with potential
strengthening and weakening processes over the duc-
tile shear zone and the coupling between the brittle and
the ductile parts of a fault (e.g., Peltzer et al., 2001; Os-
kin et al., 2008; Dolan et al., 2007). In structurally com-
plex, high-CoCo settings,mechanically complementary
faults within the system can share the load by trading
off slip while maintaining a relatively constant overall
system-level rate that keeps pace with the relative plate-
motion rate (Dolan et al., 2024). In these structurally
complex plate-boundary fault systems, when one fault
slipsmuch faster than its average rate throughoutmulti-
ple earthquakes, the other faults of the system slipmore
slowly or not at all as the overall fault system works
together to maintain constant average rate. Accelera-
tion of the ductile shear zone rate will create a posi-
tive feedback loop in which faster shear on the ductile
shear zone roots will drive the occurrence of more fre-
quent, large earthquakes (i.e., an earthquake cluster) in
the seismogenic part of the fault, which will in turn ac-
celerate underlying ductile shear rates through viscous
coupling, increasing driving stress, and potentially by
addition of fluids into the nominally ductile uppermost
parts of the ductile shear zone roots (Ellis and Stöckhert,
2004; Cowie et al., 2012; Mildon et al., 2022; Dolan et al.,
2007). But eventually, either through exhaustion of the
crustal strain capacitor of stored elastic strain energy on
the fault in question, and/or through increases in duc-
tile shear zone strength (i.e., resistance to shear), the
fault will enter a slow mode of strain release as defor-
mation shifts to amechanically complementary, weaker
fault within the system (Dolan et al., 2024).
These accelerations and/or decelerations of the

faults’ ductile shear roots of a complex fault network
might be explained by strength changes (e.g., strain
hardening andweakening). Dolan et al. (2007, 2016) and
Dolan and Meade (2017), for instance, suggested that
ductile shear zone roots can harden during fast slip pe-
riods, leading to lulls in ductile shear and hence earth-
quake lulls in the upper crust. In this model, the duc-
tile shear roots of faults are accumulating elastic strain
energy more slowly than their long-term slip rate, after
having been “exhausted” during a period of rapid duc-
tile shearing and fast fault slip in clusters of earthquakes
(Dolan et al., 2024). Other potential mechanisms occur-
ring within ductile shear zones that could give rise to a
change in shearing rate and associated elastic strain ac-
cumulation rates of the overlying fault include changes

in fluid concentration (e.g., Mancktelow and Pennac-
chioni, 2004; Okazaki et al., 2021), changes in grain size
(e.g., Handy, 1989; Okudaira et al., 2017), macroscopic
fault evolution (e.g.,Handy et al., 2007) and fabric devel-
opment (e.g., Carreras et al., 2005; Melosh et al., 2018)
(see Cawood and Dolan, submitted, for details on these
mechanisms). All these mechanisms could drive the
crustal “strain capacitor” to either its exhaustion or its
replenishment (Dolan et al., 2024; Cawood and Dolan,
submitted).

7.2 …on low-CoCo faults
In contrast, tectonically isolated, primary low-CoCo
plate-boundary faults (e.g. central SAF, central and east-
ern NAF, Alpine fault), are characterized by interseis-
mic rates that correlate well with geologic slip rates that
are averaged over both small and large displacements
(Figure 3). This suggests that such low-CoCo faultsmust
“keep up” with the relative plate-motion rate over short
time and small displacement scales because there are
no other mechanically complementary faults in such
systems to share the load. In other words, even though
all of the potential strengthening and weakeningmech-
anisms we discuss for high-CoCo faults must be operat-
ing on low-CoCo faults as well, these processes will be
overwhelmed by steady increases in driving stress re-
lated to relative plate motion. All or most of the relative
plate motion must be accommodated on the primary
fault in the absence of other major faults that could po-
tentially share thework required tomove the plates past
each other. Moreover, the similarity of geodetic slip-
deficit rates and small-displacement geologic slip rates
on low-CoCo faults requires that the fault responds to
steady increases in driving stress at scales of no more
thana few tens ofmeters of relativeplatemotion. This is
consistent with the long-held notion embodied in elas-
tic rebound theory (Reid, 1910) that the crust can only
store a given amount of elastic strain energy before the
weakest element of the system (i.e., the structurally iso-
lated primary fault) slips in an earthquake. In turn, this
line of reasoning implies that the single, isolated fault
either has to beweak all the time - as soon as it stores no
more than a few tens of meters of elastic strain energy,
it is ready to slip - or it cyclically becomes weak when
stress is approaching the rupture limit. A key question
is whether this near-1:1 relationship between “energy
in” (as manifest in geodetic slip-deficit rates) and “en-
ergy out” (i.e., fault slip rates) on low-CoCo faults ex-
tends to single-earthquake scales. The few available
earthquake-by-earthquake age plus displacement-per-
event datasets that are available from low-CoCo faults
suggest that, at least generally, this may be the case.
Specifically, the relatively regular timing (CoV ~ 0.3) of
surface ruptures on the Alpine fault at Hokuri Creek,
coupled with similar ~7.5 m horizontal displacements
in the two most recent earthquakes (Berryman et al.,
2012; De Pascale and Langridge, 2012; Sutherland et al.,
2006), and the similar displacements in the fourmost re-
cent earthquakes and relatively regular timing of earth-
quakes on the NAF at Demir Tepe (Kondo et al., 2010)
are consistent with the idea that this may extend to sin-
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gle earthquake scales. If this is generally true, then low-
CoCo faults may release much of, and perhaps almost
all, of the shear stress accumulated since the previous
event during each rupture. It is worth noting, how-
ever, that even at the Hokuri Creek site on the low-CoCo
Alpine fault (Berryman et al., 2012), which is character-
ized by quasi-periodic earthquake recurrence, the 24-
event record cannot be fit precisely with either time- or
slip-predictable models (Shimazaki and Nakata, 1980),
andmay best be explained by an underlying chaotic be-
havior (Gauriau et al., 2023).

8 Fault’s near-future behavior, and
further applications for PSHA

Our results may provide new insight into how slip rates
can be better used as basic inputs into probabilistic seis-
mic hazard assessment (PSHA) methods. For low-CoCo
faults, the outcome is straightforward – both the slip
rate averaged over large displacements and the slip rate
averaged over small displacements are similar to the
geodetic slip-deficit rate. Therefore, any of these values
can be used as an input into a PSHA. Despite this rela-
tive constancy of both strain accumulation and release
rates in the behavior of a low-CoCo fault, any attempt
towards formulating earthquake prediction focused on
timing of earthquake occurrence on a specific faultmay
be functionally impossible (e.g., Chen et al., 2020; Gau-
riau et al., 2023). Therefore, a probabilistic methodol-
ogy is required for any seismic hazard assessment.
For high-CoCo faults, the outcome is less straight-

forward, since such faults exhibit variable strain accu-
mulation and release rates through time. The ques-
tion arises as to what slip-rate value is the best to use
in PSHA? There are three possible strategies for incor-
porating incremental slip-rate data into PSHA, as orig-
inally suggested by van Dissen (2020): (a) incorporat-
ing the large-displacement average slip rate by neglect-
ing any incremental rate changes, which in a long-term
statistical sense can be viewed as variations about the
mean rate; (b) using the full error range associated
with all available incremental slip rates, or (c) favor-
ing the most recent (smallest-displacement multiple-
earthquake) incremental slip rate as the most appropri-
ate one.
Here we propose a potential solution to this conun-

drum by comparing the small-displacement and large-
displacement rates with the elastic strain accumulation
rates. Geodetic slip-deficit rates have been suggested
as primary inputs into seismic hazard assessment (e.g.,
Bird and Kreemer, 2014; Hussain et al., 2018), but never
in light of comparison to available geologic slip-rate
records. The examples listed in paragraph 6.2., how-
ever, illustrate the current limitations on using small-
displacement rates (suggestion c) as a proxy for the
most recent phase of fault behaviorwithout considering
the possibility that the fault may have switched modes
in the interval since displacement of the most-recent
available small-displacement slip-rate data. We sug-
gest that a potential path forward is to use the com-
parison of the geodetic slip-deficit rates with small-

displacement geologic rates of high-CoCo faults to fore-
cast the near-future behavior that might be expected on
a given fault. While we suggested in our earlier paper
(Gauriau and Dolan, 2021) that option (c), i.e., imple-
menting the shorter-term slip rate into a PSHA, would
lead to a more reliable forecast of the near-future be-
havior of the fault, the current analysis suggests that de-
viations of geodetic rates from the small-displacement
geologic slip rates might better illustrate the future be-
havior of high-CoCo faults.
Specifically, we propose that a geodetic slip-deficit

rate that is slower than the small-displacement slip rate
might indicate lower near-future hazard, because the
fault is storing elastic strain energy more slowly than
average (Figure 5). This is exemplified by the cases of
the Garlock fault, the SAFm, and the Hope fault. Con-
versely, geodetic rates that are faster than the small-
displacement rate on faults that have not experienced
a recent earthquake (i.e., those not experiencing a
post-seismic strain transient) may indicate higher near-
future hazard, as illustrated by the nNAF, the Clarence
fault, and the nDSF. In support of this idea, the 2023
Mw 7.8 Kahramanmaraş earthquake occurred on a sec-
tion of the EAF that exhibited a geodetic slip-deficit rate,
prior to the earthquake, that was almost twice as fast as
the long-term geologic slip rate. In the case of the San
Jacinto fault, and other faults with a geodetic rate that
equals the small-displacement slip rate, we suggest that
the near-future hazard can be best represented by the
small-displacement slip rate and/or the geodetic rate
(Figure 5).
One possible route towards using these observa-

tions in improved PSHA would be to evaluate geode-
tic and geologic rate discrepancies using the smallest-
displacement incremental slip rate for a fault to infer
the current mode of fault behavior.

9 Conclusions
Our comparison of geologic fault slip rates with geode-
tic slip-deficit rates from strike-slip plate-boundary
faults reveals markedly different strain accumulation
and release behavior on structurally isolated faults rel-
ative to those that extend through structurally complex
regions. Our main take-away is that elastic strain accu-
mulation rates on high-CoCo faults must vary through
time, whereas they remain relatively constant on low-
CoCo faults. This can potentially be applied to faults ex-
hibiting other kinematics, such as extensional or com-
pressional fault systems, where both fault interactions
and slip-rate variability have also been studied (e.g., Luo
and Liu, 2010; Mildon et al., 2022).
High-CoCo faults have geodetic-to-geologic ratios

that vary widely, demonstrating that rates of elastic
strain accumulation vary significantly through time at
scales that are longer than individual earthquake cy-
cles. This is particularly clear from the differences ob-
served between the short-term geodetic slip-deficit rate
data with long-term, large-displacement geologic slip
rates, which will average over any shorter-term and
smaller-displacement accelerations and decelerations
of fault slip that typify faults in such settings (Gauriau
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and Dolan, 2021). Presumably, these changes reflect
temporally variable rates of shear on the ductile shear
zone roots of brittle faults, which we infer are related
to the more complicated history of strain accumula-
tion and release among regional fault interactions at
displacement scales of a few tens of meters and cen-
tennial to millennial time scales. Specifically, geodetic
slip-deficit rates that neither match large-displacement
nor small-displacement average slip rates indicate that
the elastic strain accumulation ratemust vary over time
scales corresponding to the deceleration and accelera-
tion periods overwhich smallest-displacement geologic
rates are averaged.
In contrast, low-CoCo faults are characterized by

steady elastic strain accumulation and release rates,
which indicate that such faults need to “keep up
with” the relative plate motion rate at short-time and
small-displacement scales, overwhelming any potential
strengthening and weakening mechanisms that might
be operating on such faults. Consequently, the geode-
tic slip-deficit rate observed on a low-CoCo fault can be
used as a proxy for its geologic rate, which itself can be
assumed to be relatively constant.
Finally, we suggest that the discrepancies between

short-term geologic slip rates and geodetic slip-deficit
rates for high-CoCo faults might represent a switch of
mode, revealing either an accelerating or a decelerat-
ing phase. A geodetic slip-deficit rate that is faster than
the most recent geologic incremental slip rate would
imply a potential higher near-future seismic hazard,
whereas a geodetic rate that is slower than the smallest-
displacement slip rate would signal a lower near-future
seismic hazard. These discrepancies could be used to
refine PSHA models, not only in strike-slip fault sys-
tems, as highlighted in this study, but potentially to
any type of plate-boundary kinematics. The importance
and current relative dearth of robust incremental slip
rate records highlights the need to develop more such
records from more faults around the world to enable
better PSHA.
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Abstract The behaviour of fluids in preferentially aligned fractures plays an important role in a range
of dynamic processes within the Earth. In the near-surface, understanding systems of fluid-filled fractures is
crucial for applications such as geothermal energy production, monitoring CO2 storage sites, and exploration
for metalliferous sub-volcanic brines. Mantle melting is a key geodynamic process, exerting control over its
composition and dynamic processes. Upper mantle melting weakens the lithosphere, facilitating rifting and
other surface expressions of tectonic processes. Aligned fluid-filled fractures are an efficient mechanism for
seismic velocity anisotropy, requiring very low volume fractions, but such rock physics models also predict
significant shear-wave attenuation anisotropy. In comparison, the attenuation anisotropy expected for crys-
tal preferredorietationmechanisms is negligible orwouldonly operateoutsideof the seismic frequencyband.
Here we demonstrate a new method for measuring shear-wave attenuation anisotropy, apply it to synthetic
examples, andmake the first measurements of SKS attenuation anisotropy using data recorded at the station
FURI, in Ethiopia. At FURI we measure attenuation anisotropy where the fast shear-wave has been more at-
tenuated than the slow shear-wave. This can be explained by the presence of aligned fluids, most probably
melts, in the upper mantle using a poroelastic squirt flow model. Modelling of this result suggests that a 1%
melt fraction, hosted in aligned fractures dipping ca. 40° that strike perpendicular to theMain EthiopianRift, is
required to explain the observed attenuation anisotropy. This agrees with previous SKS shear-wave splitting
analysis which suggested a 1%melt fraction beneath FURI. The interpreted fracture strike and dip, however,
disagrees with previous work in the region which interprets sub-vertical melt inclusions aligned parallel to
the Main Ethiopian Rift which only produce attenuation anisotropy where the slow shear-wave is more atten-
uated. These results show that attenuation anisotropy could be a useful tool for detecting mantle melt, and
may offer strong constraints on the extent and orientation of melt inclusions which cannot be achieved from
seismic velocity anisotropy alone.

Non-technical summary When seismic signals travel through the Earth they lose energy, or atten-
uate, due to various mechanisms including the nature of the rocks they propagate through. One particularly
strong mechanism is the presence of fluids, such as water or molten rock, in pore spaces. Theory from rock
mechanics predicts that if fluids are hosted in aligned fractures then the loss of energy depends on the propa-
gation direction of the earthquake signal. This predicts a difference in the loss of energy between two coupled
shear-waves. Measuring this difference in energy loss then would give us a powerful tool to detect and quan-
tify the presence of fluids in the subsurface. Here we describe a new method to measure this difference in
energy loss between two shear-waves by measuring a difference in frequency content. We demonstrate this
method for synthetic seismic signals, and make the first measurements for teleseismic shear-wave data. We
use seismicwaves that sample theuppermantlebeneath the seismic stationFURI,which is situatednearAddis
Ababa, Ethiopia. We find that our new observations can be explained by a 1% volume fraction of molten ma-
terial, which agreeswith previous interpretationsmade for FURI. Modelling using current rock physicsmodels
suggests that this requires aligned fractures that dip 40◦ andareorientedperpendicular to theMain Ethiopian
Rift which disagrees with previous interpretations of melt orientated parallel to the Main Ethiopian Rift.

1 Introduction
The presence of fluids within a fractured host rock has
important effects on its seismic and mechanical prop-
erties. In the crust, there are many systems where the
presence of fluids is critical. These include melt-water

∗Corresponding author: joseph.asplet@bristol.ac.uk

pockets in glaciers, hydrocarbons in fractured reser-
voirs, and hydrothermal and magmatic systems be-
neath volcanos. Melting is also a key process within the
mantle, exerting control over mantle composition and
dynamic processes. Upper mantle melt weakens the
lithosphere, facilitating rifting (e.g., Buck, 2004; Kendall
et al., 2005) and other surface expressions of tectonic
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processes. Observed low seismic velocity zones in the
mantle transition zone (e.g., Schmandt et al., 2014; Liu
et al., 2016b) and ultra-low velocity zones (ULVZs, e.g.,
Liu et al., 2016a; Li et al., 2022) in the lowermost mantle
have been interpreted in terms of melt. Aligned melt
pockets are a very efficient mechanism for generating
seismic anisotropy (e.g., Kendall, 2000; Holtzman and
Kendall, 2010). This makes it difficult to discriminate
between melt, other shape-preferred orientation (such
as dry cracks), and lattice-preferred orientation models
of seismic anisotropy from the crust (e.g., Bacon et al.,
2022) to the lowermost mantle (e.g., Asplet et al., 2022).
Rock physicsmodels predict that aligned sets of fluid-

filled fractures, or melt inclusions, produce an effec-
tive medium that exhibits both velocity and attenua-
tion anisotropy (e.g., Hudson, 1980; Chapman, 2003; Jin
et al., 2018). This result can be achieved by either treat-
ing cracks as scatterers (Figure 1a,b; Hudson, 1980) or
through the poroelastic squirt flow of fluids in satu-
rated (or partially saturated) meso-scale fractures (Fig-
ure 1d,e; Chapman, 2003; Galvin and Gurevich, 2009;
Rubino and Holliger, 2012; Jin et al., 2018; Solazzi et al.,
2021). The squirt flow model, in particular, predicts
a strong dependence of attenuation anisotropy on the
presence of fluids (such as melt) and fracture proper-
ties.
Whilst attenuation anisotropy can be observed for

P waves (e.g., Liu et al., 2007; Ford et al., 2022) it is
the attenuation of S-waves that interests us here. Both
the crack scattering (Figure 1b) and squirt flow (Figure
1e)models predict an attenuation anisotropy which can
be used to complement studies that measure velocity
anisotropyusing shear-wave splitting (e.g. Kendall et al.,
2005; Verdon and Kendall, 2011; Al-Harrasi et al., 2011;
Baird et al., 2013, 2015; Bacon et al., 2022; Schlaphorst
et al., 2022). Attenuation anisotropy is a highly sensitive
tool for detecting fluids within the earth that are hosted
within aligned fractures. For microseismic settings,
where the mechanism of seismic anisotropy is known
to befluid-filled fractures,measurements of anisotropic
attenuation in shear-waves have been used to help con-
strain fracture and fluid properties (Carter and Kendall,
2006; Usher et al., 2017). Attenuation anisotropy can be
observed directly in experiments (e.g., Best et al., 2007;
Zhubayev et al., 2016), albeit at higher frequencies. Nu-
merical models also show that attenuation anisotropy
is sensitive to fluid transport properties (Wenzlau et al.,
2010).
Measurements of differential attenuation between

different teleseismic shear-wave phases, typically S-ScS,
have been previously used to measure isotropic QS in
the Earth’smantle (e.g., Lawrence andWysession, 2006;
Ford et al., 2012; Durand et al., 2013; Liu and Grand,
2018). This differential attenuation can be measured
by either taking log-spectral ratios or by measuring in-
stantaneous frequency relative to a reference seismo-
gram (Matheney and Nowack, 1995). Here we employ
an instantaneous frequency method, which has been
shown to be more robust than spectral ratios for tele-
seismic shear-waves (Ford et al., 2012; Durand et al.,
2013). By making measurements of differential atten-
uation between fast and slow split shear-waves it is pos-

sible tomeasure attenuation anisotropy. As attenuation
anisotropy is primarily predicted by effective medium
models of fluid-filled fractures, these measurements
are highly sensitive to the presence of fluids, such as
melt, within the Earth.
We outline how an instantaneous frequency match-

ing method can be applied to measure attenuation
anisotropy using shear-wave splitting. Using synthetic
shear-wave data we demonstrate the frequency domain
effects of attenuation anisotropy and the implications
this can have for measurements of shear-wave split-
ting. We explore the pitfalls of measuring attenuation
anisotropy and demonstrate the efficacy of our instan-
taneous frequency-matching method. We then demon-
strate the application of jointmeasurements of attenua-
tion anisotropy and shear-wave splitting using SKS data
recorded at FURI, Ethiopia.

2 Models of attenuation anisotropy
When a shear-wave propagates through an anisotropic
medium, seismic birefringence — or shear-wave split-
ting — occurs. The fast and slow shear-waves are po-
larised along the fast velocity direction and an (as-
sumed) orthogonal direction and propagate at different
velocities through the medium. This introduces a time
delay between the two and can decouple the two (quasi)
shear-waves, although in the teleseismic case the time
delay time, δt, is much less than the dominant period of
the waveform. Assuming that the medium can be de-
scribed by a single elastic tensor cijkl the phase veloci-
ties and polarisation of each wave can be found by solv-
ing the Christoffel equation,

(cijklnjnl − ρV 2δik)pk = 0 , (1)

where V is phase velocity, ρ is density, pk is polarisa-
tion unit vector and nj,l are propagation unit vectors.
Solving this eigenproblem yields three positive, real
eigenvalues corresponding to ρVP , ρVS1, ρVS2 with cor-
responding eigenvectors describing the polarisation di-
rections, which aremutually perpendicular (Mainprice,
2015).
If the medium is also attenuating, then both shear-

waves experience a frequency-dependent loss in am-
plitude and dispersion. The isotropic attenuation of a
shear-wave over its path length, l, can be described by
the anelastic delay time t∗ which is given by

t∗ =

∫

path

dl

vSQS
, (2)

where vS is the isotropic shear-wave velocity and 1/QS

is the isotropic shear-wave dissipation coefficient. It
can be shown that an attenuating medium requires
frequency-dependent velocities, or physical dispersion,
where the intrinsic seismic velocity of waves propa-
gating through a medium varies with frequency (Aki
and Richards, 1980). If this physical dispersion is
also anisotropic, then the seismic velocity anisotropy is
frequency-dependent and it follows that attenuation is
anisotropic also (Carter and Kendall, 2006).
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In the case of an anisotropic attenuating medium,
where the shear-wave dissipation coefficient 1/QS

varieswith propagation direction, the fast and slow split
shear-waves will experience different anelastic delay
times. We define this difference in anelastic delay times
as

∆t∗ = t∗

S2 − t∗

S1, =
l

vS2QS2
−

l

vS1QS1
, (3)

where S1 is the fast split shear-wave and S2 is the slow
split shear-wave. Following this definition, a positive
∆t∗ represents the case where the slow shear-wave is
more attenuated than the fast shear-wave and a nega-
tive ∆t∗ is where the fast shear-wave is more attenuated
that the slow shear-wave. It is also worth noting that
due to the definition of anelastic delay time (3) velocity
anisotropy will produce a ∆t∗ even if there is isotropic
attenuation (i.e., where QS2 = QS1). This effect, how-
ever, due to the difference in travel times through the
attenuating medium, is negligible compared to the ∆t∗

that can be predicted for anisotropic attenuation and
will always produce ∆t∗ > 0 (Supplemental Figure 1).

2.1 Anisotropic attenuation due to fluid-
filled fractures

Weconsider twomainmodels of seismic anisotropy due
to fluid-filled fractures which also allow for the mod-
elling of attenuation anisotropy. These model attenua-
tion due to scattering (Hudson, 1980) and due to poroe-
lastic squirt flow of the hosted fluids (Chapman, 2003).
Hudson (1980) employs an effective medium approach
to model attenuation due to preferential scattering by
the aligned fractures. For this reason, we refer to this
model as crack scattering or simply scattering. The at-
tenuation predicted by this model is anisotropic and
frequency-dependent (e.g., Crampin, 1984). Crack scat-
tering also predicts anisotropic attenuation for unsat-
urated (or dry) aligned cracks, although the attenua-
tion profiles are sufficiently different to allow the dry
and saturated cases tobedistinguished (Crampin, 1984).
The thin layering of material could also produce an ef-
fective medium with frequency-dependent anisotropy
(Backus, 1962; Werner and Shapiro, 1999) and there-
fore attenuation anisotropy through a similar scattering
mechanism.
There are, however, several limitations to this effec-

tivemedium approach. It does notmodel the frequency
dependence of the elastic constants, limiting the sensi-
tivity to fracture size, and it neglects the effects of fluid
exchange between fractures or between fractures and
the host rock matrix. Work to extend the models to in-
clude such fluid interchange and equant porosity in the
rock matrix show that this has a significant effect on
the predicted seismic anisotropy (e.g., Thomsen, 1995;
Hudson et al., 1996; Tod, 2001). To adequately model
this system an approach that considers the poroelas-
tic squirt flow of fluids held in a random collection of
grain-scale microcracks and spherical pores along with
aligned meso-scale fracture sets (i.e., fractures much
larger than the grain scale) was developed (Chapman,
2003). In the poroelastic squirt flowmodel, the propaga-
tion of a seismic wave causes fluids to migrate between

connected meso-scale fracture, micro-scale crack and
pore spaces which results in frequency-dependent ve-
locity and attenuation anisotropy. These poroelastic
effects can also be modelled by treating the effect of
pores and fractures as perturbations in an isotropic
background medium (e.g., Jakobsen et al., 2003; Galvin
and Gurevich, 2009, 2015). More recent developments
in squirt flow models allow for partially saturated me-
dia (e.g., Rubino and Holliger, 2012; Solazzi et al., 2021)
and for multi-phase fluids such as water and supercrit-
ical CO2 (Jin et al., 2018). In both cases, squirt flow
predicts attenuation anisotropy but we shall only con-
sider the fully saturated case here. It should be noted
that this model, and the scattering model, assume per-
fectly aligned fractures which is unlikely to represent
real-world fracture systems completely. Themodels are
also limited to very low aspect ratios which ultimately
derives from the low aspect ratio limit of Eshelby’s the-
ory (Eshelby, 1957), which results in very low volume
fractions (ca. 2×10−5) of fluids required to be in aligned
fracture to produce significant velocity and attenuation
anisotropy. Recent numerical modelling of squirt flow
dispersion models has shown that dispersion increases
with fracture density and decreases with aspect ratio,
with aspect ratios ≥ 0.1 showing very weak attenuation
(Sun et al., 2020).
To calculate seismic velocity and attenuation

anisotropy for both the crack scattering and squirt flow
models we follow the approach of Crampin (1981). We
can include attenuation in the definition of a medium’s
elastic tensor cijkl by introducing imaginary parts cI

ijkl

of complex elastic constants,

cijkl = cR
ijkl + icI

ijkl , (4)

where the real components cR
ijkl are the elastic con-

stants. Solving the Christoffel equation for this complex
elastic tensor now yields complex eigenvalues λ = λR +
iλI , with the dissipation coefficient 1/Q given by the ra-
tio of the imaginary and real parts (Crampin, 1984),

1

QP
=

λI
P

λR
P

, (5)

1

QS1
=

λI
S1

λR
S1

, (6)

1

QS2
=

λI
S2

λR
S2

. (7)

For the crack scattering model, the imaginary compo-
nents of the complex elastic tensor can be constructed
using equations from Crampin (1984). Figure 1 shows
the seismic velocity (Figure 1a) and attenuation (Figure
1b) profiles modelled as a function of propagation an-
gle relative to the crack normal for a saturated, cracked
solid for a frequency of 0.1 Hz. The isotropic solid has
velocities vp = 6.5 km s−1, vs = 3.6 km s−1 and a den-
sity of 2700 kg m−3 with fractures which are filled with a
fluid with a P-wave velocity vp = 2.7 km s−1, a crack ra-
dius of 5 km, a crack density of 0.05 and an aspect ratio
of 1 × 10−4. The predicted attenuation anisotropy, ∆t∗,
as a function of propagation angle (Figure 1c) is calcu-
lated using (3) assuming a path length of 50 km through
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Figure 1 Seismic velocity, quality factor and attenuation anisotropy (expressed in terms of ∆t∗) predicted by rock physics
models for cracked, fluid-filled media which considers crack scattering (a,b,c Hudson, 1981), and that model poroelastic
squirt flow (d,e,f) Chapman, 2003). Also shown is ∆t∗ predicted solely by velocity anisotropy effects, computed using an
elastic tensor for Olivine (Abramson et al., 1997) and Q = 50. Results for other isotropic values of Q are shown in Supple-
mentary Figure 1. Velocity and attenuation for P (blue), S1 (orange) and S2 (green) are calculated by solving the Christoffel
equation (see text for details) assuming a 50 km thick medium and a dominant frequency of 0.1 Hz. For the fluid-filled mod-
els we use an isotropic solid with velocities vP = 6.5 km s−1 and vS = 3.6 km s−1 which contains melt inclusions with
vS = 2.7 km s−1, ρ = 2700 kg m−3. These parameters are chosen to be broadly consistent with previous effective medium
modelling of melt-induced seismic anisotropy (Hammond et al., 2014).
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themedium. This broadly represents teleseismic shear-
waves propagating through the upper mantle. As ∆t∗

represents the difference in attenuation between the
fast and slow shear-waves there is a discontinuity at θ =
60◦ in the scattering model where the polarisation di-
rection of S1 and S2 swap (Figure 1b,c). The importance
of this is that crack scattering only predicts ∆t∗ > 0. It
is also worth noting that the scattering model predicts
non-physical negative 1/Q values for propagation angles
around θ = 45◦ due to approximations used to calculate
the imaginary components of the elastic tenor. This re-
sult can also be seen in Crampin (1984), where the ap-
proximations are developed.
The complex elastic tensor for the squirt flow model

is calculated following the method of Chapman (2003).
As a numerical example, we calculate velocity (Figure
1d), attenuation (Figure 1e), and ∆t∗ (Figure 1f) as a
function of propagation angle for a frequency of 0.1Hz
using the same isotropic solid and crack fill properties
and aspect ratio as before. Additionally, we specify a to-
tal porosity, Φ = 0.05; a grain-sized microcrack density,
ǫc = 0.05; a meso-scale (i.e., larger than grain size) frac-
ture density, ǫf = 0.1; a fracture length, af = 10 m; and
an aspect ratio, r = 1 × 10−4. Fracture and microcrack
density are related to the respective porosities (or vol-
ume fractions) Φf and Φc in the squirt flow model by

Φf =
4

3
πǫf r (8)

and
Φc =

4

3
πǫcr (9)

(Chapman, 2003). This yields a fracture porosity Φf =
4.2 × 10−5 and a microcrack porosity Φc = 2.1 × 10−5,
with the remaining porosity modelled as spherical pore
spaces. An important assumption of the squirt flow
model is that microcracks and pores interact with only
one meso-scale fracture, which in turn requires a low
fracture density to be valid. We use a mineral-scale
relaxation time τm = 2 × 10−5 s and grain size ζ =
120 × 10−6 m, which are taken from Chapman (2003)’s
numerical example.
From these numerical examples, we can see that the

inclusion of poroelastic squirt flow effects has a signifi-
cant effect on the predicted seismic velocities and atten-
uation. Furthermore, squirt flow is sensitive to fracture
length, with only a small range of fracture lengths pro-
ducingmeasurable∆t∗ for a given frequency (Figure 2).
This frequency range is determined by the characteris-
tic fracture relaxation frequency ωf which is related to
fracture length af by

ωf =
ζ

af
ωm , (10)

where
ωm =

2π

τm
. (11)

It follows that different frequencies will induce squirt
flow in different fracture sizes (Supplementary Figure
2). In practice, the fractures will not have a uniform
length and there will be a range of frequencies. In

Figure 2 Anisotropic attenuation, ∆t∗, as a function of
fracture length as predictedbyboth squirt flow (dashed line
Chapman, 2003) and crack scattering (solid line Hudson,
1980)models. ∆t∗ is calculated for a propagation angle θ =
70◦ relative to the crack normal and a frequency of 0.1 Hz.

this modelling the frequency used (0.1 Hz) is assumed
to be the dominant frequency of the seismic phases.
The squirt flow model also assumes that the fractures
are perfectly aligned. One effect of this assumption of
identically sized and perfectly aligned fractures is that
squirt flowpredicts no attenuation anisotropywhen θ =
90° (i.e., propagating parallel to the aligned fractures),
whilst crack scattering predicts the maximum ∆t∗. The
squirt flow model produces a characteristic change in
the polarisation of S1 and S2: in the example shown
here this occurs at θ = 45◦, but the exact angle where
this occurs depends on themodel parameters used. Un-
like the crack scattering mechanism, this allows for
both positive and negative ∆t∗. Observing this change
of sign in ∆t∗ (or consistently observing ∆t∗ < 0) is a
clear indicator of squirt flow and, therefore, of the pres-
ence of aligned fluid-filled fractures. This has been pre-
viously observed in microseismic datasets (Carter and
Kendall, 2006; Usher et al., 2017). In particular, squirt
flow could reasonably explain the results of Carter and
Kendall (2006), who observed some cases where ∆t∗ <
0 in microseismic data recorded at the Valhall Field,
in the Norwegian sector of the North Sea. Fractures
on the order of 0.6 m − 6 m would produce attenuation
anisotropy for microseismic frequencies (Supplemen-
tary Figure 2). Due to the length scales of both squirt
flow and crack scattering, we would not expect signifi-
cant attenuation anisotropy to occur for crystal lattice-
preferred orientationmechanisms. The effects of veloc-
ity anisotropy, where S2 is more attenuated due to its
larger travel time, are negligible (Supplementary Figure
1) and even if there are grain-scale fluid inclusions, such
as grain boundary wetting, the squirt flow effects would
occur well outside of the seismic frequency band. This,
combined with the sensitivity of attenuation anisotropy
to very low volume fractions of aligned fluid inclusions,
makes measuring attenuation anisotropy a promising
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tool to detect fluids in the subsurface.

3 Instantaneous frequency as a mea-
sure of attenuation anisotropy

3.1 Instantaneous frequency
As we have shown, the crack scattering and squirt
flow mechanisms both predict attenuation anisotropy
whichwe could potentiallymeasure in shear-wave split-
ting datasets. If the shear-waves S1 and S2 share the
same source, geometrical spreading, and effective re-
ceiver transfer functions, then they should have equiva-
lent frequency spectra if the intrinsic attenuation along
the ray path is isotropic, barring the small difference
caused by velocity anisotropy. Therefore, if we can
measure a significant difference between the frequency
content of each shear-wave, this might be attributed to
attenuation anisotropy.
To measure the difference in attenuation between

fast and slow shear-waves we apply the instantaneous
frequency matching method of Matheney and Nowack
(1995). Instantaneous frequency matching has been
shown to be less sensitive to noise when measuring
attenuation than taking spectral ratios (Matheney and
Nowack, 1995; Engelhard, 1996). Instantaneous fre-
quency matching also gives more robust estimates of
isotropicmantle attenuation for teleseismic shear-wave
phases than spectral ratios (Ford et al., 2012; Durand
et al., 2013). This method also does not require the as-
sumptionof frequency-independent attenuation,which
is useful for the case of fluid-filled fractures where
frequency-dependent anisotropic attenuation is pre-
dicted even for seismic frequencies (e.g., Chapman,
2003; Jin et al., 2018). A similar approach can be taken
by performing frequency shifts in the frequency do-
main (Quan and Harris, 1997), although we prefer the
instantaneous frequency method as all measurements
are kept in the time domain. Instantaneous frequency
is a concept that arises from complex trace analysis (Ga-
bor, 1946). A time-domain signal x(t), such as a seismic
wavelet, can be described in terms of its instantaneous
amplitude (or envelope), a(t), and instantaneous phase,
θ(t),

x(t) = a(t) cos θ(t) , (12)
which is equivalent to representing the signal by its
complex Fourier spectrum (Engelhard, 1996). To con-
struct the complex trace we apply a Hilbert transform
to x(t) to give the orthogonal quadrature (or imaginary)
trace

y(t) = a(t) sin θ(t) , (13)
with the complex trace then given by:

z(t) = x(t) + iy(t) = a(t)eiθ(t) . (14)

From this complex trace, we then obtain the following
expressions for instantaneous amplitude,

a(t) = [x(t)2 + y(t)2](1/2) , (15)

and instantaneous phase

θ(t) = tan−1(
y(t)

x(t)
) . (16)

The instantaneous frequency of our signal x(t) is given
by the rate of change of the instantaneous phase with
respect to time

f(t) =
1

2π

d

dt
θ(t) (17)

(Taner et al., 1979). This requires taking the derivative
of an arctangent function, which results in

f(t) =
1

2π

x(t) d
dt y(t) − y(t) d

dt x(t)

a(t)2 + ǫ2
, (18)

where ǫ is a damping factor that can be added to re-
duce the large positive and negative amplitude spikes
that can occur (Matheney and Nowack, 1995). As we
did not observe large spikes in our instantaneous fre-
quency traces, and are only interested in a single time
window, we did not add a damping factor. The in-
stantaneous frequency values are also weighted by the
squared instantaneous amplitude. This gives a damped
and weighted instantaneous frequency within a speci-
fied analysis window as

f(t) =

∫ t+T

t−T
f(t′)a(t′)2

∫ t+T

t−T
a(t′)2

. (19)

When weighted by instantaneous amplitude the instan-
taneous frequency of a signal approaches the centre fre-
quency, or spectral mean, of the signal’s Fourier power
spectra for a sufficiently large analysis window (Saha,
1987; Barnes, 1993). Weuse analysiswindowspicked for
shear-wave splitting analysis, which isolate the phase of
interest.

3.2 Instantaneous frequency matching of
split shear-waves

The attenuation of a seismic phase is measured by
matching the instantaneous frequency of the observed
phase, fobs, to that of a reference phase, fref . This is
done by applying a frequency domain causal attenua-
tion operator,

D(ω) = exp
{

−
ω

2
t∗

}

exp

{

iω

π
t∗ ln

ω

ωr

}

, (20)

where t∗ is the anelastic delay time (2) and ωr is the
angular reference frequency (Muller, 1984), to the ref-
erence phase. Note that D(ω) affects both the ampli-
tude and phase of the waveform, which has important
effects when we relate attenuation anisotropy to shear-
wave splitting. It is also worth noting that this causal at-
tenuation operator is different from the operator stated
in Matheney and Nowack (1995),

D(ω) = exp
{

−
ω

2
t∗

}

exp

{

−
iω

π
t∗ ln

ω

ωr

}

, (21)

by a factor of −1 for the complex exponent term. Both
expressions are valid, with the sign of the phase de-
lay term being chosen to ensure that D(ω) produces a
causal signal (Supplementary Figure 3). This depends
on the choice of reference frequency and the sign con-
vention of the fast fourier transform (FFT) implemen-
tation used. We choose to follow previous work (Ford
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Figure 3 Example of Gabor wavelet synthetics used. (a)
shows a synthetic where shear-wave splitting, with fast di-
rection φ = 30◦ and delay time δt = 1.5 s. (b) shows the
synthetics in panel (a) where differential attenuation∆t∗ =
1.0 s has been applied by applying a causal attenuation op-
erator to the slow shear-wave. (c) shows the synthetic from
panel (a) where a differential attenuation ∆t∗ = −1.0 s has
been applied by attenuating the fast shear-wave. All syn-
thetics in this Figure are generated with a source polarisa-
tion of 70◦, a dominant frequency of 0.2 Hz and a sample
rate of 50 ms.

et al., 2012; Durand et al., 2013) in using (20). Follow-
ing Muller (1984) the reference frequency is set to the
Nyquist frequency, as this ensures ω < ωr and imposes
a negative phase shift for all frequencies when using
(20). Another common choice of reference frequency
is 1Hz (e.g., Futterman, 1962; Aki and Richards, 1980;
Ford et al., 2012; Durand et al., 2013), which works pro-
vided that it is outside the frequency range of inter-
est. One final important point to note, which may be
slightly obfuscated by our choice of notation, is that this
choice of attenuation operator implicitly assumes that
Q is constant with frequency. This is a reasonably safe,
and common, assumption to make for the seismic fre-
quency band (e.g., Aki and Richards, 1980). However,
this does mean that whilst there is no assumption of
constant Q in the measurement of instantaneous fre-
quency (Dasios et al., 2001; Ford et al., 2012), the com-
mon choice of D(ω) adds this assumption to the instan-
taneous frequency matching process.
Where a match in the instantaneous frequencies is

achieved (i.e., ∆f = fref − fobs = 0) the t∗ operator
that is retrieved represents a differential attenuation be-
tween fref and fobs. The physical meaning of the mea-
sured differential attenuation depends on the selection
of fobs and fref . For example, to measure lowermost
mantle attenuation, the lowermantle transiting S phase

can be used as a reference phase for ScS. The differen-
tial attenuation between the S and ScS phases can then
be attributed to the divergence of the phases’ ray paths
in the lower mantle (Ford et al., 2012; Durand et al.,
2013).
To measure attenuation anisotropy, instead of choos-

ing a separate seismic phase as the reference phase we
take advantage of shear-wave splitting and use one of
the split shear waves as the reference phase. This gives
the differential attenuation between S1 and S2, which
we have previously described as ∆t∗ (equation 3). The
sign of ∆t∗ indicates whether the fast (S1) or slow (S2)
shear-wave has experienced more attenuation.
For this method to work, the fast polarisation direc-

tion must be correctly identified so that the fast and
slow shear-waves can be separated. This is important
as shear-wave splitting delay times are typically much
smaller than the dominant period of the signal. This
assumption is often made for teleseismic shear-waves
(e.g., Silver and Chan, 1988; Chevrot, 2000). A conse-
quence of this is that fast and slow shear-waves are not
wholly split in time. This causes interference between
the two shear-waves if they are viewed in the incorrect
reference frame, which consequently affects the appar-
ent frequency content of the two shear-waves. This
makes the frequency content of each component de-
pendent on the orientation of the reference frame. This
is then further complicated by the phase shift intro-
duced by the causal attenuation operator D(ω). We will
expand on this further below, using example synthetic
shear-waves.

3.3 Frequency domain effects of shear-wave
component rotation and attenuation
anisotropy

We can use synthetic data to explore the effects of
component rotation and attenuation anisotropy on the
frequency content of the apparent S1 and S2 phases,
without the constraints attached to real observations
of shear-wave splitting. All our synthetic examples are
generated using a Gabor wavelet

x(t) = cos(2πf0(t − t0) + ν) exp
{

−4π2f2
0 (t − t0)2/γ2

}

,
(22)

with a dominant, or carrier, frequency f0 = 0.2 Hz and
a time shift t0 = 0 s. The parameters γ and ν control
the shape of the wavelet. For small γ the wavelet has
a delta-like impulse and for large γ it has an oscillatory
character. The parameter ν describes the symmetry of
the wavelet. For ν = 0, the wavelet is symmetric and
when ν = −π

2 or π
2 it is antisymmetric (Červenỳ et al.,

1977). Herewe followMatheney andNowack (1995) and
use the parameters γ = 4.5 and ν = 2π/5. Synthet-
ics are generated at a sample frequency of 20 Hz. The
wavelet is then projected onto horizontal component
seismograms from a desired initial source polarisation.
Shear-wave splitting is applied to each synthetic by spec-
ifying the two desired shear-wave splitting parameters:
the fast direction, φf , and delay time, δt. Where attenu-
ation anisotropy is applied the synthetic is rotated to the
fast polarisation direction, to isolate the fast and slow
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shear-waves, and either the slow trace or the fast trace
is attenuated to achieve a positive or negative ∆t∗.
Using simple synthetic examples (Figure 3), the effect

that attenuation anisotropy has on shear-wave splitting
can be seen. Here we generate synthetics with a fast
polarisation direction of 30◦, a lag time of 1.5 s and a
source polarisation of 70◦ (Figure 3a). The slow trace
is attenuated by applying a causal attenuation operator
(20) where t∗ = 1.0 s, introducing a differential atten-
uation (or attenuation anisotropy), ∆t∗ = 1.0 s (Figure
3b). A negative differential attenuation ∆t∗ = −1.0 s
can be introduced by instead attenuating the fast shear-
wave (Figure 3c). Visual inspection of these synthet-
ics shows a loss of amplitude on the attenuated trace.
However, we can also observe an additional time delay
in the attenuated traces introduced by the phase terms
of the causal attenuation operator (equation 20), which
has significant implications formeasurements of shear-
wave splitting.
The effect of component rotation on shear-wave fre-

quency content can be further demonstrated using the
synthetics from Figure 3a and 3b. The seismograms are
rotated to the geographic reference frame (i.e., where
a reference frame rotation φr = 0◦ returns the North
and East components) and then rotated through refer-
ence frame angles in the range of −90 ≤ φr ≤ 90. At
each φr the amplitude of the frequency spectra is cal-
culated, along with the instantaneous frequency within
a 10 s analysis window centred on the wavelets (Figure
4). In the case where ∆t∗ = 0 s the spectral ampli-
tude of the fast (Figure 4a) and slow (Figure 4c) shear-
waves vary with φr. When the fast and slow shear-
waves are correctly separated at φr = 30◦ or φr = −60◦

there is no difference in the respective instantaneous
frequencies, which are both measured as 0.2 Hz. When
∆t∗ = 1 s is applied the frequency content of the fast
shear-wave should be unchanged, which is the case at
φr = 30◦. The additional attenuation applied to the slow
shear-wave reduces the effect of component rotation,
but the effect is still strong enough to affect our instan-
taneous frequency matching method. These examples
also show that instantaneous frequency retrieves the av-
erage amplitude-weighted frequency for each trace.
The synthetic shear-waves shown in Figure 3b, where

φf = 30, δt = 1.5, and ∆t∗ = 1, can also be used
to demonstrate how instantaneous frequencymatching
can retrieve the applied attenuation anisotropy. Again
the synthetic is initially rotated to the geographic ref-
erence frame and then rotated over the range −90 ≤
φr ≤ 90. This simulates searching over the full range of
reference frame rotations to test all potential fast shear-
wave polarisations. At each reference frame rotation
the instantaneous frequency of the two horizontal com-
ponents is measured (Figure 5a), along with the differ-
ence in instantaneous frequencies (Figure 5b). The sec-
ond eigenvalue of the trace covariance matrix, λ2, is
also calculated after correcting for the lag time δt = 1.5 s
(Figure 5c). We calculate λ2 as it is commonly used in
shear-wave splitting analysis that employs eigenvalue
minimisation (Silver and Chan, 1991; Wuestefeld et al.,
2010; Walsh et al., 2013). Shear-wave splitting intro-
duces a phase delay between the two orthogonally po-

larised shear-waves, resulting in an elliptical particle
motion. Eigenvalue minimisation methods use λ2 to
characterise this, or the seismic energy on the trans-
verse component of a seismogram viewed in the radial-
transverse reference frame. It therefore follows that if
attenuation anisotropy introduces an additional phase
delay term, this can add a source of systematic error
to shear-wave splitting measurements. Only when the
data is corrected for the applied ∆t∗ by attenuating the
apparent fast shear-wave, which is the reference phase
for a positive ∆t∗, is the input fast polarisation direc-
tion able to be retrieved (Figure 5c). In this example,
we know ∆t∗ = 1 s and can omit a search over a range
of potential ∆t∗ values.
The instantaneous frequency of the apparent fast and

slowshear-waves varies as a functionof reference frame
rotation φr (Figure 4, 5a). For both the uncorrected
(solid lines) and corrected (dashed) traces there are
two points where the instantaneous frequenciesmatch,
which can be seen asminima in |∆f | (Figure 5b). In the
uncorrected data, these points are separated by approx-
imately 90◦ and if ∆t∗ = 0 then one minima lies at the
fast polarisation direction. When there is attenuation
anisotropy these minima are not located at the true fast
polarisation direction (solid line, Figure 5b). When the
correction for ∆t∗ is applied these minima collapse to-
wards one another, but do not necessarily converge to
the same point.
Figure 5c shows the effect that attenuation anisotropy

has on shear-wave splitting measurements, as charac-
terised by λ2. If we do not correct for the applied atten-
uation anisotropy then the λ2 minima can appear to be
less pronounced and deflected from the true fast polar-
isation direction. In this example, this synthetic shear-
wave splitting has no clear λ2 minimum when we cor-
rect for the imposed delay time of 1 s. The minimum
λ2 occurs at a fast polarisation direction of −78.24◦

compared to the true fast polarisation direction of 30◦.
When we correct for ∆t∗ this effect is entirely removed
and we can retrieve the input shear-wave splitting pa-
rameters. This error in fast polarisation direction in-
creases with ∆t∗ andmay not be fully captured by stan-
dard methods of measurement uncertainty estimation
such as, for example, using the F-test derived 95% con-
fidence region of the measured λ2 values (Silver and
Chan, 1991; Walsh et al., 2013), as the frequency effects
of attenuation anisotropy distort λ2 with rotation angle
(Figure 5c). Themagnitude of this effect depends on the
strength of attenuation anisotropy.

3.4 Grid searching over component rotation
and attenuation anisotropy to match in-
stantaneous frequency

These synthetic examples (Figure 5) highlight an impor-
tant challenge in measuring attenuation anisotropy for
shear-waves. The inherent rotational interference be-
tween the fast and slow shear-waves makes measuring
∆t∗ highly dependent on accurately identifying the cor-
rect fast polarisation direction. Meanwhile, the error
that ∆t∗ can introduce into shear-wave splitting mea-
surementsmeans thatwe cannot treatmeasurements of

8
SEISMICA | volume 3.1 | 2024



SEISMICA | RESEARCH ARTICLE | Shear-wave attenuation anisotropy

Figure 4 Amplitude spectra of synthetic shear-waves as a function of component reference frame rotation. At each ref-
erence frame rotation angle, we calculate the amplitude spectra and instantaneous frequency (black line) for the appar-
ent fast and slow shear-waves. The left column shows the frequency content for the synthetics shown in Figure 3a, where
φf = 30◦, δt = 1.5 s and ∆t∗ = 0 s. The right column shows the frequency content for the synthetics shown in 3b, where
an attenuation anisotropy of ∆t∗ = 1 s has been applied to the synthetics shown on the right. This ∆t∗ is applied before
rotating the components.

the fast polarisation direction as independent. To suc-
cessfully measure ∆t∗ wemust, therefore, also identify
the true fast polarisation direction.

One strategy to achieve this is to search over both the
potential component (or reference frame) rotation an-
gles φr and differential attenuation ∆t∗. To transform

the instantaneous frequency matching process into a
minimisation, simplifying the grid search, we adjust
the objective function from ∆f , used in Matheney and
Nowack (1995) to |∆f | = |fref − fobs|. In this form we
have to fix the reference and observed traces to allow
for automation of the grid search and set the apparent
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Figure 5 Example of the effects of component rotation
and attenuation anisotropy on the frequency content and
shear-wave splitting (parameterised by λ2 for a synthetic
shear-wave. Instantaneous frequency (a), the difference in
instantaneous frequency (b), and the second eigenvalue of
the trace covariance matrix (c) measured for the synthetic
shear-wave shown in Figure 3b over the range of reference
frame rotations of the horizontal components (solid lines).
At each reference frame rotation, we then correct for the
differential attenuation by attenuating the apparent fast
shear-wave (blue) by t∗ = 1 s and repeat themeasurements
(dashed lines). The solid vertical line shows the applied (or
true) fast polarisationdirection, 30◦ and thedashed vertical
line shows the fast polarisation direction that would be re-
covered if the synthetics are not corrected for ∆t∗.

S1 phase as fref and the apparent S2 phase as fobs, as-
suming that φr is the fast polarisation direction. This
assumption means that we are unable to immediately
determine the sign of ∆t∗ as cases where ∆t∗ < 0 are
reported at the 90◦ from the true fast polarisation direc-
tion (i.e., the traces have been rotated such that S2 has
become the reference phase). To find the correct sign
for a ∆t∗ measurement we must return to input data,
correct for ∆t∗ and then measure shear-wave splitting.
If the measured fast polarisation agrees with φr, within
measurement uncertainty, this indicates a positive ∆t∗.

If the difference between the fast polarisation and φr

is approximately 90◦, withinmeasurement uncertainty,
this indicates that φr is the polarisation direction of the
slow shear-wave which requires a negative ∆t∗.
If we look at grid search results for individual shear-

waves (Figure 6a), it becomes clear that we cannot
uniquely constrain φr and ∆t∗ for a single event us-
ing our grid search method. One property of the rela-
tionship between the instantaneous frequency of split-
shear waves and component rotation that we can take
advantage of to resolve this is that instantaneous fre-
quency (as a function of component rotation) is also de-
pendent on the source polarisation of the shear-waves.
Performing a grid search over φr and ∆t∗ for synthet-
ics with example source polarisations of 45◦ (Figure 6a),
130◦ (Figure 6b) and 285◦ (Figure 6c), we can see that
whilst we are unable to retrieve the input parameters
φr = 30◦, ∆t∗ = 1 s in each case there is a different
subset of the model space which minimises |∆f |. For
each source polarisation, this subset includes the true
model parameters. When the examples are summed,
the model space which can minimise |∆f | is greatly re-
duced (Figure 6). In this simple, low noise example the
minima of the sum returns the input φr, ∆t∗ exactly.
Therefore, we can measure φr and ∆t∗ if we have

sufficient measurements of shear-waves with different
source polarisations, where the assumption that all
shear-waves sample the same attenuation anisotropy
can be made. For this stacking method to work well,
data with a good spread of source polarisations is de-
sirable. For real data this does place constraints on
wheremeasurements canbemade, asmeasuring shear-
wave splitting from sources with an even distribution of
source polarisations that sample a single region of at-
tenuation anisotropy could be challenging.

4 Synthetic examples
We demonstrate our |∆f | stacking method using syn-
thetic shear-wave data. These examples show that our
method can retrieve input shear-wave splitting and at-
tenuation anisotropy parameters. As before, we use
a Gabor wavelet and generate a set of 100 synthetic
shear-waves. These synthetics are generatedwith a ran-
dom source polarisation drawn from a continuous uni-
form distribution between 0◦ and 360◦ and with a dom-
inant frequency drawn from f ∼ N (0.1, 0.02). Shear-
wave splitting, with a fast direction φf = 30◦ and de-
lay time δt = 1.0 s, is applied to all synthetics. Attenu-
ation anisotropy, with ∆t∗ = 1 s, is applied by attenu-
ating the slow shear-wave. Random white noise with a
noise fraction, or noise-to-signal ratio, of 0.075 is also
added to the synthetics after rotating the components
to the geographic reference frame. This represents a
good signal-to-noise ratio, of ca. 13 : 1 for real data
as this example is intended to represent the ideal case
for attenuation anisotropy measurements. To mimic
the preprocessing of real data the synthetics are band-
pass filtered, using a two-pole two-pass Butterworth fil-
ter with corners of 0.01 Hz and 0.3 Hz. The absolute dif-
ference in instantaneous frequency, |∆f |, is calculated
for candidate φr values over the range −90◦ ≤ φr ≤
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Figure 6 Example |∆f | grid search results for individual synthetic waveforms generated at different source polarisations.
Synthetics are generated with shear wave splitting parameters φf = 30◦, δt = 1.0 s, attenuation anisotropy ∆t∗ = 1 s and
source polarisations of 45◦ (a), 130◦ (b) and 285◦ (c). These |∆f | surfaces can then be stacked (d), with the minima of the
stack returning the input attenuation anisotropy ∆t∗ and fast polarisation direction φf .

90◦, and candidate ∆t∗ in the range 0 ≤ ∆t∗ ≤ 4 s
as shown in Figure 6. To account for potentially un-
even source polarisation coverage, where data fromone
source polarisation could dominate the stack, we per-
formaweighted stacking similar towhat canbe used for
shear-wave splitting (Restivo and Helffrich, 1999). Each
|∆f | grid is weighted by 1/N , where N is the number
of waveforms recorded in a 10◦ source polarisation bin.
The best-fitting φr and ∆t∗ is found by taking the min-
ima of the weighted stack (Figure 7).
To estimate the uncertainties in our measurements,

we bootstrap our |∆f | stacking. The 100 |∆f | grids
are bootstrap sampled, with replacement, 10,000 times.
We repeat the source polarisation weighted stacking for
each set of bootstrap samples. The resulting distribu-
tion of the minimum |∆f | for each bootstrap sample
(Figure 8) can be used to define a 95% confidence re-
gion in the stacked |∆f |. An upper-tailed test, where
any |∆f | that is below the 95% confidence threshold
estimated from the bootstrapping (Figure 8) is con-

sidered to reasonably explain our data, is used. This
95% confidence threshold can then be mapped back
onto weighted |∆f | stack and estimate the uncertain-
ties of φr, ∆t∗ from the length and width of the confi-
dence region (Figure 7), following a similar approach
to shear-wave splitting studies (e.g., Wuestefeld et al.,
2010;Walsh et al., 2013; Hudson et al., 2023). If themin-
imumof theweighted |∆f | stack sits outside of this con-
fidence threshold, then this tells us that there is either
data polluting the stacks that require removal, or that
we are unable to confidently measure ∆t∗ for that sta-
tion.
For the synthetic examples attenuation anisotropy

parameters φr = 31 ± 1◦, ∆t∗ = 0.95 ± 0.16◦ are mea-
sured for the synthetics where ∆t∗ = 1 s was imposed
(Figure 7a). In the case where ∆t∗ = −1 s was added,
we instead measure φr = −56 ± 1◦ and ∆t∗ = 1.00 ±
0.08 s (Figure 7b). These results show that the source
polarisation stacking method can correctly, and accu-
rately, measure the attenuation anisotropy parameters
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Figure 7 Source polarisation weighted, stacked |∆f | sur-
faces. Each panel shows the |∆f | stack measured for 100
Gabor wavelet synthetics generated with shear-wave split-
ting parameters φf = 30◦, δt = 1.0 s and ∆t∗ = 1 s (a)
or ∆t∗ = −1 s (b). |∆f | is calculated for each synthetic
by grid searching over φr and ∆t∗. The delay time δt is
not measured at this point in the workflow as it does not
affect |∆f | provided that a suitable analysis window has
been chosen. Each synthetic is generated with a random
source polarisation and with a dominant frequency drawn
from f ∼ N (0.1, 0.02).

φr, ∆t∗. It is worth noting that we are not able to exactly
retrieve the input parameters as we are only correcting
for the difference in frequency content between the fast
and slow shear-waves and are not removing the effect of
attenuation, which results in a permanent loss of am-
plitudes. The negative ∆t∗ example (Figure 7b) shows
the expected result from imposing ∆t∗ > 0 in the grid
search. The change in sign is instead mapped into the
reference frame rotation, with the minimum |∆f | be-
ing approximately 90◦ rotated from the fast polarisation
direction. This has the effect of setting the slow shear-
wave as the assumed reference (less attenuated) phase
and the fast-shear wave as the observed (more attenu-
ated) phase. This allows for the measurement of both
positive and negative ∆t∗, which is important to enable
us to distinguish between potential mechanisms of at-
tenuation anisotropy.
In these synthetic examples, the sign of∆t∗ is known.

For real data and experiments, we do not necessar-

ily have this a priori information. Determining the
sign of ∆t∗ is very important to measuring attenua-
tion anisotropy as it allows us to distinguish between
crack scattering and squirt flow mechanisms (Figure
1c,f). Observing negative ∆t∗ is potentially a power-
ful diagnostic for the presence of subsurface fluids, as
it cannot be explained by velocity anisotropy and re-
quires attenuation anisotropy due to a more complex
mechanism such as squirt flow. In turn, squirt flow re-
quires very small volume fractions of fluids hosted by
aligned fractures to generate a measurable ∆t∗. To cor-
rectly find the sign of∆t∗ themost convenient approach
is to measure attenuation anisotropy (φr and ∆t∗) and
then use these results to remove the effect of atten-
uation anisotropy before measuring shear-wave split-
ting. The measured shear-wave splitting parameters,
after correcting for attenuation anisotropy, will tell us
the correct fast polarisation direction. If the measured
fast polarisation agrees with φr, within measurement
uncertainty, this indicates a positive ∆t∗. If the differ-
ence between the fast polarisation and φr is approxi-
mately 90◦, within measurement uncertainty, this in-
dicates that φr is the polarisation direction of the slow
shear-wave which requires a negative ∆t∗.
This can be demonstrated by measuring shear-wave

splitting for two synthetic datasets, where the positive
∆t∗ synthetics are generated with φf = 30◦, δt =
1.0 s, ∆t∗ = 1 s and the negative ∆t∗ synthetics are gen-
erated using φf = 30◦, δt = 1.0 s, ∆t∗ = −1 s. Here
shear-wave splitting is measured before (Figure 9a,c)
and after (Figure 9b,d) correcting for the previously
measured attenuation anisotropy (Figure 7). Shear-
wave splitting is measured using eigenvalue minimi-
sation as implemented in the analysis code SHEBA
(Wuestefeld et al., 2010). The individual shear-wave
splitting results are then stacked, with each result
weighted by the signal-to-noise ratio and the number of
measurements within a 10◦ back azimuth bin (Restivo
and Helffrich, 1999).
The results of our shear-wave splittingmeasurements

highlight two key factors. Firstly, the subtle effects
that attenuation anisotropy has on apparent shear-wave
splitting are clear. In the casewith a positive∆t∗, where
the slow shear-wave is more attenuated, the additional
phase shift caused by the attenuation anisotropy nearly
doubles the delay time relative to the true value (Figure
9a,b). The opposite occurs for a negative ∆t∗. When
the fast shear-wave is more attenuated it is delayed by
the phase term of the attenuation operator, which re-
duces the delay time. In this example, the effect is suf-
ficiently strong to delay the ‘fast’ shear-wave such that
it arrives after the ‘slow’ shear-wave, which causes the
90◦ rotation in the apparent fast polarisation direction
(Figure 9c). In both cases, after correcting for the mea-
sured attenuation anisotropy (Figure 7) we can retrieve
the input shear-wave splitting parameters with signifi-
cantly higher accuracy than if no correction had been
applied (Figure 9b,d).
In the previous example the input splitting parame-

ters are constant across the synthetics, but it is common
to get some scatter in individual shear-wave splitting
measurements. To test the effect of this on our source
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Figure 8 Bootstrapped summary statistics for the parameters φr, (a) and ∆t∗ (b) along with the minimum |∆f | of each
bootstrapped stack (c) for synthetic |∆f | stacking example shown in Figure 7a. The initial set of 100 individual |∆f | mea-
surement grids is resampled, with replacement, 10,000 times and we repeat the stacking for each sample. The red vertical
line in panel (c) indicates the bootstrap estimated 95% confidence level in |∆f |.

polarisation stackingmethodwe repeat the previous ex-
periment and instead randomly draw 100 samples for
φf and δt from φf ∼ N (30, 5) and δt ∼ N (1.5, 0.15).
This set of shear-wave splitting parameters are then
used to generate two sets of synthetics as previously
described, where we apply ∆t∗ = 1 s to one set and
∆t∗ = −1 s to the other. In these cases we are unable
to perfectly retrieve the input attenuation anisotropy,
measuring φr = 30 ± 1◦, ∆t∗ = 0.95 ± 0.30◦ and φr =
−62 ± 1◦, ∆t∗ = 0.90 ± 0.08◦ (Supplementary Figure 4).
However whenwe correct the synthetics using the best-
fitting∆t∗ andφr we still significantly improve the accu-
racy of the shear-wave splitting measurements (Supple-
mentary Figure 5). Again this highlights the effect that
attenuation anisotropy can have on shear-wave split-
ting measurements and that after correcting for atten-
uation anisotropy, even though the corrections are not
perfect, we are broadly able to retrieve the true shear-
wave splitting parameters (Supplementary Figure 5b,d)
even with some scatter in the individual observations.
This does, however, increase the uncertainty in the re-
trieved shear-wave splitting and it should be noted that
in both cases it is not possible to exactly retrieve the in-
put shear-wave splitting parameters.

5 Measuring shear-wave splitting and
attenuation anisotropy for FURI,
Ethiopia

Todemonstrate the potential of∆t∗ to detectmelt or flu-
ids in the subsurface we choose the station FURI, which
is situated on the margin of the Main Ethiopian Rift
(MER) close to Addis Ababa. FURI is operated as part of

theGlobal SeismographNetwork (Albuquerque Seismo-
logical Laboratory/USGS, 2014). We choose this locality
as previous SKS shear-wave splitting studies have inter-
preted seismic anisotropy due to aligned melts beneath
theMER (e.g., Ayele et al., 2004; Kendall et al., 2005; Bas-
tow et al., 2010; Hammond et al., 2014). Melt has also
been inferred by seismic tomography, using bodywaves
(e.g., Bastow et al., 2008), Rayleigh waves (e.g., Cham-
bers et al., 2022) and ambient noise (e.g., Chambers
et al., 2019; Eshetu et al., 2021), receiver functions (e.g.,
Rychert et al., 2012) and magnetotelluric (Whaler and
Hautot, 2006) studies. Alignedmeltmechanisms should
also produce a strong signal of attenuation anisotropy
(Figure 1,2), making the MER and surrounding region
a natural target to search for attenuation anisotropy.
FURI is one of the few permanent stations in the region,
with over 20 years of waveform data available, making
it a good station to measure SKS shear-wave splitting.
SKS is an ideal phase to attempt attenuation anisotropy
measurements using our source polarisation stacking
method. As SKS travels through the outer core as a P-
wave, it is only sensitive to anisotropy after it exits the
core. Arriving near vertically beneath the station, we
can assume that all SKS phases sample the same re-
gion of the upper mantle regardless of backazimuth.
Furthermore, SKS is radially polarised when exiting the
core due to the P-to-S conversion (Hall et al., 2004).
Therefore the backazimuthal coverage at FURI (Figure
10) approximately maps onto the achievable source po-
larisation coverage. Whilst this source polarisation cov-
erage is not ideal (Supplementary Figure 6), it is suffi-
cent to ensure that the |∆f | stacking is stable. For other
shear-wave phases, such as teleseismic or local S, it may
not be possible to achieve sufficent source-polarisation
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Figure 9 Results of synthetic shear-wave splitting measurement stacking, following the method of Restivo and Helffrich
(1999). We generate 100 synthetics with shear-wave splitting parameters φf = 30◦ and δt = 1.5 s. Attenuation anisotropy
of ∆t∗ = 1 s (a,b) or ∆t∗ = −1 s (c,d) is applied. Panels (a,c) show the shear-wave splitting results if we do not correct for
this attenuation anisotropy. Panels (c,d) show the result after we correct the synthetic data using measurements of φr, ∆t∗

made using our source polarisation stacking method. The stacked λ2 surfaces are normalised by the 95% confidence value,
indicated by the bold contours, which is derived from an F-test (Silver and Chan, 1991; Restivo and Helffrich, 1999).

coverage without relying on raypaths that sample dif-
ferent regions. In that case, our source polarisation
stacking method cannot be applied unless it is clear the
S phases are sampling the same region of attenuation
anisotropy. Removing the requirement for source po-
larisation stacking is, therefore, desirable and is an av-
enue for future research.
It is worth noting that two layers of anisotropy have

been suggested across the Main Ethiopian Rift, with
the upper layer interpreted as aligned melt pockets and
the lower layer associated with density-driven mantle

flow due to the African superplume (Hammond et al.,
2014). As only the upper layer is likely to host aligned
melt inclusions, we do not expect the two-layer prob-
lem to have a significant effect on our results. How-
ever, it is worth noting that the contribution from the
lower layer will introduce additional frequencymixing.
We would not expect this to mask the strong attenua-
tion anisotropy predicted for aligned melt inclusions,
but this complication may increase the uncertainty in
∆t∗.
Data is collected for 584 earthquakes, which are at a
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Figure 10 Map showing shear-wave velocity beneath the
Main Ethiopia Rift at a depth of 100km, obtained from the
joint inversion of ambient noise and teleseismic Rayleigh
waves (Chambers et al., 2022). Thick black lines indi-
cate border faults and red polygons indicatemagmatic seg-
ments. The location of FURI is shownby the yellow triangle.
Station averaged SKS shear-wave splitting, after correcting
for attenuation anisotropy, indicated by the black bar plot-
ted on FURI, where the length of the bar corresponds to the
delay time, δt, and its orientation to the fast polarisation
direction. Measured attenuation anisotropy is shown by
the magenta bar and follows the same plotting convention
as the shear-wave splitting result. The cross-section A-A’
(white line) through the tomographymodel is shown in Fig-
ure 16. The insetmap shows the locations of the 584 events
used in this study (grey circles). From these events, we
can identify 73 that yield clear SKS picks which are used to
measure shear-wave splitting and attenuation anisotropy,
shown by the red circles. We only consider events with an
epicentral distance between 95◦ and 110◦, the dashed lines
mark the distance from FURI (yellow triangle) in intervals of
30◦. Event locations are taken from the International Seis-
mological Centre (2023) bulletin.

sufficient epicentral distance (95◦ to 120◦) for SKS to be
visible, recorded at FURI (Figure 10). Only earthquakes
with a moment magnitude in the range of 5.5 ≤ Mw ≤
7.0 and a minimum depth of 50 km are used. All earth-
quake data were requested from the International Seis-
mological Centre (2023) bulletin, with the dataset cover-
ing 21 years, from 1st January 2001 to 1st January 2022.
Before analysis, all waveforms are corrected for instru-
ment response andwe detrend and demean the data us-
ing tools available in ObsPy (Beyreuther et al., 2010).
Shear-wave splitting ismeasured for all 584 SKSwave-

forms before measuring attenuation anisotropy. Whilst
it is not essential to measure shear-wave splitting be-
fore attenuation anisotropy, and indeedwehave already
shown that attenuation anisotropy can affect shear-
wave splitting measurements (Figure 4, 9), it can be a
useful first step in analysis and enables us to manually

inspect the waveforms data quality before measuring
attenuation anisotropy. The waveform data is filtered
using a two-pass two-pole Butterworth filter, with cor-
ner frequencies of 0.01 Hz and 0.3 Hz. This enables a di-
rect comparison of our results with previous SKS shear-
wave splitting station averages (Ayele et al., 2004). The
filtered waveforms are visually inspected and analysis
window start/end search ranges are picked for wave-
forms where a clear SKS phase can be picked. This
manual inspection reduces the dataset to 73 waveforms
where SKS can be clearly identified. Figure 11a shows
an example SKS phase used. We then measure shear-
wave splitting using the shear-wave splitting analysis
code SHEBA (Wuestefeld et al., 2010), which utilises the
method of Silver and Chan (1991) as updated by Walsh
et al. (2013). The optimum shear-wave splitting analysis
window, which will also be utilised to measure attenua-
tion anisotropy, is found using cluster analysis (Teanby
et al., 2004). At this stage in shear-wave splitting analy-
sis, one might seek to further reduce the dataset, by ap-
plying data quality thresholds based onWuestefeld et al.
(2010)’s shear-wave splitting quality parameterQ (which
is not related to the attenuation quality factor) or by re-
moving results which have largemeasurement errors in
φf or δt (e.g., Kendall et al., 2005). In this case, we do not
want to reduce the size of ourdataset as thismay remove
data that exhibits attenuation anisotropy.
As in the synthetic shear-wave example, the station

averaged shear-wave splitting is calculated by summing
normalised second eigenvalue surfaces weighted by
signal-to-noise ratio and source polarisation (Restivo
and Helffrich, 1999). Our station averaged results of
φf = 38 ± 6◦ and δt = 1.15 ± 0.28 s are consistent,
within uncertainty, with previously measured values of
φf = 36 ± 1◦ and δt = 1.38 ± 0.02 s (Figure 13a, Ayele
et al., 2004).
For each SKS phase a |∆f | surface ismeasured by grid

searching over −90◦ ≤ φr ≤ 90◦ and 0 s ≤ ∆t∗ ≤
4 s, in intervals of 1◦ and 0.05 respectively. These mea-
surements use the analysiswindowspreviously defined,
using Teanby et al. (2004)’s cluster analysis method,
for the corresponding shear-wave splitting measure-
ment. As outlined previously we stack our |∆f | mea-
surements, weighted by source polarisation. Measure-
ment uncertainties are determined by bootstrapping
the stacking process as described for the synthetic ex-
amples (Supplementary Figure 7). The source polarisa-
tion of each waveform is estimated in the shear-wave
splitting measurement process by SHEBA (Wuestefeld
et al., 2010). From the stacked |∆f | the measured at-
tenuation anisotropy is |∆t∗| = 0.45 ± 0.20 s and φr =
−45 ± 3 s. As in the synthetic examples, we are not im-
mediately able to determine the sign of ∆t∗. To find the
correct sign, each SKS phase must be corrected for the
measured attenuation anisotropy. Then the shear-wave
splitting of the corrected waveforms, with the effects of
attenuation anisotropy removed, can bemeasured. The
attenuation anisotropy corrections are applied by rotat-
ing the waveforms to φr and attenuating the retrieved
reference phase by the measured |∆t∗|. An example
corrected SKS phase is shown in Figure 11b. This has
the effect of removing the phase shift introduced by at-
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Figure 11 One of the SKS phases recorded at FURI, Ethiopia, which we use to measure attenuation anisotropy. Panel (a)
shows the pre-processed SKS phase rotated to the station averaged fast polarisation direction, φ = 38◦, that we measure
for FURI and time shifted by δt = 1.15 s. The fast shear-wave, S1, is shown in blue and the slow shear-wave, S2, is shown in
orange. Note that S1 appears to have a slightly longer period than S2, which suggests it has been more attenuated. Dashed
lines show the measured instantanous frequency for the chosen analysis window (black lines). Panel (b) is plotted in the
same style, showing the SKS phase after we correct for the measured attenuation anisotropy.

tenuation anisotropy, although as this is a station aver-
aged measurement the correction may not be perfect.
There will be a permanent loss of amplitudes, but the
difference in frequency content between the fast and
slow shear-waves should be removed (Figure 11b) and
this will not affect measurements of shear-wave split-
ting.
After correcting the SKS waveforms, we measure sta-

tion averaged shear-wave splitting of φf = 40 ± 5◦ and
δt = 1.60±0.34 s. This result is also consistent with pre-
vious work, within measurement uncertainties, but the
best-fitting delay time has increased by 0.45 s. As the
difference between φf and φr is 90◦, within measure-
ment uncertainty, we interpret that the fast shear-wave
has beenmore attenuated than the slow shear-wave and
that ∆t∗ < 0. This gives a final joint measurement of
station averaged shear-wave splitting and attenuation

anisotropy at FURI of φf = 40 ± 5◦, δt = 1.60 ± 0.34 s
and ∆t∗ = −0.45 ± 0.20 s.

6 Characterising fluid inclusions using
velocity and attenuation anisotropy

In our examples, using both synthetic and real data,
we have established that we can measure attenuation
anisotropy in split shear-waves. Our observation of at-
tenuation anisotropy in real SKS data for FURI, Ethiopia
is an important result and corroborates previous work
which has interpreted seismic anisotropy in terms of
preferentially oriented melt inclusions both beneath
FURI (Ayele et al., 2004) and potentially more broadly
across theMain Ethiopian Rift (Kendall et al., 2005; Bas-
tow et al., 2010). The additionalmeasurement of attenu-
ation anisotropy gives us further insight into this mech-
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Figure 12 Source polarisation weighted, stacked |∆f |
surface for FURI, Ethiopia. This result is obtained by stack-
ing 73 |∆f | surfacesmeasured for SKSwaveforms recorded
at FURI. We measure an attenuation anisotropy of φr =
−45 ± 3◦ and ∆t∗ = 0.45 ± 0.20 s, indicated by the blue
cross. The 95% confidence region in our solution is de-
marcated by the bold contour and coloured white. Our ap-
proach to measuring |∆f | means that we cannot initially
determine the sign of ∆t∗. Upon analysis of our corrected
SKS shear-wave splitting results (Figure 13b) we can deter-
mine that ∆t∗ = −0.45 ± 0.20 s.

Model parameter Value

Melt fraction 0.01

Fracture density 0.1

Micro-crack density 0

Aspect ratio 1 × 10−4

Solid P wave velocity, vP 6.2 km s−1

Solid S wave velocity, vS 3.6 km s−1

Solid density, ρ 2700 kg m−3

Melt P wave velocity, vP 2.7 km s−1

Melt density, ρ 2700 kg m−3

Table1 Parameters used in squirt flowmodellingof atten-
uation anisotropy observed at FURI, Ethiopia. For details of
microscale relaxation time, τm, grain size, ζ, and fracture
length, af , used see text.

anism. The observation of ∆t∗ = −0.45 s can only be
explained by the poroelastic squirt flow of a fluid-filled
mediumgiven that alternatemechanisms, suchas crack
scattering or velocity anisotropy effects, always predict
that the slow shear-wave should be more strongly at-
tenuated and ∆t∗ > 0 (Figure 1e,f). Furthermore, our
modelling of attenuation anisotropy due to crystal pre-

Figure 13 Station averaged shear-wave splitting for FURI,
Ethiopia, plotted similarly to Figure 9. Shear-wave splitting
measurements are stacked using the Restivo and Helffrich
(1999) method before (a) and after (b) correcting for mea-
sured attenuation anisotropy of ∆t∗ = 0.45 s and φr =
−45◦. The red dot shows the previous station averaged SKS
shear-wave splitting measurement (φf = 36 ± 1◦, δt =
1.38 ± 0.03 s) at FURI (Ayele et al., 2004, red circle).

ferred orientation of Olivine shows that, for reasonable
mantle Q, the expected ∆t∗ is at least one order of mag-
nitude smaller than what we observe (Figure 1c,f, Sup-
plementary Figure 1). We would also expect other po-
tential mechanisms for intrinsic attenuation anisotropy
for crystal preferred orientation, such as grain bound-
ary melt squirt, to operate at frequencies significantly
above the seismic frequency band. This allows us to
discount crystal preferred aligment mechanisms, mak-
ing attenuation anisotropy a good indicator for the pres-
ence of aligned fluid inclusions.
With the observed ∆t∗ = −0.45 ± 0.20 s strongly sug-

gesting the presence of aligned fluid inclusions, the nat-
ural next question is how can we characterise these in-
clusions. As we have already described, the squirt flow
model requires a large set of parameters to characterise
a fluid-filled fractured medium. One of the most im-
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portant parameters to have reasonable constraints on
is mineral relaxation time, τm, which is empirically de-
rived and is proportional to the viscosity of the saturat-
ing fluid and inversely proportional to the permeability
of the host rock (Chapman et al., 2003). Previous work
inverting shear-wave splitting for fracturemodels using
the squirt flow model has shown that the inversion is
highly sensitive to the τm used (Al-Harrasi et al., 2011).
It has also been shown that varying τm has a substantial
effect on the expected frequency-dependent seismic ve-
locity anisotropy (Baird et al., 2013). Greater constraints
on plausible values for τm in the upper mantle are re-
quired to enable detailed modelling of fracture charac-
teristics. Any modelling of fracture properties is also
dependent on the choice of grain size, ζ, and fracture
length, af . Together τm, ζ and af describe the fracture
scale squirt-flow relaxation time,

τf =
af

ζ
τm, (23)

which is also expressed as the squirt-flow frequency
ωf = 2π

τf
and determines the frequency range of

the fracture-dependent squirt flow effects. Whilst this
trade-off makes it difficult to constrain the fracture or
grain size, if some reasonable assumptions are made it
is still possible to constrain potential fracture orienta-
tions.
To search for potential fracture orientations, given

the lack of constraint on τm wemake some assumptions
to simplify the problem. Outside of τm, fracture length,
and grain size, there are 9 other potential free param-
eters required to calculate a complex elastic tensor us-
ing Chapman (2003)’s squirt flow model. We fix these
parameters to the values in Table 1, which leaves frac-
ture strike, dip, and medium thickness as free parame-
ters to search over. Seismic velocities and densities are
chosen to be consistent with previous effectivemedium
modelling of the region (Hammond et al., 2014). A to-
tal porosity, or melt fraction, of 1%, is chosen, along
with a fracture density of 0.1, as previous work suggests
SKS shear-wave splitting at FURI could be explained by
amelt fraction≤ 1% (Ayele et al., 2004). This represents
a parsimonious choice of model parameters as we seek
to explain our observations with a small melt fraction,
where the implied fracture porosity (i.e., melt volume
fraction hosted in the fractures) φf = 4.2 × 10−5. If SKS
is assumed to be vertically incident, then the fracture
dip corresponds to the angle to fracture normal used
in the earlier numerical examples (Figure 1), and the
fracture strike is predominately controlled by the mea-
sured fast polarisation direction. This assumption also
makes ray path length interchangeable with medium
thickness.
We search for the best-fitting medium thickness, l, in

the range 50 km ≤ l ≤ 150 km and fracture dip angle,
θ, in the range 0◦ ≤ θ ≤ 90◦ by rotating the elastic
tensor to θ and calculating the predicted delay time, δt
and attenuation anisotropy, ∆t∗. The misfit for these
predicted parameters is calculated using a normalised
least-squares approach. To reflect the lack of constraint
on τm, and therefore also τf , in upper mantle condi-
tions this exercise is repeated over a large range of τm

values, 10 × 10−6 s ≤ τm ≤ 10 × 10−2 s, an assumed
grain size of 1 mm and fracture lengths of 10 m, 100 m
and 1000 m. Figure 14 shows the τf required by the cur-
rent choice of grain size, fracture length and τm (Figure
14a) along with the misfit of the best-fitting model (Fig-
ure 14b), predicted ∆t∗ and δt (Figure 14c,d), and the
best-fitting medium thickness (Figure 14e) and fracture
dip (Figure 14f) for a given τm. This modelling exercise
can be repeated by fixing an assumed fracture length
and varying the chosen grain size, which gives similar
results (Supplementary Figure 8). Despite the lack of
constraint on τm one set of model parameters emerges:
a medium thickness in the range ca. 90 km − 120 km
and fracture dip in the range ca. 38◦ − 48◦ which can
reasonably explain the observed delay times and δt∗. It
is worth noting that different modelled fracture lengths
and grain sizes require a different range of τm values
to fit the results. Therefore with better constraints on
τm it would be possible to identify plausible fracture (or
melt inclusion) lengths for a given grain size. This mod-
elling also shows the value of measuring attenuation
anisotropy. In addition to identifying the presence of
aligned fluid-filled fractures, measurements of ∆t∗ add
important constraints to fracture orientation. The un-
certainty in themeasurement of δt = 1.60±0.34 smeans
that it canbe reasonably explainedby all τm (Figure 14d)
and the additional measurement of ∆t∗ adds an extra
data point. This uncertainty largely maps into melt vol-
ume fraction, which has a strong effect on the seismic
velocity anisotropy, which we have elected to fix at 1 %,
and fracture density, which is required to be low and
fixed to 0.1 The measured delay time can also be fitted
by shallowly dipping or near-vertical fractures, with the
addition of attenuation anisotropy,∆t∗ = −0.45±0.20 s,
requiring shallowly dipping fractures (Figure 1, Supple-
mental Figure 9). This relies on the assumption that
the squirt flowmodel (Chapman, 2003) is valid in upper
mantle conditions, where this model has not previously
been tested. Poroelastic squirt flow requires that the
melt is hosted in very low aspect ratio inclusions, due
to the limitations of Eshelby’s theory (Eshelby, 1957),
and that the melt inclusions are near perflectly aligned.
To our knowledge poroelastic squirt flow is the only
model can explain the negative ∆t∗ observed. Further-
more, grain-scale melt squirt in the mantle has long
been used to model isotropic velocity and attenuation
(e.g., Mavko andNur, 1975; Hammond andHumphreys,
2000). Adding melt squirt of aligned melt inclusions al-
lows us to consider the contributions to velocity and
attenuation anisotropy, but this requires that we can
model low aspect ratio melt inclusions as fluid-filled
fractures. Future work is needed to establish the theo-
retical attenuation anisotropy of larger aspect ratiomelt
inclusions, such as melt tubules.
The best-fitting fracture strike direction is found by

setting the medium thickness to the thinnest plausible
value from the previous modelling exercise, 90 km, and
searching over fracture dip and strike angles, where we
seek to fit ∆t∗, δt and φf again using a normalised least-
square cost function (Figure 15). This layer thickness is
broadly consistent with previous estimates of the thick-
ness of anisotropy beneath FURI (Ayele et al., 2004), al-
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Figure 14 Results ofmodelling the fracture dip andmedium thickness, or ray path length, which best explain the observed
δt and ∆t∗ at FURI, Ethiopia using a squirt flow model (Chapman, 2003). Due to the lack of constraint on the mineral-scale
relaxation time, τm, we search over a range of τm values for an assumed grain size of 1 mm and fracture lengths of 10 m
(blue), 100 m (orange) and 1000 m (green). Panel (a) shows the fracture-scale relaxation time, τf , which is proportional to τm

(23). The normalized least-square misfit of the best-fitting model for each τm is shown in (b), with the predicted ∆t∗ and δt
shown in (c) and (d). The observed ∆t∗ = −0.45 s and δt = 1.6 s are shown by the solid black lines in (c) and (d), with the
measurement uncertainties indicated by the shaded region. Panels (e) and (f) show themedium thickness, assuming a single
anisotropic layer, and fracture dip angle required.

though a thinner region of melt inclusions could be ac-
commodated by increasing the melt fraction. We as-
sume a fracture length of 100 m and a grain size of
1 mm and set the mineral scale relaxation time, τm, to
9.55 × 10−5 s. The best-fitting orientations give a frac-
ture with a dip of 39◦ and an NW-SE strike (Figure 15).
This rift perpendicular fracture orientation complicates
previous interpretations that seismic anisotropy across
the MER is due to rift parallel, vertical melt inclusions
in the uppermostmantle (e.g., Ayele et al., 2004; Kendall
et al., 2005). It is worth noting that it is only the addi-
tion of ∆t∗ which requires shallowly dipping fractures.
This shallow dipping fracture model can then only fit

the observed fast polarisation direction, φf = 40◦ if the
fractures have a NW or SE strike. Alternatively, melt
could be accomodated in inclusions with aspect ratios
above the limit set by Eshelby (1957). This scenario is
not modelled here, and would require revisiting long
standing assumptions of aligned melt mechanisms for
seismic anisotropy in the region as low aspect ratiomelt
inclusions have been the prevailing interpetation (e.g.,
Ayele et al., 2004; Kendall et al., 2005; Bastowet al., 2010;
Hammond et al., 2014). A final possiblity is that there is
some other, as yet unknown, mechanism for attenua-
tion anisotropy in the uppermost mantle which can ex-
plain our observations whilst allowing for near-vertical
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Figure 15 Forward modelling, assuming a poroelastic
squirt-flow model (Chapman, 2003): results for fracture
strike and dip that can explain the observed attenuation
anisotropy and shear-wave splitting in vertically incident
SKS phases at FURI. Wemodel amediumwith 1% totalmelt
volume fraction, of which 0.1% is hosted in aligned frac-
tures. Medium thickness is fixed to 90 km following our pre-
viousmodels (Figure 14e), which is consistentwith previous
estimates of themaximumthickness of anisotropy in the re-
gion (Ayele et al., 2004; Hammond et al., 2014). We use a
normalised least squares cost function for ∆t, δt, and φf .
Our results favour shallowly dipping, 39◦, fractures which
are oriented NW-SE, which is approximately perpendicular
to theMainEthiopianRift. For details of othermodel param-
eters used see text.

melt inclusions.
With only onedata pointwe cannot say if this negative

attenuation anisotropy, and the requirement for shal-
lowly dipping fractures, is localised to FURI or is more
widespread across the MER. Comparison to a recent
shear-wave velocity tomography model at a depth of
100 km does indeed show a low-velocity anomaly which
extends perpendicular to the rift axis directly beneath
FURI (Figure 10; Chambers et al., 2022). A linearly in-
terpolated cross-section through the model (Figure 16)
shows that the feature is up to 70 km thick and situ-
ated directly beneath FURI. This feature could repre-
sent a network of shallowly dipping aligned melt in-
clusions extending away from the MER beneath FURI,
which is causing the observed attenuation anisotropy.
This is slightly thinner than what our models find, but
this could potentially be accommodated by amodest in-
crease in the overall melt fraction or fracture density.
Themelt fraction and fracture density were fixed to 1 %
and 0.1 to simplify the modelling done here, but could
plausibly be increased. Furtherwork, such as siting sev-
eral additional stations further along the anomaly per-
pendicular to the MER, is required to more thoroughly
test if there are shallowly dipping melt inclusions ex-
tending away from the MER and to better constrain the
extent of melt present. A current limitation is that most
deployments at the MER are temporary and therefore
often do not record a sufficiently large sample size of
SKS phases for our stacking approach to be robust.
This example serves to highlight the potential of at-

tenuation anisotropy to enhance our understanding of
melt or fluid-rich regions, even where we have a good
understanding of seismic anisotropy in the region. At a
minimum attenuation anisotropy is potentially a useful
tool for identifying the presence of fluids in the subsur-
face, even at very lowvolume fractions. More extensive,
dense, measurements of shear-wave splitting and atten-
uation anisotropy may, in the future, allow for strong
constraints to be placed on important properties such
as the volume fraction of melt present and the orienta-
tion of the melt inclusions.
Currently our source polarisation stacking method

can only be readily applied for SKS and other core-
transiting shear-wave phases. In these cases we can
make the assumption that all phases sample the sam-
ple region of the upper mantle beneath the station and,
for some stations, achieved sufficient source polarisa-
tion coverage to measure attenuation anisotropy. For
other shear-wave phases, such as local or teleseismic S,
this is not the case. To achieve the requisite source po-
larisation coverage would require data that most likely
samples different regions of anisotropy which makes
taking a station average unsuitable. This poses a par-
ticular challenge to measuring shear-wave attenuation
anisotropy in the near surface, where the potential for
attenuation anisotropy to improve characterisations of
fluid-filled fracture systems could prove powerful. Re-
moving the requirement for source polarisation stack-
ing is, therefore, desirable and is a promising avenue
for future research.

7 Conclusion
Seismic attenuation anisotropy is a phenomenonwhich
can be efficiently generated by models of fluid-filled
fractures, particularly a squirt flow model. This atten-
uation anisotropy has a clear theoretical and observ-
able effect on measurements of shear-wave splitting.
The effect of attenuation anisotropy on the frequency
content of split-shear waves can be measured using an
adaptation of existing instantaneous frequency match-
ing methods (Matheney and Nowack, 1995). Using syn-
thetic shear-wave examples and SKS phases recorded at
FURI, Ethiopia, we show these effects and that we can
measure attenuation anisotropy and retrieve the under-
lying shear-wave splitting parameters. To explain the
observed attenuation anisotropy, where the fast shear-
waves appear more attenuated than the slow shear
waves in SKS phases, a squirt flow model (Chapman,
2003) is required. Even allowing for a lack of constraints
on the rock physics parameters it is clear that this re-
quires shallowly dipping (ca. 40◦)melt inclusionswhich
strike perpendicular to the Main Ethiopia Rift. Whilst
the modelled strike and dip of the melt inclusions is
contrary to expectations frompreviouswork (e.g., Ayele
et al., 2004; Kendall et al., 2005; Bastow et al., 2010;
Hammond et al., 2014), there is some potential corre-
lation with low shear-wave velocity anomalies seen in
recent tomographic models that extend away from the
rift. These results highlight the power of attenuation
anisotropy measurements as a blunt tool to detect the
presence of aligned melt inclusions within the Earth.
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Figure 16 Interpolated cross-section through the shear-wave velocity model of Chambers et al. (2022). This cross-section
is approximately perpendicular to the Main Ethiopia Rift and passes through FURI. The location and start/end points of the
section (A-A’) are shown in Figure 10. Black vertical lines indicate the approximate location of theMain Ethiopia Rift along the
cross section. To reveal anomalies in the uppermantle, the colour scale is clipped at 3.9 km s−1 whichmasks crustal features.
For details of crustal features which can be seen in the tomography, readers should refer to Chambers et al. (2022).

With further instrumentation and improvement of rock
physics constraints, it may be possible to constrain the
properties of fluid-filled fractures at a range of length
scales within the Earth.
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Supplementary Figure 1 Attenuation anisotropy, ∆t∗, calculated using an elastic tensor for single-crystal olivine (Abram-
son et al., 1997) taken from theMSAT toolkit (Walker andWookey, 2012) and assuming a 50 km path length. ∆t∗ is calculated
for a range assumed isotropic Q values, where the only contribution to ∆t∗ in equation 3 is the velocity anisotropy obtained
from solving the Christoffel equation for the elastic tensor.

Supplementary Figure 2 ∆t∗ calculated using the squirt flow model as a function of frequency. We calculate ∆t∗ for a
range of fracture lengths lf (top panel) and convert these to representative fracture-scale squirt flow frequencies using equa-
tion 10. Here we can see that different length scale fractures will induce a squirt-flow response (and attenuation anisotropy)
in different frequency bands.
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Supplementary Figure 3 Pulse shapes obtained when attenuating a delta function at t = 0 for a reference frequency of
10 Hz. Adapted after Shearer (2019).

Supplementary Figure 4 Source polarisation weighted, stacked |∆f | surfaces. Each panel shows the |∆f | stack mea-
sured for 100 Gabor wavelet synthetics generated with shear-wave splitting parameters φf ∼ N (30, 5), δt ∼ N (1.5, 0.15)
and ∆t∗ = 1 s (a) or ∆t∗ = −1 s (b). Each synthetic is generated with a random source polarisation and with a dominant
frequency drawn from f ∼ N (0.1, 0.02). Surfaces are drawn following Figure 7.
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Supplementary Figure 5 Results of synthetic shear-wave splittingmeasurement stacking, following themethodof Restivo
and Helffrich (1999). We generate 100 synthetics where φf ∼ N (30, 5) and δt ∼ N (1.5, 0.15). Attenuation anisotropy of
∆t∗ = 1 s (a,b) or ∆t∗ = −1 s (c,d) is applied. Panels (a,c) show the shear-wave splitting results if we do not correct for
this attenuation anisotropy. Panels (c,d) show the result after we correct the synthetic data using measurements of φr, ∆t∗

made using our source polarisation stacking method. The stacked λ2 surfaces are normalised by the 95% confidence value,
indicated by the bold contours, which is derived from an F-test (Silver and Chan, 1991; Restivo and Helffrich, 1999).
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Supplementary Figure 6 Histogram showing the measured source polarisation (modulo 180◦) of the 74 SKS phases used
in the shear-wave splitting and attenuation anisotropy measurements. Source polarisations are binned in intervals of 10◦,
the same bins used in the source polarisation weighting when stacking the individual shear-wave splitting and attenuation
anisotropy measurements. The achieved source polarisation coverage here is reasonable, ranging from 10◦ to 120◦, but is
far from an ideal uniform distribution.

Supplementary Figure 7 Bootstrapped summary statistics for the |∆f | measurement stacking for SKS data recorded at
FURI, Ethiopia. Histograms show the parameters φr, (a) and ∆t∗ (b) along with the minimum |∆f | of each bootstrapped
stack (c). We draw 10,000 bootstrap samples, with replacement, from the 74 SKS phases used.
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Supplementary Figure 8 Results of modelling the fracture dip and medium thickness, or ray path length, which best ex-
plain the observed δt and∆t∗ at FURI, Ethiopia using a squirt flowmodel (Chapman, 2003). Due to the lack of constrain in the
mineral-scale relaxation time, τm, we search over a range of τm values for assumed grain sizes of 1 mm, 10 mm and 100 mm
and fracture length of 1000 m (green).
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SupplementaryFigure9 Modellingof δtand∆t∗ asa functionof fracturedipwitha squirt flowmodelusing theparameters
in Table 1, τm = 9.55 × 10−5 s and a medium thickness of 90 km. The top panel shows the modelled δt and ∆t∗, in which
the black line indicated the fracture dip which best fits the measured values. The shaded blue region shows the uncertainty
in∆t∗ measured at FURI (±0.2 s) to indicate the spacewhich could be plausibly fit by no attenuation anisotropy. The bottom
panel shows the normalised least-square cost function used to find the best-fitting dip angle.
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Insights on the dip of fault zones in Southern California
frommodeling of seismicity with anisotropic point
processes

Zachary E. Ross � ∗ 1

1Seismological Laboratory, California Institute of Technology, Pasadena, CA, USA 91125

Abstract Accurate models of fault zone geometry are important for scientific and hazard applications.
While seismicity canprovide high-resolution pointmeasurements of fault geometry, extrapolating thesemea-
surements to volumesmay involvemaking strong assumptions. This is particularly problematic in distributed
fault zones, which are commonly observed in immature faulting regions. In this study, we focus on character-
izing thedipof fault zones inSouthernCaliforniawith thegoal of improving faultmodels. We introduceanovel
technique from spatial point process theory to quantify the orientation of persistent surficial features in seis-
micity, even when embedded in wide shear zones. The technique makes relatively mild assumptions about
fault geometry and is formulated with the goal of determining the dip of a fault zone at depth. Themethod is
applied to 11 prominent seismicity regions in Southern California. Overall, the results compare favorablywith
the geometrymodels provided by the SCECCommunity Fault Model and other focused regional studies. More
specifically, we find evidence that the Southern San Andreas and San Jacinto fault zones are both northeast
dipping at seismogenic depths at the length scales of 1.0–4.0 km. In addition, we find more limited evidence
for some depth dependent variations in dip that suggest a listric geometry. The developed technique can
provide an independent source of information from seismicity to augment existing fault geometry models.

1 Introduction
The geometrical properties of fault zones are basic, yet
fundamental quantities in earthquake science. Earth-
quake rupture simulations need fault geometry models
that faithfully capture these attributes in order to ade-
quately quantify expected seismic hazard with physics-
based approaches (Shaw et al., 2018; Rodgers et al.,
2019; Melgar et al., 2016). Fault zones are the locus of
intense deformation processes spanning a wide range
of strain rates and contain valuable information on the
long termhistory of theseprocesses (Ben-ZionandSam-
mis, 2003); the geometry of a fault zone at a range
of length scales, including any depth-dependent vari-
ations, can aid in reconstructing this history and con-
straining the physical processes involved (Norris and
Toy, 2014; Schulte-Pelkum et al., 2020).
A fault zone’s geometry is commonly assessed from a

variety of sources. These include focal mechanisms de-
termined with seismological methods (Lin et al., 2007;
Shelly et al., 2016), high-resolution seismicity catalogs
(Chiaraluce et al., 2017; Ross et al., 2017a), various types
of seismic imaging (Sato et al., 2005; Fuis et al., 2017;
Lay et al., 2021; Bangs et al., 2023), geological data and
mapped fault traces (Fletcher et al., 2014), and geode-
tic data (Lindsey and Fialko, 2013). These diverse in-
formation sources have their own uncertainties and
sensitivities, making them complimentary when mul-
tiple sources are available; however it is not always

∗Corresponding author: zross@caltech.edu

straightforward to assimilate them. Several databases
of fault geometry models have been produced with the
goal of incorporating community consensus and pro-
viding established models with a documented prove-
nance. These include faults at global scale (Bird, 2003;
Hayes et al., 2012, 2018) and also some regional scales
(Plesch et al., 2007, 2020b).

In this study, we aim to characterize the dip of fault
zones in Southern California with high-resolution seis-
micity. We introduce a simple technique from the sta-
tistical field of spatial point processes that can measure
fault zone dip independently from traditional methods,
with the goal of augmenting the information available
for constructing faultmodels. Wefirst apply themethod
to four synthetic catalogs to demonstrate its suitabil-
ity. We then apply the technique to eleven prominent
seismicity regions across southern California to quan-
tify the dip for different fault zone sections. These find-
ings are compared with those of the SCEC Community
Fault Model and other previous works in the area. We
demonstrate that the method can reliably recover fault
dip, including depth-dependent variations under some
circumstances. Our primary scientific findings are that
the San Jacinto and San Andreas fault zones appear to
have significant northeasterly dips, whereas the Elsi-
nore fault zone and Brawley Seismic Zone appear to be
nearly vertical fault zones.
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2 Methods
2.1 Preliminaries
Let X ⊂ R

D be a stochastic collection of points, i.e., a
spatial point process (Daley andVere-Jones, 2003). For a
spatial domain W ⊂ R

D, let N(W ) denote the number
of points of X that are contained within W . For those
readers familiar with measure theory, N(·) is a count-
ing measure on W . Since X is a stochastic process, the
mean number of points in W is given by the so-called
intensity measure,

(1)Λ(W ) = E (N(W )) ,

where E (·) denotes an expected value. Let us also de-
note the volume of W in R

D as |W |. Then, for a sta-
tionary point process, the quantity λ = Λ(W )/|W | is
independent of the choice of W . While Λ(W ) describes
the expected number of points within a particular fixed
volume, it does not describe spatial correlation of event
density, i.e., knowing Λ(W ) does not tell you anything
about Λ(V ) for some other disjoint V ⊂ R

D.
Instead, we need a different type of quantity to char-

acterize the spatial correlation of points. For a typical
point u ∈ X, one such choice is the K-function (Ripley,
1976),

(2)

K(r) =

1

λ
E (number of neighbors within radius r|

X has a point at u) .

The quantityλ K(r) therefore quantifies themeannum-
ber of neighbors that any typical pointwill havewithin a
sphere of radius r. TheK-function is a cumulative func-
tion of r and was first introduced to seismology by Ka-
gan and Knopoff (1980), where it is often referred to as
a correlation integral; most commonly the K-function
has been used to infer the fractal distribution of a set of
hypocenters by fitting a power law to an empirical es-
timator of the K-function. A useful property of K(r)
is that it describes how point patterns are arranged in
space, independently of the choice of W . This is be-
cause K(r) is a second-order quantity and is analogous
to a covariance, whereas Λ(W ) is a first-order quantity
and is analogous to an expected value.
The function K(r) has an inherent normalization

property, which is seen by considering that for a Pois-
son process in 2D,

(3)Kpois(r) = πr2,

i.e. Kpois depends only on r (and not on λ). This is im-
portant as it allows forKpois(r) to beused as a reference,
and if K(r) > Kpois(r), it is said that X is clustered,
since more of the points then locate within the sphere
of radius r than expected for the equivalent Poisson pro-
cess. This is only possible because K is conditional on
a typical point existing at the center of the sphere.
The K-function can be estimated using the following

empirical formula,

(4)K̂(r) =
|W |

m(m − 1)

m∑

i

m∑

j 6=i

1{dij ≤ r}eij .

In this equation, 1(·) is the indicator function, dij is the
Euclidean distance between points i and j, eij is an edge
correction factor, m is the number of points in the ob-
servation window, and |W | is the area (volume) of the
observation window.

2.2 The cylindricalK-function
The K-function, as given above, is derived by assuming
the point process is both stationary and isotropic, i.e.
the likelihood of a point at u given a point at v depends
only on the distance between them r = ‖u−v‖. Seismic-
ity, however exhibits strong spatial anisotropy at scales
from local to global (Ross et al., 2022; Nasirzadeh et al.,
2021;Møller andToftaker, 2014; Rubin et al., 1999). Seis-
micity lineations, i.e., collections of hypocenters that
align in the form of linear features, are commonly ob-
served in the highest resolution catalogs (Gillard et al.,
1996; Shearer, 2002). Sometimes, hypocenters align in
the formof planar or surficial features (Ross et al., 2020;
Cox, 2016). Both linear and planar seismicity features
are evidence of anisotropic point patterns since the like-
lihood of a point at a location u given a point exists at
v depends on not just the spatial separation between
them, but also the orientation of the vector connecting
them, i.e. K = K(u − v).
Within the spatial statistics literature, there has

been interest in detection and characterization of
anisotropy in point processes (Møller and Toftaker,
2014; Møller et al., 2016; Safavimanesh and Redenbach,
2016; Nasirzadeh et al., 2021). One important develop-
ment has been the cylindrical K-function (Møller et al.,
2016), in which a cylinder is used in place of a sphere
to characterize anisotropy that is effectively columnar.
A cartoon example of this approach is shown in Fig-
ure 1, in which a cross section of seismicity is depicted.
Here, the seismicity exhibits a dipping fabric that is or-
thogonal to the vector n̂. When a cylinder defined by
this normal vector is used (e.g., blue cylinder), the value
of K is maximized, as the cylinder on average will en-
closemore points than a cylinder alignedwith any other
orientation (e.g., red cylinder). By computing K over
all azimuths and polar angles, it is possible to detect
anisotropy and quantify its orientation.
For a unit vector n = [cos ϕ sin θ, sin ϕ sin θ, cos θ],

let Cn(r, t) denote a cylinder with radius r, height 2t,
and normal vector n. For an observed set of points,
{x1, ..., xm}, the cylindrical K-function (Møller et al.,
2016) is then computed as,

(5)Kcyl(r, t, θ, ϕ) =
1

λ2

m∑

i

m∑

j 6=i

1{xj − xi ∈ Cn}eij ,

where the condition xj − xi ∈ Cn is true if the vector
separating xj and xi locates insideCn, and eij is an edge
correction factor. In this study, we use the translation-
based edge correction, a routine choice in point pro-
cesses in which the window W is translated by the vec-
tor xj −xi and the amount of overlap between the trans-
lated window and the original window is computed,

(6)eij =
|W |

|W ∩ (W + xj − xi)|
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Figure 1 Illustration of method. A cylindrical K-function
is computedbyplacingadiscwithnormal vector n̂ centered
on each event (stars). On average, the number of events
contained in thedisc is highestwhen thedisc is alignedwith
seismicity lineations (blue box), resulting in a large value of
K. Similarly, K is low when poorly aligned with seismicity
lineations (red box). The best dip estimate is equal to the
dip of n̂ for which K is maximized. The method can detect
dipping fabric even in distributed seismicity, such as in the
cartoon, if a persistent orientation is present.

We propose Kcyl as a method to infer the dip of fault
zones from seismicity, even when weakly localized as
in Figure 1, due to these aforementioned properties.
While Møller et al. (2016) focused on detecting colum-
nar structureswithKcyl byusinghighly elongated cylin-
ders (i.e., r < t), it can also be used to detect coherent
surface-like structures in seismicity if the diameter of
the cylinder is longer than its height (i.e., it ismore aptly
described as a disc, as in Figure 1). This disc-based for-
mulation is the one we use in this study.

2.3 Demonstration with synthetic catalogs
We begin with four synthetically generated seismicity
catalogs to demonstrate the method and provide addi-
tional insights into its usage. Furthermore, we use this
opportunity to walk through the novel summary dia-
gram used to visualize the results in this study.
Case 1: A single vertical planar fault. We randomly
generate 1000 hypocenters drawn from a uniform
distribution on a planar N–S trending vertical fault with
a length of 50 km and seismogenic thickness of 20 km.
We set r = 0.1 km, t = 1.0 km, and compute Kcyl on a
grid with 2◦ spacing using equation 5. Figure 2 shows
the seismicity in both map view and cross-section. It
also showsKcyl for this catalog in an upper-hemisphere
stereographic projection, where the polar angle θ of the
fault normal vector is given on the radial axis and the
angle ϕ is given as the traditional azimuthal angle for
such a diagram. Here, Kcyl correctly attains maxima at
both ϕ = 90◦ and ϕ = 180◦, reflecting the symmetry of
this particular dataset. The correct dip is also attained

with little ambiguity.

Case 2: A single dipping planar fault. We randomly
generate 1000 hypocenters drawn from a uniform
distribution on a N–S striking 30◦ dipping planar fault
with a length of 50 km and seismogenic thickness of
20 km. As with the previous example, Kcyl correctly
recovers both the fault normal azimuth and the dip of
the fault. Note that only onemode is present now in the
Kcyl plot, as the break in symmetry leads to the other
mode occurring in the lower hemisphere, and thus not
in the plot.

Case 3: Distributed fault zone with vertical dip. We
simulate seismicity occurring within a distributed fault
zone having a vertical dip. Following thework ofMøller
et al. (2016), we choose 20 random vertical faults (with
dimensions 50 km×20 km) that strike north-south.
For each fault, we generate 500 random hypocenters
that are then displaced randomly in the fault normal
direction with Gaussian noise of 100 m to add com-
plexity. The realization of this Poisson plane cluster
process that we use is shown in Figure 2. Kcyl correctly
identifies the same overall pattern as seen for the
single planar vertical fault case, as there is just a single
dominant orientation for the anisotropy even though
20 faults are present in the catalog. This demonstrates
the potential for measuring fault dip even when the
seismicity and fault zone is highly distributed, provided
that the anisotropy is persistent across much of the
seismicity.

Case 4: Distributed fault zone with conjugate faults.
We simulate seismicity occurring within a distributed
fault zone having conjugate faults with dips of around
45◦. The dip is randomly perturbed so that not all an-
gles are identically 45◦. We create 20 faults that strike
north-south, with half dipping to the west and half dip-
ping to the east. For each fault, we randomly locate
500 hypocenters within it. The hypocenters are then
displaced randomly in the fault normal direction with
Gaussian noise of 100 m to add complexity. The result-
ing catalog is shown inFigure 2. Kcyl correctly indicates
two orthogonally dipping faults with the same strike.
This demonstrates the potential formeasuringmultiple
fault dip angles, when present.

2.4 Application to Southern California seis-
micity

We now shift our focus to using Kcyl to quantify the dip
for fault zones in Southern California. We use a high-
resolution relocated seismicity catalog that covers the
entirety of southern California and the northern part
of Baja California for the period 1981–2019. The cat-
alog used is based on the methodology of Hauksson
et al. (2012) and has been updated for recent years (Fig-
ure 3). It contains 679,495 earthquakes that have been
relocated with waveform cross-correlation, which form
the highest quality subset. We focus only on the relo-
cated events in this study. The catalog is publicly avail-
able from the SouthernCaliforniaEarthquakeDataCen-
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Figure 2 Method Demonstration with synthetic catalogs. Each column is a different seismicity catalog (described in main
text). Events are colored by depth to enhance visibility. Upper row: map view of seismicity. Middle row: East-west cross sec-
tionwith seismicity projected onto it. For plotting purposes, seismicity is shown thinned by 95%. Bottom row: Stereographic
projection of Kcyl for each catalog. Warmer colors indicate more intense clustering along a given fault normal azimuth and
dip.

ter (Southern California Seismic Network, 2013). We
use only the hypocenters and magnitudes for these cat-
alogs.
We also considered using the the Quake Template

Matching (QTM) catalog for southern California (Ross
et al., 2019), which contains 10 times more events but
spans only the period 2008–2017. Ultimately, we opted
for the Hauksson et al. (2012) catalog because it is much
longer in duration and the hypocenters are generally
more precise; themany extra smaller events detected in
the QTM catalog have fewer phase picks available and
lead to an overall slight degradation in location accu-
racy as comparedwith theHauksson et al. (2012) events,
which is less desirable for this study.
For our analyses, we subset the catalog into 11 non-

overlapping fault zone sections. They are denoted by
red boxes in Figure 3 and described in more detail in
Table 1; the number of earthquakes within each region
is also given. These regions were chosen based on a
variety of factors, including scientific or hazard impor-
tance, longstanding fault segment demarcation by the
community, an abundance of seismicity, or clear ge-
ometrical boundaries. The list contains four sections
of the San Jacinto Fault Zone, two sections of the San
Andreas Fault Zone, four sections of the Elsinore Fault
Zone, and the Brawley Seismic Zone. For all but one of
the regions, there are thousands of earthquakes avail-
able, which is important to ensure the statistical estima-
tors are robust.

Region
# Region Name Number

of Events
1 San Jacinto Fault Zone (Claremont) 14,340
2 San Jacinto Fault Zone (Hot Springs) 24,066
3 San Jacinto Fault Zone (Trifurcation Area) 29,914
4 SanJacintoFault Zone (BorregoMountain) 24,662
5 Southern San Andreas 723
6 San Gorgonio Pass 23,614
7 Brawley Seismic Zone 9,402
8 Elsinore Fault Zone (Whittier) 3,396
9 Elsinore Fault Zone (Julian) 17,644
10 Elsinore Fault Zone (Coyote Mountain) 6,864
11 Elsinore Fault Zone (Yuha) 21,939

Table 1 Description of the focus areas in Southern Califor-
nia

For each region, we compute Kcyl using the hori-
zontal coordinates as defined in Figure 3 and using the
depth range [0, 22] km. We then use equation 5 to com-
pute for three sets of parameters, (t, r) = (50 m, 500 m),
(100 m, 1000 m), and (200 m, 2000 m). We compute Kcyl

for θ ∈ [0, π] and ϕ ∈ [0, 2π], i.e., the whole range pos-
sible, as we aim to estimate the dip of each fault zone
without any prior knowledge. This framework also pro-
vides a means to perform hypothesis testing if several
candidate scenarios for the dip are believed to be possi-
ble (which is covered in more detail in the discussion).
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The domains for θ and ϕ are discretized with spacing of
1◦; this choice is mainly a balance between having suf-
ficiently fine spatial resolution and computational effi-
ciency, since the results are largely insensitive to them.
Given Kcyl, the best estimate of the fault normal vector
is defined by the values of θ andϕ for whichKcyl ismax-
imized (as in Figure 1). The best fault zone dip estimate
is then δ = π − θ.

2.5 Dip uncertainty estimates
The polar diagrams for Kcyl are useful for visual exami-
nation of the results and identifying the most likely dip
angle(s), but do not communicate the uncertainty as-
sociated with these measurements. To obtain uncer-
tainty estimates, we use a bootstrapping approach de-
signed for spatial resampling of these empirical estima-
tors (Loh, 2008). We use this method to resample lo-
cal Kcyl functions with replacement, compute an aver-
age Kcyl function for each bootstrap sample, measure
δ = π − θ corresponding to the peak of Kcyl, and repeat
this process 1000 times. The ensemble of δ values result-
ing from the bootstrap procedure provides an estimate
of the uncertainty.

2.6 Parameter selection and resolution
The two parameters t and r control the resolution of
the method and here we give some additional insight
and guidance around their usage. Generally speaking,
it will be unknown beforehand what length scales are
useful for measuring the dip. Thus, it is desirable to
to compute Kcyl for a range of values. Figure 4 shows
two schematic scenarios and the potential for resolving
faults with the method. In Figure 4, a red disc of radius
r and a blue disc of radius 2r are shown, with t ≪ r for
both. In (a), the seismicity pattern has structure with
an effective length scale of about 2r. For this case, both
the red and blue discs can resolve this anisotropy since
the length scale is less than or equal to the diameter of
the disc. Thus, the diameter of the disc is effectively an
upper bound to the length scale of the anisotropy. In
(b), the seismicity pattern exhibits a length scale com-
parable to the whole window. In this case, both the red
andblue discs can resolve the anisotropy, however since
both discs have a diameter smaller than the length scale
of the seismicity, they areunable toprovide information
about larger length scales.
If the true hypocenter configuration exhibits pla-

nar anisotropy, then making the disc thickness t as
small as possible will increase sensitivity for detecting
anisotropy. However, the lower limit for whether t will
be useful is closely related to the location errors in the
respective direction. Thus, we recommend initially set-
ting the value of t to be comparable to the estimated rel-
ative location error of most events.
Practically speaking, there will be limits to the value

of r that can be used. The largest values of r used
should dependon thedimensions of the spatialwindow,
W ; in particular, Kcyl will become unreliable as 2r ap-
proaches values of roughly 1/4 the shortest spatial di-
mension of W . This is true despite the use of an edge
correction factor, as there will be little usable signal left

to correct at these scales, similar to amplifying noise in
seismic deconvolution. At the same time, r should still
be much larger than t, in order to have sufficient sensi-
tivity in detecting anisotropy. As the aspect ratio r/t ap-
proaches 1:1, Kcyl becomes effectively unable to iden-
tify anisotropy. Additionally, r should be large enough
that enough events locate within the discs to constrain
Kcyl to a desirable level (preferably as measured from
the aforementioned bootstrap procedure).
For this study, we use a single fixed aspect ratio of

r/t = 10, in part to simplify the process of choosing
these parameters. This allows for the same level of sta-
tistical power in resolving anisotropy, while still allow-
ing the spatial resolution to vary. Larger aspect ratios
may lead to similar results for the regions inwhich there
are plentiful events. Given the variably-sized regions
in Figure 3, the smallest regions will have the lowest
maximum values of r. In an effort to ensure unifor-
mity across the regions, we chose a maximum value
of r = 2 km, which results in a value of t = 200 m.
We then decreased r by powers of 2, which results in
(r, t) = (1000 m, 100 m), (500 m, 50 m). The latter of
these parameter pairs is essentially the lower limit of
what is possible, and still have enough points to resolve
Kcyl.
Since Kcyl is a cumulative function of r and t, there

may be questions relating to the ability for it to resolve
different dip values if present at strictly different length
scales. Indeed using such cumulative descriptive met-
rics is not ideal for this case; a more suitable quantity
for this scenariomay be the anisotropic pair correlation
function, (Møller and Toftaker, 2014; Ross et al., 2022).
However, Kcyl can still be of some use, depending on
the circumstances. To show this, we create a simple
synthetic catalog consisting of vertical and horizontal
faults having the same strike, as in Figure 5. Here, the
vertically dipping faults have an effective length scale
of 3 km whereas the horizontal faults have a length
scale of 1 km. We compute Kcyl for this dataset using
t = 0.25 km and two values of r, r = 1 km, r = 3 km.
A bootstrap analysis is used to show the dip uncertainty
estimates for each value of r. Indeed both faults are re-
liably recovered.

3 Results
In this sectionwe summarize themain findings for each
region and evaluate them in the context of information
available from other sources and methods. For south-
ern California, the most comprehensive resource avail-
able documenting fault zones and their geometry is the
Community Fault Model (CFM) produced by the South-
ern California Earthquake Center (SCEC; Plesch et al.,
2007). This database has been assembled by the SCEC
community from a multitude of data sources includ-
ing focalmechanisms, seismicity, seismic data, geology,
and geodetic deformation. The CFM has comprehen-
sive coverage across southern California, and we use
version 5.3 (Plesch et al., 2020a) as a baseline for evalu-
ating our results. In addition, we compare our results to
those of other studies whenever available, on a case-by-
case basis. Next, we walk through the results for each
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Figure 3 Map of seismicity in Southern California. Black dots indicate relocated epicenters. Red lines denote focus areas
with numbers matching region names provided in Table 1. Blue square indicates the town of Anza, California.

Figure 4 Cartoon illustrating the spatial resolution of the
method. Ina), thepointpatternhasaneffective length scale
of less than 2r, and the pattern can be resolved byKcyl to≤
2r. In b), the pattern has an effective length scale generally
larger than4r, butwith the twodiscs shown, thepatterncan
only be resolved to ≤ 4r.

fault zone.

3.1 San Jacinto Fault Zone
The San Jacinto Fault Zone (SJFZ) is a major strike-slip
system in the southern California plate boundary area
that branches off from the San Andreas in the Cajon
Pass and extends southeast to the Imperial Valley. The
SJFZ has multiple primary strands and several major
stepovers (Sharp, 1967). Northwest of the town of Anza,
the Clark fault is believed to be the main seismogenic
structure of the SJFZ (Share et al., 2017), whereas just
southeast of Anza, the Coyote Creek fault branches off
of the Clark fault and takes over as the primary fault
(Qiu et al., 2017). The seismicity in the SJFZ tends

to exhibit weak spatial clustering but strong geometric
anisotropy (Ross et al., 2022). The SJFZ exhibits consid-
erable variation in the seismogenic depth along-strike
that is attributed to variations in heat flow (Doser and
Kanamori, 1986), with depths approaching 20 km at the
northwest end in the Cajon Pass, to roughly 10 km near
the Salton Trough. While historically considered to be a
nearly vertical fault zone, more recent works have con-
cluded that the main structures in the central SJFZ are
dipping to the northeast, particularly at depth (Plesch
et al., 2020a; Ross et al., 2017a; Schulte-Pelkum et al.,
2020). Schulte-Pelkum et al. (2020) conclude that most
of the central SJFZ is dippingNE in the range∼65◦−80◦.
We analyze four key seismicity regions of the SJFZ in

Figure 6 (see also Table 1) with cylindrical K-functions:
Claremont, Hot Springs, Trifurcation area, and Borrego
Mountain. The results in Figure 6 are computed over
the entire [0, 22] km depth range, and should therefore
be interpreted as average values; however it should be
noted that for the SJFZ, seismicity generally does not oc-
cur above 5 km or so (Hauksson and Meier, 2019), and
thus the results largely reflect the deeper part of the
fault zone. Each row uses a different combination of
(t, r). Wenotice from the diagrams that in each case, the
largest value of Kcyl indicates a fault normal azimuth in
the range of 29◦ − 64◦. In fact, except for the Claremont
section, the SJFZ regions have a consistent estimate of
the fault normal azimuth in the range 29◦ − 39◦. The
radius of the polar plot indicates the dip of the normal
vector, and can be used to estimate the average dip of
the fault zone; the bootstrap histograms in the bottom
rowof Figure 6 show the estimated dips and their uncer-
tainties. In theHot Springs section, δ = 68◦−72◦ NE, the
Trifurcation area estimates are δ = 77◦−84◦ NE, and the
Borrego Mountain estimates are δ = 75◦ − 79◦ NE. The
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Figure 5 Synthetic catalog demonstration of two fault dip orientations at different length scales (1 km and 3 km, respec-
tively). Events are colored by depth to enhance visibility. Lower right panel shows bootstrap recovery results for Kcyl at two
different length scales.

SCEC CFM has most of these faults listed as subvertical
NE dipping faults, with the Hot Springs, Trifurcation,
and Borrego Mountain dip values given as δ = 82◦ NE,
δ = 88◦ − 89◦ NE, and δ = 88◦ − 89◦ NE, respec-
tively. However, our results for the Claremont section
indicate the opposite sense of dip, with δ estimated to
be 78◦ − 88◦ SW; this is in fact close to the CFM results,
which has δ = 84◦ SW. The results in this figure have ef-
fective length scales of 1, 2, and 4 km, and since there is
little variation in the dip for these different parameters,
they indicate that the dip estimates are robust at these
scales. The results do not imply anything about dip at
larger scales.
The abundance of seismicity in the central SJFZ al-

lows us to further quantify the dip in depth slices to look
for possible depth-dependent variations. Ross et al.
(2017a) argued the SJFZ trifurcation area exhibits listric-
type behavior based on combined examination of relo-
cated seismicity, focal mechanisms, and mapped sur-
face fault traces. Ross et al. (2017a) concluded that the
SJFZ is nearly vertical in the upper 10 km and dipping
70◦ NE below this. Here, we independently investi-
gate this idea with Kcyl by splitting the seismicity into
three depth bins: 0–8 km, 8–13 km, and >13 km, con-
taining 5584, 16862, and 7466 events, respectively. Fig-
ure 7 shows Kcyl for the three depth bins. The best esti-
mates of δ are 88◦ NE, 76◦ NE, and 53◦ NE, respectively,
which indeed suggest that the fault zone is listric in
this area, consistent with the conclusions of Ross et al.
(2017a). For cross sections of the seismicity in this area,
the reader is recommended to see Figure 7 of Schulte-
Pelkum et al. (2020) or Figure 2 of Ross et al. (2017a).

3.2 San Andreas Fault Zone
The portion of the San Andreas Fault Zone (SAFZ) from
the Cajon Pass to its terminus at Bombay Beach is just
one of the three major sub-parallel strike-slip systems
in southern California. There are important questions
about its geometry along this part of the plate bound-

ary and it has been the subject of extensive analysis
(Fuis et al., 2012, 2017; Lindsey and Fialko, 2013; Fat-
taruso et al., 2014; Schulte-Pelkum et al., 2020), much
of which has focused on whether themain seismogenic
fault is vertical or dipping northeast, a question that
is of prime importance for earthquake rupture simu-
lations as it will affect both the magnitude of potential
earthquakes and also the shaking pattern (Graves et al.,
2008, 2011).
The San Gorgonio Pass (SGP) region of the SAFZ is

concentrated around the San Bernardino Mountains.
The seismicity here is weakly clustered spatially (Ross
et al., 2022) and extends down to a depth of ∼20 km,
the effective lower limit for seismicity in southern Cal-
ifornia (Hauksson et al., 2012). The slip rate in this
area is about 24 mm/year and there are several ma-
jor strands: the Mission Creek, Banning, and Garnet
Hill faults (Gold et al., 2015; Fuis et al., 2017; Blisniuk
et al., 2021). There are also numerous minor strands
that may not extend to the surface (Fuis et al., 2017;
Schulte-Pelkum et al., 2020). Since the start of the in-
strumental era of seismology in southern California,
two significant earthquakes occurred in this area, 1948
ML 6.5 Desert Hot Springs (Richter et al., 1958; Nichol-
son, 1996) and 1986 Mw 6.0 North Palm Springs (Jones
et al., 1986; Nicholson, 1996; Mori and Frankel, 1990).
Figure 8 shows Kcyl results for the SGP region. The

estimates of ϕ and δ indicate a NE dipping fault zone,
with δ in the range 54◦ − 70◦, depending on the scale
of the cylindrical elements used. More specifically, we
find that δ decreases as the length scale is increased,
which suggests that the larger (older) structures in this
fault zone are oriented more horizontally, whereas the
younger (smaller) structures are slightly more vertical.
For comparison, the CFM (Plesch et al., 2020a) has the
Banning Fault dipping 72◦ NE and the Mission Creek
Fault dipping 82◦ NE. Fuis et al. (2017) identify seis-
mic reflectors in this area that are dipping in the range
∼55◦ − 65◦ NE, with some more steeply dipping struc-
tures too. The 1948 ML 6.5 and 1986 Mw 6.0 main-

7 SEISMICA | volume 3.1 | 2024



SEISMICA | RESEARCH ARTICLE | Dip of fault zones in California

Figure 6 Cylindrical K-functions for the San Jacinto Fault Zone and dip estimates. Density functions for each region (bot-
tom row) are bootstrap distributions for best dip estimate. These areas trend from northwest to southeast. The Claremont
section is nearly vertical on average, whereas the other three sections dip moderately to the northeast.

Figure 7 Estimating the depth dependence of δ for the SJFZ Trifurcation Area. This section of the fault zone exhibits evi-
dence of listric strike-slip behavior. Left, middle, and right panels use 5584, 16862, and 7466 events, respectively.

shocks in this area have focal mechanism dips of about
45◦ (Jones et al., 1986; Nicholson, 1996). Our results re-
flect average values of fault zone dip over the entire SGP
region, which includes many smaller structures in be-
tween the Banning and Mission Creek faults.
Southeast of the SGP is the Coachella Valley section

(Southern San Andreas) of the SAFZ. This portion runs
from about Palm Springs to Bombay Beach, the south-
ernmost terminus of the system. In this section also,
there is debate over whether the fault zone is dipping
(Fuis et al., 2017; Lin et al., 2007; Schulte-Pelkum et al.,
2020). The SCEC CFM 5.3 has the Southern San Andreas
fault as being pure vertical (δ = 90◦), whereas others
including Fuis et al. (2017); Lindsey and Fialko (2013)

conclude the SAFZ dips ∼50◦ − 60◦ NE. Our Kcyl results
for the Coachella section of the SAFZ are shown in Fig-
ure 8. The method unambiguously identifies a NE dip-
ping fault zone. At the smallest length scale examined,
r = 50 m, t = 500 m, our best estimate of δ is just under
60◦ NE. However, as the scale increases, so does δ: for
r = 100 m, t = 1000 m, δ = 73◦ NE, and for the largest
scale, r = 200 m, t = 2000 m, our best estimate of δ is
80◦.
The trend of δ increasing with scale for the Southern

San Andreas is opposite to what was observed for the
SGP. We interpret these deviations between the small-
est and largest scales to reflect down-dip curvature of
the fault zone, with a listric type behavior that is more
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Figure 8 Cylindrical K-functions for the San Andreas Fault Zone and Brawley Seismic Zone. SAFZ seismicity dips to the
northeast.

vertical in the upper ∼8–10 km andmore horizontal be-
low this. However it is important to remember that all
scales exhibit clear evidenceof anortheast dipping fault
zone.

3.3 Brawley Seismic Zone
The Brawley Seismic Zone is one of the more com-
plex faulting regions in California, serving as the plate
boundary transition between the SAFZ and the Imperial
and Cierro Prieto faults in Baja California. The region is
known for having considerable swarm activity (Hauks-
son et al., 2013, 2017, 2022), conjugate/orthogonal faults
(Thatcher and Hill, 1991; Ross et al., 2022), and prolific
geothermal activity (Brodsky and Lajoie, 2013).
The SCECCFM lists all of themajor faults in the Braw-

ley Seismic Zone as being vertical strike-slip. Our find-
ings for this region are shown in Figure 8 and have
dip estimates that are relatively consistent between the
three different length scales. However, there are clear
differences in the strike distribution between these
scales; the Kcyl identifies two clear modes in the strike

distribution for (t = 200 m, r = 2000 m) with roughly
equal occurrence, separated by about 60◦ in azimuth.
The conjugate faulting eventually disappears for (t =
50 m, r = 500 m) and a NW–SE trending orientation is
the only one visible. Thus, we can say quantitatively that
the NW–SE structures are generally larger than 2 km in
length. This orientation is themost closely aligned with
the Southern San Andreas, and may reflect the current
orientation that new damage and cracking is being pro-
duced for. This might imply that the NW–SE trending
seismicity structures are relic structure from previous
faulting that has not healed.

3.4 Elsinore Fault Zone
The Elsinore Fault Zone (EFZ) is the youngest of the
three major fault systems composing the southern Cal-
ifornia plate boundary. The EFZ also has the lowest slip
rates of the three, being ∼5 mm/year (Magistrale and
Rockwell, 1996). In the northwest, the EFZ emerges
near the eastern end of the Los Angeles basin and ex-
tends southeast for roughly 200 km before becoming
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Figure9 CylindricalK-functions for the Elsinore Fault Zone. Regions in the first three columns exhibit prominent seismicity
anisotropy that is orthogonal to the main strike of EFZ. Most of the EFZ seismicity has nearly vertical dip, except Whittier
section. Yuha Desert section has conjugate seismicity with a high angle.

the Laguna Salada Fault Zone near the United States–
Mexico border. EFZ seismicity ismore scarce compared
with some of the other regions we have examined, and
so we examine here four sections that have sufficient
events to perform a Kcyl analysis.
TheWhittier section of the EFZ is located in the east-

ern LA Basin and is viewed as a transition region from
the compressional regime of the transverse ranges to
the strike-slip regime of the Elsinore system (Hauksson,
1990). The Whittier fault branches off from the dom-
inant trend of the EFZ at an angle of ∼15◦ and has a
strike of about 300◦. Beneath the Whittier fault is the
Puente Hills blind thrust (Shaw and Shearer, 1999). The
Whittier fault is listed in the SCECCFMas dipping to the
northeast at 77◦. Events in the area typically have fo-
cal mechanisms with considerable obliquity (Yang and
Hauksson, 2011), with the largest in recent memory be-
ing the 2008 Mw 5.4 Chino Hills earthquake (Hauksson
et al., 2008). There has been some discussion of the ori-
entation of the structures here, with both nodal planes
being considered as plausible. Shao et al. (2012) ana-
lyzed the kinematic rupture process of the Chino Hills
earthquake and tested both nodal planes, concluding
that the plane aligned with the Whittier fault was most
likely. Figure 9 shows our Kcyl results for the Whittier,
which indicates for all three scales a NW fault zone dip-

ping 51◦ −64◦ and a strike of 34◦ −40◦. These values are
close to the parameters of the “auxiliary plane” formost
focal mechanisms in the area; for example the Chino
Hills earthquake had an auxiliary plane with a strike of
42◦ and a dip of 55◦. Importantly, Kcyl does not show
any evidence of a second mode aligned with the Whit-
tier fault. From this, we thus conclude that at least at the
scale of 1-4 km, the active seismogenic structures in the
area are a mixture of left-lateral and thrust slip that are
not aligned with the Whittier fault. At larger scales, it
is very possible that fault zone structures align with the
Whittier fault and dip northeast as given in the CFM.
The Julian and Coyote Mountain sections cover most

of the central and southern EFZ. The major fault traces
within these sections are relatively straight and trend
southeast. Both sections are listed in the CFM as be-
ing nearly vertical (81◦ − 87◦) with a strike of around
305◦. For these sections, the peak Kcyl value (Figure 9)
indicates a strike of 204◦ − 210◦ and a dip of 82◦ − 86◦;
thus our results identify the orthogonal plane as being
the dominant one visible in the seismicity at the scale
of 1–4 km. This is similar to the results for the Whit-
tier section. Indeed many of these are large enough to
be visible by eye in Figure 3. There is some recognition
of the strike direction parallel to the EFZ in the Coyote
Mountain results, particularly for the 4 kmscale. There-

10 SEISMICA | volume 3.1 | 2024



SEISMICA | RESEARCH ARTICLE | Dip of fault zones in California

fore the faulting geometry appears to be more complex
here and scale dependent.
The final region of the Elsinore thatwe examine is the

Yuha Desert. This area serves as the transition between
the Elsinore and Laguna Salada systems and is under-
lain by the Paso Superior detachment fault (Fletcher
et al., 2014). It was the site of extensive aftershock activ-
ity following the 2010 Mw 7.2 El Mayor-Cucapah earth-
quake, including the 2010 Mw 5.7 Ocotillo, California
earthquake (Kroll et al., 2013). There also was a shal-
low Mw 6.5 slow slip event that occurred here as part
of this sequence (Ross et al., 2017b). The Yuha Desert
area contains numerous fault traces orthogonal to the
main trend of EFZ. Indeed our Kcyl results corrobo-
rate this, with two modes with azimuthal separation of
nearly 70◦. At the two largest scales, t > 100 m and
r > 1000 m, the SE trending mode is stronger, whereas,
for the smallest scale, the twomodes are about equal in
strength. There is no evidence for any significant devia-
tion fromvertical here, with the r = 2000 m scale having
a best estimate of δ = 78◦ NE.

4 Discussion and conclusions
In this study we have outlined a new method for quan-
tifying the average dip of fault zones using seismicity.
Overall our results for southernCalifornia seismicity re-
gions compare favorably with those of the SCEC CFM
and other sources. While it is just one type of infor-
mation, it is independent from that considered in the
CFM. This study demonstrates the potential for using
this method to augment existing CFM databases and ul-
timately improve upon the known geometrical proper-
ties of fault zones.
Our primary findings for the major fault zones exam-

ined support the idea that the San Andreas and San Jac-
into fault zones in southern California are dipping (at
least in an average sense) toward the northeast. Most
of the Elsinore Fault Zone is close to vertical, with the
lone exception perhaps being the Whittier section at
the northwest terminus of the fault zone near the LA
Basin. Our findings suggest a progressive steepening of
dip spatially, going from SAFZ in the northeast to EFZ
in the southwest, whichmay provide clues as to the tec-
tonic origins of this geometry. These conclusions are
consistent with those of Schulte-Pelkum et al. (2020).
Our findings explicitly quantify anisotropy in seis-

micity at each length scale desired. There are hints
of some changes with increasing length scale that may
have broader implications about the tectonic history of
the region. For example we foundminor changes in dip
with length scale that may suggest younger faults be-
ing formed in recent yearsmay be inconsistent with the
larger scale plate boundary faults surrounding them.
Additionalmore detailed analysis is warranted for these
cases to further substantiate these observations and
possible implications.
The method is not without limitations and these

should be emphasized for further clarity on its usage.
First, it should be understood that the cylindrical K-
function represents average properties over the win-
dow. Within the window, the properties may vary spa-

tially, i.e., the seismicitymaybeviewedas an inhomoge-
neous point process. While the cylindrical K-function
is formulated under the assumption of stationarity, it
can still provide useful information even if there are rel-
ativelymild deviations from this assumption. An impor-
tant consequence of the lack of stationarity is that the
results will depend on the spatial window chosen. They
should be interpreted only for the specific region. This
further implies that the results should not be extrapo-
lated to regions outside of the spatial window. Another
important limitation results from the “disc” geometry
used to construct the cylindricalK-function, whichwas
chosen expressly with the purpose of detecting persis-
tent planar features in seismicity. While not the focus of
this study, other types of seismicity features, e.g., linear
features, may not be detected with a disc geometry and
would require alternatives.
Location errors are the main source of measurement

uncertainty in our calculations and their effects should
be appropriately considered. The length scales of im-
portance in our study are the values of 2r, i.e., the diam-
eter of the disc used in computingKcyl. The values used
are 1 km, 2 km, and 4 km. The seismicity catalog only
included events with successful double-difference relo-
cations and therefore the relative location error is the
most important term to consider. For this catalog, 90%
of the events are estimated to have relative horizontal
and vertical errors of 0.1 km, which is at least an order
ofmagnitude smaller than the length scales considered.
We therefore do not expect artifacts related to location
errors.
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Abstract A very efficientmethod for estimating the completenessmagnitudemc and the scaling param-
eter b of earthquakemagnitude distributions has been thoroughly tested using synthetic seismic catalogues.
Subsequently, themethodwasemployed toassess thecapabilityof the bvalue indifferentiatingbetween fore-
shocks and aftershocks, confirming previous findings regarding the Amatrice-Norcia earthquake sequence.
However, a blind algorithm reveals that the discriminative ability of the b value necessitates a meticulous se-
lection of the catalogue, thereby reducing the predictability of large events occurring subsequent to a prior
major earthquake.

1 Introduction
The exponential earthquake magnitude distribution,
known as the Gutenberg and Richter (GR) law (Guten-
berg and Richter, 1944), establishes that:

p(m) = b ln(10)10−bm (1)
The scaling parameter b has been extensively inves-

tigated because it represents a primary instrument for
the evaluation of the occurrence probability of an earth-
quake of a given size. Its value has been inversely cor-
related to the stress state (Scholz, 1968; Wyss, 1973;
Amitrano, 2003; Gulia andWiemer, 2010), attracting re-
search interest on its spatial and temporal variations.
Generally, analyses of spatial variations of the b value

are performed by mapping it on a regularly spaced
grid. The inclusion of the earthquakes in the cells can
follow different rules (minimum number of events,
maximum distance from the centre of the cell, etc.)
(Wiemer and Wyss, 1997, 2002) producing, in some
cases, overlapping cells or, in other cases, earthquakes
that are not included in any cell (Kamer and Hiemer,
2015; Godano et al., 2022). This may prevent a formally
correct statistical comparison between different cells
of the grid. Some authors weight each earthquake on
the basis of its distance from the grid node of interest
(Tormann et al., 2014). Many authors have applied this
method to several regions of the world (see, among
others, Kamer and Hiemer (2015); Taroni et al. (2021);
García-Hernández et al. (2021); Pino et al. (2022)).
However, it introduces correlations in the grid of the
b values. Recently, Godano et al. (2022) introduced a
parameter-free method producing fully independent b

∗Corresponding author: cataldo.godano@unicampania.it

values and reducing the number of missed earth-
quakes.
Decreases of b have been proposed to indicate the oc-

currence of foreshocks before a large earthquake (Pa-
padopoulos, 1988; Papadopoulos et al., 2018, 2010) or to
characterize the stress field in a volcanic area (Tramelli
et al., 2021). In a recent paper, Gulia andWiemer (2019)
suggested that a smaller b can discriminate between
foreshocks andmainshocks in seismic sequences. How-
ever, Lombardi (2022) questioned this result because
the completenessmagnitudemc (see next paragraph for
details on this parameter) could be biased, causing a bi-
ased estimation of the b value.
Here, we perform a detailed analysis of the method

introduced by Godano et al. (2023) for mc evaluation in
order to verify its reliability, and consequently, the reli-
ability of the connected b value estimations. Then, we
apply the method to real-time discrimination of earth-
quake foreshocks and aftershocks for the Amatrice -
Norcia sequence in Italy, following the selection proce-
dure adopted by Gulia andWiemer (2019) and adopting
a blind procedure for the earthquake selection.

2 The evaluation of mc

The magnitude of completeness, mc, is defined as the
lowest magnitude at which earthquakes are reliably
recorded and reported in earthquake catalogues (Ry-
delek and Sacks, 1989). Its evaluation is extremely im-
portant because its underestimation will cause an un-
derestimation of the b value. Conversely, its overestima-
tion implies a loss of information and a bias in the deter-
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mination of the b value, due to the reduction of magni-
tude range. Severalmethods have been proposed for es-
timating the mc value (Wiemer andWyss, 2000; Cao and
Gao, 2002; Ohmura and Kawamura, 2007; Godano, 2017;
Godano et al., 2023; Godano and Petrillo, 2023; Roberts
et al., 2015). In the following list we report and dis-
cuss some of the methods that are based on earthquake
catalogues, even though there exist other methods (not
considered here) that are based on seismic networks
(Mignan andWoessner, 2012; Tramelli et al., 2013).

• The maximum curvature technique (Wiemer and
Wyss, 2000) recognizes mc as the magnitude at
which the Gutenberg-Richter law reaches its max-
imum value. This method tends to underesti-
mate mc (Mignan andWoessner, 2012), and conse-
quently, also the b value. Indeed, Wiemer (2001)
add 0.2 to their estimated mc, which is, in some
sense, arbitrary.

• The goodness of fit test (Wiemer andWyss, 2000) eval-
uates the correlation coefficient r of the linearized
expression of the Gutenberg-Richter law as a func-
tion of a thresholdmagnitudemth. When r reaches
its maximum, or a stable value, then mth = mc.
The method presents the disadvantage that the r

value for a linearized expression could be, in some
cases, unstable, leading to a biased estimation of
mc and b (Mignan andWoessner, 2012).

• The harmonic mean method (Godano, 2017) is based
on the observation that the harmonic mean of
an exponential distribution increases linearly with
mth. Consequently, it deviates from linearity for
mth < mc. Although the method presents some
advantages, similar to the goodness of fit test, the
instability of r can produce a biased estimation of
mc and b.

• The entire magnitude range method (Ogata and Kat-
sura, 1993) multiplies the Gutenberg-Richter rela-
tionship in Eqn. (1) by the cumulative Gaussian
distribution of the parameters µ and σ. This im-
plies that at m = µ + σ, 50% of the earthquakes
are recorded in the catalogue and this probability
increases to 95% if m = µ + 2σ. The advantage
of the method is represented by the possibility of
defining a magnitude probability density function
for the whole range of magnitudes present in the
catalogue. However, above the best completeness
value, this method does not describe the gradual
curvature of the GR distribution correctly by not
multiplying the detection function by the theoret-
ical GR law (Mignan andWoessner, 2012).

• The b value stability approach (Cao and Gao, 2002)
evaluates the b value as a function of mth and con-
sidersmth = mc when b reaches a stable value. The
problem with such a method is the strong fluctua-
tions of the b value at higher mth due to undersam-
pling (Mignan andWoessner, 2012).

Figure 1 cv as a functionofmth for a simulated catalogue.
The dashed lines represent two values of cvt. The vertical
dot-dashed magenta line represents point from which we
select the bestmth The values of b andmc used to produce
the catalogue are also reported in the figure.

2.1 Estimatingmc using the cv basedmethod.
In the following we will use the method introduced by
Godano et al. (2023). The method can be considered a
generalization of the one introduced by Cao and Gao
(2002) based on b value stabilization. Conversely, Go-
dano et al. (2023) introduce second-order statistics, ob-
serving that the variability coefficient (defined as the
ratio between the standard deviation and the average
value) of an exponential distribution assumes a value
equal to 1. More precisely, we define the quantity m1 =
m − mth and evaluate its variability coefficient

cv =
σth

〈m1〉
(2)

with σth being the standard deviation of m1 and 〈m1〉
its average value. m1 must follow an exponential distri-
butionwhose cv assumes the value 1. As a consequence,
when evaluating cv as a function of a threshold magni-
tude mth, cv assumes a value ≃ 1 at mth = mc, where
the distribution becomes a purely exponential distribu-
tion. An example for a simulated catalogue (see next
paragraph for details) is shown in Fig. 1. As can be
seen, cv does not assume the value of 1, typical of a
purely exponential distribution, for all the mth values.
This occurs because of the fluctuation of the distribu-
tion around the purely exponential one. In other cases
(not shown here), cv can assume values slightly larger
than 1. For this reason, it is opportune to introduce a cv

threshold value (let us call it cvt) above which the distri-
bution can be considered a purely exponential distribu-
tion. More precisely, we choose mc to be the smallest
mth where cv is larger than the threshold cvt. Here we
show, as an example, two values of cvt: 0.93 and 0.97.
In both cases the mc value is correctly identified for the
example shown here. A more accurate investigation of
the appropriate cvt value is performed below.
Let us test the reliability of the method by means of

some simulations.

2 SEISMICA | volume 3.1 | 2024



SEISMICA | RESEARCH ARTICLE | Testing the Predictive Power of b Value for Italian Seismicity

Figure2 Anexampleof theGRdistribution for a simulated
catalogue before and after thinning.

2.2 Randomly simulated catalogues
In order to test the reliability of the method, we sim-
ulated 105 catalogues with 20000 earthquakes and a b

value randomly chosen from a uniform distribution in
the range of [0.5,1.5]. Then, each catalogue is thinned
using the Ogata and Katsura (1993) approach. The
method consists of multiplying the Gutenberg-Richter
distribution by an erfc(m) function. This provides the
number of events to be removed from the catalogue
for each m < mc. While simulated catalogues can
be truncated at a given threshold magnitude, this does
not correctly simulate experimental catalogues contain-
ing some, though not all, events with m < mc. The
erfc(m) parameters have been selected on the basis of
the following rules: µ has been randomly generated in
the range [1.5,2.5], whereas σ is fixed at 0.1 consider-
ing mc = µ + 2σ. An example of the GR distribution
for a simulated catalogue, before and after thinning, is
shown in Fig. 2. Then, for each catalogue, we esti-
mate mc using the Godano et al. (2023) method and b

by means of the standard maximum likelihood method
(Aki, 1965) and evaluate the quantities ∆b = b − be and
∆mc = mc − mce

, where b and mc are the parameters
used for the simulation and be and mce

are the corre-
sponding estimated values. The distributions of ∆b and
∆mc are then evaluated.
There are three quantities affecting ∆b and ∆mc,

namely N , theminimumnumber of events in the range
mmax − mc, the range itself ∆m = mmax − mc, and cvt.
More precisely, we evaluate the distributions of ∆b and
∆mc using only catalogues:

1. with a number n of events with m ≥ mc larger than
or equal to a given value of N without any restric-
tion on ∆m and using cvt=0.97

2. with ∆m larger than a given value without any re-
striction on N and using cvt=0.97

3. with different values of cvt without any restriction
on ∆m and N = 100 (this restriction is adopted to
evaluate a reliable value of σth)

The evaluated distributions are reported in Figures 3
to 5. In all cases the distributions are sharply peaked
(indicating supergaussian distributions) at ∆b = 0 and
at ∆mc ≃ −0.25, revealing a small tendency to over-
estimate mc. In the supplementary information we re-
port the results of theKolmogorov-Smirnov test at a 99%
confidence level (test statistic= 0.31) in order to reject
the hypothesis that the samples follow a Gaussian dis-
tribution. The results are not strongly influenced by N

and ∆m, although for N = 300 and ∆m = 3 long tails in
∆b distributions are avoided. However, for these values
more than 50% of the catalogues are discarded due to a
small number of events or too small amagnitude range.
The overestimation ofmc when cvt=0.97 suggests that

this parameter also influences our results. As a conse-
quence we perform a sensitivity analysis, varying cvt in
the range [0.93,0.99]. Fig. 5 reveals that p(∆mc) is cor-
rectly peaked at ∆mc = 0 when cvt=0.93, which can be
assumed as the best value for cvt.

2.3 Epidemic Type Aftershock Sequence
(ETAS) simulated catalogues

TheETASmodel represents the gold standard for testing
seismic clustering hypotheses and forecasting (Ogata,
1988, 1998; Helmstetter and Sornette, 2003; Console
et al., 2007; Lombardi and Marzocchi, 2010; Zhuang,
2011, 2012). In this model the occurrence rate λ of an
event with magnitude m > m0, at a position (x, y) and a
time t, can be written as

λ(x, y, t|Ht) = µ(x, y)+

∑

j:tj<t

K10α(mj−m0) (p − 1)cp−1

(t − tj + c)p

q − 1

π
(δ(mj))q−1[(x − xj)2

+ (y − yj)2 + δ(mj)]−q (3)

where the sum extends over all previous events that
occurred in a certain region, µ(x, y) describes the time-
stationary background rate, δ(m) = d10γm from Kagan
(2002) and the set θ̂ = (p, α, c, K, d, q, γ) contains the fit-
ting parameters of the model. The estimation of the set
θ̂ that best fits the experimental data can be performed
using maximum likelihood methods (Lippiello et al.,
2014; Ogata, 1998; Y., 1983; Ogata and Zhuang, 2006) or
different types of tuning techniques (Petrillo and Lip-
piello, 2020, 2023).
The generation of an ETAS catalog is a standard pro-
cedure described in Zhuang et al. (2004); Zhuang and
Touati (2015) and de Arcangelis L. et al. (2016). The first
step is setting the background seismicity µ(x, y). This
represents the zeroth order generation in a self-exciting
branching process and a certain number n0 of events
are created. Each of these elements generate a certain
number of offspring, i.e, the aftershocks. The number
n1, the occurrence, and the spatiotemporal position of
the aftershocks depend on the functional form λ(x, y, t)

and on the parameters θ̂. In practice, the number of af-
tershocks is extracted from a Poisson distribution with
an average dictated by the productivity law. For each
offspring, the occurrence time is extracted based on the
Omori-Utsu law and the location is based on the spatial
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Figure 3 Distributions of ∆b (panel (a)) and ∆mc (panel (b)) for different values of N and cvt=0.97.

Figure 4 The distributions of ∆b (panel (a)) and ∆mc (panel (b)) for different values of ∆m and cvt=0.97.

Figure 5 The distributions of ∆b and ∆mc for different values of cvt. Here N and ∆m are fixed at 100 and 2 respectively.

distribution. As a last step, the magnitude of the event
is assigned obtaining the value from the Gutenberg-
Richter law in Eqn. (1), since we are assuming mag-
nitude independence among triggered events (Petrillo
and Zhuang, 2022, 2023). This is the first-order genera-
tion of events. The previous step is repeated consider-
ing nj = nj−1 and it is iterated until nj∗ = 0. We would
like to emphasize that the numerical catalogs generated

using this method do not exclude any events; in other
words, no completeness threshold is used to get the sim-
ulation. In this study we employ the parameters opti-
mized by Petrillo and Lippiello (2023). In order to ver-
ify the reliability of the method in analyzing time vari-
ations of the b value we simulated 5 ETAS (Ogata, 1999)
catalogues with about 106 events and different values of
b, in particular b = 0.6, 0.8, 1.0, 1.2, 1.4. Then, employ-
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Figure 6 The time variation of the be value for the cata-
logue with b=0.6 thinned at three different mc values.

Figure 7 The time variation of the be value for the cata-
logue with b=0.8 thinned at three different mc values.

ing the same thinning procedure used before, for each
value of bweobtain 3different incomplete catalogues by
setting mc = 1.6, 2.0, and 2.4, for a total of 15 synthetic
incomplete catalogues. The temporal variations of the
b value are finally obtained by considering windows of
1000 events, sliding on one event at a time. For each
window we evaluate mc with the Godano et al. (2023)
method and b by maximizing the likelihood (Aki, 1965).
In this case we use N = 150, ∆m = 2 and cvt = 0.93. Of
course, we expect no time variation of the b and mc val-
ues or, at least, weak fluctuations of their values around
the ’true’ values. However Figures 6 - 10 show that b

appears to fluctuate around an underestimated value.
In general, the changes in the b value could reflect the
physical processes of stress evolution and crack growth.
However, the fluctuations observed in the analyses are
within statistical error, so in this case, a decrease in b

is not an indication of precursor phenomena. For high
values of themagnitude of completeness, some gaps are
present in be(t). This is explained by the fact that in data

Figure 8 The time variation of the be value for the cata-
logue with b=1.0 thinned at three different mc values.

Figure 9 The time variation of the be value for the cata-
logue with b=1.2 thinned at three different mc values.

Figure 10 The time variation of the be value for the cata-
logue with b=1.4 thinned at three different mc values.
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Figure 11 The time variation of the mce
value for the cat-

alogue with b=0.6 thinned at three different mc values.

Figure 12 The time variation of the mce
value for the cat-

alogue with b=0.8 thinned at three different mc values.

Figure 13 The time variation of the mce
value for the cat-

alogue with b=1.0, thinned at three different mc values.

Figure 14 The time variation of the mce
value for the cat-

alogue with b=1.2, thinned at three different mc values.

Figure 15 The time variation of the mce
value for the cat-

alogue with b=1.4, thinned at three different mc values.

that do not fall within the constraints of the evaluation
of be, in particular, the required number of events N is
greater than the number of events recorded in the cata-
logue.
Figs. 11 - 15 show the estimation of mc for the same

thinned catalogues. mc estimates appear to be stable
but are overestimated by a very small quantity, for each
value of simulated b and completeness magnitude mc.
The error bars for be and mce

are not shown in order to
make the graphs clearer. Furthermore, as this is a test
on synthetic catalogues, there is no intention to evaluate
the changes in b for forecasting purposes, but only to
assess the used estimation method.
Fig. 16 shows the distribution of the be values for the

different catalogues generated with the different b, con-
firming the tendency to underestimate b independently
of the mc value.
For comparison we evaluate the b values using the

maximum curvature method for estimating mc. Fig. 17
reveals that be significantly differs from the ’true’ value
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Figure16 Thedistributionsof the be value for thedifferent
catalogues thinned at the different mc values.

in the case of b=1.0 andworsen asmc increases. Indeed,
the distribution’s peak is large for mc=1.6, bimodal for
mc=2.0, and sharply peaked at be=0.76 for mc=2.4. Very
similar behaviour is observed, but not reported here,
for the other values of b.

Figure 17 The distributions of the be in the case of b=1.0
and for the different mc values, when mc is estimated with
the maximum curvature method.

3 Verifying the real-time discrimina-
tion of earthquake foreshocks and
aftershocks

Analyzing the Amatrice-Norcia and Kumamoto se-
quences, Gulia and Wiemer (2019) demonstrated that
variations in b can act as a discriminant between fore-
shocks and aftershocks. In practice, for the Italian
Amatrice-Norcia sequence, they measured a reference
value, br, for the background, considering the 4 years
preceding the target earthquake E. Then, removing
events during the first 3 days after E because of short
term aftershock incompleteness, they computed ∆b =
bE − br, where bE is the b value computed using earth-
quakes ocurring after the event E. The completeness
magnitude mc was estimated through the maximum-

curvature method and the b value using a maximum-
likelihood estimation on a sample of N = 250 events
(consequently, the time series b(t) was obtained with
an element-wise moving window). Finally, br was ex-
tracted by calculating the median of all b(t). The calcu-
lation of bE follows the same rules but, because after-
shock sequences are data-rich, the study used N = 400.
However, Gulia and Wiemer (2019) also tested the re-
sults for slightly different values of N , and verified the
robustness of their results.

3.1 Applying the cv method - the comparison
Some authors questioned the results of Gulia and
Wiemer (2019), arguing that fluctuations in the b value
may not be a dependable indicator of stress in these in-
stances. Instead, they could be attributed to a mixture
of inconsistencies in the data and inefficiencies in esti-
mation methods (Lombardi, 2022). Moreover, van der
Elst (2021) confirms the findings of Gulia and Wiemer
(2019), although at a reduced level. For this reason, to
try to reduce estimation bias, we apply the Godano et al.
(2023) method to the catalogue selected by Gulia and
Wiemer (2019). More precisely, we evaluate mc (using
the Godano et al. (2023) method with a cvt = 0.93) and
b in the same windows of N = 250 events, sliding by
one event at time and discarding all the windows with a
number of events with m ≥ mc, larger than 50 and ful-
filling the conditionmmax−mc > 2. Even if these condi-
tions lead to discarding a large number of windows, the
result of Gulia andWiemer (2019) is confirmed. Indeed,
both the average 〈b〉 value and its median bM , before
the occurrence of the Amatrice earthquake, are larger
than the same values calculated after its occurrence and
before the occurrence of the Norcia earthquake (Fig.
18). Interestingly, the difference between 〈b〉 and bM ,
before the occurrence of the Amatrice earthquake, is
large, revealing a significant skewness of the b distribu-
tion. Conversely, after the occurrence of the Amatrice
earthquake, 〈b〉 − bM assumes a very small value, indi-
cating a Gaussian-like b value distribution.
Fig. 19 shows an example of two Gutenberg-Richter

(GR) distributions for two different time windows (ran-
domly chosen) before and after the Amatrice earth-
quake occurrence.

3.2 A blind algorithm
We now test an automatic algorithm for the real-
timediscrimination of earthquake foreshocks and after-
shocks on the Italian catalogue available at the web-site
http://terremoti.ingv.it/. We adopted the following algo-
rithm:

1. Identify all the earthquakes with magnitude m ≥
5.5 (let us call themmainshocks);

2. For each one of them, we evaluate the aftershock
radius following the Utsu and Seki (1954) formula
r = 0.05 × 100.5mkm;

3. Identify all the events with a distance d smaller
than r in the 4 years preceding the occurrence of
the mainshock;
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Figure 18 The b values (black circles) versus time. The
dashed lines represent 〈b〉 and bM (see legends for details)
computed before (B) and after (A) the occurrence of Ama-
trice earthquake. The violet circles represent themc values.
The triangles indicate the occurrence of the Amatrice and
Norcia earthquakes. (Inset) Zoom of the main panel per-
formed between 2016.5 and 2017.5.

Figure19 TheGutenberg-Richter distributions 4 yearsbe-
fore and 1 year after the Amatrice earthquake occurrence.
The dashed lines represent the fitted GR laws.

4. If the number nb of events preceding the main-
shock is smaller than 500 we double the value of r;

5. Identify all the events with a distance d smaller
than r in 1 year following the occurrence of the
mainshock;

6. We remove short-term aftershock incompleteness
by means of the Helmstetter et al. (2006) method
using the parameters optimized for Italy in Petrillo
and Lippiello (2020);

7. If the numberna of events following themainshock
is smaller than 500 we discard the mainshock from
the analysis;

8. We evaluate the b and mc values as a function of
time following the previously described method.

Figure 20 b(t) and mc(t) for four of themainshocks anal-
ysed here. Vertical red dashed lines represent the occur-
rence time of each mainshock. Horizontal green dotted
lines represent the pre-event average b-value.

Figure 21 The b(t) and mc(t) for the other three main-
shocks analysed here. Vertical red dashed lines represent
the occurrence time of each mainshock. Horizontal green
dotted lines represent the pre-event average b-value.

On the basis of this algorithm, we identified main-
shocks in the Italian catalogue. Item 3 has been applied
only one time for the Finale Emilia earthquake. We
discarded two mainshocks because na assumed values
smaller than 500 for them. Both of these mainshocks
(m = 5.8 and m = 5.9) occurred in the Aeolian Arc at
a depth larger than 144 km. As a consequence, 7 earth-
quakes remain in the analysis: L’Aquila (m = 6.1), Fi-
nale Emilia (m = 5.8), Mirandola (m = 5.6), Amatrice
(m = 6.0), an Amatrice aftershock (m = 5.9), Norcia
(m = 6.5) and Capitignano (m = 5.5) close to L’Aquila.
The information about the location, themagnitude, and
the occurrence time of the mainshocks considered in
the blind test is listed in Table 1.
An important deviation from Gulia and Wiemer

(2019) is the use of the M5.5 − 5.9 earthquakes. This
addition was decided in order to introduce more events
in the blind test. A second deviation from Gulia and
Wiemer (2019) is the use of the Utsu and Seki (1954) for-
mula to identify the aftershocks and the background ac-
tivity within a circular radius. This choice represents
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Earthquake Date Location Magnitude
L’Aquila 6 April 2009 42.42, 13.39 6.1

Finale Emilia 20 May 2012 44.80, 11.19 5.8
Mirandola 20 May 2012 44.85, 11.06 5.6
Amatrice 24 August 2016 42.70, 13.22 6.0

Amatrice aftershock 26 October 2016 42.90, 13.09 5.9
Norcia 30 October 2016 42.84, 13.11 6.5

Capitignano 18 January 2017 42.48, 13.28 5.5

Table1 List of themainshocks considered in theblind test
including coordinates, occurrence time andmagnitude.

the simplest one that can be performed in a blind al-
gorithm, as it does not require the knowledge of the
focal mechanism, the identification of the fault plane
and its extension, and the localization of themainshock
on the fault. Moreover, the epicentral map (see sup-
plementary information) of the chosen earthquakes re-
veals that, concerning the aftershocks, their selection
corresponds to on-fault seismicity. Conversely, the se-
lected background seismicity includes off-fault events.
However, this does not represent a large differencewith
theGulia andWiemer (2019)method. Indeed, Gulia and
Wiemer (2019) had to enlarge the investigated area in or-
der to include a number of events sufficient to constrain
the br value. The b(t) andmc(t) values are shown in Figs.
20 and 21, and 〈b〉, bM , and the b standard deviation σb

before and after the occurrence of the 7mainshocks are
reported in Table 2.

Earthquake before after
〈b〉 bM σb 〈b〉 bM σb

L’Aquila 0.98 0.98 0.058 0.96 0.97 0.085
Finale Emilia 0.93 1.0 0.095 0.84 0.8 0.19
Mirandola 0.86 0.88 0.1 1.14 1.15 0.016
Amatrice aftershock 1.06 1.06 0.074 1.02 1.04 0.14
Amatrice 1.03 1.06 0.15 0.93 0.9 0.13
Norcia 1.07 1.06 0.16 1.0 1.02 0.092
Capitignano 1.02 1.03 0.16 1.07 1.07 0.087

Table 2 〈b〉, bM and σb for the 7 mainshocks analysed
here, before and after their occurrence.

Earthquake before after
〈b〉 bM σb 〈b〉 bM σb

L’Aquila 0.99 0.99 0.064 0.95 0.96 0.082
Finale Emilia 0.93 1.0 0.094 0.86 0.85 0.062
Amatrice aftershock 1.11 1.10 0.057 0.94 0.94 0.14
Amatrice 1.02 1.04 0.16 1.02 1.05 0.16
Norcia 1.03 1.04 0.18 0.90 0.92 0.13
Capitignano 1.02 1.03 0.16 1.09 1.1 0.096

Table 3 〈b〉, bM andσb for the 6mainshocks analysed con-
sidering restricted timeperiodbefore (2 years) andafter (0.5
years) the target mainshock.

Moreover, in order to test the robustness of the time
parameters considered in the blind test, we show in Ta-
ble 3 that halving the time period before and after the
occurrence of themainshock target does not change the

results substantially. Note that halving the time period
for theMirandola earthquake is excluded from the anal-
ysis because the number of aftershocks is smaller than
500.
A t-test reveals that the b values before and after the

occurrence of the mainshocks cannot be considered
different at a 95% significance level. This implies
that the discrimination between foreshocks and af-
tershocks cannot be performed using a blind algorithm.

Conclusions
We extensively tested the method proposed by Godano
et al. (2023) for evaluating the completeness magnitude
(mc), whichwe referred to as the cv method. The testing
involved randomly generated catalogues with varying
values of b and mc, as well as simulated catalogues gen-
erated using ETASmodels with fixed b andmc values. In
all cases, the method exhibited excellent performance.
The distributions of the estimated values compared to
the “true” values showed a supergaussian shape, cen-
tered around zero. Using the cv method we then tested
the results of Gulia andWiemer (2019) for the Amatrice-
Norcia earthquake sequence, confirming their results
when using their catalogue, which represents a specific
selection of the Italian catalogue. The use of a more
reliable method in the estimation of mc and b repre-
sents a stronger confirmation of their results, resolv-
ing doubts about possible biases introduced by an un-
derestimation of mc (Lombardi, 2022). However, when
applying a blind algorithm to the Italian catalogue, no
differences were found in the b values before and after
the occurrence of the mainshock. This result indicates
that: 1) the difference in b values is significant when
an appropriate catalogue selection is made, supporting
the notion that the b value serves as a reliable stress in-
dicator. Specifically, if a genuine mainshock is immi-
nent, the stress increases while the b value decreases;
2) the decrease in the b value cannot be detected using
our blind approach and, consequently, cannot be uti-
lized for real-time predictive purposes. Of course, other
blind approaches could, conversely, confirm the Gulia
andWiemer (2019) results.
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Rebuttal letter

We thank both reviewers for their work that have helped us to improve the manuscript. We have
done our best to answer their questions.
Some confusion came from the fact that we sometimes wrongly used the work “anomalies” instead
of “heterogeneities” which definitely didn’t help the understanding of our point. We refer to
“anomalies” for DAS signals that are not consistent with the wave propagation (typically too
small spatially for a given frequency). Heterogeneities are regions with mechanical properties
different from a background.
Another significant source of confusion arose from the misconception that the numerical tests were
designed to replicate the data presented in Section 3. However, this is not the case. The paper’s
methodology involved initially developing the numerical model, followed by seeking an actual data
example to illustrate our findings. We have made efforts to clarify this aspect to eliminate any
potential confusion.

1 Reviewer 1

• 1 17-18 might be simplified
we have tried to improve this part

• 2 31-32 hard to read
we have tried to improve this part.

• 3 37 not a density
linear density?

• 4 44 not clear which ones !
we mean : 1: simply pulled in underground conduits 2: the FO is decoupled from the outer
jacket

• 5 45 not clear
We have tried to improve that

• 6 61-62 here there is something unclear. It has never be said before that DAS is a measure-
ment over an extended distance, then the opposition of strain and point measurement is not
straightforward
Our mistake: a few words were missing which makes the sentence have no meaning. We
added ”... particle displacement or velocity point measurements.” Sorry about that.

• 7 74 not sure of that, do you have a reference ? Their are also Brioullin and Raman non
elastic scattering. but Rayleigh scattering is what is analyzed

We removed the word ”dominant” which is not critical for the discussion

• 8 79 strain (Dl/l), where elongation is Dl
done

• 9 83 difficult to read
changed

• 10 86 exponent -12 lacking Hz should not be italic I think the distance is also required
Done

• 11 95 receiver spacing and gauge length are independant I think it was fixed in first version
of Febus but it is not always the case

Corrected. The gauge length here was actually 9.6 m
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• 12 102 add ref for this formula. also is xi+1 ¿xi the dt should be negative: the optical wave
reflect on xi+1 and interfere at xi with a delay, then the optical delay is on ux and dt should
be explicitely given in function of the distance difference and c. this formula need to be
explained with more detailled as it is the basis of the paper

We changed the formula and added a reference

• 13 106 the rayleigh scattering is not evaluated in DAS
done

• 14 113 epicenter position?
Done

• 15 124 mixed between singular and plural please correct
corrected

• 16 126 is that the black lines ? it is perturbating to refer to 900 sensors better add between
the distances 8000? to 10000 m because no reference of the sensor number is given in fig1
Indeed, it is the black lines. We have changed the text to refer to the black lines.

• 17 127 very difficult to understand color of the filter seems to be inverted (red signals contains
higher frequencies (even if seen in space)) Also the waveforms seems to be normalized in the
representation, then you can refer to attenuation.
We admit it is not obvious, but the color scale is not inverted. The main reason for this
confusing impression is the anomalies that are dominating the signal. We have added a
magenta box in fig1(c) to highlight one example of signal we wish to show.

• 18 129-131 not clear
We have tried to improve this part

• 19 144 Is that related to the method you use to solve the elasto dynamic problem? I do not
think it is written where it should be.
Maybe we are missing the point of this comment. When defining the problem, we need to
specify the boundary conditions used. Here, we neither use Dirichlet nor Neumann boundary
conditions, but absorbing boundaries. Those are meant to absorb any outgoing waves. We
are not stating yet what method we are using to implement those boundary conditions.

• 20 151 does look like rather a monopole /explosion than a usual vector point source
This is a standard expression for a moment tensor point source. See, for example, Dahlen
& Tromp (1998) Eq. 5.85 page 166. Please note that the gradient operator applies to the
Dirac distribution.

• 21 155 indeed see comment at line 144-145
See above answer

• 22 156 constante?
yes

• 23 160 please check compatibility with eq 2
done

• 24 160 mainly dt disappeared in first term
It did because we are using v instead of u. But, this is a good point, we change Eq. 2 to be
the same as Eq 6.

• 25 161 not in the equation 6
Not sure about the point of this comment. ∆x is in Eq. 6.
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• 26 172 vp is too low, see brocher relation to fix that
Indeed, we used a VP that we can find in dry sand or topsoil (The first author had in mind a
FO in volcano hashes at the very beginning, and it unfortunately stayed that way). Because
changing that would imply re-running everything, re-do all the figures without changing the
visual aspect of the figures nor any conclusions of this work, we didn’t change that value.
We removed the sentence “representative of subsurface layers” as it is not accurate.

• 27 175 I m lost here. You never mentionned 2 fibers before. Also fibers are on the surface
not in the bulk as in your simulation. Then shoul I understand that you simulated only
surface waves or disregard the effect of surface wave reflection on your analysis?
Indeed, the numerical experiment presented here should not be seen as an attempt to model
the sec. 3 real data. Nevertheless, such a simple modeling is sufficient to reach our point:
the effect of small scale heterogeneities on DAS measurement. And yes, we are using two
FO cables in our numerical experiment to make our point.

• 28 178 then it is not to mimic the FO cables?
See the above answer: it is to illustrate FO cables in general, not specifically the one of the
previous observations in Sec. 3.

• 29 fig 3 can we see the effect on S wave too ?
Because the chosen source is an explosion, there is no ballistic S-wave. There are S waves in
the scattered wavefield after the ballistic P-wave, but they are difficult to isolate.

• 30 188 Why rock are discretized by only 2 cells? Don t you require at least 6 cells for an
heterogeneity to ensure that the errors is not numerical? The diffracted field by rock is it
well sampled close the rock? Perhaps in farefield but certainly not in nearfield. I think the
convergence close to the diffractors should be shown in supplementary at least. You also
need to discuss the error in displacement and in strain, I think they differ from 1 order due
to the derivative. What is the ratio impose between element length and lambda min?
A general fact of the dynamic is that, to obtain good quality result, it is enough to mesh the
geometry (discontinuities) and the minimum wavelength. This is not true for the static case,
for which singularities of the solution near complex geometry implies a finer and finer mesh.
Knowing that, a single element per stone would be enough. We have 4 elements/stone here
because the meshing tool (GMSH) we use here is not smart enough to join the 4 elements
into 1. Another meshing tool (CUBIT and its successor, commercial) would have been able
to generate a mesh with a single element par stone. The polynomial degree used here is
6, which means each element has 7x7 “points” (Gauss-Lebatto-Legendre collocated points).
Such a degree is enough to accurately model any wavefield using 1 element per minimum
wavelength. Here, because we have to mesh the stones, the elements are very small compared
to the minimum wavelength (in a smooth media, the elements could be 15 times larger, the
wavefield would still be accurate). The wavefield is therefore seriously over-sampled, which,
together with the well-known accuracy of the SEM, ensures we have no accuracy issue here.
If you are interested in knowing more about the spectral element convergence, there are
many studies, but one of the first is Seriani & Priolo (1994).

• 31 190-194 Why not introducing g dot in 5 and use v and strain rate? The explanation even
if right is complicating the paper.
We have thought about that and what you suggest was indeed a considered option. But
this discussion about g depends on the nature of the source (g is a step function for an
earthquake, a Dirac for a triggered explosion etc). Because in the end it doesn’t change
much the results and because its application is not tied to the source nature, we decided to
keep it that way.

• 32 197 one case 2 variables this is confusing because there are 2 fibres,
We changed that
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• 33 197 we only see from 26 s, change the description of first
The signal is zero before 26s, this is the first arrival. It took about 25s for the P waves to
reach the FO1 (+2s to account for the g zero time).

• 34 202 this is only from here I can understand what anomalies are in section 3 However
I am not very convinced. In fig3 du, the balistic wave has a dicontinuous amplitude over
the different chanel and it iseems more related to channel normalization. The amplification
might be related to local site effect, and here you are in a bulk.
We are not sure what is meant here. About the normalization: it is done by maps, not
by traces, so that the relative amplitudes within the maps are preserved. Moreover, the
cross-section for a given time step in Fig 5 (formerly fig 4) right panel shows clear “glitches”
(anomalies) and only for the DAS “strain” measurement, not for the displacement (fig 5 left
panel). This observation can indeed be called a “site effect”, but then it is an effect only for
a strain measurement, not for a displacement measurement at the same location. Classical
“site effects” are ringing effects that still obey a dispersion relation (they appear only in
some frequency bands), which is not the case here.

• 35 Fig 6 a portion of
The caption has been updated

• 36 Fig 7 It is not clear that the effect is lower on FO2 as everyting is normalized. Can you
show it also not normalized?
The traces are now normalized by a common factor (the maximum amplitude of FO1) which
makes the amplitude comparable.

• 37 267 I am not sure about the shortcut.
“Similarly” has been removed

• 38 271 better use index at left ?
This is possible. Nevertheless, this notation used here is very common for many two-scale
homogenization works.

• 39 310 Eq?
Done

• 40 Fig 8 Is it a 1D material ? 1D homogeneisation?
Fig 9 (previously Fig 8) is a cross-section of the 2-D homogenized solution. The method
employed is the one described in Section 5. See the beginning of section 5.3.

• 41 380 The effect of filtering is not given explicitly in section 3. Is that for changing wave-
length?
Exactly. Following the dispersion relation, changing the frequency should change the wave-
length. If it is not the case, the observed signal is an anomaly. We have tried to improve
section 3 accordingly.

• 42 381 Not clear, DAs measurement shows anomalies. There are not affected by. Or do you
mean the diffractors? Did you verify where the vertical lines stand that there are shallow
heterogeneities?
This is our mistake. We meant “display anomalies”. This has been corrected and the
paragraph rewritten.

• 43 402 I disagree, see site effects due to free surface topography.
We are not sure why it is a disagreement. Indeed, free surface fine-scale topography has
a similar effect compared to fine-scale heterogeneities regarding displacement versus strain.
See Capdeville & Marigo (2013).
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2 Reviewer 2

• 1. Page 2, Line 39 : What do the authors mean by cable coating or coupling? Kindly
elaborate.
We replaced ”coating” by ”cable jacket” and rephrased the sentence as: ”The attachment
of the Fiber Optic (FO) cable to both its cable jacket and the ground is known to strongly
affect DAS measurements ”

• 2. Page 3, Line 80 : What does the parameter ξ signify in Equation 1? Explained after the
equation: ” ξ is assumed constant, typically 0.79 in single-mode fiber, and acknowledges that
straining the fiber also implies a proportional change in its refractive index”. The reader
can refer to the reference provided for the equation to get more details.

• 3. Page 3, Line 88 : Kindly elaborate on what the authors mean to convey in the statement
“But some experiments on short fiber segments exploited data acquired at several kHz”.
This sentence is indeed not critical and was removed.

• 4. Page 4, Line 111 : Please provide further details (Date, Time, Coordinates) of the 2.7Mw
aftershock recorded by the DAS fiber optic cable Done

• 5. Page 5 : Please specify the lengths of the two arms of the V-shaped network in Figure 1.
The data shown in Figure 1 correspond to which time of the year approximately?

Done. Figure 1 corresponds to the date the aftershock studied i.e. Nov. 23rd, 2019

• 6. Page 4, Line 123 : Is there a specific reason for choosing the 4 high-frequency cutoff?
Why was it not just 5, 10, 15, 20 and 25?

We tried different values and found that the chosen high-frequency cutoff frequencies to
better illustrate the attenuation of the seismic waves with respect to the anomalies.

• 7. Page 4, Line 130-131 : The authors state that they do not observe the effect of filtering
over one or few channels. Is it possible for the authors to mark at least one such region in
Figure 1c to back this statement?
We added a white box in Fig 1(b) and a cyan box in Fig 1(c) to display one example.

• 8. Page 4, Line 132: What do the authors mean by ‘environment of the fiber’. Kindly
elaborate.
We mean anything near the fiber. We elaborated on the sentence

• 9. Page 4, Line 133 : When do the two anomalies, phase unwrapping errors and laser
frequency drifts, occur in DAS acquisition?

We provided examples: ”Two well-known sources of anomalies inherent to DAS technology
are phase unwrapping errors (e.g. something directly touching the OF and causing a sudden
large strain) and laser frequency drifts (e.g. if the laser of the DAS is affected by external
vibrations)”

• 10. Page 6, Line 139 : What do the authors mean by mechanical property anomalies? Please
elaborate on this term before the paper delves into the numerical analysis.
Sorry, we meant “heterogeneities” instead of “anomalies”. This error is embarrassing as it
is very confusing. Indeed, we observe anomalies in DAS measurements that we propose to
link to small-scale heterogeneities in our work.

• 11. Page 6, Line 159 : What is pulse width effect? Kindly elaborate.
The pulse width effect is explained just before section 3 and is expected to be small. We
have moved the sentence “We ignore the pulse width effect” there for clarity.
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• 12. Page 6, Line 160: In Equation 6, does ‘z’ represent depth of the medium? If not, the
reviewer requests the authors to replace ‘z’ with some other variable.
The ’z’ component represents more a horizontal component than a depth. Nevertheless, the
2-D modeling we are using here only represents partly a 3-D realistic setting and the (x̂, ẑ)
are just the basis vector of this 2-D setting, which is arbitrary and a common practice for
numerical modeling. Moreover, we have used z instead of y to avoid confusion with the
homogenization y variable. We have added a sentence to make sure there is no confusion.

• 13. Page 7 : Figure 2 is extremely confusing to the readers. As the y-axis in ‘Figure 2a’
is marked ‘z’, it is presumed that it represents the depth of the region of simulation. If so,
then the origin of the region should be at top left corner instead of bottom left corner and
the depth should be represented as -10km, -20km and so on. In that case it is easy for the
reader to perceive that the explosion occurs at a depth of 30km from the top surface and the
measurements are being recorded at a distance of 10km approximately. However, DAS fibre
at a depth of 10km does not make sense. If ‘z’ is not the depth of the medium, then how
is the simulation carried out? Is the source also assumed to be present at the same level as
the DAS? The authors need to clarify on these points.
We have added a text at the beginning of section 2 to clarify this point. As mentioned
earlier, we present only a 2-D model in an infinite plate that can not represent many aspects
of the 3-D real setting. We have added a section in the discussion too, about the limitations
of the presented modeling.

• 14. Page 7, Line 178 : Either FO1 is directly in contact with 6 stones and FO2 is with none
(according to current Figure 2b) or Figure 2b needs to be checked if there are 6 or 7 stones
present on FO1.
Indeed, Fig. 2b represents only a portion of the whole area. This portion is presented with a
dotted line square in Fig. 2a. In Fig. 2b, only 6 stones are visible, but a 7th one is touching
FO1. We added a sentence in the text to be more precise.

• 15. Page 7, Line 179 : When the authors write, 20km away from the cables, do they mean
at a horizontal distance of 20km or a depth of 20km.
As explained above, it is a 2-D modeling. We mean 20km away in the Ω plane. If we think
of this 2-D modeling as a top view of a 3-D modeling, it is indeed 20km in the horizontal
distance.

• 16. Page 8, Line 180-181 : Please provide a figurative representation of the Ricker source-
time function showing the central and maximum frequency used to simulate the explosive
source.
A figure has been added. (Ricker functions are quite commonly used for numerical modeling
in seismology)

• 17. Page 8, Line 186 : Kindly elaborate on what is GMSH. Also, please provide it’s full-form.
GMSH is an open-source software. We added a sentence saying so. The necessary informa-
tion to know more about it comes with the provided reference.

• 18. Page 8 : Is it possible for the authors to add a subplot of FO1 showing the location of
the 7 stones right below both the subplots of Figure 3? It will improve the understanding of
the reader to compare the not-so strong and strong glitches on the displacement and strain
fields respectively with the actual location of heterogeneities on FO1.
Done.

• 19. Page 8, Line 201-202 : Please mark the regions in Figure 1c, where authors think that
they observe this phenomenon.
done with a white box in Fig. 1(c)

• 20. Page 8, Line 203 : Kindly elaborate on trace collection representation.
Added in the figure caption
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• 21. Page 9 : It will also be good if the authors can mention the exact distance of these 6/7
stones on the x-axis with respect to the origin. It will help to match these distances with
the peaks observed in the blackline in Figure 5.
The positions of the stones along the FO as been marked by vertical gray lines in Fig 6
(formerly 5) and 8 (formerly 7)/

• 22. The authors are requested to show Figure 2b in the range of 6km to 14km so that this
representation is consistent with their observations shown in Figure 3. It is also advisable to
mark a small region around FO1 and FO2 which signifies what they show in Figure 4 and
Figure 6.
It is not easy the change the x-range without making the figure difficult to visualize with
a standard resolution. Instead, we have added two panels showing the stone locations just
below the traces collections.

• 23. The captions for Figure 4 and 6 are incomplete.
Indeed, thank you. We have completed the caption

• 24. Page 10: It will be interesting to mark the exact location of stones present in FO1 in
Figure 7. Also, it is visible in Figure 1b that there are 2 stones present extremely near to
FO2. One is at z = 30km (below FO2) and x is between 9 to 10km and the other is on
FO1. It will be interesting if the authors can try to observe and distinguish between these
two stones from the strain amplitudes shown in Figure 7.
We have added vertical lines in Fig 8 (formerly 7) to display the stone locations.

• 25. Page 12 : I request the authors to use numbers instead of bullets to enlist the main
points of the development of homogenization theory.
Done

• 26. I request the authors to add the word ‘equation’ before referring to any equation in the
text to provide better readability to the manuscript.
Done

• 27. Page 14, Line 327-330: The authors mention that a spatially smaller or larger het-
erogeneity has a similar amplitude effect on the strain. As per the understanding of the
reviewer, the authors, in the present numerical simulation have considered the stones of the
same size to represent heterogeneties around FO1 and FO2. It will be extremely interesting
to show another set of simulations where the stones of different sizes are cautiously placed
near FO1 and FO2 and plot figures similar to the left panels of Figures 3 and 4 and Figure
5. This set of simulations and corresponding figures will provide a better understanding of
the statements mentioned in these lines.
Indeed, it is a non-intuitive behavior. We have added a reference in which this effect is
illustrated.

• 28. Page 15, Line 348-350: Kindly briefly describe the method to obtain effective elastic
tensor so that the readers can refer to Browaeys and Chevrot (2004) for its details. The
added explanation will provide a better understanding to Figure 10 for the readers.
Browaeys and Chevrot are used only to compute the nearest isotropic elastic tensor ciso to
an arbitrary tensor c. It is a simple method (and not a homogenization method) and we use
it to represent the effective tensor obtained with the homogenization method Capdeville et
al. (2010) described in the paper.

• 29. Page 15: Figure 8 caption- Change upper right panel to upper left panel. Also, the
upper panels of Figure 8 can be combined to show the velocity in the original media and
effective media in the same subplot as the authors have represented density.
We made two separated plots for VS and V ∗iso

S
because the difference of amplitude makes

the V ∗iso

S
difficult to visualize if plotted in a single graph.
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• 30. Page 16 : How many iterations are carried out by the authors to get the close match
between the simulations in the original media and effective media shown in Figure 10b and
10d.
It is not clear what is meant by iterations here as it is not an iterative method. There are
only 3 steps to obtain the effective traces shown in Fig 11 (formerly 10):

1. obtain the effective media and the correctors with the homogenization tool presented
in section 5.1

2. run SEM in the effective media (it is a standard SEM run) to obtain Fig 11 a and b

3. apply the correctors to obtain Fig 11 c and d

• 31. Page 17, Line 388: Please provide appropriate references that show the numerical
evaluation of small-scale heterogeneties on DAS measurements.
This is the point of the paper. To our knowledge, there is no other.

• 32. It will be interesting if the authors try to simulate the 2.7Mw earthquake mentioned
in Figure 1 assuming as an effective media and comparing it with the records that they
have from the DAS measurements in the original media. This will further support the fact
that by circumventing the effort that researchers may have to go through to characterize the
heterogeneities in the substructure of the Earth to obtain realistic estimates of strain and
rotations, the homogenization method can provide reliable results.
This is a difficult request because we do not have a good model (at least good enough) of
the area. This would nevertheless be possible with limited accuracy and gathering models
and geology of the area and then using a 3-D SEM tool. The amount of work required to
achieve such a goal makes us acknowledge that we can not comply for now, but it will be for
a future work.

Nevertheless, the requests show a problem in the writing of our paper. Indeed, it indicates
that the reviewer thinks that we are trying to model the data shown in section 3, which we
are not. The data are just here to illustrate the effect we are proposing to explain.
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Abstract Detections of slow slip events (SSEs) are nowcommonalongmost plate boundary fault systems
globaly. However, no such event has been described in the south Peru - north Chile subduction zone so far,
except for the early preparatory phase of the 2014 Iquique earthquake. We use geodetic template matching
onGNSS-derived time series of surfacemotion in Southern Peru - Northern Chile to extract SSEs hiddenwithin
geodetic noise. We detect 24 events with durations ranging from 17 to 36 days and magnitudes from Mw 5.4
to 6.2. Our events, analyzed from a moment-duration scaling perspective, reveal values consistent with ob-
servations reported in other subduction zones. We compare the distribution of SSEs with the distribution of
coupling along the megathrust derived using Bayesian inference on GNSS- and InSAR-derived interseismic
velocities. From this comparison, we obtain that most SSEs occur in regions of intermediate coupling where
themegathrust transitions from locked to creeping orwhere geometrical complexities of the interplate region
have been proposed. We finally discuss the potential role of fluids as a triggering mechanism for SSEs in the
area.

Resumen Hoy en día, las detecciones de eventos lentos (SSEs, por sus siglas en inglés) son comunes a lo
largo de la mayoría de los sistemas de fallas activas a una escala global. Sin embargo, hasta ahora, no se han
reportado eventos de este tipo en la zona de subducción del sur del Perú y norte de Chile (10oS-24oS), excep-
tuando aquellos ocurridos durante la fase de preparación del terremoto de Iquique de 2014. En el presente
trabajo, nosotros utilizamos una técnica conocida como “Template Matching” en series temporales de de-
splazamientomedido por datos GNSS (Global Navigation Satellite System, GNSS por sus siglas en inglés) en el
sur del Perú y el norte deChile, para extraer la firmade eventos lentos asísmicos ocultos en el ruido geodésico.
Nosotros detectamos 24 eventos asísmicos con duraciones de 17 a 36 días, y magnitudes de Mw 5.4 a 6.2. El
análisis de nuestros eventos utilizando leyes de escala momento-duración, revela valores consistentes con
observaciones realizadas en otras zonas de subducción. El momento sísmico liberado por estos eventos es
proporcional al cubo de su duración, lo que parece implicar una dinámica comparable con la de los terre-
motos clásicos. Los eventos detectados en este trabajo están principalmente localizados en zonas donde
el acoplamiento intersísmico presenta valores en transición (0.3 - 0.8 de factor de acomplamiento), donde
la zona de subducción transiciona de un estado bloqueado a uno de deslizamiento continuo. Finalmente,
nosotros discutimos el rol potencial que podrían jugar los fluidos en el desencadenamiento de estos eventos
lentos.

Résumé Depuis une vingtaine d’année, des événements de glissement asismiques ont été détectés le
long de quasiment toutes les frontières de plaques aumonde. Cependant, aucun n’a été décrit pour l’instant
le long de la zone de Subduction allant du Perou au nord du Chili, si l’on omet le glissement mesuré lors de
la période d’activité ayant mené au séisme d’Iquique en 2014. Nous utilisons une technique dite de Template
matching sur des séries temporelles de déplacement mesuré par GNSS dans le nord du Chili pour extraire la
signature d’événements de glissement asismiques cachés au sein du bruit géodésique. Nous détectons 24
événements asismiques avec des durées allant de 17 à 36 jours pour des magnitudes équivalentes allant de
Mw 5.4 à 6.2. Nos événements ont des valeurs cohérentes avec les observations rapportées dans d’autres
zones de subduction. Il apparait que ces événements asismiques sont essentiellement localisés dans des
zones de couplage intermédiaires où le megathrust est a mi-chemin entre un état bloqué et un état en glisse-
ment permanent. Nous discutons finalement de l’influence éventuelle de fluides profonds dans le déclenche-
ment de ces événements asismiques.

1
SEISMICA | ISSN 2816-9387 | volume 3.1 | 2024

https://doi.org/10.26443/seismica.v3i1.980
https://orcid.org/0000-0003-3176-0689
https://orcid.org/0000-0002-9896-3651
https://orcid.org/0000-0002-9208-7136
https://orcid.org/0000-0003-2073-0492
https://orcid.org/0000-0002-1865-8922


SEISMICA | RESEARCH ARTICLE | Detection of slow slip events

1 Introduction
Overwhelming evidence suggest that the Elastic Re-
bound Theory proposed by Reid (1910) after the 1906
California earthquake associated with the stick-slip be-
havior of frictional interface (Brace and Byerlee, 1966)
is insufficient to explain the slip behavior along active
faults. Geodetic measurements of surface motion have
revealed the presence of aseismic, slow slip along all
types of active faults. After the first descriptions in
the mid-20th century from direct observations of dam-
age tohuman-made structures crossing the SanAndreas
(Louderback, 1942; Steinbrugge et al., 1960) and North
Anatolian (Ambraseys, 1970) faults, aseismic slip has
been directly observed, or inferred, from geodeticmea-
surements at different stages of the earthquake cycle.
For instance, afterslip corresponds to the diffusion of
slow slip during the post-seismic period accommodat-
ing a co-seismic stress perturbation (e.g., Heki et al.,
1997; Bürgmann et al., 2001; Hsu et al., 2002, 2006).
Creep, on the other hand, often refers to steady aseismic
slip during the interseismic period (Steinbrugge et al.,
1960; Ambraseys, 1970; Jolivet et al., 2015b). In addi-
tion, interseismic transients (i.e., slow slip events or
SSEs) during this interseismicperiodwerediscovered in
the 2000s along subduction zones. SSEs often locate in
the deeper portion of the seismogenic zone (e.g., Hirose
et al., 1999; Dragert et al., 2001), but some of these SSEs
are associated with seismic signals that occur within
the seismogenic zone, and may contribute to reduc-
ing geodetic coupling (Mazzotti et al., 2000; Bürgmann
et al., 2005; Loveless and Meade, 2010; Radiguet et al.,
2012; Béjar-Pizarro et al., 2013; Villegas-Lanza et al.,
2016; Métois et al., 2016; Michel et al., 2019a; Jolivet
et al., 2020; van Rijsingen et al., 2021; Lovery et al.,
2024). This along-dip segmentation differs from one
subduction zone to the other (Nishikawa et al., 2019)
and we note more occurrences of SSEs along young,
warm subduction zones (i.e., Nankai, Mexico, Casca-
dia), than old and cold ones. Finally, slow slip appears to
be an important ingredient of the preparation phase of
earthquakes (e.g., Ruegg et al., 2001; Ruiz et al., 2014;
Radiguet et al., 2016; Socquet et al., 2017; Voss et al.,
2018). More recently, it has been proposed that a signifi-
cant fraction of observed geodetic displacement in seis-
mically active regions results from the occurrence of
slow slip events (Jolivet and Frank, 2020, and reference
therein), suggesting a burst-like, episodic behavior of
aseismic slip at all time scales from seconds to decades
inplaces as varied asMexico (Frank, 2016;Rousset et al.,
2017; Frank and Brodsky, 2019), Cascadia (Michel et al.,
2019a; Ducellier et al., 2022; Itoh et al., 2022), along the
San Andreas Fault (Khoshmanesh and Shirzaei, 2018;
Rousset et al., 2019; Michel et al., 2022), the Haiyuan
fault in Tibet (Jolivet et al., 2015a; Li et al., 2021), on
the Alto Tiberina and Pollino fault systems in Italy (Gua-
landi et al., 2017; Cheloni et al., 2017; Essing and Poli,
2022), or Japan (Nishimura et al., 2013; Takagi et al.,
2019; Nishikawa et al., 2019; Uchida et al., 2020). All
observations suggest the importance of accounting for

∗Corresponding author: now at GFZ Potsdam, jorge@gfz-
potsdam.de

Non-technical summary Earthquakes correspond to a
sudden release of elastic energy stored in the crust as a response
to the relative motion of tectonic plates. However, this release of
energy is not always sudden and accompanied by destructive seis-
micwaves. It sometimeshappensslowlyduringaseismic, slowslip
events. It has been shown that SSEs canbeassociatedwith thenu-
cleation, propagation, and termination of big earthquakes. SSEs
have been detected along many subduction zones in the world
but not in northern Chile, yet. Here, we use a template match-
ingmethod to scanGNSS observations of groundmotion to detect
and characterize slow slip events along the southern Peru - north-
ern Chile subduction zone. We find 24 aseismic events at depths
comparable with that of SSEs in other subduction zones, as well
as in regions that slip aseismically persistently. We discuss how
our findings relate to past earthquake ruptures, the geometry of
the subduction zone, and fluids circulating at depth. Our results
show the importance of implementing methods to extract small
aseismic signals in noisy data, key observations for a better under-
standing of fault mechanics.

aseismic slip in our understanding of earthquake cycle
dynamics. However, the underlying physics controlling
aseismic slip is still debated, mainly due to the lack of
good, dense observational databases.
Nowadays, observations of aseismic slip in subduc-

tion zones are frequently documented over a wide
range of slip amplitudes and at different stages of the
earthquake cycle (Avouac, 2015; Obara and Kato, 2016;
Bürgmann, 2018; Kato and Ben-Zion, 2021, and refer-
ences therein). Regular slow slip events have been doc-
umented mainly along warm subduction zones such as
Cascadia, Nankai (southwest Japan), Mexico, or New
Zealand (e.g., Graham et al., 2016; Nishikawa et al.,
2019; Wallace, 2020; Michel et al., 2022, and references
therein). Instead, observations of slow slip events in
cold subduction zones such as off-shore Japan or Chile
are sparse or indirect, through seismic swarms, re-
peaters, or slow earthquakes (Kato et al., 2012; Kato and
Nakagawa, 2014; Gardonio et al., 2018; Nishikawa et al.,
2019), and rarelywith geodetic observations (Hino et al.,
2014; Ruiz et al., 2014; Socquet et al., 2017; Boudin et al.,
2021). Geodetic displacement corresponding to such
slow slip events are usually of mm to cm-scale ampli-
tude and require the development of novel and system-
atic methods to extract SSEs from noisy time series of
geodetic data (Frank, 2016; Rousset et al., 2017; Michel
et al., 2019a; Uchida et al., 2020; Itoh et al., 2022).
We focus on the South Peru- North Chile subduc-

tion zone. The region is seismically active, with two
historical earthquakes in 1868 (southern Peru), and
1877 (northern Chile), both tsunamigenic earthquakes
of magnitude ∼8.5 (Kausel, 1986; Comte and Pardo,
1991; Vigny and Klein, 2022) (Figure 1). Since these
two events, the region has experienced several large
earthquakes (Mw > 7.5) (Ruiz and Madariaga, 2018) ac-
companied by an important background seismic activ-
ity (Jara et al., 2017; Sippl et al., 2018, 2023) (Figure 1).
In addition, coupling is highly variable along the sub-
duction interface. Coupled regions overlap with the in-
ferred rupture extent of the 2001 Mw 8.1 Arequipa and
2014 Mw 8.1 Iquique earthquakes (Schurr et al., 2014;
Métois et al., 2016; Villegas-Lanza et al., 2016; Jolivet
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Figure 1 Seismotectonic map of the South Peru - North Chile subduction zone. White arrows show the extent of historical
earthquakes (Comte andPardo, 1991; Vigny andKlein, 2022). Gray contours are the rupture area of instrumental earthquakes
with M>7.5, with corresponding epicenters (gray starts) and focal mechanisms (if available) (Dorbath et al., 1990; Beck and
Ruff, 1989; Hartzell and Langer, 1993; Delouis et al., 1997; Chlieh et al., 2004; Pritchard et al., 2007; Dziewonski et al., 1981; Ek-
strömet al., 2012; Peyrat andFavreau, 2010; Sladenet al., 2010; Béjar-Pizarro et al., 2010;Duputel et al., 2015; Jara et al., 2018).
Yellow lines are the 0.1 m afterslip contours available in the region (Chlieh et al., 2004; Béjar-Pizarro et al., 2010; Remy et al.,
2016; Hoffmann et al., 2018), whereas the green ones are the pre-seismic slip reported for Iquique earthquake by Socquet
et al. (2017). Colored dots are earthquakes with M>4.0 from the International Seismological Centre (International Seismo-
logical Centre, 2016) over the period 1990 - 2016, color-coded by depth and scaled by magnitude. Large white arrow shows
convergence direction and rate fromMétois et al. (2016). SOAM: SOuth AMerica plate.

et al., 2020). A large coupled section is inferred where
the 1877 earthquake is thought to have ruptured (Jolivet
et al., 2020; Vigny and Klein, 2022). In addition, two
low-coupling regions are observed. In southern Peru,
lowcoupling coincideswith the subductionof theNazca
ridge (∼ 15o) (Villegas-Lanza et al., 2016; Lovery et al.,
2024). In northern Chile, a reduction in coupling is in-
ferred offshore Iquique andbelow theMejillones penin-
sula (∼ 21o) (Béjar-Pizarro et al., 2013; Métois et al.,
2016; Jolivet et al., 2020).

In addition to low coupling, aseismic slip has been
observed in South Peru and North Chile. Afterslip
has been reported following large earthquakes, includ-
ing the 1995 Mw 8.1 Antofagasta (Chlieh et al., 2004;
Pritchard and Simons, 2006), the 2001 Mw 8.1 Arequipa
(Ruegg et al., 2001; Melbourne, 2002), the 2007 Mw 8.0
Pisco (Perfettini et al., 2010; Remy et al., 2016), the 2007
Mw 7.7Tocopilla (Béjar-Pizarro et al., 2010) and the 2014
Mw 8.1 Iquique earthquakes (Hoffmann et al., 2018)

(Figure 1). Geodetic transients interpreted as the signa-
ture of aseismic slip occurred in the days tomonths pre-
ceding the Mw 8.4 Arequipa earthquake in 2001, before
one of its largest aftershock, and preceding the Iquique
earthquake in 2014 (e.g., Ruegg et al., 2001; Melbourne,
2002; Ruiz et al., 2014; Schurr et al., 2014; Socquet et al.,
2017). Aseismic slip is considered responsible for a sig-
nificant fraction of such geodetic transients (Twardzik
et al., 2022). There is therefore plenty of evidence of oc-
currences of aseismic slip in this broad region but, de-
spite intense efforts to instrument the area, no obvious
spontaneous slow slip events have been detected during
the interseismic period.

A change in the interseismic surface velocity field
was observed following the Mw 7.5 intermediate-depth
Tarapaca earthquake over a decade (Peyrat et al., 2006;
Peyrat and Favreau, 2010) (Figure 1), an observation in-
terpreted as the signature of a decoupling of the subduc-
tion interface (Ruiz et al., 2014; Jara et al., 2017). Com-
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parable changes in surface velocity field, observed fol-
lowing the 2010 Maule earthquake, have also been ob-
served in the regions affected by the 2015 Illapel (Ruiz
et al., 2016) and 2016 Chiloé (Ruiz et al., 2017; Melnick
et al., 2017) earthquakes. Such shifts in surface velocity
may be linked to postseismic viscoelastic processes act-
ing over long distances (Bouchon et al., 2018) in contrast
to the localized behavior observed after the Tarapaca
earthquake (Jara et al., 2017). Over the same period, we
observed a significant increase in background seismic-
ity (Jara et al., 2017), aswell as an apparent synchroniza-
tion of intermediate-depth and shallow seismic activi-
ties (Bouchon et al., 2016; Jara et al., 2017). Changes in
background seismicity rates have been associated with
the occurrence of aseismic slip events and fluid migra-
tion (Marsan et al., 2013; Reverso et al., 2016; Marsan
et al., 2017). The synchronization of the seismicity is
interpreted as related to aseismic slip events occurring
along the subduction interface due to a broader slab de-
formation (Bouchon et al., 2016). These indirect obser-
vations suggest aseismic transients may occur in South
Peru - North Chile during the interseismic period.
We aim to detect small, short-term aseismic slip

events in this region and discuss their occurrence and
location with respect to the interseismic coupling pat-
tern and past seismic crises. We explore GNSS time
series, searching for small transients, using a geodetic
template matching approach (Rousset et al., 2017). We
use GNSS and InSAR data to infer an updated distribu-
tion of interseismic coupling using a Bayesian frame-
work following the approach of Jolivet et al. (2020), com-
paring the detected aseismic events with the coupling
model, along with geophysical information available in
the region (seismicity, Vp/Vs ratio, gravity models). We
finally discuss potential mechanisms explaining the oc-
currence of aseismic events in the area.

2 Data, Methods and Results

2.1 GNSS processing and time series analysis

We process data from 119 continuous GNSS (cGNSS)
sites in the central Andes region (Figure S1a) andworld-
wide (Figure S1b), using a double difference approach
with the GAMIT/GLOBK software (Herring et al., 2015).
67 cGNSS sites are in the South Peru - North Chile re-
gion (Figure S1a and Figure 2, brown arrows), installed
and maintained by the Integrate Plate boundary Obser-
vatory Chile (IPOC) (Klotz et al., 2017), the Laboratoire
International Associé “Montessus de Ballore” (LIA-MB)
(Klein et al., 2022), the Central Andean Tectonic Obser-
vatory (CAnTO, Caltech) (Simons et al., 2010), the In-
stituto Geofísico del Perú (IPG) (Jara et al., 2017; Soc-
quet et al., 2017), the Institut des Sciences de la Terre
(ISTerre) (Jara et al., 2017; Socquet et al., 2017), and
the Centro Sismológico Nacional of Chile (CSN) (Báez
et al., 2018). The remaining 52 stations are part of the
International GNSS Service (IGS) (Teunissen and Mon-
tenbruck, 2017) global network. We separate these sta-
tions into three subnetworks (two locals and one global)
with 33 overlapping stations, where the local separation
depends on the station data span: one local network

with data from 2000-2014 and the other including data
from 2007-2014. Global network processing includes 99
stations over the 2000 - 2014 period, with 22 stations in
South America (Figure S1b). We use the GAMIT 10.6
software (Herring et al., 2015), choosing the ionosphere-
free combinations and fixing the ambiguities to inte-
ger values. We use precise orbits from the IGS, pre-
cise earth-orientation parameters (EOPs) from the In-
ternational Earth Rotation and Reference System Ser-
vice (IERS) bulletin B, IGS tables to describe the phase
centers of the antennas, FES2004 ocean-tidal loading
corrections, and atmospheric loading corrections (tidal
and non-tidal). We estimate one tropospheric zenith de-
lay every two hours and one pair of horizontal tropo-
spheric gradients per 24h sessionusing theViennaMap-
ping Function (VMF1) (Boehm et al., 2006). We use the
GLOBK software to combine daily solutions and the PY-
ACS software (Nocquet, 2018) to derive position time se-
ries in the ITRF 2008 reference frame (Altamimi et al.,
2011). Finally, time series are referenced to fixed South-
America considering the Euler pole solution proposed
by Nocquet et al. (2014).
We fit the time series with a parametric function

of time for each component (N, E, and U) (Bevis and
Brown, 2014). Each time series x(t), function of time
t, is modeled as

(1)

x(t) = xR + v(t − tR) +

nj
∑

j=1

bjH(t − tj)

+

nF
∑

k=1

[sk sin(ωkt) + ck cos(ωkt)]

+

nT
∑

i=i

ai log(1 + ti/∆T ),

where xR is a reference position at a time tR and v is the
interseismic velocity for each component. H is a Heavi-
side function applied each time tj an earthquake (or an-
tenna change) offsets the time series. The combination
of sin and cos functions describes seasonal oscillations
(with annual and semi-annual periods), while the loga-
rithmic functionmodels the transient, post-seismic sig-
nal following large earthquakes (Mw ≥ 7.5) with a relax-
ation time ∆T . For a given station, we consider a Heav-
iside function for all earthquakes of magnitude larger
that 6 with an epicenter to station distance lower than
d(M) = 10

M
2

−0.8, as proposed by the Nevada Geodetic
Laboratory (www.geodesy.unr.edu). We only include a
post-seismic term for earthquakes of magnitude larger
than 7.5. All inferred parameters for each component
and each cGPS site are in Supplementary Information,
Tables S1-S38. Figures S2-S17 compare the data and
model at each station. We then estimate and remove
a common-mode error by stacking all the time series
(Bock and Melgar, 2016; Socquet et al., 2017; Jara et al.,
2017). This procedure enables us to get residual time
series (Figures S18-S19) as well as an interseismic ve-
locity field (Table S1-S2). We use the obtained residual
time series to search for geodetic transients compatible
with slip on the megathrust and use the geodetic veloc-
ity field to update the last published coupling map (Jo-
livet et al., 2020).
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Figure2 Geodeticdata. (a) Coloreddarkgreenandpinkarrowsare theGNSS interseismic velocities fromMétois et al. (2016)
and Villegas-Lanza et al. (2016), respectively, while brown arrows are the continuous GNSS processed in this study. The inset
shows the residual trench perpendicular displacement time series for GNSS stationUAPE. (b) Line-of-sight (LOS) interseismic
ground velocity from track 96 (Envisat data) from (Jolivet and Simons, 2018; Jolivet et al., 2020). Black arrows indicate the
flight direction of the satellite and its line of sight (LOS).

2.2 Fault Geometry and Green’s Functions
Couplingmap estimation and geodetic templatematch-
ing methods need a fault geometry and Green’s func-
tions calculation, as described below. In both cases,
we define the geometry of the megathrust using Slab
2.0 (Hayes et al., 2018) as a reference, but with differ-
ent meshing strategies. For the coupling case, we use
triangles with 10 km-long sides along the coast and 25
km-long sides, both at the trench and depth, between
latitudes 17oS-25oS. In the northern part (10oS-17oS), we
adapt the size to the GNSS station density, considering
a constant 50 km-long triangle side. In contrast, in the
geodetic template matching case, we use triangles with
10 km-long sides along the coast and 25 km-long sides
in the entire region. Then, we consider slip on the fault
as the linear interpolation of slip values at the mesh
nodes. Finally, we compute the Green’s functions as-
suming a stratified elastic medium derived fromHusen
et al. (1999) using the EDKS software (Zhu and Rivera,
2002).

2.3 Coupling map for Southern Peru - North-
ern Chile

Weupdate the distribution of coupling from Jolivet et al.
(2020) in order to compare short- (i.e., days to months)
and long-term (i.e., years to decades) aseismic defor-
mation in the region. We use the GNSS velocity fields

from Métois et al. (2016) (data span 1996 - 2013) and
Villegas-Lanza et al. (2016) (data span 2008-2013), that
we complement with our GNSS velocity field (Figure 2a,
data span 2000-2016). Additionally, we use the line of
sight (LOS) velocity map from Jolivet et al. (2020), de-
rived from the processing of Envisat data covering the
period 2003 - 2010 (Figure 2b).
We use the backslip approach to estimate the distri-

bution of coupling (Savage, 1983). A coupling of 1 (resp.
0) corresponds to a fully locked megathrust (resp. a
megathrust that slips at plate rate). We consider plate
motion estimated by UNAVCO (www.unavco.org) under
the ITRF 2014 model (Altamimi et al., 2016) to estimate
the convergence rate, angle, and rake on each node of
the fault mesh. The backslip rate is evaluated by sub-
tracting the sliver movement proposed by Métois et al.
(2016) in Chile (11 mm/yr) and by (Villegas-Lanza et al.,
2016) inPeru (5.5mm/yr) to the convergence rate. In the
Arica bend (16oS - 18oS), at the boundary of the Chilean
and Peruvian slivers, we build a gradient to make a
smooth transition between the two slivers. We solve for
the distribution ofmodels that satisfy the geodetic data.
The forward problem is written as d=Gm, with d the

geodetic data (GNSS and InSAR velocities),m the vector
of parameters to solve for and G the Green’s functions
(Section 2.2). Parameters include coupling at eachmesh
node and geometric transformations akin to those in Jo-
livet et al. (2020). We adopt a probabilistic approach to
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estimate the parameters in order to evaluate the associ-
ated uncertainties. The a posteriori Probability Density
Function (PDF) of a modelm given a dataset d, p(m|d),
writes as

(2)p(m|d) ∝ p(m)p(d|m),

where p(m) is the a priori model PDF and p(d|m) is the
data likelihood. The a priori PDF describes our knowl-
edge of coupling along themegathrust before collecting
geodetic data. We define the a priori PDF at each node
for the coupling factor as follows:

(3)X ∼
{

N (µc, σ2

c ) if − 0.1 ≤ X ≤ 1.1

0 otherwise

where µc and σc are themean and standard deviation of
a normal distribution. We select the bounds of [-0.1, 1.1]
to ensure an accurate sampling for the full range of cou-
pling values between 0 and 1 (Dal Zilio et al., 2020a; Jo-
livet et al., 2020). We know themegathrust is decoupled
below 60 km depth from geodetic (Chlieh et al., 2004;
Béjar-Pizarro et al., 2013; Jolivet et al., 2020) and seis-
mological evidence (Comte et al., 2016). Thus, we apply
an a priori condition based on the depth of each node.
If a node is deeper than 60 km, the a priori mean (µc) is
set to 0 and the standard deviation (σc) to 0.1. In cases
where a node is shallower than 60 km, we assign an a
priori mean (µc) of 0.5 and a standard deviation (σc) of
0.5.
We adopt a Gaussian formulation for the data likeli-

hood, p(d|m), which writes as

(4)p(d|m) =
1√
2Cχ

exp

{[

−1

2
(Gm− d)T C−1

χ (Gm− d)

]}

,

where Cχ is themisfit covariancematrix (Duputel et al.,
2014) defined as Cχ = Cp + Cd, where Cd is the data
covariance matrix (data uncertainties), while Cp is the
prediction error covariance matrix, representing un-
certainties on the assumed elastic model (P and S wave
velocities and density). We assume a 10% error on the
elastic parameters following Jolivet et al. (2020).
We explore the model space using Altar

(altar.readthedocs.io) to sample the a posteriori PDF
of the coupling factor, generating 250000 models.
AlTar is based on the Cascading Adaptive Transitional
Metropolis in Parallel (CATMIP) algorithm (Minson
et al., 2013; Duputel et al., 2014; Jolivet et al., 2015b).
Thesemodels enable us to perform statistics, derive the
mean model for the interseismic coupling (Figure 3),
and collect information about themodel resolution (see
Supporting Information for model GNSS and InSAR
residuals, Figure S20-S23, as well as Standard Deviation,
Mode, Skewness, and Kurtosis, Figure S24).
The mean coupling model (Figure 3a), is close to pre-

viously published models in the region (e.g., Chlieh
et al., 2011; Béjar-Pizarro et al., 2013; Métois et al.,
2016; Villegas-Lanza et al., 2016; Jolivet et al., 2020;
Lovery et al., 2024), especially considering the along-
strike segmentation. Ourmodel differs from previously
published models in the coupling intensity at locked
patches, as well as the depth of these coupled patches.

In Peru, we observe three patches with interseismic
coupling that varies between 0.5-0.75 (Figure 3a). Pre-
vious models report similar patches, although totally
locked (coupling factor∼ 1) (Chlieh et al., 2011; Villegas-
Lanza et al., 2016; Lovery et al., 2024). Unfortunately,
the density of GNSS stations in this region is not any-
where near that in Chile, hence the large standard de-
viations in the Peruvian region (Figure S25). Analyzing
the moments of the a posteriori PDF, including standard
deviation, skewness and kurtosis confirms this (Figure
S24). Similarly, thesemoments show that the resolution
at the trench over the entire region is low. Addition-
ally, our model varies from those constrained only by
GPS data in Chile (e.g., Métois et al., 2016). The InSAR
data helps constraining interseismic coupling at depth
(Béjar-Pizarro et al., 2013; Jolivet et al., 2020) and the
strong a priori coupling dampspotential large variations
at depth, which we consider not physical.

2.4 Detection of aseismic slip events with
geodetic templatematching

2.4.1 Methodology

Weuse a geodetic templatematching approach to detect
potential aseismic slip events on the residual GNSS time
series (Section 2.1). We summarize here the method
presented in detail by Rousset et al. (2019). We search
for the spatio-temporal signature of slip events in sur-
face displacement time series by cross-correlating syn-
thetic templates with our GNSS residual time series, in
velocity. These templates correspond to the surface dis-
placement caused by slip on dislocations located on the
subduction megathrust embedded in a stratified, semi-
infinite elastic medium. We calculate such templates
(w) by convolving the Green’s functions (Section 2.2)
with a time-dependent slip evolution s(t) defined as

(5)s(t) =
1

2

[

1 − cos

(

πt

T

)]

,

where T is the duration of a synthetic event. Following
Rousset et al. (2019), we derive for each template the
weighted correlation function for each fault node, de-
fined as

(6)Cf (t) =

2N
∑

i=1

| Gi | Ci(t)

2N
∑

i=1

| Gi |
,

where G is the Green’s functions and Ci is the correla-
tion between the time series and the synthetic template
at a given fault node i given by

(7)Ci(t) =

T
∑

k=1

ẇi(tk)ḋi(tk + τ)

√

T
∑

k=1

ẇ2

i (tk)
T
∑

k=1

ḋ2

i (tk + τ)

,

where ẇ and ḋ are the timederivatives of the template in
terms of displacement (i.e., the template’s velocity with
duration T ), and the time derivatives of the GNSS time
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Figure3 Locationofdetectedaseismic slip events. Markers are color-codedby timeofoccurrenceandscaledbymagnitude.
Four examples of weighted stacked correlations are shown with the event id number. Red line is the best fit model used to
evaluate the event magnitude and duration, considering their estimated σ. Background color from white to dark through
yellow and red is the mean coupling distribution. Black red areas (coupling factor ∼1) are locked regions, while transparent
areas (coupling factor∼0) are regions that slip aseismically at a rate equal to the plate convergence rate. Gray contours show
instrumental ruptures. Yellow contours are afterslip regions, whereas green ones indicate slip inferred during the period
preceding the Iquique earthquake. White arrows are the historical rupture extents.

series, respectively. τ denotes a moving time variable
that enables the temporal matching search between
templates and observations. We then search for peaks
in Cf (t) corresponding to candidate slip events. As can
be seen in the Supporting Information (see Fig. S31b,
red and black lines), in the case of synthetic events, the
correlation peaks inCf arise from the geodetic noise us-
ing as many GNSS stations as possible.
For each candidate slip event, we stack the time series

of displacement weighted by Green’s functions around
the time of detection (see Supporting Information Fig-
ure S31b, for an example of stacks on synthetic time se-
ries, purple and yellow lines). Such weighting accounts
for displacement amplitude and direction, increasing
the signal-to-noise ratio (Rousset et al., 2017). Stacks
are computed over a period of 180 days, centered on
each potential occurrence. On each stack, we estimate
two linear trends, before and after the candidate occur-

rence, and the time dependent slip evolution of Eq. 5 to
the weighted stack in order to determine the amplitude,
the start and end date of each detected transient. We ap-
ply a non-linear regression to determine the posterior
Probability Density Function of the model parameters
given a stack of time series following Tarantola (2005).
Effectively, we use an MCMC algorithm to derive 30,000
samples from the posterior PDF and evaluate the mean
and standard deviation of the duration and magnitude
of each candidate slow slip event.
In order to curate the potential detections from arte-

facts, we perform a sensitivity and resolution analysis,
to determine the minimum magnitude of a slip event
that can be detected for each fault node. Although the
method above has been extensively described by Rous-
set et al. (2019), the novelty of our approach relies on
the evaluation of uncertainties through a Bayesian ex-
ploration of all important parameters.

7
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Figure 4 Event magnitude as a function of the resolution
magnitude of the node where the event is located. Red
crosses are events that passed the resolution test. Dashed
blue line is the 1:1 line that separates validated from ex-
cluded events.

2.4.2 GNSS network sensitivity and resolution

We analyze the sensitivity of our approach by testing
its ability to detect, locate, and estimate the source pa-
rameters (magnitude and duration) of synthetic aseis-
mic slip events. We first evaluate the parameters char-
acterizing the noise affecting each GNSS time series of
displacement by building synthetic time series of noise
onwhichweperform the tests. In order to generate syn-
thetic noise, we model each component of the residual
time series (Eq. 1) as a combination of white and col-
ored noise (Williams, 2003), such as,

(8)P(f) = P0 (f−α + f−α
0

),

where P is the power spectrum as function of temporal
frequency f, P0 and f0 are normalization constants, and
α is the spectral index. We explore P0, f0, and α using
Bayesian inference to estimate theirmean and standard
deviation at each station component (see the Support-
ing Information for further details and an example of
the power spectrum and the probability density func-
tion (PDF) of parameters at the UAPE station in Figures
S26 - S27, as well as Tables S39 - S42 for all the network
noise parameters inferred). We use these inferred noise
parameters to build 1000 synthetic time series of dis-
placement at each GNSS station. We use these synthetic
time series to estimate thresholds of detection for each
fault node.
The number of GNSS stations in the study area has

evolved during the observation period. We, therefore,
must consider three periods independently depending
on the number of active stations: 2000 - 2003 (four sta-
tions), 2004 - 2007 (20 stations), and 2008 - 2014 (55 sta-
tions). Wefirst determinewhich stations are able to cap-

ture a slow slip event on a given node. For each period
and fault node, we correlate the 1000 synthetic time se-
ries of noise with a template of a duration of 40 days and
slip equivalent to a magnitude Mw 6.0. We evaluate the
standard deviation of the resultingweighted correlation
functions, σt, as a minimal threshold to be exceeded
(i.e., when dealing with time series that might include
slip events, a peak of correlation higher than 3σt is a
positive detection).
Once this threshold has been defined, we compute

the weighted correlation function for 1000 time series
of noise to which we have added the signal of synthetic
transients with different duration (10, 20, and 30 days)
and magnitudes (5.0 - 7.0 Mw, every 0.1 of magnitude).
In case of a detection, we stack the displacement time
series around the detection time. We consider a syn-
thetic event has been correctly detected and located if
we can recover four quantities, including the slip event
location, timing, duration, and magnitude. If the esti-
mated location is within 150 km from the true location,
if the estimated timing and duration arewithin five days
of the actual ones, and if the estimated magnitude is
within 0.25 of the actual one, we consider the detection
to be valid. This procedure enables us to determine the
minimummagnitude that can be detected over each of
the threeobservationperiods andbuild resolutionmaps
for each period investigated (see Supporting Informa-
tion, Figures S29-S30). For instance, in the Iquique re-
gion (∼ 19oS - 71oW), theminimalmagnitudeMw ranges
from 6.6 to 6.8 from 2000 to 2003, decreases to 6.1-6.3
from 2004 to 2007 and again down to 5.9 to 6.1 from 2008
to 2014. Thus, as expected, we observe a significant im-
provement in detection sensitivity when the number of
stations in a given region increases.

2.5 Application to GNSS time series
After exploring the network sensitivity to detect aseis-
mic slip events, we search for transients in the resid-
ual time series obtained after subtracting the trajectory
model described earlier. We fix the duration T of the
template to 40 days and the slip to an event equivalent
to Mw 6.0 (see Supporting Information, Figures S58-S59
for a test in the duration template sensitivity). By doing
so, we detect 733 candidate slip events in the stacked
correlation functions. Since some of these candidates
may correspond to the same candidate slip event, we
retainmaximum occurrences within a radius of 150 km
(i.e., if twomaxima affect nodes separated by a distance
higher than 150 km, they are considered as indepen-
dent occurrences). After this selection step, we are left
with 59 candidate slip events in the region. We evalu-
ate their durations and magnitudes and compare these
withour resolutionmaps. Wekeepcandidates forwhich
the obtainedmagnitude is higher than theminimumde-
tectable magnitude for the corresponding node (Figure
4), leaving us with 24 validated slip events.
The duration of the slip events ranges from 17 to 36

days with magnitudes from Mw 5.4 to 6.2 and depths
from 20 to 66 km. Figure 3 shows the location of the de-
tected slip events along with four examples of weighted
stacks. Figures 5 and 6 show two examples of stacks
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Figure 5 Example of detected aseismic slip event #12 in the vicinity of the 2014 Iquique earthquake, its locations, and as-
sociated seismicity. Figure (a) features the weighted stack for the event #12, with the red line representing the preferred
model used to estimate event duration and magnitude, as indicated at the top left. The dark green line denotes the corre-
lation function where event detection is made. Figures (b) and (c) display the displacement time series for the North and
East components, respectively. Displacement data from six stations contributing to the weighted stack are shown. The pink
lines indicate the best-fitting model for each displacement time series, which incorporates a linear trend and a transient, in
accordance with Eq. 5. Meanwhile, the green lines represent the displacements for the estimated magnitude of each event.
Figure (d) illustrates the envet location (marked by white star), with dots indicating seismicity before and after the event
(spanning half of the event’s duration for each period), scaled by magnitude and color-coded by date. Inverted triangles
mark the GNSS station locations. Pink arrows denote the GNSS-derived displacements from observations used to estimate
theweighted stack during the detected slow slip event, whereas black arrows indicate displacements not used in the estima-
tion. The green arrows show displacements resulting from dislocations for the estimatedmagnitudes at each event location
(white star). Figure (e) displays themap view of the correlation peak within the correlation function (illustrated in dark green
in Figures a) for the event, pinpointing the moment when the detection is made.
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Figure 6 Same caption as Figure 5, but for event #10.

and correlation functions, along with the time series
used to build the stacks and themap view of correlation
peaks (see Supplementary information Tables S43 for
the event parameters estimated with their uncertain-
ties, and Figures S33 - S43 to see the data employed in
the modeling, the data stack, and the model).

Following the methodology proposed by Nishimura
et al. (2013), validated events are categorized into two
types: probable and possible. This classification is
achieved by comparing the displacement fields derived
directly from observations with those generated by syn-
thetics events of estimated magnitudes. Note that the
magnitudes are estimated on the correlation stack and
not directly on the measured displacements. A dis-
agreement between the displacements corresponding
to the detectedmagnitude on the detected node and the
observed displacement would suggest our assumptions
do not hold. Observed displacements are determined

directly on the GNSS time series by estimating a linear
trend along with a time-dependent slip evolution (Eq.
5). To estimate the displacement field for a detected
magnitude, the slip corresponding to that magnitude is
applied at the inferred location of each event. Figures
5 (b) and (c) illustrate examples of these estimates, with
the actual displacements shown in magenta, while the
displacements predicted from the magnitudes of each
event are shown in green for Events #10 and #12 (see
Supplementary Information, Figures S33 - S43 for the
rest of the events). Uponanalysis, wefind that the agree-
ment between observed and modeled ground motion
is acceptable for 10 of our events, leading us to clas-
sify these as probable (A events, Table S43). Meanwhile,
we observe a weaker agreement for 14 events which we
hence categorize as possible (B events, Table S43).

Since our template matching approach only consid-
ers GNSS observations, we must ensure that the de-
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tected slip events (A and B) are mostly aseismic. We
cross-check the 24 positive detections with the seismic
catalog provided by the ISC (International Seismolog-
ical Centre, 2016). We randomly generate 10000 syn-
thetic locations for each slip event considering a nor-
mally distributed location uncertainty based on our res-
olution tests and estimate the sum of the seismic mo-
ment of all earthquakes occurring within at least a 2-σ
radius of the detected slip event. We then compare this
estimate of the seismic moment to the estimated aseis-
mic one. All the detected slip events have an equivalent
magnitude at least twice larger than the seismic magni-
tude (aseismic/seismic ratio for each event and further
details on ratio estimation are in Supplementary Infor-
mation, Table S43). Figures 5 and 6 (d) present the loca-
tion of the two events detailed in Figures 5 and 6 (a) to-
getherwith the seismicity that coincideswith the occur-
rence of the slip event. These two events occur during
the preparation phase of the 2014 Iquique earthquake
(Event #12, Figure 1) and during the interseismic phase
(Event #10). The combination of synthetic tests and the
seismic vs. aseismic moment analysis confirms we de-
tected 24 aseismic slip events (A and B) along southern
Peru - northern Chile subduction zone over the period
2006 - 2014.

3 Discussion

3.1 Aseismic slip events and scaling laws

Aseismic slip events are now frequently observed along
most subduction zones in the world, but the underlying
physics is still debated. Among the points of debate, the
comparison between slow slip and earthquakes should
allow to point out whether comparable physics are in-
volved. Ide et al. (2007) have proposed that, while
the seismic moment of earthquakes is proportional to
the cube of their duration, the moment of slow earth-
quakes, from tremors and low-frequency earthquakes
to slow slip events, is proportional to the duration.
Considering that simple considerations about size and
stress drop led to the emergence of the observed scal-
ing for earthquakes, the difference inmoment-duration
scaling should involve a fundamental difference be-
tween the mechanics of slow slip and that of earth-
quakes. Peng and Gomberg (2010) argued that the ap-
parent moment duration scaling of slow earthquakes
proposed by Ide et al. (2007) was only due to a lack of
observations, suggesting both rapid and slow slip were
driven by the same mechanism, namely a slip insta-
bility with variable speed and stress drop propagating
along a weakened fault surface. In addition, Gomberg
et al. (2016) proposed that seismicmoment scales either
with the duration or the cube of the duration depend-
ing onwhether the rupturewas elongated andpulse-like
or mostly crack-like. Michel et al. (2019b) confirmed
that the moment of slow slip events in Cascadia scales
with the cube of their duration although being elon-
gated and pulse-like. These observations agree with re-
cent studies of aseismic slip and tremors in Japan (Tak-
agi et al., 2019; Supino et al., 2020) and Mexico (Frank
and Brodsky, 2019), as well as numerical modeling us-

ing dynamic simulations of frictional sliding (Dal Zilio
et al., 2020b). Such numerical and observational evi-
dence suggests that SSEsmight exhibit comparable scal-
ing as classical earthquakes, only with lower rupture
speeds and stress drops.
We evaluate the scaling between moment and du-

ration for the aseismic slip events we have detected.
We estimate that the moment, M , is such as M ∝
T 4.99±0.48, with T the duration for the 24 detected SSEs
(refer to Figures 7, S45, and S46 in the Supporting Infor-
mation for an in-depth explanation of the scaling esti-
mation procedure). This scaling relationship remains
consistent when analyzing events A (M ∝ T 5.05±0.59,
see Figures S47 and S48) and B (M ∝ T 4.89±0.52, il-
lustrated in Figures S49 and S50) independently. Our
events seem to align with a moment-duration scaling
T 3. However, as extensively discussed by Ide and
Beroza (2023), uncertainties associated with the esti-
mation of event duration might influence significantly
our results. Consequently, it is challenging to defini-
tively conclude that our findings adhere to themoment-
duration T 3 scaling. That said, our detections are sit-
uated within the range of moment-duration observed
in other subduction zones such as Cascadia, Japan, or
Mexico (Ide and Beroza, 2023, and references therein).
Building on this observation, we adopt the methodol-
ogy outlined by Gomberg et al. (2016) to deduce the
source properties of our events. We infer that the rup-
ture velocities of our detections range between 0.5 and
10 km/day, accompanied by a stress drop of 0.1 MPa
(see the Supporting Information for detailed informa-
tion on the parameter estimation process). Although
our method does not allow to detect events that would
propagate, we observe our SSEs are more compatible
with crack-like, unbounded ruptures than pulse-like,
bounded ones. As a conclusion, our findings along
southern Peru - northern Chile region align with SSEs
observations from other subduction zones.

3.2 Aseismic slip and interseismic coupling
distribution

Our coupling estimate corresponds to an averagebehav-
ior over a decade, without accounting for potential slow
slip events hiddenwithin the noise. The slow slip events
we detect hence correspond to fluctuations around this
average. We compare the map of coupling to the lo-
cation of our 24 aseismic events to explore how such
fluctuations distribute with respect to locked and creep-
ing asperities along themegathrust (Figure 3). We com-
pare the distribution of coupling where our events are
located to a distribution coupling at randomly picked
locations (Figure 8, see the Supporting Information for
a detailed explanation of the calculation of the PDF for
coupling and detected events). The distributions dif-
fer but mostly when considering only events in north-
ern Chile, where our estimate of coupling ismuchmore
robust. Detected slow slip events occur mostly in re-
gions of intermediate coupling. This observation is not
as clear for thePeruvian region, probably because of the
sparsity of the data used here, although the same ten-
dency is suggested on Figure 8. This result aligns with
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Figure 7 Seismic moment versus duration for our aseismic slip events following the scaling law proposed by Gomberg
et al. (2016). Slow bounded/unbounded (SBG, SUG) and fast bounded/unbounded (FBG, FUG) regions are shown by light
gray areas. Dashed lines are the theoretical relationship between moment and duration for a few selected stress-drop and
rupture velocity values. The M ∝ T scaling is shown in green. The M ∝ T 3 scaling is shown in red.

Frank (2016) findings in the Mexico subduction zone,
where a database of slow slip events seems to compen-
sate the lack of slip deficit in transition zones with re-
spect to coupled regions of the megathrust. Materna
et al. (2019) describe a comparable behavior over longer
periods where coupling variations seem to occur in re-
gions of transitional coupling (Michel et al., 2019a). In
addition, events offshore Peru tend to cluster spatially
around locked asperities, areas that are generally of in-
termediate coupling (Figure 9). In general, slow slip
events occur in transitional regions between seismic
asperities and freely slipping areas. This is consistent
with model predictions from rate-and-state friction in
which slow slip events are expected to occur at the tran-
sition between seismic, rate-weakening and creeping,
rate-strengthening asperities (e.g., Liu and Rice, 2005,
2007; Perfettini and Ampuero, 2008).
The average depth of the detected slow slip events

is 33 km (Figure 8, see the Supporting Information for
a detailed explanation of the PDF calculation). Sepa-
rating the events, by region, yields an average depth
of 37 km for Peru and 30 km for northern Chile with
comparable standard deviations (19 and 10 km respec-
tively, Figure 8). This result remains consistent when
conducting separate analyses of events A and B (re-
fer to Figures S56-S57 in the Supporting Information).
Lay (2015) separates the subduction megathrust along
depth into four domains (A, B, C, and D). Domain A, lo-
cated between the trench and a depth of about 15 km,
hosts either tsunami earthquakes or aseismic deforma-
tion. Domain B, between approximately 15 and 30 km
depth, hosts large megathrust earthquakes. Domain C,
between approximately 30 and 50 km depth, hosts in-

termediate sized earthquakes. At greater depths, Do-
main D, between 50 and 70 km, hosts slow slip events,
tremors, andvery low-frequency earthquakes. Our slow
slip eventsmainly occur inDomainsC andD. It is under-
stood that small, velocity weakening asperities in Do-
main C are embedded in conditionally stable regions of
the megathrust, prone to host slow slip events. Domain
D is dominated by aseismic sliding and potential slip
rate variations could explain deeper detections. There-
fore, the depth distribution of our events matches re-
gions where slow slip events are expected in a subduc-
tion zone context.
Our resolution tests (Figures S24, S29-S30) suggest

that it is impossible to capture aseismic slip near
the trench, in domain A, with the current GNSS net-
work. However, large, shallow slow slip events have
been observed in Japan (Nishimura, 2014; Nishikawa
et al., 2019) and New Zealand (Wallace, 2020). Seafloor
geodesy might help to detect the occurrence of such
large events and potentially for small, cm-scale ones
comparable to our aseismic slip events (Araki et al.,
2017). Additionally, stress-shadow induces apparent
coupling in velocity-weakening regions, especially late
in the interseismic period (Hetland and Simons, 2010;
Lindsey et al., 2021). For this reason,wealso cannot rule
out the potential occurrence of aseismic slip event near
the trench.
In addition to the depth-dependent segmentation, we

observe an along-strike segmentation in the distribu-
tion of SSEs. In particular, we observe a lack of events
within the rupture area of the 1877 earthquake, within
the Arequipa rupture area and other detections gather
around locked asperities, like in the doughnut model
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Figure 8 Coupling, depth, and Vp/Vs ratio of the detected aseismic slip events. (a) Probability Density Functions (PDF) of
1000 coupling models for 24 random picks (gray) and PDF of coupling where 24 aseismic slip events are detected (green),
with respective mean (µ) and standard deviations (σ). (b) and (c) are the same as (a) for the Peru region only (gray: random,
blue: SSEs) and northern Chile only(gray: random,magenta: events), respectively. (d) PDF of the depths of 24 randomevents
(gray) and aseismic slip events detected in the region (green). (e) and (f) Same as (d) but for Peru (gray: random, blue: events)
and Chile (gray, magenta) regions. (e) PDF of the Vp/Vs ratio for the Chilean region (gray, 17 random events), and detected
aseismic events in Chile (magenta).

for seismicity (Kanamori, 1981; Schurr et al., 2020).
Such configuration is comparable to that of the Japan
trench where the asperity that ruptured during the To-
hoku earthquake in 2011 overwhelms the simple depth-
dependent distribution of behavior from Lay (2015). In
particular, Nishikawa et al. (2019) propose that, unlike
theNankai subduction interfacewhich exhibits a depth-
dependent segmentation due to a young, warm slab, the
megathrust beneath Tohoku is not segmented at depth
into four distinct domains. In our area of interest, the
subducting slab is older than the Nankai slab and prob-
ably colder (Müller et al., 2008), which would explain
why the behavior we unravel is not completely consis-
tent with that of Lay (2015) and potentially closer to that
of the Japan trench.

As an additional level of complexity, three events co-
incide with the subduction of the Nazca ridge (14oS,
Figures 3 and 9a), six events are located beneath the
Mejillones Peninsula (23oS, Figures 3 and 9d), and three
events are within the Arica bend (17oS - 19oS, Fig-
ures 3 and 9b and c). These morphological struc-
tures are anomalies compared to the model proposed
by Lay (2015) as they are considered as barriers to the
propagation of large earthquakes (Armijo and Thiele,
1990; Comte and Pardo, 1991; Béjar-Pizarro et al., 2010;

Villegas-Lanza et al., 2016; Poli et al., 2017). In these
regions, the depth of our detected slow slip events
does notmatch the depth-dependency described by Lay
(2015). We can speculate that local geometrical com-
plexities may lead to the occurrence of slow slip events
(Romanet et al., 2018) in the case of the subduction of
the Nazca Ridge or that the apparent low coupling is the
result of multiple slow slip events (Jolivet et al., 2020) in
the case of the Arica Bend.

3.3 Aseismic slip events before and after
large earthquakes

Among all the detected slow slip events, only events
#7, and #12 (Figure 3, S36 and 5) do not occur during
the steady interseismic period. Event #7 locates in the
region struck by the Iquique earthquake in 2014 (Fig-
ure 9c, and S36) during the post-seismic relaxation that
followed the mainshock (Meng et al., 2015; Hoffmann
et al., 2018; Shrivastava et al., 2019) (Mw 6.1 and du-
ration of 28 days in June 2014). Such slow slip events
embedded within a post-seismic sequence have already
been observed following the Illapel earthquake (Tis-
sandier et al., 2023) and in a completely different set-
ting, following the 2004 Parkfield earthquake, along the
San Andreas Fault (Michel et al., 2022).
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Figure 9 Zoom over a selection of regions of interest. Gray contours are instrumental ruptures. Yellow contours show re-
ported afterslip. Our aseismic slip events are color-coded by time and scaled by magnitude. Background color shows our
Bayesian inference of coupling. Inverted pink triangles are the GNSS stations used in this study. (a) Region struck by the
Pisco (2007) and Nazca (1996) earthquakes. Our detections seem to cluster around asperities broken during earthquakes
or afterslip regions. (b) Region struck by the Arequipa (2001) earthquake. (d) Region struck by the Iquique earthquake in
2014. Green contours show the preseismic slip reported by Socquet et al. (2017). Events occur around locked interseismic
patches or low-coupled regions. (d) Region struck by the Antofagasta (1995) and Tocopilla (2007) earthquakes. Events sur-
round broken asperities or locked interseismic patches, with a cluster beneath Mejillones Peninsula, potentially associated
with earthquake afterslip. For citations of instrumental ruptures and afterslip, please refer to Figure 1

Aseismic slip has been recognized as an important
element of the earthquake preparation phase (Obara
and Kato, 2016; McLaskey, 2019; Kato and Ben-Zion,
2021, and references therein). An 8-month-long slow
slip event was reported before the Iquique earthquake
in 2014 (Socquet et al., 2017), and event #12 coincides
with one of the regions of the megathrust that slipped
aseismically during that preparation phase (Figure 9
c). In addition, event #12 occurred where and when
intermediate-depth and shallow seismicity synchro-
nized before the Iquique earthquake (Bouchon et al.,
2016; Jara et al., 2017) (Mw 6.0 and duration of 30 days
in January 2014). Such synchronization of seismicity be-
gan in January 2014, lasted for one month, and is inter-
preted as evidenceof a slow, slab-widedeformationpro-
cess prior to megathrust earthquakes (Bouchon et al.,
2016). Furthermore, event #12 is coincident with the
transient event reported by Boudin et al. (2021) using
a long-base tiltmeter. Our epicentral location differs by
∼50km from the one reported by (Boudin et al., 2021),

a difference that can be explained by different model-
ing strategies and/or uncertainties. We propose that
event #12 is linked to the 8-month aseismic slip tran-
sient observed preceding the 2014 Iquique earthquake.
Such detection suggests the growing instability preced-
ing the Iquique earthquake exhibits a complex spatio-
temporal behavior that hides within the noise of the
data, in agreement with the hypothesis proposed by Jo-
livet and Frank (2020) and Twardzik et al. (2022).

3.4 Aseismic slip and fluids
Fluids may also play a role in the occurrence of aseis-
mic slip events (Avouac, 2015; Harris, 2017; Jolivet and
Frank, 2020, and references therein). Pore pressure af-
fects fault normal stress, hence modify the probabil-
ity of a slip instability as well as the nucleation size
(Liu and Rice, 2007; Avouac, 2015; Bayart et al., 2016;
Harris, 2017; Bürgmann, 2018; Jolivet and Frank, 2020;
Behr and Bürgmann, 2021). An increase in pore pres-
sure within the fault zone leads to a decrease in normal
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Figure 10 Map view of the depth of the continental Moho discontinuity from gravity-derived structural models by Tassara
andEchaurren (2012). Magenta stars are the locationof our 24 aseismic events. Black lines indicate the locationof theprofiles
shown on the right. Colors indicate the structure at depth (upper and lower crusts, lithospheric mantle, asthenospheric
wedge, and oceanic crust). White box indicates the id of events occurring along each profile.

stress, which promotes slip but increases nucleation
size, promoting slow slip. We compare our detections to
thedistributionof theVp/Vs ratio and to gravity-inferred
structural models in the region. We use the Vp/Vs ratio
inferred by Comte et al. (2016) for the events located in
Northern Chile. Statistically, the 17 aseismic events in
northern Chile are not related to a specific Vp/Vs value
(Figure 8, see the Supporting Information for a detailed
explanation of the PDF calculation). In particular, no
slow slip events are found to collocate with high Vp/Vs
ratios (Vp/Vs > 1.8) (Comte et al., 2016) (Figure S44).

We also compare the location of our aseismic events
to a 3-D densitymodel in the region (Tassara and Echau-
rren, 2012). Figure 10 shows the location of aseismic
events along ten different trench-perpendicular cross
sections. The slow slip events are primarily located
along the contact between the slab and the overriding
lithospheric mantle (Figure 10, see Figure S51 for an
analysis of depth uncertainties). This mantle corner
is principally hydrated by the dehydration of the sub-
ducting slab due to water releasing metamorphic reac-
tions (Peacock, 2001; Rüpke et al., 2004; Comte et al.,
2016; Wang et al., 2019; Contreras-Reyes et al., 2021).
The fact that our aseismic slip events tend to cluster at
depths corresponding to the lithospheric mantle along
the megathrust, and not deeper, might imply that fluids
may be trapped and accumulate below the continental
Moho, an hypothesis that would require further investi-

gations.

4 Conclusions
Wehave systematically analyzedGNSS time series in the
region, searching for the occurrence of aseismic slip
events with a template matching approach. We find 24
events in the period 2006 - 2014, with durations of 17 - 36
days, magnitudes of Mw 5.4 - 6.2, and located at depths
of 20-66 km. These events are mostly aseismic and are
observed at all stages of the earthquake cycle, includ-
ing during post-seismic periods (afterslip, one event),
earthquake preparation phase (one event), and inter-
seismic period (22 events). We compare those slow slip
occurrence to a wide range of possible models of in-
terseismic coupling based on GNSS and InSAR veloc-
ity fields and infer a distribution of coupling along the
megathrust.
By conducting a moment-duration scaling analysis,

we find that our observations are consistent with values
reported in subduction zones globally. We do not find
particular correlations with published seismic velocity
structures but find that slow slip events cluster around
past ruptures and locked asperities, where the megath-
rust transitions from sliding to locked. Additionally, our
events are located in regions of intermediate coupling
values andmean depths of 33 km, which match regions
where slow slip events occur in the context of subduc-
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tion zones.
Some of these events occur on the subduction inter-

face deeper than than the continentalMOHO, i.e. where
the slab is in contact with the mantle wedge corner
where fluids are supposedly trapped. This points to-
ward the influence of fluids as it may explain both their
spontaneous triggering and their long duration. How-
ever, as some events are found at shallower depth, the
involvement of fluids might not be the only explana-
tion. Other mechanisms such as geometrical complex-
ities might be involved but more evidence are required.
The main outcome of this study is that we found

numerous aseismic slip events in a place where none
were found during the interseismic period before. As
a consequence, aseismic slip events may be found else-
where in subduction zone contexts where experts did
not find any event, pending dedicated noise analysis
methods. We provide here one piece of evidence sup-
porting the hypothesis proposed by Jolivet and Frank
(2020) which states that slow slip happens everywhere
and at all times.
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Abstract Accurately modeling time-dependent coseismic crustal deformation as observed on high-rate
Global Navigation Satellite System (HR-GNSS) lends insight into earthquake source processes and improves
local earthquakeand tsunamiearlywarningalgorithms. Currently, time-dependent crustal deformationmod-
eling relies most frequently on simplified 1D radially symmetric Earth models. However, for shallow subduc-
tion zone earthquakes, even low-frequency shaking is likely affected by the many strongly heterogeneous
structures such as the subducting slab, mantle wedge, and the overlying crustal structure. We demonstrate
that including 3D structure improves the estimation of key features of coseismic HR-GNSS time series, such as
the peak ground displacement (PGD), the time to PGD (tPGD), static displacements (SD), and waveform cross-
correlation values. We computed synthetic 1D and 3D, 0.25 Hz and 0.5 Hz waveforms at HR-GNSS stations for
four M7.3+ earthquakes in Japan using MudPy and SW4, respectively. From these synthetics, we computed
intensity-measure residuals between the synthetic and observed GNSS waveforms. Comparing 1D and 3D
residuals, we observed that the 3D simulations show better fits to the PGD and SD in the observedwaveforms
than the 1D simulations for both 0.25 Hz and 0.5 Hz simulations. We find that the reduction in PGD residu-
als in the 3D simulations is a combined effect of both shallow and deep 3D structures; hence incorporating
only the upper 30 km of 3D structure will still improve the fit to the observed PGD values. Our results demon-
strate that 3D simulations significantly improve models of GNSS waveform characteristics and will not only
help understand the underlying processes, but also improve local tsunami warning.

1 Introduction
Real-time high-rate Global Navigation Satellite System
(HR-GNSS) are key observational data for kinematic slip
inversions (e.g., Ozawa et al., 2011; Melgar et al., 2016)
that provide an important lens into large earthquake
rupture physics (e.g., Melgar and Bock, 2015), as well as
for real-time applications in Earthquake and Tsunami
EarlyWarning (EEW/TEW) (e.g., Sahakian et al., 2019a).
Kinematic slip inversions, traditionally based on broad-
band seismograms and strong motion data, are used
for rapid and retrospective seismological studies to un-
derstand earthquake complexities through finite fault
models, source time function and directivity, etc. (e.g.,
Ide, 2007; Goldberg et al., 2022). HR-GNSS waveforms
are an important contribution to these models to con-
strain the time-dependent, low-frequency deformation
of the Earth’s surface. In the resulting finite fault
model, this yields not only slip on the fault, but in-
formation about the rupture kinematics for each sub-
fault, thus providing both spatial and temporal dis-
tribution of slip on a more granular level (e.g., Mel-
gar and Bock, 2015; Melgar et al., 2020b). When per-

∗Corresponding author: ofadugba@uoregon.edu

formed in real-time, rapid kinematic sourcemodels are
an important component of TEW approaches (hence,
better rapid local tsunami modeling). HR-GNSS data
also provide crucial constraints for rapid earthquake
magnitude estimation, in particular for large magni-
tude earthquakes as the displacement metrics they pro-
vide donot saturate, unlike displacement obtained from
broadband seismograms (e.g., Bock et al., 2011; Mel-
gar et al., 2016; Sahakian et al., 2019a) and the dis-
placement obtained from twice-integrated strong mo-
tion records do not resolve observed static offset mea-
sured by GNSS, even when high-pass filters are applied
(Goldberg et al., 2021). In addition to constraining rapid
finite-fault inversions for local TEW, the peak ground
displacement (PGD) and time to reach peak ground dis-
placement (tPGD) as recorded byHR-GNSS can play a key
role in discriminating tsunami earthquakes (TsEs) from
non-TsEs (Sahakian et al., 2019a).
Static and kinematic slip inversion models using dis-

placement time series from HR-GNSS waveforms are
routinely performed using simplified 1D radially sym-
metric Earth models, by determining the displacement
from each subfault with a 1D Green’s function (Mel-
gar and Bock, 2015), as it is oft assumed that three-
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dimensional heterogeneities play a smaller role in the
low-frequency content of waveforms than for high-
frequency seismic data. However, the availability of
high-rate GNSS data and the need to resolve earthquake
and wave propagation details with higher frequencies
and shorter wavelengths exposes the inadequacy of 1D
models for analysis of large earthquake ruptures. Many
studies using 1D structure observed some delays and
unmodeled features in the HR-GNSS waveforms from
the 2011 moment magnitude (M) 9.0 Tohoku-Oki earth-
quake (Yue and Lay, 2011; Melgar and Bock, 2015), as
well as other earthquakes (e.g., Delouis et al., 2010).
Subduction zones present unique three-dimensional

challenges that may not be well-captured by 1D mod-
els. Due to complex geometry, the resultant onshore
deformation and shaking from megathrust events is
likely affected by many strongly heterogeneous struc-
tures such as the slab, the wedge, the overlying crustal
structure, etc. However, current models of time-
dependent crustal deformation using HR-GNSS dis-
placement waveforms, or low-frequency shaking, typ-
ically use Green’s function approaches and 1D Earth
structure, omitting the effects of the 3D Earth structure
on the wave path, hence on the observed waveforms.
In this work, we present results comparing 1D to 3D
models of time-dependent crustal deformation and find
that three-dimensional effects are non-negligible, and
should be an important component of kinematic mod-
eling. Although the importance of including 3D struc-
ture to model strong-motion data is well-established in
the literature (i.e., Vidale and Helmberger, 1988; Olsen,
2000; Hartzell et al., 2010; Rodgers et al., 2019), this
study provides quantitative estimates on the influence
of neglecting 3D effects and specifically investigates
the application to modeling time-dependent low fre-
quency crustal deformation, such as that measured by
HR-GNSS, still used for a variety of seismological appli-
cations.

2 Background
Previous studies have contributed to the advancement
of slip models in a 3D Earth structure (e.g., Wald and
Graves, 2001; Williams and Wallace, 2015; Tung and
Masterlark, 2018) and show that material contrasts be-
tween continental crust and oceanic slabs have a large
effect on recovering static coseismic displacements,
slow slip events, slip distributions and tsunami behav-
ior in elasticmodels. For example, Tung andMasterlark
(2018) show that the inclusion of heterogenous crustal
structure can remove nonrealistic slip artifacts in slip
distributions and reduce the misfit in large seafloor
displacement that contributes to prediction error of
tsunami amplitudes. Williams and Wallace (2015) also
show a better fit to the observed GNSS displacements
by computing Green’s functions using a realistically
varying elastic properties with a finite element method
(Aagaard et al., 2013). Hearn and Burgmann (2005)
show similar effects in strike-slip settings, comparing
1D structure and homogenous half space models. They
find an improvement in the estimation of the moment
and centroid depth from GNSSmeasurements by incor-

porating earth’s layered elastic structure in the slip in-
version. This reduces the disparity between the geode-
tic and seismic moment estimates for large strike-slip
earthquakes and suggests that time-dependent crustal
deformation should be affected by depth-dependent
elasticity. Langer et al. (2022) use a synthetic model of
sedimentary basin to investigate the impact of 3-D elas-
tic structure on forward models of co-seismic surface
deformation and suggest the use of a layered velocity
structure in static slip inversion in regions with sedi-
mentary basins. Langer et al. (2019) show the impor-
tance of including topography in coseismic deformation
modeling.
Together, these advances show that both static and

dynamic (time-dependent) crustal deformation suffer
from “path effects” in the sameway that high-frequency
ground motions as measured on strong-motion instru-
ments do. Path effects are a common source of un-
certainty in ground motion models that focus on the
effects of seismic waves’ path on higher frequency in-
tensity measures (Baltay et al., 2017; Kotha et al., 2020;
Landwehr et al., 2016; Zhang et al., 2022; Sahakian et al.,
2019b; Kuehn and Abrahamson, 2019), and it stands to
reason that they likely play a role in low tomoderate fre-
quencies (~1 Hz, that of HR-GNSS and time-dependent
crustal deformation) as well.
Better modeling of time-dependent, coseismic

crustal deformation canmake significant contributions
to improving our understanding of underlying large
earthquake source processes, as well as improving
warning and rapid response systems overall (Wirth
et al., 2022). In this work, we show a comparison of 1D
vs. 3D deterministic HR-GNSS waveforms for events in
Japan to show the impact of 3D structure on accurately
modeling GNSS waveforms. We choose Japan to test
our hypotheses, as its seismicity, HR-GNSS recordings,
and knowledge of 1D and 3D structures are ideal for
our purposes. Japan has an excellent GNSS Network
(~1178 stations), a good number of M7.3+ earthquakes,
and both 1D and 3D velocity models (Fig. 1). We will
show that the effects of including 3D structures is most
important in improving the PGD at all hypocentral
distances and static displacements (SD) residual values
at hypocentral distances greater than 350-400 km.

3 Data and Methods
We generate 1D and 3D low-frequency synthetic GNSS
waveforms of M7.3+ megathrust earthquakes in Japan
and compare the 1D and 3D synthetics with the ob-
served GNSS waveforms using several waveform inten-
sity measures. We also test different rupturemodels for
some of the earthquakes to investigate the effect of rup-
ture model on the intensity measures.

3.1 Data
We focus on four M7.3+ megathrust earthquakes in
Japan with good rupture models: 2011 M7.9 Ibaraki,
2011 M7.4 Iwate, 2011A M7.3 Miyagi and 2003 M8.3
Tokachi 2003 (Fig. 1; Table 1). We did not include the
2011M9.0Tohoku-Oki earthquake due to computational
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Figure 1 Study region around Japanwith topography and bathymetry showing the HR-GNSS stations (blue triangles) used
to observe and model at least one earthquake (SNR≥3). The figure also shows the four earthquake epicenters (red stars)
used in this study and their published ruptures (the dark gray regions show the subfaults associated with the earthquakes,
see Table 1). The lines show the 3D Japan Integrated Velocity Structure Model (Koketsu et al., 2008, 2009) domains: West
region (green dashed line), East region (cyan dashed-dotted line) and Combined region (blue solid line). Edges AB and CD
show the profile lines of the 3D Japan Integrated Velocity Structure Model presented in Fig. 4.

cost of the 3D simulations, butwe expect similar conclu-
sions with theM7.3+ earthquakes used in this study. We

used the 1Hz GNSS waveforms from Ruhl et al. (2018),
obtained using the Precise Point Processing approach
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and, from these, determine total horizontal displace-
ment waveform T (t) using Equation 1:

T (t) =

√

N(t)
2

+ E(t)
2 (1)

We focused on the total horizontal displacement as the
vertical displacement measurement in HR-GNSS are
less accurate due to the distribution of GNSS satellites
and generally assigned an error of about 3-5 times that
of the horizontal (e.g., Geng et al., 2018; Melgar et al.,
2020a). The use of T (t) ensures that the more signifi-
cant error in the vertical displacement compared to the
horizontal displacement measurements is not influenc-
ing the 1D to 3D comparison, thus avoiding the misfit
due to noise as opposed to the effect of the 3D structure.

3.2 1D Simulation Using FakeQuakes/MudPy
We used the FakeQuakes and MudPy software (Melgar
et al., 2016) to generate 1D synthetic waveforms using
a 1D velocity model in two steps. FakeQuakes first pro-
duces stochastic kinematic rupturemodels using a pub-
lished rupturemodel as amean slipmodel following the
approach of Goldberg and Melgar (2020).
We give a brief description of the FakeQuakes meth-

ods, but we refer readers toMelgar et al. (2016) formore
details of the method and validations. FakeQuakes gen-
erates slip distributions from the perturbations around
a known slip model given a target magnitude or mean
slip distribution and a prescribed fault geometry. To
do so, FakeQuakes uses a von Karman correlation func-
tion to obtain the covariance matrix using correlation
lengths between the subfaults associated with the rup-
ture. The tunable parameters are the Hurst exponent
and standard deviation of the slip on each subfault. It
then determines the length and width of the portion of
theprescribed fault geometry thatwill participate in the
rupture using the Blaser et al. (2010) relationship which
is based on the magnitude of the earthquake. It uses a
lognormal probability density function approach to in-
troduce some variability in the fault dimension. We set
H to 0.4 based on Melgar and Hayes (2019) and used a
uniform standard deviation of the slip (s) value of 0.9
for all subfaults. FakeQuakes then uses the Karhunen-
Loéve (K-L) expansion (LeVeque et al., 2016) to deter-
mine several nonnegative slip distributions by linear
combinations of the eigenmodes of a lognormal covari-
ance matrix that are sampled from a probability den-
sity function with the desired covariance matrix. Lin-
ear combinations of moremodes redistributes slip over
the fault model; we set the number of modes in the K-L
expansion to 72 to obtain short variability of the slip dis-
tribution necessary for kinetic rupture modeling. For
example, mode 0 is roughly the alterations of the mean
slip based on the lognormal covariance matrix.
To avoid an unrealistically large amount of slip, we

set the limit on the peak value of slip to 40 m so that
any realizations that exceed 40mare discarded. Finally,
FakeQuakes follows Graves and Pitarka (2010, 2014) to
obtain the kinematic parameters of the rupture such as
the rupture speed and duration of slip (rise time). The
rupture speed is a factor of the shear-wave speed at the

subfault depth, and rise time based on the slip at each
subfault. The factor of the shear-wave speed is 0.4 in the
shallow region (<10 km) and 0.8 for the deeper region
(>15 km), and a linear transition in rupture speed is ap-
plied between 10 and 15 km depth. The local slip-rate
function of each fault is based on the Dreger slip-rate
function (Mena et al., 2010) with a fallout rate of 4.
We then use MudPy to generate displacement time

series from the kinematic rupture models with an FK
Green’s function approach (Zhu and Rivera, 2002) using
a 1D layered Earth. We used a sampling interval of 1
s and a total duration of 512 s. FakeQuakes/MudPy re-
quires the fault and rupture models, 1D velocity model
and the GNSS station locations as input parameters.
We used the Slab2.0 model (Hayes, 2018) to create a

fault geometry mesh for the Japan Trench using Gmsh,
a 3-D finite element mesh generator (Geuzaine and
Remacle, 2009). Details of the fault files are described
in the Supplementary Material (S1). We focused on
the Kuril region of Japan where the M7.3+ megathrust
earthquakes used in this study are located. We use
the published rupture models for the four megathrust
earthquakes as input mean slip distributions for Fake-
Quakes (Table 1). For the Ibaraki 2011 earthquake,
we used the Kubo et al. (2013) rupture model (hence-
forth referred to as SRCMOD) and Zheng et al. (2020,
henceforth referred to as Zheng) rupture model. For
the Miyagi 2011A earthquake, we used the Hayes (2017,
henceforth referred to as Hayes) and Zheng rupture
models. For theTokachi 2003 earthquake, we usedmod-
els from Koketsu et al. (2004), Yamanaka and Kikuchi
(2003), Yagi (2004) (henceforth referred to as SRCMOD,
SRCMOD2 and SRCMOD3, respectively) and Hayes rup-
turemodels. We used only the Zheng rupturemodel for
Iwate 2011 earthquake (Table 1).
The geometries of the published rupture models are

planar and do not coincide with the geometry of Japan
trench from Slab2.0, so, we project the slip in the rup-
turemodel for each earthquake onto the fault geometry
(Fig. S2 Fadugba et al., 2023). Specifically, we project
both the subfault locations of the rupture model and
the centroid of the mesh of the fault geometry on a 2D
plane with a strike of 210 and a dip value of 20 based
on the fault geometry's general strike and dip values.
We then performed linear interpolation to evaluate the
strike- and dip-slip amounts from the rupture model at
the mesh locations.
With FakeQuakes, we generated 100 realizations of

the published rupture models using the published
model as a mean model. Figure 2 shows the mean rup-
ture model (SRCMOD) for the Ibaraki 2011 earthquake
(Kubo et al., 2013) and three examples of the 100 Fake-
Quakes ruptures realizations from the mean rupture
model. FQModel 3 is an end-member example of a rup-
ture model with a different slip pattern compared with
the mean slip model, but with similar moment release
and falling within the prescribed uncertainties of the
mean slip model. The mean rupture models and exam-
ples of FakeQuakes ruptures of the other earthquakes
used in this study are in the Supplementary material
(Fig. S3-S4).
We adopted the 6-layer crustal velocity structure of
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SN Event
Name

Origin Time
(UTC) Latitude (°) Longitude (°) Depth

(km)

Moment
magnitude
(M)

Number of
GNSS Stations
(SNR≥3)

Rupture Models
and corresponding
references

1 Ibaraki
2011

2011-03-
11T06:15:34 36.1083 141.2653 43.2 7.9 737 SRCMOD (Kubo

et al., 2013)

2 Iwate
2011

2011-03-
11T06:08:53 39.8390 142.7815 31.7 7.4 271 Zheng (Zheng et al.,

2020)

3 Miyagi
2011A

2011-03-
09T02:45:12 38.3285 143.2798 8.3 7.3 240 Hayes (Hayes, 2017)

4 Tokachi
2003

2003-09-
25T19:50:06 41.7750 143.9040 27.0 8.3 236 Hayes (Hayes, 2017)

Table 1 Earthquakes used in this study and the corresponding rupture models. SN: Source Number.

Figure 2 Mean Rupture model (SRCMOD) for Ibaraki 2011 earthquake (Kubo et al., 2013) and three examples of the 100
FakeQuakes (FQ) ruptures realizations from the mean rupture model. The color indicates the amount of slip per subfault,
and the black dots signify the center of each subfault. The slip is greater overall in the FakeQuake models compared to the
mean slipmodel in the top left to conserve themoment release in response to the change in rigidity at the subfault locations
compared to the one used to generate the mean slip model. FQ Model 3 is an end-member example of a rupture model with
different slip pattern compared with the mean slip model, but with similar moment release.

Hayes (2017) for all the earthquakes for its simplicity
and the ease to set it up in our 1D and 3D simulations
(Fig. 3). We used the isotropic Preliminary Reference
EarthModel (PREM) from 40 to 200 kmdepth (Dziewon-
ski andAnderson, 1981). There are otherwell-known1D
velocity models for Japan that could be used (e.g., Ueno
et al., 2002; Hayes, 2017; Laske et al., 2013). The Japan
Meteorological Agency (JMA) uses a 1D velocity model
(Ueno et al., 2002) to locate earthquakes in Japan. How-
ever, the model has a series of 500 m thick layers which
are less practical to setup for our 3D simulations, andwe
aim for consistency between the 1D and 3D simulations.
The earthquakes were recorded on a total of 1178

GNSS stations. However, to reduce computation time,
we only simulate waveforms for stations with an ob-
served total horizontal displacement signal-to-noise ra-
tio (SNR, Equation 2) larger than or equal to 3, thus re-
ducing the number of stations for each earthquake sim-
ulation (Table 1). SNR is defined by

SNR =
σsignal

σnoise

(2)

where σsignal is the standard deviation of 120s of

recorded ground shaking after the P-wave arrival time
while σnoise is the standard deviation of 10s recordings
before the P-wave arrival time. P-wave arrival time
is defined as the origin time plus an approximate P-
wave travel time (i.e., hypocentral distance between
HR-GNSS station and rupture model hypocenter, di-
vided by 6.5 km/s).
To understand the impact of the source rupture

model on our synthetic waveforms, we investigated the
effect of rupture models in the 1D simulations using
two rupturemodels for the 2011M7.9 Ibaraki and 2011A
M7.3 Miyagi earthquakes and three rupture models for
2003M8.3Tokachi earthquake, and compare their resid-
uals.

3.3 SW4 3D Simulations
Our 3D synthetic waveforms were computed using SW4
2.01 (Petersson and Sjögreen, 2012, 2015; Sjögreen and
Petersson, 2011; Petersson and Sjögreen, 2017) pub-
lished under the GPL2 license. SW4 solves the seis-
mic wave equations in displacement formulation using
a 4th order accurate summation-by-parts finite differ-
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Figure 3 1D velocity model of Japan (Hayes, 2017) show-
ing the P-wave velocity profile (red dashed line), S-wave ve-
locity profile (blue dashed line), density profile (green solid
line), and P- and S-wave quality factors (Qp and Qs) profiles
(purple dashed line and cyan solid line, respectively). We
used this 1D velocity model for the upper 40 km and the
PREM model (Dziewonski and Anderson, 1981) from 40 km
up to 200 km.

ence method, a 3D model of velocity structure, and a
domain geometry that includes both topography and
bathymetry. Because this process is so computationally
intensive, similar to the large-scale SW4 simulations of
earthquakes on theHaywardFault (Rodgers et al., 2020),
we generated simulations for all four events at both 0.25
and 0.5 Hz, to compare with observations and under-
stand if characteristic intensity measures such as PGD
require information from higher frequencies.
We used the 3D Japan Integrated Velocity Structure

Model (Koketsu et al., 2008, 2009) which includes to-
pography and bathymetry data from the ETOPO1 1 arc-
minute global relief model (N.O.A.A. National Geophys-
ical Data Center, 2009) spanning a lateral extent of lat-
itude from 30° to 47° North (~2040 km) and longitude
from 129° to 147° (~1440 km) East. We convert the 3D
velocity structure from an ASCII text file to a raster file
format (rfile), as it ismore effective for smoothly varying
3D heterogenous structure (Fig. 4; Petersson and Sjö-
green, 2017). An rfile is a binary structured grid format,
and it is the most efficient and realistic method to input
3D velocity structure to SW4, hence more suitable for
this study. The 3D Japan Integrated Velocity Structure
Model (JIVSM) comprises 23 layers, each with constant
P- and S-wave velocities (Vp and Vs), density (r) and P-
and S-wave quality factors (Qp and Qs) (Table S1). The

3D structure is given in two overlapping sections (East
and West Japan, Fig. 1), but were combined to create
the unified 3D velocity model of Japan by extrapolating
the top of each layer to regions outside the 3D structure
regions following the OpenSWPC methodology (Maeda
et al., 2017). The resulting rfile has 5 blocks with in-
creasing grid spacing with depth: grid spacing of 200
m at the top to 1000 m at the bottom of the rfile. The
grid sizes of rfile are independent of the grid sizes in the
computational domain (Petersson and Sjögreen, 2017).
The minimum grid size in the computational grid de-
pends on the desired maximum frequency. Details of
the rfile are in the Supplementary Material (S2).
Ourdomaindepths extended from the surface (topog-

raphy and bathymetry) to a maximum depth of 200 km.
The maximum achievable frequency (fmax) is depen-
dent on the grid size of the domain, as well as the mini-
mum shear wave speed, as described by:

fmax =
minVs

PPW × h
(3)

SW4 allows user to set the P- and S-wave minimum
velocity values in the simulations using the globalmate-
rial command, thus replacing the velocity layer whose
Vp and Vs are smaller than threshold values with the
threshold values. We used 8 Points Per Wavelength
(PPW) in the simulations and the minimum shear wave
speed (minVs) value of 1200 m/s based on the average
VS value in the upper 400 m in the 3D velocity model
(Equation 3; Petersson and Sjögreen, 2017). We set the
minimum P-wave velocity value in the simulations to
2500 m/s. To generate 3D synthetic waveforms with a
maximum frequency of 0.25 and 0.5 Hz, we used amin-
imum grid spacing (h) of 600 and 300 m, respectively.
We used a curvilinear mesh from the surface (topogra-
phy and bathymetry) to 30-km depthwith a grid spacing
of 300 m and used Cartesian mesh from 30 km down-
wards. Within the Cartesian mesh, we applied grid re-
finement at 75 km depth to reduce the computational
resources required for these simulations. Our grid spac-
ing increased with depth and the associated increas-
ing minVs: 300 m and 600m grid spacing for the 30-75
km and 75 – 200 km depth range, respectively. For the
0.50 Hz SW4 simulations, we varied the lateral extent
of the 3D domain geometry depending on location of
each earthquakes (Fig. S5) to limit the maximummem-
ory requiredby the simulations to ~4TB (Supplementary
Material S3). We compared only the intensity measures
from the common stations between the 1D and 3D sim-
ulations.
For the 0.25Hz simulations, we selected twoof the 100

rupture models from FakeQuakes for each earthquake
and read them into SW4 format using the Standard Rup-
ture Format version 2.0 source representations (Graves,
2014). We used only one rupture model for the 0.5 Hz
simulations due to their high computational cost.

3.4 Comparing 1D vs. 3D Synthetic Wave-
forms

Wecompare the 1D and 3D syntheticswith the observed
GNSS waveforms using the total horizontal component

6
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Figure 4 3D Japan Integrated Velocity Structure Model (JIVSM, Koketsu et al., 2008, 2009) shown for the AB and CD profile
lines marked in Figure 1. The profile CD shows the geometries of the two subducting slabs and both profile lines best show
the heterogenous velocity structure in the upper 30 km depth of the 3D velocity structure.

waveforms. In addition to wiggle-to-wiggle compar-
isons via waveform cross-correlation with time-shifting
for both 1D and 3D synthetics, we also model the av-
erage behavior of important features of the observed
waveforms over many realizations from the mean rup-
ture models. We measure the goodness of fit by com-
paring the misfits of the total horizontal waveform syn-
thetic and observed waveforms using waveform inten-
sity measures such as the PGD as defined in Goldberg
et al. (2021), tPGD, and SD residuals, each described in
Figure 5.
We then determine the residuals for the PGD and SD

intensity measures using the equation

δij,PGD = ln

(

PGDobs

PGDsyn

)

(4)

A residual (δij) of 0 corresponds to perfect equivalence
between observed and synthetic values, while residual
values of 0.5 and 1.0 signify that the observed value is
1.6x and 2.7x the synthetic values, respectively. For the
tPGD residuals, we use the difference between the time it
takes to reach the PGD for observed and synthetic wave-
forms:

δij,tPGD
= tPGD,obs − tPGD,syn (5)

Cross-correlation values inherently compare the fit be-
tween observed and synthetic waveforms.
We investigate the variationof each intensitymeasure

with distance bybinning the intensitymeasureswith re-
spect to the hypocentral distance, the distance between
rupture model hypocenter and the HR-GNSS station.
Each intensity measure is defined for a paired station
and rupture model (Equations 4, 5), and we combined
the residuals from all stations and rupture models into
a single dataset and binnedwith respect to the hypocen-
tral distance. The residuals in each bin are plotted using
box and whisker plots. These combine the minimum
and maximum values with the quartiles into one useful
graph. It consists of a horizontal line, drawn according

Figure 5 Schematic representation of the definitions of
the intensity measure used in comparing the total horizon-
tal waveform synthetic (“syn”) and observed (“obs”) wave-
forms. Black solid and red dashed lines are the observed
and synthetic waveforms, respectively. The blue dots show
the Peak Ground Displacement (PGD) for the observed and
synthetic waveforms and their corresponding time to reach
the PGD (tPGD). The figure also shows the definition of static
displacement (SD). The amplitude and time axes values in
this figure are arbitrary.

to scale, and a box drawn from the lower (Q1) to upper
(Q3) quartile with a vertical line marking the median.
Theminimum andmaximum values of the whisker cor-
respond to the smallest and largest data points from the
dataset that fall within 1.5 times the inter-quartile range
(IQR = Q3-Q1). Outliers are observed data points that are
more than 1.5 times the IQR below Q1 or more than 1.5
times the IQR above Q3. For a normal distribution, the
IQR contains 50% of the population and 1.5 of the IQR
contains about 99%. We removed the outliers outside
the whiskers to improve readability.
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4 Results and Discussions

4.1 Comparing 1D and 3D Residuals

First, as a control, we study the impacts of varying only
the source model by investigating the residuals using
only 1D velocity structure, with different published rup-
ture models. The PGD residuals (δij,PGD, Equation 4)
for all the earthquakes in the 1D simulations increase
with distance but are generally below 2 (Fig. 6). On
eachboxplot, residuals for eachmodel are shownaspat-
terned box and whisker plots, including blue circle pat-
terns (SRCMOD), orange grid (SRMOD 2), light blue cir-
cled (SRCMOD 3), gray slanted (Hayes), and orange dia-
monds (Zheng). The red horizontal line represents the
zero residual line. In the 1D simulations, PGD residu-
als do not change significantly with distance when we
used different rupture models for the same earthquake
(e.g., Hayes, SRCMOD, SRCMOD2, and SRCMOD3 for the
2003 Tokachi earthquake). Therefore, any deviations
in the PGD residual for the same rupture model in 3D
simulations are most likely due to the 3D Earth struc-
ture.We observed that the PGD residuals for MudPy 1D
Zheng model is lower than that of the MudPy 1D SRC-
MODmodel, butwewill show later that the residuals for
3D velocity models are still lower than the correspond-
ing 1D models.
We evaluated a possible bias in the choice of the 1D

velocity model since themean rupturemodels (Table 1)
are derived from1Dcrustalmodels byother researchers
(e.g., Zheng et al., 2020). We have shown that the choice
of 1D velocity model, even though different from the
source models’ 1D model, do not affect the conclusions
and the PGD residuals in the 1D simulations will still
very different from the 3D simulations (Fig. S6). We
performed 1D simulations for the Ibaraki 2011 earth-
quake using the SRCMOD mean rupture model but us-
ing 1D velocity models used by Koketsu et al. (2004) and
Zheng et al. (2020). We compared the PGD residuals of
the resulting waveforms using these 1D velocity models
with respect to the observed waveforms. The compari-
son plot shows that the PGD residuals using these addi-
tional 1Dvelocitymodels aredifferent in somesensebut
are not significantly different compared to the trend of
residuals observed for the 3D simulations shown later.
Therefore, any deviation from the PGD residual in the
1D simulations is due to the path rather than the choice
of the 1D velocity model.
The effect of this is exemplified in the comparison of

the observed and theMudPy 1D and SW4 0.25Hz and 0.5
Hz syntheticwaveforms at stations 0041 and 0043 for the
Ibaraki 2011 earthquake for one of the 100 FakeQuake
ruptures using the SRCMODmean rupturemodel (Kubo
et al., 2013) (Fig. 7). The MudPy 1D waveforms are very
simple, but the SW4 waveforms better capture the vari-
ability in the observed waveforms. Specifically, the 3D
waveforms and in particular the higher frequency 3D
waveforms better capture the dynamic shaking in ad-
dition to the static offset observed at each station. This
includes capturing a commonlyobserveddynamicover-
shoot, such as that observed in the North component
of stations 0041 and 0043 for the Ibaraki earthquake, at

~60s (Fig. 7).
In a map view, we further show the effect of the

3D structure by overlaying the magnitude of velocity
waveforms at the surface as a function of time on a to-
pography/bathymetry map to highlight the spatial and
temporal variation of the wavefront as it propagates
(Fig. 8). The wavefronts appear spherical up to about
120s (Fig. 8E) and reveal a strong energy propagating
SE away from the land. At 140s (Fig. 8F), the wave-
fronts show evidence of awaveguide on the low-velocity
wedge as the energy propagates at a lower velocity
within the wedge area exemplifying the effect of the
3D structure. The extent of the packet of energy co-
incides with the geometry of the Japan trench. The
packet of energy within the wedge continues to prop-
agate northward as the wavefront propagates through
Japan. At 200s (Fig. 8H), the wavefronts reveal a basin
effect in the Nankai and Sagami Troughs located SW of
the Japan Trench and in the Sea of Japan. The wave-
front also shows a waveguide phenomenon in the low-
velocity wedge of the Nankai Trough and the packet of
energy propagates westward at a slower velocity in the
wedge even though the earthquake is located on the
Japan Trench. From 270s onwards (Fig. 8J), the wave-
front traveling northward through the wedge appears
to bifurcate into the bay region towards Tomakomai
and the other energy continues northward within the
wedge. The observed waveguiding in the shallow slabs
and the wave amplification in the Nankai and Sagami
Troughs area show that lower frequencies still demon-
strate non-negligible path effects, which may be impor-
tant to the seismic hazard of Japan. Furthermore, this
demonstrates that three-dimensional effects are impor-
tant to include in kinematic slip models, as they may
currently be wrapped into the source model.
This observation is distinctly different from the sub-

duction guided waves observed from deep earthquakes
on the subducting Pacific plate in Japan (Furumura
and Kennett, 2005), as well as other regions globally
(Furumura and Kennett, 1998; Furumura and Singh,
2002; Sahakian et al., 2018; Mann and Abers, 2019).
In Japan, Furumura and Kennett (2005) observed an
anomalously large intensity on the eastern seaboard
of northern Japan from deep-seated earthquakes and
the waveforms show a low-frequency (f<0.25 Hz) on-
set for both P and S waves, followed by large, high fre-
quency (f>2Hz) later arrivals with a long coda. They did
not observe the characteristics of frequency-selective
wavepropagation for subduction zoneearthquakeswith
hypocenter depth less than 185 km. They explained this
observation as arising from scattering of seismic waves
by an elongated scatterer parallel to the plate margin.
Despite the similarity in the phenomenon, the Ibaraki
2011 earthquake shown in Figure 8 has a hypocenter
depth of 43.2 km and the maximum frequency in the
waveforms is 0.25 Hz. We observed that the intense
shaking is concentrated within the shelf regions and is
bounded by the trench geometry. This shows that the
shaking may be due to waveguide phenomena within
the low-velocity wedge. Indeed, in other subduction
zones such as the Hikurangi, the sedimentary wedge is
demonstrated to act as a waveguide, increasing shaking
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LEGEND

PGD Residuals (1D only)(D) Tokachi 2003
MudPy 1D SRCMOD
MudPy 1D SRCMOD2
MudPy 1D SRCMOD3
MudPy 1D Hayes
MudPy 1D Zheng
Zero line

Figure 6 PGD Residuals using only the 1D velocity model, demonstrating the effects of varying solely the source model for
all the four earthquakesusingall the 100 randomrealizationsof themean rupturemodel. A, B andDshow theeffect of rupture
models on the PGD residuals from 1D simulations using Ibaraki 2011, Miyagi 2011A and Tokachi 2003 earthquakes. On each
boxplot, residuals for each model are shown as patterned box and whisker plots, including blue boxplot with circle patterns
(SRCMOD), orange boxplot with grid patterns (SRMOD 2), light blue boxplot with circled patterns (SRCMOD 3), gray boxplot
slanted patterns (Hayes), and orange boxplot with diamonds patterns (Zheng). The red horizontal line represents the zero
residual line.

and dynamic stresses for longer period groundmotions
(Wallace et al., 2017; Kaneko et al., 2019). A more de-
tailed examinationof thewaveguide is beyond the scope
of this paper.
The PGD, tPGD, SD residuals, and cross correlation

residual maps for the Ibaraki 2011 earthquake showing
the spatial variation of the residuals are in the supple-
mentary materials (Fig. S8). The PGD residual is gen-
erally near zero and positive, but <ln(1). We observed
the residual is more positive near the coastal region of
theNankai Trough. However, an isolated zonewith neg-
ative PGD residuals is observed near Kanazawa at the
Japan Sea Margin. The tPGD residual is generally posi-
tive and below 50 s, but slightly negative on the Japan
Sea Margin. It is also noteworthy that the static dis-
placement residuals are generally near zero but become
more variable farther away from the hypocenter, espe-
cially toward SWJapan. The cross-correlation values be-
tween the SW4 3D waveforms and the observed wave-
forms show a decay in values with distance but are gen-
erally above 0.7.

4.2 Residual Analyses
Comparing 1D and 3D residuals, we observed that the
3D simulations residuals are clearly near zero (closer
to the observed intensity measures) than the 1D resid-
uals at all distances, except for the Tokachi earthquake

(Fig. 9 and S9). The distributions of the intensity mea-
sures show improved fitting to the observed waveforms
in the 3D simulations. These results suggest that ac-
counting for path-specific 3D structure improves the fit
to the observed waveforms compared to the 1D simula-
tions. The width of the residual distributions is to some
degree controlled by the parameters used to vary the
random slip model realizations upon a mean model as
described in the methods; however, there is not neces-
sarily a one-to-one relationship between these param-
eters (such as h) and the width of the residual distri-
butions here. Furthermore, the difference between 1D
and 3D residuals is significantly greater than the dif-
ference between residuals for any given models of an
event (Figure 6), demonstrating that the structure has a
greater effect than any potential bias due to the source
model selection.
For amore quantitative aggregate comparison, we de-

termine the difference between themagnitude of the 3D
median residuals compared to 1D median residuals for
each residual boxplot (Equation 6, Fig. 10). We compute
the difference as:

δ|3D|−|1D| = |δ3D| − |δ1D| (6)
where |δ1D| and |δ3D| are absolute values of the 1D and
3Dmedian residuals, respectively. Themedian residual
difference measures how much the 3D median resid-
ual is closer to the zero value (i.e., fits the observed
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Figure 7 Comparing the observed (dark gray solid line) and three synthetic waveforms: MudPy 1D (dashed gray line), SW4
0.25 Hz (dashed-dotted orange line) and 0.50 HZ (blue solid line) waveforms at stations 0041 and 0043, respectively. The
MudPy 1Dwaveforms are very simple, but the SW4waveforms better capture the variability in the observed waveforms. The
observedwaveformswere shifted back by 20 s to fit the synthetic waveforms. The figure shows the vertical (Z-comp) and the
horizontal components (N-comp and E-comp) of the waveforms.

waveform) than the 1D simulations. A negative value of
median residual difference shows that 3D simulations
fit better to the observed intensity measure than the
1D simulations and vice versa. Note that this conven-
tion is different for the median residual difference for
the cross-correlation values because a positive median
residual difference for the cross-correlation shows that
the 3D simulations fit the observed waveforms better.

To determine if the 1D and 3D residuals are statisti-
cally different from each other (i.e., come from differ-
ent distributions), we performKolmogorov-Smirnov (K-
S) tests (Kolmogorov, 1933; Smirnov, 1948) on the 1D
and 3D residuals for each earthquake. Twodistributions
are significantly different when the statistical value (KS-
stat) is above a critical value which is a function of the
number of samples of each distribution, and when the
p-value is below the significance level of 0.05.

Considering the variation of the median residual
of the intensity measures with distance, 3D simula-
tions consistently have lower PGD median residuals

(Fig. 10A) for all simulationswith statistical significance
(Fig. 10B), except for Tokachi 2003 (Fig. 10A). The tPGD
median residuals are consistently lower in the 3D sim-
ulations, generally between 250 and 700 km hypocen-
tral distance except for the Ibaraki 2011 earthquake
(Fig. 10C).The static-displacementmedian residuals are
similar up to about 400 or 500 km (i.e., near zero), but
the 3D simulations fit the observed static displacement
better at longer distances (i.e., negative) (Fig. 10E). The
cross-correlation median values are slightly higher in
the 3D simulations, especially above distances of about
300 km, excepting the Ibaraki 2011 SRCMODearthquake
(Fig. 10G); however, wehave no explanation forwhy this
particular model shows lower cross-correlations other
than that it may be related to the source inversion pa-
rameters.

The plots of the p-valuewith distance for all the earth-
quakes show that the 1D vs 3D intensity measure resid-
uals vary with distance for all simulations (Fig. 10).
Specifically, the K-S tests show that the distributions of
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Figure 8 Waveform propagation of Ibaraki 2011 earthquake using rupture 5 of the 100 FakeQuakes random realizations of
the SRCMODmean rupturemodel (Kubo et al., 2013), showing the effect of 3D velocity structure. Themaximum frequency of
the simulation is 0.25 Hz. The rupturing subfaults are shown as pink grid cells, and hypocenter as a star. Color bar shows the
surface magnitude velocity in m/s.

the PGD residuals in the 1D and 3D simulations are sig-
nificantly different for all simulations up to hypocentral
distance of 1000 km, and below 700 km for the Miyagi
2011 simulations (Fig. 10B). The tPGD residual distribu-
tions are significantly different below 600 km distance,
except for Ibaraki 2011 and Tokachi 2003 earthquakes
below 400 km, which corresponds to the distance range
where there is a better fit in PGD residuals for the 3D
simulation (Fig. 10D). For both PGD and tPGD residuals,
thenumbers of samples are generally smallerwhere the

distributions are not significantly different. Conversely,
the p-value plots for the static displacement and cross
correlation show similar distributions between the 1D
and 3D residuals (Fig. 10F and H).
The observed consistent overall increase in 1D and

3D residuals with distance may be because the source
rupture model was derived with a 1D Green’s function.
The general trends in the PGD residuals show the 1D
and 3D synthetic amplitudes generally decay faster than
the observed amplitudes with distance, suggesting the
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Figure 9 Comparing MudPy 1D vs SW4 3D residuals between the synthetic to observed GNSS waveforms for Ibaraki 2011
(SRCMOD), Miyagi 2011 (Hayes), Iwate 2011 (Zheng) and Tokachi 2003 (Hayes rupture model) with fmax = 0.25 Hz. (A-D) PGD
residuals, (E-H) tPGD (s) residuals, (I-L) static displacement residuals and (M-P) cross correlation values. We compare only the
residuals of two corresponding rupture models in the MudPy and SW4 synthetic simulations. The blue boxplots with circle
hatched filling represents the MudPy 1D residuals while the orange boxplot (diamond hatch style) represents the SW4 3D
simulation. The red horizontal line represents the zero residual line.

variation in attenuation values within a layer unit in the
3D earth structure. Evaluation of the effect of the 1D
velocity-derived rupture model and possible variation
of attenuation within a layer on the general trend is be-
yond the scope of this study.

4.3 General Intensity Measure Residuals for
Each Earthquake

The intensity measures for each simulation without
considering the variation with distance show that the
1D vs. 3D residual distributions are significantly differ-
ent for all simulations and there is a general reduction
in the median residual values (hence, a better fit) in the
3D simulations compared to 1D simulations (Fig. 11).
Of greatest significance, we observed that the PGD

residuals in the 3D simulations are smaller by about 0.4

-0.6 units compared to 1D simulations for all simula-
tions, except for Tokachi 2003 (Hayes and SRCMOD3)
models. Also, the tPGD in the 3D simulations, in general,
better fit the observed than 1D simulations by about 4
seconds, except for Ibaraki 2011 (Zheng) and Tokachi
2003 earthquake simulations. There is a slight reduction
in the median static displacement residuals in the 3D
simulations except for Ibaraki 2011 (Zheng) and Miyagi
2011 (Hayes) simulations. The 3D simulations generally
have higher median cross-correlation values than 1D
simulations, up to about 0.03. These results demon-
strate that 3D structure plays a large, and statistically
significant, role in accuratelymodeling the PGDand SD,
as well as time-dependent characteristics of displace-
ment time series (Fig. 11).
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Figure 10 Median residual difference and the P-value for the PGD, tPGD, SD residuals and cross correlation values for all the
simulations. Blue solid lines: Ibaraki 2011 SRCMOD, orange dashed lines: Ibaraki 2011 Zheng, gray dashed-dotted line: Iwate
2011 Zheng, Black solid lines: Miyagi 2011Hayes, blue dashed lines: Miyagi 2011 Zheng, orange dashed-dotted lines: Tokachi
2003 SRCMO3, gray solid lines: Tokachi 2003 Hayes simulations. The gray shaded regions in (A), (C), (E) and (G) represent
regions where “3D fits better than 1D” while the white regions represent “1D fits better than 3D”. The gray shaded regions in
(B), (D), (F) and (H) represent regions where 1D and 3D residuals are statistically different from each other (i.e., come from
different distributions) while the white shaded regions represent regions where 1D and 3D are from the same distribution.
The bottom right schematic is a visual representation of the meaning of the mean residual difference.

4.4 Effect of 3D Structure in the Upper 0-30
km

To understand if a well-constrained shallow structure
plays a larger role than deeper structure in accurately
modeling time-dependent crustal deformation from
mid-crustal earthquakes, we tested the effect of 3D
structure in the upper 0-30 km on our simulations using
the Ibaraki 2011 and Miyagi 2011 earthquakes as case
studies. The Ibaraki 2011 earthquake is located at 43.2
km which is below the upper 0-30 km, while the Miyagi

earthquake has a focal depth of 8.3 km, so the earth-
quake is within the 0-30 km structure (Fig. 1 and 12). We
used the upper 0-30 km of the 3D structure because it
is the depth region where we observed the most lateral
structural heterogeneity.

To do this, we created another rfile for a 3D velocity
model involving only the upper 0-30 km depth of the
unified 3D velocitymodel of Japan, which is an extrapo-
lated version of the 3D Japan Integrated Velocity Struc-
ture Model (Koketsu et al., 2008, 2009). The SW4 simu-
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Figure 11 K-S test results and median residual difference between entire MudPy 1D and SW4 3D residual distributions for
all simulations. The points are sized by the population size in that bin. Blue solid lines represent the K-S statistic value, blue
dash-dotted lines represent the critical value, orange solid lines represent the p value, orange dashed lines represent the p
value line of 0.05, and the gray solid line represents the median residual difference of zero.

lation is setup to use the 3D structure up to 30 km depth
and a 1D velocity model, similar to the MudPy 1D simu-
lations from 30 km to 200 km depth.
The residuals for the Ibaraki 2011 and Miyagi

2011 earthquake simulations involving 30km-depth 3D
structure (3D_30km) and the 200km-depth 3D struc-
tures (3D_200km) are consistently lower than residuals
from a purely 1D simulations without any 3D structure
(Fig. 12). Comparing the two SW4 simulations to the
MudPy 1D simulation reveals that the residual values
from the 3D_30km simulation are similar to the resid-
uals from the 3D_200km simulation up to a hypocentral
distance of about 600 km. However, the residual using
the 3D_200km simulation is smaller (i.e., better fit) than
the 3D_30kmsimulation above the 600 kmdistance. The
static displacement residuals are similar at all distances.
This result shows that the reduction of the PGD resid-

uals in the 3D simulations is a combined effect of both
shallowanddeep3D structures at hypocentral distances
>~600 km. Hence, incorporating only the upper 30 km
of a 3D structure will still improve the fit to the ob-
served PGD values compared to purely 1D simulations,
especially in regions where a deep 3D structure is not
available. In other words, the 30km-depth structure
plays a role in reducing the PGD residuals, but since the
PGD residual compared to the observed waveforms is
further reduced in the 3D_200km simulation for larger
hypocentral distances, the deeper structure still con-
tributes to the lower residuals. This result is important
both in understandingwhat scale of structure should be
included in 3D models, but also in estimating the com-

putational demand in accurately modeling these time
series.

4.5 Effect of Maximum Frequency on the
Waveform Intensity Measures

Another important question is whether the reduction in
the residuals betweenobservedandSW43Dsimulations
will persists at higher maximum frequency. To answer
the question, we generated 0.50Hz syntheticwaveforms
for all the four earthquakes using SW4. We varied the
lateral extent of the 3D domain geometry depending on
location of each earthquake, thus including fewer sta-
tions (Fig. S5), and used one of the 100 ruptures from
the FakeQuakes realizations of the mean rupture mod-
els to reduce computational cost (Supplementary Mate-
rial S3). We compared only the intensitymeasures from
the common stations between the 1D and 3D simula-
tions.
For the Ibaraki 2011 earthquakes, we observed simi-

lar trends in the PGD, tPGD, SD residuals, and cross cor-
relation values compared to the 0.25 Hz SW4 3D simula-
tion (Fig. 13). However, the median residual difference
in the PGD residual compared to the MudPy 1D simula-
tion shows a consistent further reduction in the 0.5 Hz
simulation. Hence, even though the overall trend in the
residuals persists between the 0.25 Hz and 0.50 Hz sim-
ulations, the 0.50Hz better fits the observedwaveforms.
Figure 14 shows the PGD residuals for the other earth-
quakes and rupturemodels. Thefigure further validates
the reduction in the residual in the 0.50 Hz simulations,
except for the Tokachi earthquake (Fig. 14).

14
SEISMICA | volume 3.1 | 2024



SEISMICA | RESEARCH ARTICLE | Three-Dimensional Subduction Zone Structure and Time-dependent Crustal Deformation

50 25
0

45
0

65
0

85
0

10
50

0

1

2

ln
 R

es
id

ua
l

(A)

Ibaraki 2011 SRCMOD

15
0

35
0

55
0

75
0

95
0

1

0

1

2

3

ln
 R

es
id

ua
l

(B)

Miyagi 2011 ZHENG

50 25
0

45
0

65
0

85
0

10
50

0.0

0.5

1.0

|3
D
|

|1
D
| (

ln
)

(C)

Median Residual Difference

50 25
0

45
0

65
0

85
0

10
50

100

0

100

R
es

id
ua

l (
s)

(D)

15
0

35
0

55
0

75
0

95
0

200

100

0

100

R
es

id
ua

l (
s)

(E)

50 25
0

45
0

65
0

85
0

10
50

50

0

50

100

|3
D
|

|1
D
| (

s)

(F)

50 25
0

45
0

65
0

85
0

10
50

2

0

2

4

ln
 R

es
id

ua
l

(G)

15
0

35
0

55
0

75
0

95
0

0

5

ln
 R

es
id

ua
l

(H)

50 25
0

45
0

65
0

85
0

10
50

1

0

1

2

3

|3
D
|

|1
D
| (

ln
)

(I)

50 25
0

45
0

65
0

85
0

10
50

distance (km)

0.6

0.7

0.8

0.9

1.0

va
lu

e

(J)

15
0

35
0

55
0

75
0

95
0

distance (km)

0.4

0.6

0.8

1.0

va
lu

e

(K)

50 25
0

45
0

65
0

85
0

10
50

distance (km)

0.1

0.0

0.1

|3
D
|

|1
D
| (

va
lu

e)

(L)

LEGEND

PGD Residuals

tPGD Residuals

SD Residuals

Xcorr Residuals

MudPy 1D

SW4 3D (3D to 200 km depth)

SW4 3D (3D to 30 km depth)

Zero line

|3D| |1D|

Ibaraki SRCMOD (3D to 200 km)

Ibaraki SRCMOD (3D to 30 km)

Miyagi Zheng (3D to 200 km)

Miyagi Zheng (3D to 30 km)

|3D| |1D| = 0

Figure12 Effectof 3Dstructure in theupper0-30kmdepthonPGD, tPGD, SD residuals andcross correlationvalues for Ibaraki
2011 andMiyagi 2011A earthquakes. We compare the MudPy 1D and SW4 3D residuals using 200 km- and 30 km-3D structure
at different hypocentral distances. Ibaraki 2011 earthquake is located at 43.2 km depth while Miyagi 2011A earthquake is
located at 8.3 km depth, so it is located within the upper 0-30 km depth. The figures on the right column show the median
residual difference for the PGD, tPGD, SD residuals and cross correlation values for two simulations compared to the MudPy
residuals. Blue boxplots (slant lines hatched style): MudPy 1D residuals; orange boxplots (diamond hatch style): SW4 3D
simulation using 200 km-3D structure; gray boxplots (circle hatched style); SW4 3D simulation with 3D structure up to 30 km
depth; red horizontal line: zero residual line; blue solid lines: median residual difference for the simulation using the 200 km-
3D structure; orange solid line: median residual difference for the 30-km-3D structure; gray shaded regions in left column:
regions where “3D fits better than 1D”; white regions represent “1D fits better than 3D”. Bottom right schematic is a visual
representation of the meaning of the residuals presented here.

5 Conclusions and Future Work

We present 1D and 3D simulations of four M7.3+ earth-
quakes in Japan and showed theneed to include realistic
3D structure with modern computational approaches
and avoid the oversimplification of 1D GNSS models.
In the 1D simulations, using different rupture models,
PGD residuals do not change significantly with distance
for the same earthquake. Therefore, any deviations in
the PGD residual for the same rupturemodel in 3D sim-
ulations reveal the effect of the 3D structure. Comparing
1D and 3D residuals, we observed that 3D simulations
show improved fits to the observed waveforms, demon-
strating that the unmodeled waveform in the 1D simu-
lation is due to the structure (path). However, the ob-
served overall trends in 1D and 3D residuals with dis-
tance are likely related to a source model derived with

the assumption of 1D structure or the variation of atten-
uation parameterswithin each layer in the 3D structure.

PGD median residuals with distance show that 3D
simulations consistently have lower residuals for all
simulations, except for Tokachi 2003. The tPGD median
residuals are consistently closer to zero for the 3D simu-
lations, generally between 250 km and 700 km distance
and up to 1150 km for Iwate 2011 earthquake. The SD
median residuals are similar in both 1D and 3D simula-
tions up to about 400 or 500 km, but the 3D simulations
fit better at greater distances. The cross-correlation
median values are slightly higher in the 3D simulation
above hypocentral distance of about 300 km, except for
the Ibaraki 2011 earthquake. The K-S tests show that
the distributions of the PGD residuals in the 1D and
3D simulations are significantly different for all simu-
lations up to 1000 km distance and 800 km for the Iwate
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Figure 13 Effect of the maximum frequency (fmax) on PGD, tPGD, SD residuals and cross correlation values for Ibaraki 2011
earthquake (using rupture 5 with SRCMOD mean rupture model). Blue boxplots (circle hatched style): MudPy 1D residuals;
orange boxplots (diamond hatch style): SW4 3D simulation with fmax of 0.25 Hz; gray boxplots (crossed hatched style): SW4
3D simulation with fmax of 0.50 Hz; red horizontal line: zero residual line. Figure (E) shows the median residual difference
for the PGD residuals compared to the MudPy residuals. Blue solid and orange dash lines represent the median residual
difference for the simulation with fmax of 0.25 Hz and 0.50 Hz, respectively.

2011 earthquake. The intensity measures for each sim-
ulation without considering the variation with distance
also show a general reduction in values in the 3D simu-
lations compared to 1D simulations.
This study also shows that the reduction of the PGD

residuals in the 3D simulations is a combined effect of
both shallow and deep 3D structures especially above
certain hypocentral distances. Incorporating only the
upper 30 km 3D structure will still improve the fit to
the observed PGD values. Lastly, depending on the
level of desired model accuracy and available com-
putational resources, the 0.25 Hz SW4 3D simulations
may be sufficient to model the kinematics and time-
dependent crustal deformation measured by GNSS.
Our results demonstrate that future studies of time-
dependent crustal deformation should consider using
3D structure or Green’s functions, in particular when
peak intensity measures such as PGD are the most crit-
ical.
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Figure 14 Effect of the maximum frequency (fmax) on PGD for all the simulations. The blue boxplots (circle hatched style)
represent the MudPy 1D residuals. The orange boxplots (diamond hatch style) represent the SW4 3D simulation with fmax of
0.25 Hz. The gray boxplots (crossed hatched style) represent the SW4 3D simulation with fmax of 0.50 Hz. The red horizontal
line represents the zero residual line.

made with Python 3 (Van Rossum and Drake, 2009),
Seaborn (Waskom, 2021), Pandas (McKinney, 2010),
and ObsPy (Beyreuther et al., 2010). Our codes are
available at https://github.com/oluwaseunfadugba/1D_
vs_3D_HR-GNSS_CrustalDeformation. We downloaded
the JIVSM (Koketsu et al., 2008, 2009), which is the
basis for our 3D modeling, from the Headquarters
for Earthquake Research Promotion of Japanese Gov-
ernment (https://www.jishin.go.jp/evaluation/seismic_
hazard_map/lpshm/) on 10/14/2021 in two overlapping
sections: West Japan (https://www.jishin.go.jp/main/
chousa/12_choshuki/dat/nankai/lp2012nankai-w_str.zip)
and East Japan (https://www.jishin.go.jp/main/chousa/
12_choshuki/dat/nankai/lp2012nankai-e_str.zip), each
comprises 23 layers. The physical property values of the
layers are from https://www.jishin.go.jp/main/chousa/
12_choshuki/dat/nankai/lp2012nankai_str_val.pdf. The
version provided here is not the original version pub-
lished by JIVSM and is instead a modified version. The

GNSS stations, mesh, 3D velocity model, projected
rupture models for each earthquake on the Japan
Trench mesh, the codes at the time of publication and
the corresponding 100 realizations of the mean rupture
models generated using FakeQuakes are available on
Zenodo (Fadugba et al., 2023).
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Abstract Understanding the dynamics of precariously balanced rocks (PBRs) is important for seismic
hazard analysis and rockfall prediction. Utilizing a physics engine and robotic tools, we develop a virtual
shake robot (VSR) to simulate thedynamicsof PBRsduringoverturningand large-displacementprocesses. We
present the background of physics engines and technical details of the VSR, including software architecture,
mechanical structure, control system, and implementation procedures. Validation experiments show theme-
dian fragility contour fromVSR simulation iswithin the 95%prediction intervals fromprevious physical exper-
iments, when PGV/PGA is greater than 0.08 s. Using a physical mini shake robot, we validate the qualitative
consistency of fragility anisotropy between the VSR and physical experiments. By overturning cuboids on flat
terrain, the VSR reveals the relationship between fragility and geometric dimensions (e.g., aspect and scaling
ratios). The ground motion orientation and lateral pedestal support affect PBR fragility. Large-displacement
experiments estimate rock trajectories for different ground motions, which is useful for understanding the
fate of toppled PBRs. Ground motions positively correlate with large displacement statistics such as mean
trajectory length,mean largest velocity, andmean terminal distance. The overturning and large displacement
processes of PBRs provide complementary methods of groundmotion estimation.

Non-technical summary Fragile geological features such as precariously balanced rocks (PBRs)
may provide ground motion constraints for seismic hazard analysis. PBRs, many discovered close to infras-
tructure, may form rockfall hazards. Modeling PBR trajectory also helps understand the fate of toppled PBRs
and the processes of rocky slope development. The dynamics of PBRs, however, are nonlinear and present
many challenges to analyze. Utilizing robotic tools, we develop a virtual shake robot (VSR) in simulation
to study the dynamics of PBRs during overturning and large-displacement processes with realistic material
properties and terrains. Using the VSR, we demonstrate that the PBR fragility is affected by ground motion
directions and lateral supporting pedestals, which have seldom been considered in previous studies. The re-
sults of large-displacement experiments indicate that increasing ground motions result in greater PBR trans-
portation. Additionally, the VSR has the advantage of rapid deployment, which plays an important role in our
rock detection-mapping-analysis paradigm that aims to automate rock mapping and analysis by leveraging
robotics andmachine learning technologies.

1 Introduction
Precariously balanced rocks (PBRs) are boulders bal-
anced on and not fixed to a sub-horizontal pedestal.
The balance configuration and contact physics define
PBR fragility—probability for overturning by a stimu-
lus, usually earthquake ground motions. Seismologists
have studied the overturning responses of PBRs from
ground motions for seismic hazard analysis (Housner,
1963; Brune, 1996; Shi et al., 1996; Anooshehpoor et al.,
2004; Rood et al., 2020, 2022). PBR fragility provides
an upper bound on the strength of the ground mo-
tions in the time interval since the PBRs became frag-

∗Corresponding author: zchen256@asu.edu

ile (Brune et al., 2006; Anderson et al., 2014). In south-
ern California, most PBRs have been fragile for thou-
sands of years or longer (Brune et al., 2006; Rood et al.,
2022). Studying PBRs allows ground motion estimation
with long return times, which aremuch longer than the
modern instrumental earthquake catalogs. Such long-
history ground motion estimation is important for as-
sessing hazards for critical facilities such as large dams,
nuclear power plants, and nuclear waste repositories
(Rood et al., 2020). In principle, PBRs allow a par-
tial test of hazard curves obtained from other informa-
tion, including geological appraisals of earthquakes and
nearby faults (Rood et al., 2020). Hazard curves, out-
puts of probabilistic seismic hazard analysis (PSHA), ex-

1
SEISMICA | ISSN 2816-9387 | volume 3.1 | 2024

https://doi.org/10.26443/seismica.v3i1.692
https://orcid.org/0000-0002-1341-9383
https://orcid.org/0000-0003-1756-3697
https://orcid.org/0000-0002-6844-421X
https://orcid.org/0000-0002-2678-7310
https://orcid.org/0000-0002-1431-1446
https://orcid.org/0000-0002-1861-5682


SEISMICA | RESEARCH ARTICLE | Virtual Shake Robot

press the rate at which ground motions are equaled or
exceeded as a function of the amplitude of the motion.
PBRs constrain the hazard curves at very long return
times.
Seismic hazard analysis typically considers the PBR

overturning responses, which are immediate binary re-
sults (balanced or overturned, Anderson et al., 2014).
However, their motions after overturning are complex
and informative. Overturned PBRs can slide, rotate,
rock, and bounce. The large displacements of these
rocks contribute to understanding the fate of PBRs and
the development of rocky slopes. Additionally, many
discovered PBRs present rockfall hazards (Anderson
et al., 2014). As a serious natural hazard, rockfall poses
a major threat to infrastructure, transportation lines,
and people (Dorren, 2003; Leine et al., 2013). Predict-
ing rockfall trajectories in complex terrains is essential
for implementing protective measures.
Using PBRs for seismic hazard analysis presents chal-

lenges in PBRmapping, PBR dynamics, PBR dating, and
hazard modeling (Fig. 1). PBRs are not everywhere.
PBR mapping locates and obtains PBR geometries and
contact properties. Hundreds of PBRs have been man-
ually located in southern California, and their meta-
data is archived at Southern California Earthquake Cen-
ter (SCEC researchers, 2022). However, many of them
were discovered near developed roads because of ac-
cessibility. The heterogeneous distribution indicates a
sampling bias for ground motion estimations. A recent
study developed unpiloted aerial vehicles (UAV) and on-
boardmachine learning to search for PBRs (Chen et al.,
2024, in prep). The PBR geometry is a critical factor af-
fecting PBR dynamics. PBR geometry is often modeled
by minimal contact angles from a 2D side-view photo,
where a contact angle is an angle between the gravity
vector and the connection from the mass centroid to
a rocking point (Haddad et al., 2012; Shi et al., 1996).
3D PBRmodels are reconstructed using terrestrial laser
scanning, structure from motion (SfM), or robotic real-
timemapping technologies (Veeraraghavan et al., 2016;
Rood et al., 2020; Chen et al., 2024, in prep). PBRdynam-
ics focus on the response of PBRs from known ground
motions (a forward dynamics problem). PBR forward
dynamics are nonlinear and have been studied for over
a century (Milne and Omori, 1893; Housner, 1963). The
methods of PBR dating include cosmogenic, rock var-
nish, and quantitative geomorphic models (Bell et al.,
1998; Rood et al., 2020). With the forward dynamics and
ages of PBRs, hazardmodeling integrates such informa-
tion into a PSHA to test or rectify hazard curves. Despite
the importance of all four challenges in PBR usage for
hazard analysis, this paper specifically concentrates on
modeling PBR dynamics through simulation tool devel-
opment and experiments.
The dynamics of PBRs for seismic hazard analysis

are aimed to model an overturning process, which
is a mapping from ground motions to PBR response
of overturned or not. Ground motions are charac-
terized by intensity measures (Anderson et al., 2014;
Purvance et al., 2008), such as peak ground accelera-
tion (PGA), peak ground velocity (PGV), peak ground
displacement, SA(1Hz), and SA(2 Hz), where SA(n Hz)

Figure 1 Workflow of using precariously balanced rocks
(PBRs) for seismic hazard analysis, PBR fate, rocky slope de-
velopment, and rockfall prediction. PBR dynamics involve
overturning process and large-displacement process.

represents the peak acceleration response of a single-
degree-of-freedom oscillator with undamped natural
frequency of n Hz and 5% damping to the ground mo-
tions (Baker et al., 2021). Purvance et al. (2008) found
that PGV/PGA and PGA were the strongest indicators of
the overturning potentials among the above intensity
measures. Since then, PGV/PGA and PGV have been
commonly used as ground motion inputs to study the
overturning problem (e.g., Veeraraghavan et al., 2016;
Rood et al., 2020). The PBR overturning response can
be described as a function of PGV/PGA and PGA,

OR = f(PGV/PGA, PGA) (1)

where OR is a binary variable with value 1 indicating
overturned response and value 0 indicating balanced
response. Note that in the real world the PBR dynam-
ics are deterministic, whichmeans, given a groundmo-
tion, a PBR response can only be either overturned
or balanced. In this case, if we uniformly discretize
(PGV/PGA, PGA) ground motion space and assume
each ground motion has the same probability, a PBR is
more fragile than another when it has more overturned
responses. To consider uncertainties in PBR dynamics
and to integrate the PBR dynamics model into PSHA, a
probabilistic model that indicates the probability of be-
ing overturned can be obtained from Monte Carlo sim-
ulation and logistic regression (Purvance, 2005).
The overturning dynamics of PBRs have been studied

for over a century. Assuming sufficiently large friction,
previous studies modeled 2D rotation motion of rect-
angles (vertical plane) (Milne and Omori, 1893; Kirk-
patrick, 1927; Housner, 1963; Yim et al., 1980; Purvance
et al., 2008). Other studies explored the models and cri-
teria for more complicated motions such as rotating,
sliding, bouncing, and rocking in 2D (Ishiyama, 1982;
Scalia and Sumbatyan, 1996; Shenton and Harry, 1996;
Pompei et al., 1998). Purvance et al. (2012) used the
discrete element method (DEM) to analyze the over-
turning response of 3D PBR models. This method re-
quiredmany repeated experiments to calibrate parame-
ters of stiffness and damping (Purvance et al., 2012; Sai-
fullah and Wittich, 2022, 2021), and the simulation for
each experiment is computationally expensive. Veer-
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araghavan et al. (2016) presented an alternativemethod
to analyze the 3D PBR overturning dynamics using a
constraint-based model. The constraint-based model
formed a linear complementarity problem from con-
tact constraints and solved contact impulses by an iter-
ative numerical algorithm (Chapter 2 in Veeraraghavan,
2015). From the contact impulses, contact forces were
computed to update object velocity. Their study (Veer-
araghavan et al., 2016) validated the constraint-based
model in agreement with the physical shake table ex-
periments from Purvance et al. (2008). The constraint-
basedmodel from Veeraraghavan et al. (2016) is similar
to the collision response stage in physics engines. How-
ever, physics engines directly apply the contact impulse
to change object velocity instead of computing interme-
diate contact forces (see Section 2.1). Modern physics
engines are also enhancedwith efficient algorithms and
Graphic Processing Unit (GPU) hardware accelerations.
Besides the overturning dynamics, we also investi-

gate large-displacement dynamics of PBRs, which are
important for PBR fate study, rocky slope development
understanding, and rockfall prediction. The goal of
the large-displacement dynamics is to predict trajec-
tories of PBRs after being overturned. PBR trajecto-
ries are affected by factors including PBR initial state,
PBR physics properties, terrain morphology, and ter-
rain physics properties. Given the same configurations
for all the other factors, a PBR trajectory is distinguished
from its initial state,

T = h(s) (2)

where T is the trajectory (position and orientation with
time), h is a function thatmaps an initial state to a trajec-
tory, and s is the initial state such as position, orienta-
tion, and initial velocity. Compared with the overturn-
ing dynamics that have been widely explored in previ-
ous PBR dynamics studies, general large-displacement
dynamics of rocks weremore studied in rockfall hazard
applications. Early studies restricted rockfall motions
to 2D vertical planes and built mathematical models to
describe discrete motion modes (Bozzolo and Pamini,
1986; Kobayashi et al., 1990; Azzoni et al., 1995). 3D
rockfall models were developed to simulate particle in-
teractions with digital elevation models and digital ter-
rain models (Gascuel et al., 1999; Agliardi and Crosta,
2003; Lan et al., 2007; Guzzetti et al., 2002; Caviezel et al.,
2019). Recently, Hao et al. (2021) used a physics en-
gine to simulate rockfall trajectories on a terrain model
that was reconstructed by aerial photographs from un-
piloted aircraft systems (UAS).
By integrating advanced technologies from physics

engines and robotics, we have developed a virtual shake
robot (VSR) to facilitate the study of the overturning
and large-displacement dynamics of PBRs. Our VSR re-
lies on three core technologies: RobotOperating System
(ROS), Gazebo simulation toolbox, and Bullet physics
engine. ROS is a software platform that provides a
set of libraries and tools for robot control and percep-
tion (Stanford Artificial Intelligence Laboratory, 2018).
Gazebo is a simulation toolbox that provides a simple
way to build a virtual world including virtual robots
and environments (Koenig and Howard). The dynam-

ics of the virtual world are managed by a physics en-
gine. Gazebo supports four high-performance physics
engines: Open Dynamics Engine, Bullet, Simbody, and
DART. Because the Bullet physics engine has shown re-
liable simulation results in many scientific studies (Zhu
and Zhao, 2019; Ma et al., 2018; Sun et al., 2019), we se-
lect Bullet as the physics engine for the VSR.
This study is aimed to advance the simulation of PBR

dynamics by seamlessly addressing both overturning
and large-displacement processes. Simulation tools are
important for science studies, but technical nuances
may affect experiment results. For example, rock be-
haviors such as rotating, sliding, jumping, and rocking
affect the dynamics of a shake table. However, such
details are unclear in previous studies (Purvance et al.,
2012; Veeraraghavan et al., 2016). To reduce the effects
of the coupling dynamics, theVSR implements a hierar-
chical control system.
Previously, simulation models for the overturning

and large-displacement dynamics were built indepen-
dently. Our VSR is the first tool for both dynamics
studies. Additionally, complex terrain—anything other
than a flat pedestal—can either increase or decrease the
fragility of a PBR, depending on the specific characteris-
tics of the surrounding terrain and the contact. OurVSR
supports arbitrarily complex terrains, e.g., mesh mod-
els from UAS and SfM, to advance PBR dynamics stud-
ies. From shake simulations, we demonstrate that sur-
rounding pedestals are critical to reduce PBR fragility.
Lastly, we expect to see more robotic applications to
PBR mapping, and thus the VSR can be integrated into
autonomous mapping systems where ROS has widely
been used.
To enhance the clarity of the article structure, we pro-

vide an outline as follows. Following the introduction in
Section 1, we present technical advancements and re-
view related work in Section 2. Because a physics en-
gine is a new approach to simulating the PBR dynam-
ics, we begin by reviewing the technical details in the
Bullet physics engine and compare it with the DEM to
establish the necessary context for our research. We
also introduce relevant applications of physics engines.
Moving on to Section 3, we provide a comprehensive
description of the VSR system, covering its software ar-
chitecture, mechanical structure, control system, and
implementation procedures. For validation purposes,
Section 4 compares the simulation results from theVSR
with physical experiment data from a previous study, as
well as with data collected from a physical, mini shake
robot. In Section 5, we present our simulation exper-
iments, with a focus on scientific applications related
to the overturning and large-displacement processes.
In Section 6, we discuss the validation experiments,
the overturning and large-displacement experiments,
as well as the limitations and prospects for future work.
Finally, we summarize this study in Section 7. Through-
out this paper, we use the terminology ‘robot’ to refer
to both the VSR and mini shake robot because of their
reliance on robotic concepts, including control and per-
ceptionmodules, as well as the use of robotic tools such
as ROS. It is worth emphasizing that both robots facil-
itate the automation of data collection, making them
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valuable tools for obtaining data in earthquake studies.

2 Background
2.1 Bullet Physics Engine
The Bullet physics engine simulates rigid body dynam-
ics by computing rigid body states (poses and velocities)
in a discrete simulation loopwith a fixed small time step
in the range of 30Hz to 10 kHz (Coumans and Bai, 2016).
The Bullet rigid body simulation loop includes four

stages, as shown in Fig. 2a. The collision detection
stage predicts contact points (where to contact) and
time of impact (when to contact) using efficient algo-
rithms (van den Bergen, 2003; Williams et al., 2014).
When collision is predicted within a simulation time
step, the collision response stage computes the impulse
from the collision. The forward dynamics stage com-
putes external force, torque, and inertia. Finally, the
numerical time integration stage updates position and
linear velocity of each object using semi-explicit Euler
integration method,

vt+∆t = vt + a∆t = vt +
Fext + Fc

m
∆t, (3)

xt+∆t = xt + vt+∆t∆t (4)

where v [m · s−1] is velocity, t [s] is the current time, ∆t
[s] is the simulation time step, a [m ·s−2] is acceleration,
Fext [kg ·m ·s−2] is total external force, Fc [kg ·m ·s−2] is
total contact force,m [kg] is objectmass, and x [m] is ob-
ject position. Fext can be gravity, wind force field, and
user-defined force, which are computed at the forward
dynamics stage. Fc includes collision force and friction,
which have non-trivial solutions. Instead of integrating
contact force over time in Eq. 3, Bullet calculates the to-
tal impulse to update velocity,

Fc∆t = J, (5)

vt+∆t = vt +
Fext

m
∆t +

J

m
. (6)

where J [kg · m · s−1] is the total impulse from the con-
tact, which is computed at the collision response stage.
Similarly to the linear equations, the angular equations
update angular velocity and orientation by consider-
ing torque, inertia, and angular acceleration. Such a
method of computing contact impulse was known as
impulse-based dynamics (IBD), introduced by Mirtich
and Canny (1995) and improved by Bender et al. (2013).
Bullet computes the contact impulse by modeling colli-
sion dynamics as equality and inequality constraints to
form amixed linear complementarity problem (MLCP).
The constraints from a collision include contact con-
straints, friction constraints, and joint constraints. The
projected Gauss-Seidel algorithm (Erleben et al., 2005)
solves the MLCP by iteratively approximating an im-
pulse until all the constraints are satisfied (converged)
or a maximum number of iterations is met.

2.2 Physics Engine versus Discrete Element
Method (DEM)

Classical DEM discretizes each object as a collection
of small spheres (Cundall and Strack, 1979). For each

fixed small time step in discrete simulation loops, as
illustrated in Fig. 2b, DEM computes the states of all
spherical particles. The rationale of DEM is that the
time step chosen is so small that during a single time
step disturbances cannot propagate from any spheri-
cal particles further than its immediate neighbors. The
total force on each spherical particle is only deter-
mined by external force defined by the user and con-
tact force imparted by its neighbors with which it is
in contact. DEM allows penetration (geometric over-
laps) between spherical particles, and thus does not
need collision detection to predict when and where to
collide. When spherical particles contact, DEM uses
a force-displacement model to compute contact force
from penetration depth. The processes of the forward
dynamics stage and numerical time integration stage in
DEM are similar to the processes in Bullet. While origi-
nally intended to represent granular media with spher-
ical particles, DEM has since been extended to simulate
the behavior of arbitrary rigid bodies (meshes) using
polyhedral particles (Cundall, 1988; Itasca Consulting
Group, Inc., 2020). However, DEM computes the con-
tact forces at all particles’ penetrating faces and nodes,
which is different from Bullet where the collision com-
putation is based on each individual mesh object. In
DEM, amore highly discretized surfacewithin an object
provides a more accurate representation of the contact
force distribution. However, increasing the number of
discretized particles significantly increases the simula-
tion time.
Although the formulation of physics engines and

DEM were motivated by different purposes, their mod-
ern applications involve various fields of engineering
and science. Physics engines were originally devel-
oped to rapidly simulate physical processes in computer
games and animations (Millington, 2007). With an in-
crease in accuracy, physics engines quickly were used
in engineering and scientific studies including robotics
(Drumwright et al., 2010; Erez et al., 2015), agricultural
machinery safety (Sun et al., 2019), constructionmateri-
als (Garcia-Hernandez et al., 2021), earthquake studies
(Xu et al., 2013; Kim et al., 2015), rockfall hazard zoning
(Hao et al., 2021), and granular soil studies (He et al.,
2021; Izadi and Bezuijen, 2014; Pytlos et al., 2015; Toson
and Khinast, 2017). Whereas physics engine applica-
tions involve both individual objects andparticle assem-
blages, DEM has primarily focused on modeling me-
chanical behavior of particle assemblages since it was
introduced (Cundall and Strack, 1979). Modern DEM
applications include particle transportation in mining
(Pezo et al., 2015), particle compaction in material sci-
ence (Martin et al., 2003), fertilizer spreading in agricul-
ture (Coetzee and Lombard, 2011), soil-tool interaction
(Asaf et al., 2007; Catanoso et al., 2020), particle mixer
and grindermachinery (Alian et al., 2015; Cleary, 2015),
rocky slopes in geoengineering (Chuhan et al., 1997),
dynamic analysis of infrastructures (Çaktı et al., 2016;
Mehrotra and DeJong, 2017; Papantonopoulos et al.,
2002), and fault ruptures (Garcia and Bray, 2018, 2022;
Chiama et al., 2023).
The difference in the contact models of the Bullet

physics engine andDEM is amajor factor affecting their
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Figure 2 Simulations loops of (a) Bullet physics engine and (b) discrete element method (DEM). In both Bullet physics en-
gine and DEM, states of objects are updated in each sequential discrete simulation loop with a fixed small time step. Their
mechanisms to process collision are fundamentally different.

computational efficiency. Bullet applies a hard con-
tact model where penetrations are not allowed between
any two rigid bodies. Thus, in its simulation loop, Bul-
let needs the collision detection stage to predict when
and where to contact, and then collision impulses are
computed in the collision response stage. The hard
contact model is formalized as a MLCP such that itera-
tive numerical methods (e.g., projected Gauss-Seidel al-
gorithm) are leveraged to efficiently compute collision
impulses. The Bullet physics engine requires users to
provide macro physics parameters, including restitu-
tion, Coulomb friction, and rolling friction coefficients
(Chen, 2022). On the other hand, DEMadopts a soft con-
tact model (force-displacement model) where penetra-
tions are allowed between two directly contacting par-
ticles. The soft contact model requires user-defined pa-
rameters such as stiffness, damping constant, and fric-
tion coefficient. To simulate rigid bodies, the stiffness is
usually set at a very large value to reduce macroscopic
deformation. Because of the high stiffness, the simula-
tion time step must be small to yield small elastic re-
bound at each iteration to ensure numerical stability,
which significantly increases the simulation time. Ad-
ditionally, the hard contact model treats each object as
an individual entity (e.g., using polygon mesh model),
whereas DEM discretizes each object into small parti-
cles. The computational time and memory of DEM in-
crease markedly with the number of particles. With
the same computational hardware and settings, previ-
ous studies found physics engines were 10-250 times
faster than DEM to achieve similar results (He et al.,
2020, 2021). Given the fact that the soft contact model
in DEM is a hypothetical model, the user-defined pa-
rameters within this model lack direct connections to
macro physics properties. These parameters can be cal-
ibrated through an iterative process of adjusting param-
eter values and matching experimental observations.
In contrast, the parameters required in Bullet represent
macrophysics properties andmay be directlymeasured
through experiments.
Physics engines and DEM are numerical methods,

neither of which is a true representation of reality, and
both of which need calibration. Our goal here is to pro-
mote physics engine applications in PBRdynamics stud-
ies, which provides one more option with some advan-
tages relative to DEM. More research is needed to com-

pare the performance of physics engines and DEM on
this topic.

2.3 Physics Engine Applications
In this subsection, we review physics engine applica-
tions related to this study. Physics engines have suc-
ceeded in simulating behavior of granular assemblies.
Izadi and Bezuijen (2014) used Bullet to simulate the
behavior of granular materials subjected to pluviation
and vibration. Their simulation results were within
the range of repeated laboratory experiments. Toson
and Khinast (2017) applied Bullet to study quasi-static
granular flows of non-spherical particles. While their
Bullet simulation results for spherical particles were in
agreement with DEM simulation results, implementing
non-spherical particle simulation in Bullet was easier
because simulations of non-spherical particles in DEM
required an advanced discretization method (e.g., Lu
et al., 2015). Their Bullet simulation results of non-
spherical particles agreed with the prediction from the
empirical Beverloo equation (Beverloo et al., 1961). He
et al. (2020) compared physics engine and DEM simu-
lations in granular soil behavior and showed that the
physics engine achieved similar results to those of the
DEM in a significantly shorter time. Komaragiri et al.
(2021) demonstrated that the compaction behavior of
asphalt mixture from Bullet simulation was very simi-
lar to the compaction behavior recorded from labora-
tory measurements.
Zhu and Zhao (2019) demonstrated the benefits of uti-

lizing physics engines in material analysis. Their study
employed the Bullet physics engine and integrated peri-
dynamics to simulate crushable granular materials un-
der mechanical loading. It was difficult to analyze par-
ticle breakage using DEM because traditional spheri-
cal particles were incapable of approximating particles
with sharp corners and edges (Zhu and Zhao, 2019). The
Bullet simulation results were consistent with experi-
mental observations on normal compression line, par-
ticle size distribution, fractal dimension, and particle
morphology.
The Bullet physics engine demonstrated reliable

capability of simulating overturning and large-
displacement dynamics (Ma et al., 2018; Sun et al.,
2019; Hao et al., 2021). Ma et al. (2018) applied Bullet
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to simulate rocking dynamics of cuboids with various
sizes and aspect ratios (height-to-width ratios). Their
study demonstrated that the response of rocking blocks
in Bullet simulation was consistent with analytical
solutions of Housner equations (Housner, 1963). Sun
et al. (2019) used Bullet to analyze overturning dy-
namics of agricultural tractors on a bank slope and on
a uniform slope. The Bullet simulation results were
similar to previous reports and also in reasonably
good agreement with experimental results. Hao et al.
(2021) simulated rockfall trajectories on terrains using
PhysX physics engine. They showed the advantage of
using the physics engine to simulate rock interactions
with a high-resolution, realistic terrain model that was
reconstructed by UAV aerial photographs.

3 Virtual Shake Robot
As shown in Fig. 3, we developed the VSR using ROS,
Gazebo simulation toolbox, and Bullet physics engine.
Utilizing various libraries and tools available in the ROS
ecosystem, we built robot software composed of con-
trol and perception modules. The control module com-
puted actuation forces for theVSR; the perceptionmod-
ule monitored PBR states and ground motion. Using
Gazebo, we designed the mechanical structure of the
VSR and defined the general physics properties, includ-
ing gravity and lighting. Gazebo simulation toolbox sup-
ports four physics engine options tomanage the dynam-
ics of the virtual world. We selected the Bullet physics
engine for its reliable performance in many previous
scientific studies (see Section 2.3; Zhu and Zhao, 2019;
Ma et al., 2018; Sun et al., 2019). Implementing such
a software architecture provides two main advantages.
First, rather than directly interacting with the details
in a physics engine, Gazebo only requires XML format
configuration files where the user can select the desired
physics engine and configure physics parameters. Once
the configuration files are properly set, Gazebo passes
the parameters to the physics engine, simplifying the
user’s experience andmaking it easy to switch between
physics engines if necessary. Second, as illustrated in
Fig. 3, leveraging ROS in the development of the robot
software allowed us to reuse the software for both vir-
tual and physical shake robots (Chen et al., 2022). The
same robot software ensures that groundmotion gener-
ation processes are consistent, which is critical to com-
pare simulation and physical experiments.
The VSR has a straightforward mechanical structure,

as illustrated in Fig. 4, composed of a base, linear rail,
and pedestal. All three components are rigidly fixed,
with the base anchored in the virtual world and the lin-
ear rail attached to the base. A prismatic joint, func-
tioning as a prismatic motor, links the linear rail and
pedestal and generates translational force to actuate the
pedestal. This translational force is calculated from the
controlmodule. TheVSRenables one-dimensional pris-
matic, horizontal ground motions under the constraint
of the prismatic joint (Fig. 4). The VSR supports various
pedestal models, including a flat terrain (Fig. 4a) and
realistic terrains that were mapped from UAS and SfM
(Fig. 4b, c). Switching a pedestal model is as simple as

configuring the model path in a Gazebo configuration
file.
We developed a hierarchical control module for the

VSR (Fig. 5a). The control module provides two ground
motion options. The first one is a single-pulse cosine
ground displacement,

d(t) = A − Acos(2πft), (7)

where d(t) is the ground displacement function,A is the
amplitude, f is the frequency, and t ∈ [0, 1/f ] is time. A
and f are derived from PGV/PGA and PGA,

f =
1

2πr
, (8)

A =
ag

4π2f2
. (9)

where r is PGV/PGA, a is PGA, and g is the gravitational
acceleration. As shown in Fig. 5a, the motion inter-
preter converts PGVand PGA to f andA using Eq. 8 and
Eq. 9. Based onA and f , the trajectory planner takes the
derivative of the cosine displacement function (Eq. 7) to
obtain ground velocity function,

v(t) = ḋ(t) = 2πAfsin(2πft), (10)

where v(t) is the ground velocity function, and t ∈
[0, 1/f ] is time. We uniformly discretized v(t) to sam-
ple a set of velocities, {v}, as the input of the velocity
controller. The sampling frequency is a user-definedpa-
rameter, usually between 100 and 200 Hz.
In addition to the cosine ground displacement func-

tion, the VSR supports ground motion simulation from
real seismometer records. As shown in Fig. 5a, a low-
pass filter first removes the high-frequency noise in the
raw acceleration data. The numerical integration pro-
duces velocities from the accelerations. Then a high-
pass filter removes the low-frequency noise in the ve-
locities, because the low-frequency velocity noise may
accumulate displacement errors. Note that the output
of the high-pass filter is a set of velocities {v}, which has
the same format as the output from the trajectory plan-
ner. We utilize a shared velocity controller to process
the desired velocity commands, simplifying the control
software.
We implemented a PID velocity controller to gener-

ate force commands for the prismatic joint. The veloc-
ity commands for the PID controller are derived from
either a cosine ground placement function or a seis-
mometer record. The output force from the PID veloc-
ity controller actuates the pedestal. At the same time,
Gazebomeasures the actual velocity of the pedestal and
feeds it back to the PID velocity controller. The actual
velocity (velocity measurements) of the pedestal may
be different from the desired velocity (velocity com-
mands), resulting in velocity error,

e = vd − vm, (11)

where vm is the actual velocity frommeasurement, and
vd is the desired velocity from the higher level of the
controlmodule. One reason for the velocity error is that
PBR overturning behaviors may produce collision im-
pacts that affect the pedestal dynamics. The objective
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Figure 3 Software architecture of the virtual shake robot (VSR), composed of Robot Operating System (ROS), Gazebo sim-
ulation toolbox, and Bullet physics engine. Developing robot software based on ROS allows the reuse of robot software for
both virtual and real shake robots, ensuring the ground motion generation processes remain consistent between the two
environments.

of the PID velocity controller is to generate force for the
prismatic joint to minimize the velocity error,

F (t) = Kpe(t) + Ki

∫ t

0

e(τ)dτ + Kd

de(t)

dt
, (12)

where F is the output force command, and Kp, Ki, Kd

are non-negative coefficients for the proportional, inte-
gral, and derivative terms, respectively. For example,
if the desired velocity is greater than the actual veloc-
ity, the velocity error becomes positive. Thereby, the
proportional component Kpe(t) increases to generate
larger force, which increases the actual velocity and re-
duces the velocity error. The integral and derivative
components make the response of the controller more
stable and responsive. To further reduce the effects of
the coupling dynamics between PBR and pedestal, we
set a largemass for the pedestal. A largermass pedestal
with a larger inertia can absorb more energy from the
collision, resulting in a smaller collision-caused veloc-
ity change.
We developed an automation program to repeat over-

turning experiments with different single-pulse cosine
ground motions. Fig. 5b illustrates the automation
workflow. The objective of the automation process is
to obtain PBR overturning responses (Eq. 1) to a lin-
ear mesh of PGV/PGA and PGA. From the set {(PGV,
PGA)}, the automation program popped every pair of
(PGV, PGA) and sent it to the controller to actuate a
single-pulse cosine ground displacement until the set
was empty. To ensure the consistent initial PBR po-
sition and orientation across all experiments, the au-
tomation program loaded and deleted the PBR model
before and after every experiment, respectively. The au-
tomation program recorded the PBR states during the

overturning experiment, which included thefinal status
of overturned or balanced after the single-pulse ground
motions. The automation program was at the highest
level in the hierarchical control module. The automa-
tion program passed high-level control signals {(PGV,
PGA)} to themiddle-level motion interpreter and trajec-
tory planner. Then the middle-level trajectory planner
passed control signals (velocity commands) to the low-
level PID velocity controller, which generated force for
the prismatic joint.

With the Bullet physics engine, the VSR supports
meshed models of terrains mapped in the real world.
For example, Fig. 6 shows the process of creating 3D
geometric models of terrain and PBR. The terrain and
PBR were mapped by UAS and SfM at a study site of
Double Rock, which is located close to both the popu-
lation center of San Luis Obispo and the critical infras-
tructure at Diablo Canyon in south-central coastal Cali-
fornia (The PBR is namedDRE2 in Rood et al., 2020). We
first separated the terrain and PBR in the mesh model
reconstructed by SfM. The separated terrain, however,
lacked supporting and lateral surfaces, which were not
reconstructed because of their invisibilitywithout phys-
ically removing the PBR. To address this, we completed
the missing surfaces by manually adding planes such
that the slopes of the added planes were close to the
slopes of the local jointing surfaces on the terrain. Sim-
ilarly, we added planes to the PBR geometric model and
built a closed-surfacemeshmodel using Poisson recon-
struction, as shown in Fig. 6. From a closed-surface
mesh model, we used CAD software (e.g., Autodesk Fu-
sion 360) to measure themass andmoment of inertia of
the PBR, which is made of chert with a density of 2,110
kg/m3. The height of the PBR is approximately 12 m
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Figure 4 VSR with (a) flat and (b, c) realistic terrains. Unpiloted Aircraft System (UAS) and Structure from Motion (SfM)
produced the full-scale realistic terrains in (b) Double Rock, California and (c) Granite Dells near Prescott, Arizona. Arrows
indicate groundmotion directions.

above the surrounding ground surface.

Geometric simplifications like this, particularly at the
base or interface, introduce potentially significant un-
certainties in overturning fragility. Complex basal con-
ditions, as is the case for many PBRs, effectively intro-
duce multiple points of rocking or potential uplift. The
resulting increase in fragility was evident in the shake
table tests of Purvance et al. (2008) and the analytical
model of Wittich and Hutchinson (2017). More recent
shake table testing by Saifullah andWittich (2021) quan-
tified that the overturning demand can vary up to ±50%
because of small modifications in the basal geometry
from surveying techniques. The basal contact can be
made arbitrarily complex if necessary in the VSR, but
that was not the goal of this paper. Although the geo-
metric modeling approach taken herein does not fully
capture the basal interface, this paper aims to provide a
demonstrationof afirst-generation technology formod-
eling the dynamics of PBRs.

4 Validation

4.1 Velocity Controller

We evaluated the performance of the PID velocity con-
troller in the VSR using a single-pulse cosine displace-
ment ground motion and realistic ground motion. The
objective of the PID velocity controller was to generate
the translation force to actuate the pedestal (flat surface
or realistic terrain), such that the actual velocity mea-
sured from the pedestal (groundmotion velocity) in the
simulation closely matched the desired velocity. Fig. 7a
presents an example where the desired velocity and ac-
tual velocity from a single-pulse cosine displacement
ground motion with PGA of 0.2 g and PGV/PGA of 0.8 s.
The overlap of the two velocities in Fig. 7a demonstrates
the good performance of the PID velocity controller. We
observed similar matches between the desired velocity
andactual velocity in other single-pulse cosinedisplace-
ment ground motions.
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Figure 5 (a) Control module and (b) automation workflow of the VSR.

To evaluate the realistic ground motion, we calcu-
lated thedesired velocity basedon rawaccelerationdata
collected in an accelerometer on a physical shake ta-
ble. Fig. 7b shows the desired and measured velocities
from the VSR. During the shake test, the pedestal ex-
perienced a rapid disturbance in the actual velocity, as
highlighted in the box in Fig. 7b, caused by the over-
turned PBR. The PID controller was able to quickly cor-
rect the velocity disturbance, demonstrating the robust-
ness of the controller. Additionally, we used this real-
istic ground motion to shake the Double Rock PBR on
a flat surface and on the realistic terrain (in the yaw
0° direction). This realistic ground motion overturned
the Double Rock PBR on the flat surface but did not
on the realistic terrain with the surrounding pedestals,
demonstrating the effects of surrounding pedestals on
PBR fragility.

4.2 Previous Overturning Experiments
We validated the overturning dynamics by comparing
the shake experiments from the VSR and Purvance
et al. (2008). Referencing the known height of a nearby
steel I-beam section, we estimated the dimension of a
wooden block (labeled W2) from Figure 4 in Purvance
et al. (2008) as 5.5 × 1.1 × 1.1 cm. We modeled a cuboid

with the same dimension and a density of 1,500 kg/m3

(wooden density) in Gazebo. The cuboid was placed on
flat terrainwith coefficients of Coulomb friction, rolling
friction, and restitution of 0.6, 0.6, and 0.2, respectively.
The two friction coefficients were selected based on dry
rock friction (Byerlee, 1978), and the restitution coeffi-
cient of awood blockwasmeasured fromanormal drop
test (Haron and Ismail, 2012). Using the automation
program (Fig. 5b), the VSR conducted 2,500 overturn-
ing experiments on a linear mesh space of single-pulse
cosine displacement groundmotions where PGV/PGA ∈
[0.05, 0.35] and PGA∈ [0.05, 0.5]. For each PGV/PGA, the
VSR increased the PGA from 0.05 g to search for the first
PGA that overturned the cuboid.

Fig. 8 shows the results from the VSR and Purvance
et al. (2008). The blue curve delineates the first over-
turning PGAs of the cuboid from the VSR experiments.
The squares represent the results of the wooden block
W2 from the physical overturning experiments by Pur-
vance et al. (2008). The gray-filled region, showing
prediction intervals about the fragility contours within
which 95% of the overturning responses occur, was cal-
culated from empirical equations based on the square
data (Purvance et al., 2008). The results from the
VSR were within the 95% prediction intervals when
PGV/PGA is greater than 0.08 s. When PGV/PGA is
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Figure 6 3D geometric modeling of terrain and PBR mapped by UAS and SfM. The site of Double Rock is located in south-
central coastal California.

smaller than 0.08 s, the 95% prediction intervals were
below the VSR curve (Fig. 8), indicating that the cuboid
in the VSR was less likely overturned by ground mo-
tions with small periods. Note that the VSR curve was
resulted from 2,500 overturning experiments with dif-
ferent parameters densely sampled from the ground
motion space. However, the 95% prediction intervals
were calculated based on a small number of data points
(the squares), and only one data point was collected for

PGV/PGA smaller than 0.08 s. Future work should col-
lect more data points to examine the 95% prediction in-
tervals, especially on the small PGV/PGA space.

4.3 Mini shake robot
We developed a physical, mini shake robot to validate
the simulation (Chen et al., 2022), as shown in Fig. 9 The
mechanical hardware design of the mini shake robot
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Figure 7 Velocity plots from (a) single-pulse cosine displacement ground motion and (b) realistic ground motion. The PID
velocity controller generates translational force to actuate the pedestal of the VSR based on the desired velocity from a tra-
jectory planner or a record of a real-world accelerometer. The actual velocity is measured from the pedestal of the VSR. The
desired velocity and actual velocity are overlain in panel (a). (b) A sudden disturbance in the actual velocity, as highlighted
in the box, was caused by the overturned PBR but quickly rectified by the PID controller.

adopts a closed-loop stepper motor for actuation and a
toothed belt for transmission. We developed the soft-
ware of the mini shake robot based on ROS, which
had a similar robotic software architecture as the VSR
(Fig. 3). The mini shake robot uses the same high-level
and middle-level control programs as the VSR. The pri-
mary difference is the low-level velocity controller: the
mini shake robot employs a closed-loop stepper motor

with toothed belt transmission, whereas the VSR uses a
prismaticmotor (prismatic joint). The closed-loop step-
per motor consists of a regular stepper motor (specifi-
cally, NEMA 34HS31) and an encoder that measures the
shaftorientation, forming the feedback loop for the low-
level PID controller. With a toothed pulley of 53.98 mm
outside diameter, the stepper motor enables the bed to
reach amaximumhorizontal acceleration of 1.2 g and a
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Figure 8 Overturning experiment results of a wooden
block (W2 fromPurvance et al., 2008). Squares and curve in-
dicate the experimentally observed PGA at which the block
overturns for the first time, as PGA is gradually increased
from a small value for each PGV/PGA. Gray-filled region
delineates prediction intervals about the fragility contours
within which 95% of the overturning responses occur.

maximum velocity of 0.5 m/s with up to 2 kg PBR pay-
load. Overall, the mini shake robot provides a low-cost,
open-hardware, and open-software platform for earth-
quake research and education.

Figure 9 Mini shake robot from (a) side view and (b)
top-down view. (b) 3D-printed PLA PBR is placed on the
pedestal. Reprinted from Chen (2022) with permission.

The mini shake robot provides a reverse method for
simulation validation. Using the mini shake robot, we
conducted experiments with small-scale, free-standing
blocks such as 3D-printed PBRs. We then repeated these
experiments in simulationusing theVSR to compare the

physical and simulation results. Specifically, we down-
scaled the Double Rock PBR from the height of 151.0
cm to 12.8 cm and used polyethylene terephthalate gly-
col (PETG) material with a density of 1,240 kg/m3 to 3D
print the PBR. The PETG PBR weighted 403.5 g. Fol-
lowing the instructions in Anooshehpoor et al. (2004),
we applied grip tapes on the bed to increase friction
(no sliding friction during the experiments). Previous
studies used a crane machine to lift and rest a heavy
PBR after each overturning experiment (e.g., Saifullah
and Wittich, 2021). Because of the small size and light
weight of the PETG PBR, we were able to reset its pose
precisely without the use of a crane. Based on the ge-
ometry and physical properties of the PETG PBR, we
created a free-standing block with the same dimension
in simulation and validated its overturning dynamics
using the VSR. Fig. 10 presents the overturning valida-
tion results. We used the logistic regressionmodel (Pur-
vance, 2005) to approximate the boundary curves be-
tween the overturned and balanced responses. Despite
the observation that the real PETG PBR was more frag-
ile, the boundary curves from the simulation and phys-
ical experiments were close.

Figure 10 Overturning response diagram of 3D-printed
Double Rock PBR. Blue curve represents logistic regression
results from the mini shake robot. Red curve represents lo-
gistic regression results from the VSR. Reprinted from Chen
(2022) with permission.

In the second experiment, we downscaled the Dou-
ble Rock PBR to a height of 12.0 cm and 3D-printed it
with polylactic acid (PLA) material, which has a density
of 1,250 kg/m3, resulting of a weight of 105 g. To val-
idate fragility anisotropy, we placed the PLA PBR with
two initial orientations (yaw angles of 0° and 270°) on
the bed. Using the mini shake robot, we obtained the
response diagrams from a set of ground motions, as
shown in Fig. 11. The response diagrams show that PLA
PBR oriented at a yaw angle of 0° is more fragile than at
yaw angle of 270°. This result is consistent with anal-
ysis from the previous studies, which found PBRs with
smaller minimal contact angle along the motion direc-
tion ismore fragile (Purvance et al., 2008; Haddad et al.,
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2012). The resulting boundary curves have a similar pat-
tern to the simulation results of the Double Rock PBR
with original dimensions and chert density (see Sec-
tion 5.2).

5 Experiments
We conducted a set of experiments to demonstrate the
applications of the VSR, test the limitations of certain
PBR assumptions, and investigate the PBR overturning
and large-displacement processes.

5.1 Cuboids Overturning on Flat Terrain
Because rectangles were typically studied in the previ-
ous overturning studies (Milne and Omori, 1893; Kirk-
patrick, 1927; Housner, 1963; Yim et al., 1980; Purvance
et al., 2008), we examined the overturning dynamics of
cuboids on a flat pedestal using the VSR. Specifically,
we created four cuboids with dimensions of 1×1×2 m,
0.5×0.5×1 m, 1×1×3 m, and 1×2×3 m (Fig. 12a). These
four cuboids had the same densities of 2,110 kg/m3

(chert density), 0.6 coefficient of Coulomb friction (dry
rock friction), 0.6 coefficient of rolling friction (dry rock
friction), and 0.38 coefficient of restitution (based on
rockfall energy loss reported in Dorren, 2003).
Fig. 12b-e shows the overturning response to single-

pulse cosine ground motions. In the cuboid’s coordi-
nates, the horizontal ground motions were along the x
axis (as the red arrow indicated in Fig. 12a). By com-
paring Fig. 12b and c, the cuboid with a larger height-
width ratio was more fragile. With the same height-
width ratio, the smaller cuboid was more fragile by
comparing Fig. 12b and d. These findings are consis-
tent with the previous reports on rectangle experiments
on a 2D plane (Purvance et al., 2008; Anderson et al.,
2014; Yim et al., 1980). The cuboids with 1×1×3 meters
and 1×2×3meters had similar overturning response di-
agrams except for a small number of noises (Fig. 12c,
e), which suggested the overturning was not affected by
the cuboid materials on the y axis (as the green arrow
indicated in Fig. 12a). For an object with more complex
geometry, however, extendingmaterials on the y-axis is
anticipated to lead to a more intricate overturning re-
sponse, such as twisting behaviors, which would need
further investigation to be confirmed.

5.2 PBR Fragility Anisotropy on Flat Terrain
Because geometries of natural PBRs are often asym-
metrical, the overturning responses should vary from
different groundmotion directions–fragility anisotropy.
However, most previous studies simplified PBR geome-
tries and only considered the minimal contact angle
with the pedestal (e.g., Purvance et al., 2008; Haddad
et al., 2012). Veeraraghavan et al. (2016) studied fragility
anisotropy based on a rigid-body dynamics algorithm
(Chapter 2 in Veeraraghavan, 2015). Using the VSR, we
examined the fragility anisotropy of the Double Rock
PBR (Fig. 6) simply by placing the PBR on a flat pedestal
in 12 different initial orientations (spaced every 30° on
yaw). The orientation of PBR was defined in Fig. 13a.

By placing the PBR with different orientations, we sim-
ulated the varying groundmotion directions. We set the
Double Rock PBR with the same physical properties as
the cuboids described above and applied the automa-
tion program (Fig. 5b).
Fig. 13b-f depict the overturning response diagrams

for the fragility anisotropy study on a flat pedestal.
From the opposite directions such as Fig. 13b, d or
Fig. 13c, e, the same single-pulse cosine ground dis-
placements produced different overturning responses.
By comparing Fig. 13b-d, the PBR was less fragile to the
90° ground motions than 0° or 180° ground motions. In
Fig. 13f, some balanced responses separate a small clus-
ter of toppled responses on the left (green polygon) and
the major boundary curve. For this ground motion di-
rection (yaw 300°), the logistic regression method pro-
posed by Purvance (2005) would not be the ideal model
to compute the overturning probability, because the lo-
gistic regression model, calculated based on the data
near the first PGA for a PGV/PGA, would fail to take into
account the balanced responses between the two clus-
ters of toppled responses.

5.3 PBR Fragility Anisotropy on Realistic Ter-
rain

Using the VSR, we investigated the effects of surround-
ing pedestals on the overturning responses of the Dou-
ble Rock PBR. Most previous studies on the dynamics
of free-standing blocks assumed that the blocks had no
interaction with adjacent objects. Konstantinidis (2008)
explored the overturning dynamics of a free-standing
block anchored to a wall via chains. Bao and Konstan-
tinidis (2020) investigated 2D analytical models to study
the dynamics of a free-standing block considering im-
pact with an adjacent wall. However, no previous PBR
studies have directly accounted for lateral supports in
3D. In this experiment, we set up the terrain model in
different orientations to study fragility anisotropy with
surrounding pedestals (Fig. 14a, c). The Double Rock
PBR had the same physical properties as described ear-
lier. We set the same contact parameters (friction and
restitution) for the terrain model.
Fig. 14b and d show the overturning response dia-

grams of the Double Rock PBR on the realistic terrain
model. Note that the ground motion ranges in Fig. 14
are larger than those in Fig. 13. By comparing Fig. 13b
and Fig. 14b, the surrounding pedestals significantly re-
duced the PBR fragility, when the ground motion was
along the yaw 0° direction. From Fig. 13c and Fig. 14d,
the surrounding pedestals only slightly reduced the PBR
fragility, when the ground motion was along the 90° di-
rection. The effects of the surrounding pedestals varied
for different ground motion directions.

5.4 PBR Large Displacement on Realistic Ter-
rain

In this experiment, we investigated the large-
displacement dynamics induced by ground motions.
Using the VSR, we recorded the PBR states during the
experiments of PBR fragility anisotropy on the Double
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Figure 11 Overturning response diagrams of 3D printed Double Rock PBR from initial orientations of yaw 0° and 270°. The
red and blue dots represent overturning responses of being toppled and balanced after single-pulse cosine groundmotions,
respectively. The curves indicate the boundaries of the overturning responses. Reprinted from Chen (2022) with permission.

Rock terrain (Section 5.2). Fig. 15 presents the results
of the PBR large-displacement experiments for the
ground motion in the yaw 0° direction. Fig. 15a shows
a time-lapse snapshot of a PBR trajectory. Fig. 15b
illustrates all 692 trajectories of the PBR after toppled,
compared with Fig. 14b that includes the overturned
or balanced responses to ground motions. Fig. 15c-f
depict the trajectories of the PBR in different PGA
ranges.

Using the recorded trajectories, we analyzed the re-
lationship between ground motions and large displace-
ments. As shown in Fig. 15c-f, the number of trajecto-
ries increases with PGA (increase in overturned PBRs).
Comparing the trajectory plots (Fig. 15c-f) reveals how
trajectory and velocity change with PGAs. Fig. 16 high-
lights the relationship between trajectory lengths with
ground motions. Concurrently large PGA and PGV/PGA
result in a long trajectory. Only one large value in ei-
ther PGA or PGV/PGA is insufficient to produce a long
trajectory. Fig. 16b, c show an increasing trend of tra-
jectory length as PGA or PGV/PGA increases. The trajec-
tory data points around 6 m (Fig. 16b, c) correspond to
situations where the overturned PBR lands on the niche
position shown as the white box in Fig. 15a.

We conducted a correlation analysis to quantify the
relationship between ground motions and large dis-
placements. The correlation analysis used the 692 tra-
jectories resulting from the overturned states (red data
points in Fig. 14b). Each trajectory is characterized
by its trajectory length, largest velocity, and terminal
distance. The terminal distance is the Euclidean dis-
tance between the start and terminal positions. For
each PGA, we ensembled the trajectories from all cor-
responding PGV/PGAs (all red data points on a PGA col-
umn in Fig. 14b). Similarly, for each PGV/PGA, we en-
sembled the trajectories from all corresponding PGAs.
In each ensemble, we calculated the trajectory statistics
such as mean trajectory length, mean largest velocity,

andmean terminal distance. Fig. 17 plots the trajectory
statistics and ground motions. The PGA and PGV/PGV
positively correlates with mean trajectory length, mean
largest velocity, and mean terminal distance, as the R2

and p value summarized in Table 1. The correlation
analysis results reject a null hypothesis that the trajec-
tory statistics and ground motions are uncorrelated.

6 Discussion
6.1 Validation
The validation experiments examined the performance
of the VSR in terms of the velocity controller and over-
turning dynamics. The disturbance in the actual ve-
locity in Fig. 7b shows the coupling dynamics between
the PBR and pedestal. However, the effects of such
coupling dynamics have often been neglected in previ-
ous studies. The quick correction in the actual veloc-
ity (Fig. 7b) indicates that the PID controller was robust
to such disturbance. The overlay between the desired
velocity and actual velocity in Fig. 7 shows the good
performance of the PID velocity controller. Addition-
ally, the realistic ground motion (0.4 g PGA and 1.2 s
PGV/PGA) overturned the Double Rock PBR on the flat
surface but did not on the realistic terrain with the sur-
rounding pedestals, which agrees with the overturning
response diagrams in Fig. 13b and Fig. 14b.
We compared the overturning results from the VSR

and Purvance et al. (2008). When PGV/PGA was greater
than 0.08 s, the overturning results from the VSR were
consistent with Purvance et al. (2008). The reasons for
the difference from the low PGV/PGAs remain to be ex-
plored. However, we observed that the first overturning
PGAs in the VSR were less scattered from the median
fragility contour than Purvance et al. (2008). More phys-
ical experiment data points in the low PGV/PGA region
are needed to refine the 95% bounds. Additionally, low
PGV/PGA motions typically exhibit higher-frequency
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Figure 12 Overturning response diagrams from cuboids with different dimensions on a flat pedestal. Ground motions are
along x direction in the x×y×z dimension. Red and blue dots represent overturned response and balanced response, respec-
tively. Horizontal axis represents the peak ground acceleration (PGA) in gravity constant. Vertical axis represents the ratio of
peak ground velocity to peak ground acceleration (PGV/PGA). Unit of PGV/PGA is second. The blue dots within the toppled
zones represent the PBRs being pulled back to balanced states by the returning groundmotions.
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Figure 13 Overturning response diagrams from Double Rock PBR on a flat pedestal. (a) Arrows indicate the equivalent
groundmotion directions of the different initial PBR orientations.

movements. Onphysical free-standing structures, high-
frequency movements may trigger a slight rocking or
wobbling because of imperfections in the basal contact.
Because rocking behavior is nonlinear to orientation,
even such a slight rocking fromhigher-frequencymove-

ments can increase susceptibility to overturning, espe-
cially when compared to VSR predictions that do not
account for physical imperfections at the base. Thus,
validating the rocking behaviors resulting from high-
frequency movements would require more physical ex-
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Figure 14 Overturning response diagrams fromDouble Rock PBR on the realistic pedestalmapped fromUAS and SfM. (a, c)
Arrows indicate directions of the single-pulse cosine ground displacement motions. Inset at (a) shows a zoom-in of the PBR
on the realistic terrain.

periments.

We built the mini shake robot to examine the per-
formance of the VSR on PBR overturning dynamics.
Because of using ROS, the mini shake robot reused
the control software from the VSR, ensuring consistent
ground motion generation processes in the simulation
and physical experiments. In the first validation exper-
iment, the boundary curves from the simulation and
physical experiments were close. We noticed that the
real PETGPBRwasmore fragile andareworking to iden-
tify the causes of the difference. During the experi-
ment, we observed high-frequency mechanical vibra-
tions along the vertical direction (perpendicular to the
ground motion direction) on the mini shake robot. Ad-
ditionally, because the PETG PBR was downscaled and
we know that smaller PBRs are more fragile (see Sec-
tion 5.1), the fragility of the downscaled PBR may be
more easily affected by ground motion noise. There-
fore, this scale concern warrants further experimen-
tation to validate the VSR using full-scale testing and

rock material. To verify the consistency of the over-
turning results regardless of the PBR scale, future work
should repeat the same experiment with 3D printed
models at various scales. Because iterative algorithms
for solving MLCP may not always guarantee conver-
gence or unique solutions, resulting in variations in
rock responses (Veeraraghavan et al., 2020), futurework
should investigate solutions to mitigate such uncertain-
ties. For example, following Purvance et al. (2008), we
can use the Monte Carlo method to construct a proba-
bilistic model and to quantify the uncertainties.

In the second mini shake robot experiment, the
fragility anisotropy results from the mini shake ta-
ble were consistent with the results from the VSR,
providing strong evidence of qualitative consistency
in fragility analysis. The same pattern of boundary
curves was observed in both simulation and physical
experiments—the initial PBR orientation of 0° wasmore
fragile than 270°. Given that the edge of theDoubleRock
PBR appeared well-defined and perpendicular to the
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Figure 15 Large-displacement experiment on the Double Rock site from ground motions in the yaw 0° direction. Arrow in
panel (a) shows the direction of the single-pulse cosine ground displacement motions. The PBR trajectories in panel (b) are
relative positions to the terrain. Colors indicate absolute velocity of the PBR. (c-f) PBR trajectories from different PGA ranges,
where N represents the number of trajectories.

ground motion direction (yaw 270°), one might expect
only rocking behaviors. However, we observed com-
plex motions such as twisting, point uplift (rocking on
a corner), planar uplift (rocking on an edge), and rock-

twisting (twisting while in an uplifted state), in both
the simulation and experimentation. This complexity
arises because rock behaviors are affected not only by
the contact conditions but also by factors such as the
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Figure 16 PBR trajectory lengths and groundmotions. Data points represent 692 trajectory lengths of theDouble Rock PBR
after being toppled from ground motions. (a) Trajectory lengths for PGA and PGV/PGA are represented by color-coded dots.
(b) Color dots indicate PGV/PGA for PGA and trajectory length. (c) PGA for PGV/PGA and trajectory are displayed by color dots.

R2 PGA PGV/PGA
mean trajectory 0.90 0.92
mean largest velocity 0.82 0.78
mean terminal distance 0.73 0.87

p-value PGA PGV/PGA
mean trajectory 2.3 × 10−11 3.2 × 10−22

mean largest velocity 5.5 × 10−9 1.0 × 10−13

mean terminal distance 3.5 × 10−7 3.9 × 10−18

Table 1 Large displacement statistics and groundmotion correlation analysis

mass center, inertia matrix, and geometry. In our ex-
periments, it took only a few seconds up to a minute
to finish one overturning experiment in the VSR. In
DEM, the computational time increases with the com-
plexity of geometry, discretization, and contact stiff-
ness. Finishing one overturning experiment in DEM
usually takes a fewminutes to hours. The rapid deploy-
ment of the VSR facilitates qualitative analysis of PBR
fragility, which aids in field data collection and assess-
ment such as searching for the most fragile PBRs in the
field.

6.2 Overturning and Large Displacement
Studies

The VSR offers an integrated solution for studying the
dynamics of both overturning and large-displacement
processes. From the overturning experiments of
cuboids, the relationships between the dimension pa-
rameters and fragility were consistent with the previ-
ous analytical solutions (Purvance et al., 2008; Ander-
son et al., 2014). The VSR advances the study of PBR

overturning dynamics in many aspects. For example,
the overturning experiments indicated that the PBR
overturning dynamics were more complex than previ-
ously understood. Specifically, the PBR overturning re-
sponses were found to vary from ground motion direc-
tions and the presence of surrounding pedestals.

Most of our experiments employed single-pulse co-
sine displacement ground motions. First, such ground
motions were easy to synthesize, enabling us to com-
prehensively cover the configuration spaces of PGA and
PGV/PGA. Second, while PGA and PGV/PGA are com-
monly used as representative ground motion descrip-
tors in PBR studies, recent concerns have emerged re-
garding their use in PBR studies. When two seismome-
ter data records share the same PGA and PGV/PGA val-
ues but differ in other properties, theymay produce dif-
ferent PBRoverturning responses. Tomitigate such am-
biguity, we adopted single-pulse cosine displacement
ground motions.

The VSR’s ability to support realistic terrain models
allowed for the seamless study of large-displacement
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Figure17 Correlationanalysis between largedisplacement statistics andgroundmotions. (a, c, e) CorrelationbetweenPGA
and mean trajectory length, mean largest velocity, and mean terminal distance. (b, d, f) Correlation between PGV/PGA and
mean trajectory length, mean largest velocity, and mean terminal distance. Red dash-dotted lines result from least-square
linear regression.

dynamics. This functionality of large-displacement
analysis enabled the trajectory prediction of overturned
PBRs, with potential applications in rockfall hazard zon-
ing and the study of rocky slope development. Addi-
tionally, the large-displacement analysis revealed the

relationship between large displacement statistics and
ground motions for PBRs. The PGA and PGV/PGV pos-
itively correlated with mean trajectory length, mean
largest velocity, and mean terminal distance. When
the overturning dynamics provide upper-bound ground
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motion constraints by studying fragile PBRs, the large
displacement dynamics provide lower-bound ground
motion constraints by studying overturned PBRs. For
example, given a known trajectory of an overturned
PBR, lower bounds of PGA and PGV/PGVcan be inferred
from Fig. 17b, c. Together, the overturning and large
displacement dynamics form complementary methods
to refine ground motion estimation.

6.3 Limitations and Future Work
In future research, wewill investigate several critical as-
pects to enhance both the VSR functionality and scien-
tific insights. First, the previous study by Veeraragha-
van (2015) demonstrated that 3D PBR fragility results
are more sensitive, indicating higher fragility, com-
pared to their 2D counterparts. Looking ahead, the de-
velopment of the VSR that incorporates 3D ground mo-
tions will be a significant advancement beyond the ex-
isting 1D ground motion assessment methods. Second,
our future work should align with the workflow delin-
eated by Rood et al. (2020), focusing on the exploration
of additional PBRswithin theDouble Rock site. Expand-
ing our scope to encompass a broader array of PBRs has
the potential to enhance the accuracy of groundmotion
estimation. Because of the significant role of contact
geometry in rock response, future work should thor-
oughly investigate the VSR’s ability to model dynamic
processes involving complex contact surfaces. Such
modeling would include complex interface geometry,
variable properties and rheology, and evolution of ge-
ometry and properties with continued loading. Fourth,
the validation of the large displacement process is not
addressed in this study. Future research should focus
on exploring this aspect.
Additionally, the values of physics parameters, such

as friction and restitution coefficients, play apivotal role
in dynamics simulations within physics engines. Our
experiments observed that these parameters produce
nonlinearity in the PBR responses to ground motions.
For example, we found several thresholds for friction
coefficients. Within these thresholds, the friction co-
efficient displays various nonlinear properties. Gener-
ally, a significantly high friction coefficient made PBRs
more fragile compared to a very low coefficient. How-
ever, within certain threshold ranges, the influence of
varying friction is less pronounced. To quantitatively
measure this nonlinearity, we recognize the necessity
for additional experiments in our future research en-
deavors.
Future work could bypass Gazebo and directly build a

VSR in the Bullet physics engine. Gazebo simplified the
simulation configuration and provided perception and
control packages compatible with ROS. However, when
passing configuration parameters to the Bullet physics
engine, Gazebo reduced the number precision of some
parameters, such as the bits for floating point numbers.
This reduction in the number precision presents chal-
lenges in calibrating contact properties. Building a VSR
directly in Bullet allows complete control of the con-
figuration parameters and aids in contact physics cali-
bration. Additionally, as a previous study has used Bul-

let to simulate the crushing process of granular materi-
als (Zhu and Zhao, 2019), modeling PBR simulations in
Bullet allows for the study of how overturned rocks are
crushed along a trajectory, providing insights intomore
complex modeling of rocky slope development. Simu-
lating the crushing process also enables the examina-
tion of the impact of PBR deformation on fragility (Sai-
fullah and Wittich, 2021). Generally, physics engines
hold promise in various physics-based scenario simula-
tions, including testing of dynamic rupture model out-
puts (e.g., Lozos et al., 2015).
Future work should use the VSR to build ground mo-

tion models for PSHA. For the Double Rock site, for
example, we can examine the effects of the surround-
ing pedestals and ground motion directions on hazard
curves. This studyhas demonstrated a forwardmodel of
large displacement dynamics, which are useful for rock-
fall prediction and ground motion study. At the same
time, we are conceptualizing the idea of using the tool
to trace the origin of overturned rocks. For example, we
can simulate a large number of trajectories from vari-
ous initial conditions to build a probability heatmap of
the origin of the overturned rock denoted in the blue
box in Fig. 15a. Using the VSR, we can also simulate a
large number of PBRs with various shapes and dimen-
sions to study the effects of groundmotions on PBR dis-
tributions.
Combined with our research of using robots and ma-

chine learning for rock detection and mapping, the
VSR presents a paradigm of rock detection-mapping-
analysis for automated geoscience. In the future, the
VSR could be installed on a companion computer of a
UAV that is also developed using ROS. Once the UAV de-
tects and maps a PBR, the VSR can rapidly analyze the
PBR fragility, facilitating field data collection.

7 Conclusion
The development of the VSR has demonstrated the po-
tential of using robotics and physics engines for study-
ing PBR dynamics. The advances in simulating PBR
overturning and large-displacement processes by the
VSR provide valuable information for seismic hazard
analysis, PBR fate study, rocky slope development, and
rockfall prediction. Validation experiments confirmed
the good performance of the velocity controller in the
VSR. To validate the overturning dynamics, we com-
pared the overturning results from the VSR with those
from previous experiments and the mini shake robot.
The VSR produced consistent results with previous 2D
studies in the cuboid overturning experiments. The
overturning response diagrams suggested that ground
motion directions had complex effects on PBR fragility.
We investigated the effects of surrounding pedestals on
overturning responses, which had beenunder-explored
in previous studies. The effects of the surrounding
pedestals generally reduced the PBR fragility compared
with flat terrains and varied with ground motion direc-
tions. For the study of the large-displacement process,
we conducted 2500 experiments with different ground
motions and plotted 692 trajectories where the PBR was
toppled. Correlation analysis showed that the ground
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motions positively correlated with large displacement
statistics such as mean trajectory length, mean largest
velocity, and mean largest terminal distance. The rapid
deployment of the VSR facilitates qualitative analysis of
PBR fragility, aiding in field data collection and assess-
ment. As a result, the VSR provides a screeningmethod
to identify themost fragile PBRs in the field formore de-
tailed dynamics analysis. Overall, the VSR represents a
significant step forward in studying PBR dynamics, pro-
viding valuable insights for researchers and practition-
ers.
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Abstract Seismic waves are used to interpret geologic structure, composition, and environmental con-
ditions in the Earth. However, rocks are not perfectly elastic and their viscoelasticity dissipates energy during
wavepropagation. In saturated rocks,wave-induced fluid flowmechanismscancauseviscoelasticity resulting
in frequency-dependent attenuation, velocities, and elastic moduli (dispersion). In subduction zones, some
regions exhibit evidence of overpressurized fluids where dispersion and attenuation are hypothesized to be
important in interpreting fault slipbehavior fromseismicwaves. However, their importancehasnotbeenwell-
characterized because of a lack of measurements on relevant lithologies and under saturated conditions. We
measured the Young’s and shearmoduli and the attenuation of a greenschist faciesmetapelitewith the forced
oscillation technique at frequencies between 2 × 10

−5 and 30Hz. Themoduli and attenuation are frequency-
dependent under saturated conditions and depend on effective pressure. At relatively low effective pressure,
theYoung’sandshearmoduli increasebyover50%between2 × 10

−5 and30Hz. WeuseStandardLinearSolid
viscoelastic models to investigate the relationship between the attenuation and dispersion in the Orocopia
schist. The models agree with the experimental data and demonstrate that viscoelasticity causes significant
dispersion and attenuation in subduction zones, affecting our interpretation of earthquakes.

Non-technical summary Seismicwaves fromearthquakesareused to imageand interpret thecom-
position, structure, and environmental conditions of the Earth. Since rocks are not perfectly elastic, waves
slow down and lose energy during propagation. The decrease in wave energy (i.e., attenuation) manifests as
an amplitude reduction and velocity changes reflect changes in elasticmoduli. Pore fluids cause both attenu-
ation and changes in elastic moduli. To interpret fault slip with seismic waves, wemust understand how they
evolve as they reach the surface. Measurements of attenuation and elasticity relevant to fluid-rich areas in
active subduction zones are limited but crucial. We conducted laboratory experiments on schist, common in
subduction zones, to measure its attenuation and elasticity using the ‘forced oscillation’ method. Hence, we
apply a cyclical force at a specific frequency, mimicking wave frequencies of earthquakes, and measure the
induced deformation. We analyzed the amplitude and time difference between the force and the deformation
to determine the rock properties. The properties vary with frequency and increase by over 50% when fluid
content is high. Using physics models, we conclude that rock properties change because of fluid movement
in the pores. Consequently, fluids significantly affect howwe interpret rock properties in subduction zones.

1 Introduction
Elasticwaves are one of themost powerful tools for con-
straining processes in Earth’s interior. They are used to
image Earth’s structure, interpret its composition and
environmental conditions such as temperature and flu-
ids, andconstrain thephysics of processes like fault slip.
The amplitudes of elastic waves decay as they propagate
away from their source (Anderson and Archambeau,
1964; Karato, 1993). This energy dissipation is called at-
tenuation which results from viscoelastic deformation
of the rock and is quantified using the quality factor Q
(Anderson andArchambeau, 1964; Brennan and Stacey,
1977). In Earth’s upper crust, attenuation (1/Q), occurs
primarily due to fluid flow between pores and microc-

∗Corresponding author: celine.fliedner@rice.edu

racks, which dissipates energy (O’Connell and Budian-
sky, 1974, 1977;Winkler andNur, 1979; Bernabé andRe-
vil, 1995; Borgomano et al., 2019). As a result of this en-
ergy dissipation, saturated rocks attenuate elasticwaves
and the elastic moduli and wave velocities depend on
frequency, which is called dispersion (O’Connell and
Budiansky, 1977;Winkler andNur, 1979; Spencer, 1981).
Tomake geologic interpretations on the basis of seismic
velocities andattenuation, it is crucial to determinehow
they depend onwave frequency and to extrapolate them
across geologic conditions requires determining the un-
derlying processes that control attenuation and disper-
sion.

Because of the effects of water on wave propagation,
attenuation and dispersion of elasticmodulimay be sig-
nificant in regions of subduction zones with high pore
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pressure, although the rocks and conditions are not as
well studied as those of the upper crust. Regions of
anomalously low P-wave (VP ) and S-wave (VS) veloci-
ties and high VP /VS are sometimes observed below the
seismogenic zone of megathrusts where diverse modes
of fault slip, including tremors, low-frequency earth-
quakes (LFEs), and very low-frequency earthquakes
(VLFEs) are also observed (Audet et al., 2009; Shelly
et al., 2006; Bostock et al., 2012; Delph et al., 2018;
Calvert et al., 2020). Field observations reveal the pres-
ence of low-porosity metapelite rocks rich in phyllosil-
icates, as well as extensive veining which supports the
geophysical evidence of high pore pressure (Philippot
and Selverstone, 1991; Angiboust et al., 2015; Muñoz-
Montecinos et al., 2021; Condit and French, 2022).
High pore pressure at these depths is thought to be
caused by the release of water during dehydration reac-
tions during greenschist to blueschist facies metamor-
phism (Peacock, 1987; Muñoz-Montecinos et al., 2021;
Tewksbury-Christle et al., 2021; Condit et al., 2022). The
dehydration of metabasalt andmetapelite in particular,
may release enough fluid to create high pore pressure
at depths of slow slip and low-frequency events (Condit
et al., 2020). However, although seismic imaging pro-
vides information that we use to infer fluid conditions
at depth, we know little about how seismic waves are al-
tered as they propagate through the rocks at these con-
ditions.
Correlations between diverse modes of fault slip

and evidence for high fluid pressure have resulted in
the prominent hypothesis that fluid pressure somehow
causes tremors, LFEs, and/or VLFEs. An alternative
hypothesis is that attenuation and dispersion caused
by high pore fluid pressure alter the seismic waves of
small typical earthquakes such that they appear as LFEs
and/or VLFEs by the time the waves are recorded at the
surface (Gomberg et al., 2012; Bostock et al., 2017; Lit-
tel et al., 2018; Nakai et al., 2021). Specifically, the fre-
quency range of typical earthquakes ranges from 1 to
30 Hz, but LFEs and VLFEs are depleted in high fre-
quencies and primarily exhibit wave frequencies be-
tween 0.1 and 8 Hz (Farge et al., 2020; Supino et al.,
2020; Ide et al., 2007; Obara, 2002; Obara and Kato, 2016;
Shelly et al., 2007; Thomas et al., 2016; Bostock et al.,
2015). It is unclear if the low frequencies of these events
are caused by attenuation of the waves or a slower
rupture and slip mechanism at the source (Ito et al.,
2007; Gomberg et al., 2016; Shapiro et al., 2018; Sam-
mis and Bostock, 2021; Wei et al., 2021). We previously
showed that overpressurized fluids can cause attenua-
tion in the laboratory that is sufficient to deplete high
frequencies during seismic wave propagation (Fliedner
and French, 2023j). Here we use additional experimen-
tal data and rock physicsmodels to quantitatively evalu-
ate the mechanisms of attenuation and the magnitudes
of velocity dispersion, and then extrapolate the results
to in-situ conditions where LFEs and VLFEs occur be-
neath the seismogenic zone.
Previous studies demonstrate that the elastic mod-

uli of porous sedimentary rocks are dispersive at seis-
mic frequencies (0.1 - 30 Hz) because of wave-induced
fluid flow occurring in the pore space (Farge et al.,

2020; Ide et al., 2007; Obara, 2002; Obara and Kato, 2016;
Thomas et al., 2016; Shelly et al., 2007; Supino et al.,
2020). However, measurements of dispersion and at-
tenuation on the lithologies present near the base of
the subduction seismogenic zone are scarce (Fliedner
and French, 2023j). The thin elongate pores charac-
teristic of schists are particularly compressible under
load (Walsh, 1965; Mavko and Nur, 1978; Kranz, 1983)
and the small stress perturbations caused by propagat-
ing waves can close the pores and cause wave-induced
fluid flow (White, 1975; Mavko and Nur, 1975; Pride
et al., 2004), resulting in considerable attenuation (Tok-
söz et al., 1979; Gomberg et al., 2012; Fliedner and
French, 2021, 2023j). Wave-induced fluid flow is often
observed at seismic frequencies (Mavko and Nur, 1975;
Dvorkin et al., 1994; Batzle et al., 2006), because fluid
has time to flow between pores. In contrast, when
the wave frequency is high (ultrasonic), fluid does not
have enough time to flow and the rock properties are
predicted to be independent of frequency (Biot, 1956;
Toksöz et al., 1979). This is one reason elastic moduli
measured in the laboratory tend to differ between ul-
trasonic and seismic frequencies (O’Connell and Budi-
ansky, 1977; Adelinet et al., 2010; Dvorkin et al., 1994;
Spencer, 1981; Pimienta et al., 2015; Borgomano et al.,
2019). The fluid flow mechanisms that cause attenu-
ation and dispersion at seismic frequencies and their
relationship to the rock microstructure remain diffi-
cult to constrain from laboratory data and are rarely
reported (Fliedner and French, 2023j). Fluid substitu-
tion models can predict elastic moduli at seismic fre-
quencies, but they have yet to be confirmed by labo-
ratory experiments for a number of lithologies, includ-
ing metapelites (Gassmann, 1951; Brown and Korringa,
1975).
We present laboratory measurements of the

frequency-dependent elastic moduli of a greenschist
facies metapelite, the Orocopia schist, at frequencies
between 2 × 10−5 and 30 Hz under dry and satu-
rated conditions. This study is the first to report the
elastic moduli and attenuation of phyllosilicate-rich
metapelite under saturated conditions and at seismic
frequencies. We combine thesemeasurements with the
attenuation measurements (1/Q) reported in (Fliedner
and French, 2023j) to demonstrate that dispersion
occurs concurrently with frequency-dependent atten-
uation. Together, these data allow us to apply rock
physics models of wave-induced fluid flow and evaluate
the mechanisms responsible. Using the Standard
Linear Solid viscoelastic model, we show that the mea-
sured attenuation and dispersion in elastic moduli can
be explained by the occurrence of two wave-induced
flow mechanisms, squirt flow and patchy saturation.
With this information and an understanding of the
rock microstructure, it is then possible to make predic-
tions about attenuation at geologic conditions under
different fluid conditions.

2 Orocopia Schist
We collected a sample of the Orocopia schist from the
Orocopia Mountains of Southern California (Figure 1a)
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Figure 1 (a) A photomicrograph of a thin section of the
Orocopia schist. Foliation is defined by aligned phyllosili-
cates and the orientation of individual minerals is indicated
in pink. (b) Backscattered electron (BSE) images of the Oro-
copia schist. Foliation orientation is indicated with a red ar-
row. Pores are dominantly low aspect ratio (crack shaped)
with the long axes parallel to the phyllosilicates and folia-
tion plane. Figure from (Fliedner and French, 2021)

.

and the same block was used in the experiments of
Fliedner and French (2021) and Fliedner and French
(2023j). The Orocopia schist is a metapelite formed
during Laramide subduction and reached peak condi-
tions of 1.1 GPa pressure and 600 ◦C. However, it subse-
quently underwent greenschist facies metamorphism,
which is reflected in its current mineral assemblage
(Chapman et al., 2016; Jacobson and Dawson, 1995; Ja-
cobson et al., 2007). Themodal composition of our sam-
ple was reported in Fliedner and French (2021) and is
24% quartz, 31% chlorite, 22% muscovite, 17% epidote,
and 3% calcite, similar to that reported in other stud-
ies of the Orocopia schist (Jacobson and Dawson, 1995;
Jacobson et al., 2007; Platt et al., 2018). The schist has
a well-defined foliation caused by the shape preferred
orientation of phyllosilicate and quartz grains (Flied-
ner and French, 2021). The abundance of aligned phyl-
losilicates creates a primary transverse isotropic sym-
metry that we confirmed with ultrasonic velocity mea-
surements and effective medium models (Fliedner and
French, 2021). The sources of transverse isotropy canbe
seen in backscattered electron imageswhich showphyl-
losilicate grains aligned within 5–10◦ and occasionally
up to 25◦ to the foliation plane (Figure 1b). The schist

has a secondary transverse isotropy caused by abun-
dant thin elongated pores oriented sub-parallel to phyl-
losilicate grains (Figure 1). Porosity includes delami-
nation cracks, intragranular fractures, and both elon-
gated and equant intergranular pores. The connected
porosity is approximately 1 % and was determined in
the laboratory using the difference between themass of
awater-saturated core of knownvolumeand themass of
the same core under dry conditions. The permeability
normal to the foliation is 4.2 × 10−19 m2 and was mea-
sured by CoreLaboratories using a steady state nano-
permeameter under hydrostatic conditions at a pres-
sure of 10 MPa and with nitrogen gas pore fluid at 0.2
MPa. Because our experiments were conducted with
water pore fluid, not nitrogen, the water permeability
may be lower due to the Klinkenberg effect which de-
scribes the slip of gases along porewalls (e.g., Tanikawa
and Shimamoto (2009)). A precise correction requires
a measurement of pore radii. However, previous re-
search on rocks of similar gas permeability shows that
thewater permeabilitymaybeup to oneorder ofmagni-
tude lower, leading to a lower-boundwater permeability
of ∼ 4.2 × 10−20 m2 (Tanikawa and Shimamoto, 2009).
We measured the attenuation and elastic moduli of

a single core of Orocopia schist to limit the effects of
sample variability on our measurements. The core
is oriented with its axis normal to foliation; this is
the expected approximate orientation of wave travel
away from the megathrust in subduction zones and
the expected orientation of maximum attenuation, 1/Q
(Delle Piane et al., 2014; Mikhaltsevitch et al., 2020).
The experimental core has a diameter of 52.9 mm and a
height of 25.4 mm. The core ends were trimmed and
ground flat with a surface grinder. Prior to measure-
ments under saturated conditions, the core was pre-
saturated in deionized water under vacuum for seven
days. In Fliedner and French (2021), we estimated the
time scale of fluid diffusion in the Orocopia and deter-
mined that 12 hrs is sufficient as long as the water per-
meability is higher than ∼ 8 × 10−22 m2. Thus, 7 days
should be sufficient to saturate most connected poros-
ity, but it is possible that some gas remains trapped in
disconnected pores or those connected by extremely
small pore throats.

3 Methods

3.1 Experimental setup
Elastic moduli and attenuation measurements were
made using a servo-controlled triaxial deformation ap-
paratus at Rice University (Figure 2). In this appara-
tus, a silicone oil confining medium applies the least
compressive stress (σ3) parallel to the core radius and
deionized water applies the pore fluid pressure (Pf )
through the bottom end cap. The pore fluid outlet in
the top end cap is closed, which prevents a dead volume
of fluid that can create measurement artifacts (Dunn,
1986; Pimienta et al., 2016a). When accounting for the
low porosity of the Orocopia schist and the experimen-
tal setup, dead volume is expected to have a negligi-
ble impact on ourmeasurements (Dunn, 1986; Pimienta
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Figure 2 The triaxial deformation apparatus. (a) Diagram of the pressure vessel and (b) Magnified view of the sample con-
figuration with the 2 axial LVDTs and 4 radial LVDTs.

et al., 2016a). The sample and pore fluid are isolated
from the silicone oil with two polyolefin jackets (Fig-
ure 2b), which limits lateral fluid flowbetween the sam-
ple and the jackets. An axial piston applies the greatest
compressive stress (σ1) parallel to the core axis. The dif-
ferential stress (σ1−σ3) is recordedwith an internal load
cell having a precision of 0.3 MPa. Deformation of the
sample is measured using 6 linear voltage differential
transformers (LVDTs), 2 axial and 4 radial. The 2 axial
LVDTs are placed at a 180◦ from one another and the 4
radial LVDTs are at a 90◦ from one another. Axial defor-
mation was always measured with high resolution (63
nm) LVDTs and radial deformation was measured with
high resolution LVDTs in 2 experiments and medium
resolution (250 nm) LVDTs in 2 experiments (Table 1).
The experiments were conducted at room temperature
and temperature within the pressure vessel was mea-
sured. The internal temperature varied less than 1◦C.

We used the forced oscillation technique to mea-
sure the frequency-dependent attenuation and elastic
moduli of the Orocopia schist and 2 well-characterized
materials, aluminum alloy (Al-6061) and Poly(methyl
methacrylate) (PMMA), to calibrate our measurements
(Figure 1a) (Spencer, 1981; Jackson and Paterson, 1987;
Batzle et al., 2006). Measurements were made at fre-
quencies between 2 × 10−5 and 30 Hz and the attenu-
ationmeasurements of Orocopia schist were previously
reported in Fliedner and French (2023j). The forced
oscillation technique consists of applying a small sinu-
soidal oscillation in stress at a discrete frequency paral-
lel to the core axis and thenmeasuring the induced axial
and radial strains. Deformation is assumed tobe anelas-
tic, meaning completely recoverable but with some en-
ergy dissipation. Recoverable deformation is assumed
because stress and strain are small, and our measure-
ments evaluate if and howmuch energy is dissipated.

The Young’s modulus, E is determined from the ratio
of the amplitudes in stress (σa) and resulting axial strain

(εa):
E =

σa

εa

(1)

The relationship between the different elastic moduli
means that the shear modulus, which is defined as the
ratio of shear stress to shear strain, can be determined
from the Young’s modulus (Equation 1) and the Pois-
son’s ratio, ν. The Poisson’s ratio is the ratio of the ra-
dial strain (εr) and axial strain (ν = −εr/εa). The shear
modulus can be determined from the axial stress and
the difference between the axial and radial strain as:

G =
E

2(1 + ν)
=

σa

2(εa − εr)
(2)

The phase offset between the stress oscillation and
the induced strain, φ, is measured in radians and gives
the attenuation as 1/Q = tan φ at that frequency where
Q is a property called the quality factor (Nowick and
Berry, 1972). We measured the Young’s modulus atten-
uation (1/QE) from the phase difference between the
axial stress, σa, which has phase φ(σa), and axial strain,
εa which has phase φ(εa):

1/QE = tan
(

φ(σa) − φ(εa)
)

(3)

The shear modulus attenuation (QS) is given by the
phase difference between axial stress, σa, and the dif-
ference between axial strain (εa with phase φ(εa)) and
radial strain (εr with phase φ(εr)) (Yin et al., 2019):

1/QS = tan
(

φ(σa) − φ(εa − εr)
)

(4)

Weconducted two experiments on an aluminumcore
(G0188, G0198) and two experiments on PMMA (G0184,
G0197) as summarized in Table 1 (Fliedner and French,
2023a,f,c,g). Core dimensions for these samples are 50
mm in length and 25.4 mm in diameter. We reported
the attenuation measurements for one experiment on
dry Orocopia schist (G0187) and four experiments on
water-saturated Orocopia schist at two different effec-
tive pressures (G0190, G0191, G0199, G0200) in Fliedner
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Set Test Sample σ3 Pf Peff σ1 − σ3 App Nf

Frequency
range

Radial
LVDT?

MPa MPa MPa MPa MPa Hz

1

G0184 PMMA 3 0 3 3 0.4 71 1×10–4 - 30 No
G0187 Orocopia 10 0 10 10 1 71 1×10–4 - 30 No
G0188 Al-6061 10 0 10 10 1 69 1×10–4 - 30 Yes
G0190 Orocopia 10 1 9 10 1 73 1×10–4 - 30 Yes
G0191 Orocopia 10 8 2 10 1 72 1×10–4 - 30 Yes

2

G0197 PMMA 10 0 5 5 1 80 1×10–4 - 30 Yes
G0198 Al-6061 10 0 10 10 1 13 1×10–4 - 10 Yes
G0199 Orocopia 10 1 9 10 1 57 2×10–5 - 10 Yes
G0200 Orocopia 10 8 2 10 1 82 2×10–5 - 10 Yes

Table 1 Table of the forced oscillations experiments conducted. The experiments were conducted in two separate runs to
establish reproducibility, each of which is labeled as a set. The environmental conditions are the confining pressure (σ3), the
pore pressure (Pf ), the effective pressure (Peff ), the differential stress (σ1 − σ3), and the peak-to-peak amplitude (App) of
the sinusoidal stress oscillation. Nf is the total number of measurements made over all frequencies during a given test.

and French (2023j) and show those results here along
with the elastic moduli from the same experiments,
which are not reported elsewhere (Fliedner andFrench,
2023b,d,h,e,i). All measurements were made at a con-
fining pressure of 10MPa except for one experiment on
PMMA, which was conducted at 5 MPa (G0197). Mea-
surementsmade on theOrocopia schist under saturated
conditions were made at 1 and 8 MPa pore fluid pres-
sure, resulting in Terzaghi effective pressures (Peff =
σ3 − Pf ) of 9 and 2 MPa (Terzaghi et al., 1996).
For measurements under dry conditions, including

on aluminum and PMMA, the confining pressure was
increasedby 1MPaevery 5minutes until 10MPaand the
sample equilibrated at pressure for 12 hours. For mea-
surements under saturated conditions, an initial confin-
ing pressure of 5 MPa and a pore pressure of 0.5 MPa
were applied. Next, we increased the pore pressure to
1 MPa and confining pressure to 10 MPa over 10 min-
utes and allowed the system to equilibrate for 12 hours
(G0190 and G0199). Following measurements at these
conditions, we increased the pore pressure to 8 MPa
over 10 minutes and again allowed the sample to equi-
librate for 12 hours (G0191 and G0200). The two sep-
arate sets of experiments were made under saturated
conditions to establish the reproducibility of our mea-
surements.
Once at experimental conditions, we applied a small

differential stress of 10 MPa to assure contact between
the end caps and the sample and then applied a sinu-
soidal stress oscillation with a peak-to-peak amplitude
of 1MPa (0.4MPa for one experiment on PMMA),which
causes axial strains of ∼ 10−5. Measurements of elas-
tic moduli and attenuation were made at 22 discrete
frequencies from 1 × 10−4 to 30 Hz on aluminum and
PMMA and at 26 discrete frequencies from 2 × 10−5 to
30 Hz on the Orocopia schist. The data sampling fre-
quency varied between 50 and 5000 Hz and increased
with the frequency of the stress oscillation. Multiple
measurements were made at a given frequency during

anexperiment and in total, we conductedbetween2 and
6 forced oscillation tests at each frequency and effective
stress. Experiments on the aluminum and PMMA cores
we made in between the two sets of experiments made
on the Orocopia schist to verify the accuracy and con-
sistency of our measurements (Table S1 and Table S2).

3.2 Calibration
We corrected the attenuation and elastic moduli to ac-
count for signal distortion which is primarily caused
by electronic noise at high frequencies and changes
in environmental conditions like room temperature at
low frequencies. We do so using the measurements
of attenuation and elastic moduli on aluminum al-
loy (Al-6061) and Poly(methyl methacrylate) (PMMA),
which are well-characterized (Figure 3). Aluminum
has very low and frequency-independent attenuation
and high elasticmoduli (Lakes, 2009; Duffy, 2002; Oberg
and McCauley, 2020) and PMMA has a relatively high
frequency-dependent attenuation and low elastic mod-
uli (Lakes, 2009; Madonna and Tisato, 2013; Saltiel
et al., 2017; Lee et al., 2000). Radial deformation was
recorded during both experiments on aluminum (G0188
and G0198), but a high-resolution LVDT was only used
during one of the experiments (G0188, Table 1). Radial
deformation was only measured during one of two ex-
periments on PMMA (G0197), so we do not report shear
modulus or QS for the other (G0184).
We calibrated the elastic moduli and the attenuation

measurements using equations with 4 fitted parame-
ters, A, B, C and D (Equation 5). Each parameter ac-
counts for different effects, with A correcting for the
effect of amplifiers and B and C correcting for phase
distortion effects at high and low frequencies, respec-
tively. The coefficient D corrects for effects indepen-
dent of frequency. The parameters A, B, C and D were
determined as the correction required to fit our mea-
surements on aluminum and PMMA to the published
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Figure 3 The results of calibrationmeasurements on 6061
aluminum alloy (Al-6061) and Poly(methyl methacrylate)
(PMMA) samples after correction using Equation 5. The
Young’s moduli and attenuation are shown in blue and
shear moduli and attenuation are shown in pink. The
blue and pink shaded areas indicate the standard deviation
(STD) for the Young’s and shear moduli measurements, re-
spectively, and are extrapolated between point measure-
ments. Published values of attenuation and elastic mod-
uli are shown with grey lines for reference and labeled as
(1) Young’s and Shear moduli from Lakes (2009), (2) Shear
modulus from Lee et al. (2000), (3) Young’s modulus from
Madonna and Tisato (2013), (4) Shear modulus from Duffy
(2002), and (5) Shear modulus from Saltiel et al. (2017).
(a) Attenuation 1/QE and 1/QS of Al-6061, (b) Attenuation
1/QE and 1/QS of PMMA, (c) Young’sE and shearGmoduli
of Al-6061, and (d) Young’s E and shear G moduli of PMMA.

references for these materials.

Datacorrected = A ∗ data + B ∗ f + C ∗ log10(f) + D (5)

We collected calibration data during each of the two
sets of measurements (Table 1). During one set an ad-
ditional amplifier was used, resulting in different val-
ues of A, B, C and D for the two sets (Figures S2 to S10
in Supplementary material). For the first group (G0184,
G0187, G0190, and G0191), we first fit Equation 5 to alu-
minum so that it conforms to published values, and
then applied the same correction to the experiments

on the PMMA to confirm that the corrected results are
consistent with published values and then the Orocopia
schist. For the second group, we fit Equation 5 to the
PMMA (G0197) and the aluminum (G0198) separately to
conform with published values. The Orocopia schist
(G0199, G0200) was then corrected using the average
parameters determined for PMMA (G0197) and Al-6061
(G0198). A table of the coefficients can be found in the
Supplementary Materials (Tables S1 and Table S2).

4 Results for Elastic Moduli and Atten-
uation

Under water-saturated conditions, the Orocopia schist
is stiffer at most frequencies and has higher attenua-
tion at all frequencies than under dry conditions (Fig-
ure 4a and c). We also measure higher Young’s and
shear moduli and lower attenuation (1/QE and 1/QS)
at an effective pressure of 9 MPa than at 2 MPa. In ad-
dition, whereas the elastic moduli and attenuation are
independent of frequency under dry conditions, both
vary with frequency under water-saturated conditions.
Under dry conditions, the Young’s modulus, E, is

50 GPa (±0.160) at all frequencies tested (Figure 4a).
For comparison, the Young’s modulus at ultrasonic fre-
quencies (1 × 106 Hz), which we reported in Fliedner
and French (2021), is 51 GPa indicating relatively con-
stant stiffness over 10 orders of magnitude in frequency
(Figure 4a). Under saturated conditions, the Young’s
modulus increases with increasing frequency (Figure
4a). For instance, at Peff = 2 MPa the Young’s modu-
lus increases from 41 GPa (± 2) to 67 GPa (± 1) with
increasing frequency from 2 × 10−5 Hz to 30 Hz, and
it appears to increase in two phases (Figure 4a). At
Peff = 2 MPa Young’s modulus increases linearly in log
space from 41 to 57 GPa between 2 × 10−5 and 1 × 10−3

Hz and is then relatively constant until ∼ 0.1 Hz, when
it again increases approximately linearly in log space.
The Young’s modulus increases similarly in two phases
at 9 MPa effective pressure although the plateau from
1 × 10−3 to 0.1 Hz is less clear, and the modulus is con-
sistently 3 GPa greater than at 2 MPa effective pressure.
At effective pressures of 2 and 9 MPa, the Young’s mod-
uli are 5 and 8 % lower at 30 Hz than at ultrasonic fre-
quencies (1 × 106 Hz), and this is consistent with ex-
trapolating the frequency-dependence observed in our
data an additional 5 orders of magnitude (Fliedner and
French, 2021). Similar to theYoung’smodulus, the shear
modulus is also dispersive underwater-saturated condi-
tions between 2 × 10−5 and 30 Hz and we did not mea-
sure the shear modulus under dry conditions (Figure
4b). For instance, at 2 MPa effective pressure, the shear
modulus increases from 14 GPa (± 3) to 25 GPa (± 1) at
2 × 10−5 to 30 Hz. At a given frequency, the shear mod-
ulus measured at Peff = 2 MPa effective pressure is ∼ 2
GPa lower than the shearmodulus at 9MPa. In contrast
to the Young’s modulus, the shear moduli are actually
higher at 30 Hz than at 1 × 106 Hz indicating that these
results cannot be directly extrapolated to ultrasonic fre-
quencies (Fliedner and French, 2021).
Under dry conditions, attenuation of the Young’s
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Figure 4 Results for attenuation and elastic moduli as a function of frequency for the Orocopia schist. Green markers indi-
cate dry conditions at 10MPa effective pressure, dark blue and light bluemarkers indicate saturated conditions at low (2MPa)
and high (9 MPa) effective pressures, respectively. Shading indicates the standard deviation (STD). The gray bars show the
predicted characteristic frequencies for patchy saturation (PS) and squirt flow (SF) mechanisms at experimental conditions,
which are described and analyzed in the discussion. (a) Young’s modulus, E measured under dry and saturated conditions
and compared to published moduli at ultrasonic frequency 1 × 106 Hz from Fliedner and French (2021). (b) Shear modulus
G modulus measured under saturated conditions and compared to published moduli at ultrasonic frequency 1 × 106 Hz in
Fliedner and French (2021), (c) Attenuation 1/QE measured under dry and saturated conditions, and (d) Attenuation 1/QS

measured under saturated conditions.

modulus is∼ 0.012± 0.003 at all frequencies tested (Fig-
ure 4c). In contrast, under saturated conditions, 1/QE

is both higher than under dry conditions and depen-
dent on frequency. For instance, at Peff = 2 MPa, the
minimum in 1/QE is ∼ 0.040 (± 0.001) between 0.02
and 0.5 Hz, which is about 4 times higher than atten-
uation under dry conditions. We measure two peaks
in 1/QE under saturated conditions and these are cen-
tered at frequencies of 1 × 10−4 Hz and 10 Hz. In ad-
dition, the magnitude of 1/QE decreases with increas-
ing effective pressure. For instance, the peak in attenu-
ation (1/QE) at 1 × 10−4 Hz is ∼ 0.210 at Peff = 2 MPa,
whereas it is ∼ 0.130 at Peff = 9 MPa. Similarly, the
magnitude of 1/QS is frequency-dependent under satu-
rated conditions and the attenuation is centered at the
same frequencies (1 × 10−4 and 10Hz) as for 1/QE (Fig-

ure 4d). At the 1 × 10−4 Hz peak, 1/QS is lower than
1/QE at the same peak by 0.053. At the higher fre-
quency peak (10 Hz), themagnitudes of 1/QS and 1/QE

are the samewithin the resolution of ourmeasurements
(1 × 10−3). We observe a constant attenuation between
0.001 and 0.1 under saturated conditions, which corre-
sponds to the frequency range over which the elastic
moduli increase linearly. Shear modulus attenuation
also decreases with increasing effective pressure, with
1/QS at an effective pressure of 2 MPa greater than at 9
MPa by 0.021 on average (Figure 4d).

5 Discussion
5.1 Wave-induced Fluid Flow
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The presence of pore water and the magnitude of ef-
fective pressure both have a measurable effect on the
elastic moduli and attenuation of the Orocopia schist.
Relative to dry conditions, the attenuation under satu-
rated conditions appears to be increased by a constant
value (∼ 0.003) with two superimposed frequency de-
pendent peaks (Figure 4c). This constant increase in
baseline attenuation is most clearly seen at frequen-
cies between 2 × 10−2 and 3 Hz. As is the case for pro-
cesses that result in near-constant attenuation, the elas-
tic moduli also clearly increase near-linearly with fre-
quency over this range (Figure 4) (Liu et al., 1976; Kjar-
tansson, 1979). This background attenuation and lin-
ear increase inmodulus donot arise fromwave-induced
fluid flow and are not evaluated in detail here.
Peaks in attenuation are frequently interpreted as be-

ing caused by wave-induced fluid flow in the rock. In
our previous work, we showed that the patchy satu-
ration and the squirt flow mechanisms are consistent
with the positions of the peak in attenuation (Figure 4),
although we did not evaluate their magnitude, which
requires that we consider the dispersion of the elastic
moduli (Fliedner and French, 2023j).
The patchy saturation mechanism describes meso-

scopic flow between two non-mixing fluids, such as air
and water, coexisting in the pore network and forming
heterogeneous saturation (White, 1975; Cleary, 1978;
Schmitt et al., 1994; Pride et al., 2004). The character-
istic frequency of the attenuation peak for patchy satu-
ration (fpatchy) is (Cleary, 1978):

fpatchy =
4kKd

ηL2
(6)

where k is permeability, Kd is the drained bulk mod-
ulus, η is water viscosity, and L2 is the length scale of
saturation heterogeneity In Fliedner and French (2023j)
we determined that the rock permeability must be k ∼
1 × 10−21 m2 to explain the position of the peak at
1 × 10−4 Hz for awater viscosity of 10−3 Pa·s, a drained
bulk modulus of 61 GPa which we measured at 2.5
MPa effective pressure under dry conditions, and an as-
sumed length scale of heterogeneous saturation equal
to the sample length, L ∼ 53 mm. We assumed a con-
stant water viscosity given the negligible temperature
variation measured during the experiments. The esti-
mated permeability (1 × 10−21 m2) is 2 orders of mag-
nitude lower than the permeability measured with a
gas pore fluid (4 × 10−19 m2) and 1 order of magnitude
lower than the lower bound of permeability that we es-
timated by taking into account the Klinkenberg effect
(4 × 10−20 m2). This discrepancy may be attributed to
the difference in the experimental conditions at which
permeability and attenuation were measured. During
the forced oscillations, there is an axial stress of 10MPa,
while the permeability was measured under isotropic
stress conditions (Zoback and Byerlee, 1975). Thus, we
conclude that the low frequency peak at 1 × 10−4 Hz is
generally consistent with the patchy saturation mecha-
nism due to air bubbles trapped in the low permeability
pore network (White, 1975; Schmitt et al., 1994; Pride
et al., 2004).
The squirt flow mechanism describes fluid flow oc-

curring at the pore scale from thin elongated pores into
equant pores (Mavko and Nur, 1975; O’Connell and Bu-
diansky, 1977; Dvorkin et al., 1994). Thin elongated
pores are compressible and close with a small magni-
tude of applied stress whereas equant pores are much
less compressible and remainopenat the same stresses.
Thus, when an elastic wave propagates through the
rock, compliant pores close in response and fluid is
pushed into the more equant pores (Mavko and Nur,
1975; Dvorkin et al., 1994). Pore geometry is described
by the aspect ratio (α), where for an idealized ellipsoidal
pore geometry α is the ratio between the short and long
axes. The characteristic frequency of the attenuation
peak for squirt flow (fsquirt) is (O’Connell and Budian-
sky, 1977):

fsquirt =
Ksα3

η
(7)

where η is again the viscosity of water andKs is the bulk
modulus of the solid phase, absent pores. We estimated
fsquirt from the viscosity of water η = 10−3 Pa · s and
our previousmeasurements on the Orocopia schist. We
take the bulk modulus of the solid phase to be Ks = 75
GPa, which we measured under dry conditions and at a
confining pressure of 100 MPa, where most porosity is
closed (Fliedner and French, 2021, 2023j). We estimated
the aspect ratio of the most compliant pore shape using

α =
2(1 − ν2)Pclos

E0

(8)

(Mavko et al., 2020, therein Equation 2.10.71), where ν
is Poisson’s ratio, Pclos is the pressure required to close
a pore with aspect ration α and E0 is the Young’s modu-
lus of the solid phase. For the Orocopia schist, we mea-
sured a Poisson’s ratio of 0.25 and a Young’s modulus of
81 GPa at a confining pressure of 100 MPa and under
dry conditions. We can assume that themost compliant
pores that are open at a given pressure are those just be-
low their closure pressure Pclos. As a result, at effective
pressures of 2 and 9 MPa, we find the most compliant
pore shapes to beα ∼ 4.5 × 10−5 andα ∼ 2.1 × 10−4, re-
spectively (Fliedner and French, 2023j). If we use these
aspect ratios in Equation 7, the resulting characteristic
frequencies are 7.5 and 680 Hz for the peaks in atten-
uation at 2 and 9 MPa effective pressure (Fliedner and
French, 2023j). These predicted peaks are close to the
position of the high frequency peak (10Hz), particularly
our estimate for 2 MPa effective pressure.
Although we show that the positions of the peaks in

attenuation are generally consistentwith the patchy sat-
uration and squirt flow mechanisms, these are impre-
cise assessments of the mechanisms that control atten-
uation. We use viscoelastic models to assess whether
the frequency-dependent attenuation and elastic mod-
uli of the Orocopia schist can be quantitatively ex-
plained by the patchy saturation and squirt flow mech-
anisms.

5.2 Linear Viscoelastic Models
We employ models that assume the system consisting
of the rock and pore fluid behaves as a viscoelastic ma-
terial (O’Connell and Budiansky, 1977). The viscoelas-
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ticity of the saturated rock arises from the combined
viscous behavior of the fluid and the elastic behavior of
the rock frame, assuming negligible viscous deforma-
tion of the mineral constituents. Numerically, the com-
plex modulus M∗(ω) defines the anelastic modulus of a
viscoelastic material with elastic (real part M ′) and vis-
cous (imaginary part, M ′′) components as:

M∗(ω) = M ′ + iM ′′ (9)

We use the Maxwell representation of the Standard
Linear Solid (SLS) model, also known as a Zener model,
to investigate the causality between attenuation and dis-
persion in the Orocopia schist (Zener and Siegel, 1949).
This model assumes a single viscous mechanism with
viscosity η0, that dissipates energy in a short period of
time. The mechanical behavior can be visualized us-
ing a circuit of springs to represent elastic deformation
and dashpots to represent viscous deformation (Figure
5a). The Maxwell model consists of two parallel sys-
tems. The first is the Maxwell arm, which operates at
the low-frequency limit and is composed of a spring of
stiffness M0 and a dashpot having the viscosity of the
fluid, η0, connected in series. At the high-frequency
limit, the undrained elastic modulus, M∞, controls the
mechanical behavior of the rock since the fluid does not
have enough time to flow. As a result, fluid viscosity has
no effect on the mechanical behavior, and the second
arm of the model is composed of a single spring. This
model predicts that the attenuation (1/Q) has a Debye
absorption peak centered at a characteristic relaxation
time, τc. The characteristic relaxation time is the in-
verse of the characteristic angular frequencyωc = 2πfc,
with fc being the characteristic frequency of the viscous
mechanisms, in our case for either the patchy satura-
tion (fpatchy) or squirt flow (fsquirt)mechanisms (Figure
5b). The elastic modulus, M ′, increases with increasing
angular frequencyω, froma low-frequency limit,M0, to
a high-frequency limit, M∞. We use the formulation of
the SLS model presented in (Mavko et al., 2020, therein
Table 3.8.1):

M∗(ω) =

M0 + iM∞

(

ω

ωc

)2

1 +

(

ω

ωc

)2
(10)

From the SLS model, 1/Q is determined as the ratio
of the imaginary (M ′′) to real (M ′) parts of M∗(ω):

1/Q(ω) =
M ′′

M ′
= tan(φ) (11)

The attenuation (1/Q) has a maximum magnitude that
is proportional to the relaxation strength, ∆, which is
the relative difference between the elastic moduli M∞

and M0 and occurs at a frequency ωc:

1/Qmax =
1

2
∆ =

1

2

M∞ − M0√
M∞M0

(12)

with the relaxation strength given by (Lakes, 2009,
Equation 2.50):

∆ =
M∞ − M0√

M∞M0

(13)

Figure 5 Diagramof theMaxwell representation of a Stan-
dard Linear Solid (SLS) model used to describe the vis-
coelastic behavior of the schist (a) The spring-dashpot ana-
log of the SLS model with two systems in parallel. The first
branch is a Maxwell solid that contains a spring (M1) and
a dashpot (η) in series, which represents the elastic and
viscous components at the low-frequency limit. The first
branch results in the viscoelastic deformation that occurs
when there is fluid flow. The second branch is the elastic
component at the high-frequency limit (M∞) when no fluid
flow occurs. (b) The SLS model predicts a non-linear in-
crease in elastic moduli from M0 at the low-frequency limit
to M∞ at the high-frequency limit. The increase in elastic
moduli is centered at ωc which is the characteristic angular
frequency of the controlling fluid flowmechanism. The cor-
responding attenuation (1/Q) is a single Debye peak with
an amplitude 1/Qmax.

The increase in elastic modulus from the low to high
frequency limits is centered near the peak in atten-
uation at ωc but is shifted to higher frequencies by
1/(τc

√

(1 + ∆)) (Figure 5b).
We estimated M0 and M∞ from our experimental

measurements of elasticmoduli andused the character-
istic peak frequencies for patchy saturation and squirt
flow (fpatchy and fsquirt) in Equation 10 to then calcu-
late the attenuation of the Young’s and shear moduli as
a function of frequency using Equation 11. We evalu-
ated the low and high frequency peaks separately by fit-
ting the data separately over two frequency ranges from
5 × 10−5 to 2 × 10−2 Hz and 3 to 20 Hz corresponding
to ranges over which we see peaks in attenuation above
some background. The elastic moduli increase linearly
between attenuation peaks (2 × 10−2 to 3 Hz), consis-
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Figure 6 The measurements of frequency-dependent attenuation and elastic moduli under water-saturated conditions as
shown in Figure 4with the results of fitting the Standard Linear Solid (SLS)model to these experimentalmeasurements. Dark
blue and light blue colors indicate data at 2 and 9 MPa effective pressures,. The dark and light gray lines indicate model re-
sults for the 2 and 9 MPa effective pressures. The model results for patchy saturation are shown with dashed lines and those
for squirt flow are shown with solid lines. Gray bars show the predicted characteristic frequencies for the patchy saturation
(PS) and squirt flow (SF) mechanisms at experimental conditions. (a) Young’s modulus, E with previously reported moduli
measured at ultrasonic frequency 1 × 106 Hz from Fliedner and French (2021), (b) shearmodulusGwith previously reported
moduli measured at ultrasonic frequency 1 × 106 Hz from Fliedner and French (2021), (c) Attenuation 1/QE , and (d) Atten-
uation 1/QS . The goodness of fit of the SLS models to the experimental measurements of attenuation and elasticity were
determined with a least square method and are shown, where a perfect fit occurs when R2 equals 1.

tent with the near-constant attenuation at the same fre-
quencies (Figure 6). Because the changes in elastic
moduli due to wave-induced fluid flow are expected to
be superimposed on this linear increase, we take M0

andM∞ to be themoduli at the low-frequency andhigh-
frequency limits of each peak (Figure 6).
We find that the SLS model generally fits the attenua-

tion data when parameterized with our measurements
of elastic moduli and estimate of the peak positions for
patchy saturation and squirt flow (Figure 6). Once we
calculate attenuation as a function of frequency from
Equation 11, we evaluate the goodness of fit between the
model prediction and our data (Figure 6). Overall, the
goodness of fit is best for the Young’s modulus, lower
effective pressure (higher fluid pressure), and the low-

frequencypeak corresponding topatchy saturation. For
instance, for the low-frequencypeak andYoung’smodu-
lus,R2 was greater than 0.78 for both effective pressures
(Figure 6a and c). The model for patchy saturation also
fits our measurements of shear modulus with an R2 of
0.53 and attenuation with an R2 of 0.75 (Figure 6b and
d). The goodness of fit of the SLS model to the experi-
mental data is not as strong for the squirt flow mecha-
nism as it is for the patchy saturation mechanism. At 9
MPa effective pressure, the model is in agreement with
the measured Young’s modulus and related attenuation
(R2 > 0.58), but the goodness of fit is poor for the shear
modulus at Peff = 2 MPa according to the coefficient of
determination R2 < 0. The lower quality of data result-
ing from lower resolution LVDTs and smaller strain in

10
SEISMICA | volume 3.1 | 2024



SEISMICA | RESEARCH ARTICLE | Elastic moduli in metapelite

the radial direction could explain the poor goodness of
fit for the shear modulus attenuation. If we calculate
the difference between the measured and model 1/QE

at 10 Hz, we find a value of ∼ 0.009, consistent with pre-
vious attempts to fit SLS models to experimental data
(Pimienta et al., 2016b, 2017; Borgomano et al., 2019;
Sun et al., 2020).
Because of uncertainty in the aspect ratio of pores,

predicting the attenuation and dispersion induced by
squirt flow with the Standard Linear Solid model may
cause some of the error in the fit. In previous stud-
ies of squirt flow, there are visual differences between
model results and experimental data (Pimienta et al.,
2016b, 2017; Borgomano et al., 2019; Sun et al., 2020),
consistent with our relatively low coefficients of deter-
mination for the squirt flowmechanism, particularly at
low effective stress (Figure 6). One contribution to error
may be that the model considers only pores of a single
aspect ratio, rather thanadistributionof aspect ratios as
may occur in rocks. Having a range of pore aspect ratios
can cause amore complex squirt flowattenuation signal
in a rock such as a broad peak spanning multiple fre-
quencies (Anderson and Archambeau, 1964; Liu et al.,
1976) or multiple distinct peaks at different characteris-
tic frequencies (Anderson and Archambeau, 1964; Bor-
gomano et al., 2019). Becausewe observed a single peak
with a relatively narrow width, we used the squirt flow
equation for a single aspect ratio. To directly measure
the aspect ratio requires precise measurements of both
pore diameter and length. Measurement of pore diam-
eters is straightforward with porosimetry methods, but
accurately assessing pore length is difficult due to a lack
of reliable experimental techniques. Any errors in di-
ameter or lengthmeasurement can significantly impact
the predicted characteristic frequency of squirt flow be-
cause the aspect ratio is cubed in Equation 7. For exam-
ple, A 10% margin of error in aspect ratio, gives α be-
tween 5.0 × 10−5 and 4.1 × 10−5 at 2MPa effective pres-
sure and results in a predicted range of characteristic
frequencies of 5 and 9 Hz.

5.3 Controls of lithology on attenuation and
dispersion

This paper is the first to quantify the attenuation and
dispersion of a schist, to the best of our knowledge
(Subramaniyan et al., 2014; Rorheim, 2022). We com-
pare our results to other lithologies for which data are
available, such as shales (Mikhaltsevitch et al., 2020;
Delle Piane et al., 2014), sandstones (Pimienta et al.,
2015, 2016b, 2017, 2021; Borgomano et al., 2020; Tisato
and Madonna, 2012; Tisato et al., 2015; Madonna and
Tisato, 2013), and limestones (Borgomano et al., 2017,
2019). To understand how viscoelasticity is controlled
by patchy saturation and squirt flow mechanisms, we
discuss the similarities between the rocks, including
the relative permeability and pore geometry (Pimienta
et al., 2021; Brace, 1977).
Reports of energy dissipation due to patchy satura-

tion are most common in rocks with low permeability
and thin elongated pores despite large differences in
reported elastic moduli (Pimienta et al., 2021; Cleary,

1978;White, 1975). Wefind the characteristic frequency
fpatchy for the Orocopia schist (∼ 1 × 10−4 Hz) to be
similar to the predicted characteristic frequency for the
Goldwyer shale (2 × 10−4 Hz) (Delle Piane et al., 2014).
The Orocopia schist and Goldwyer shale have a similar
estimated water permeability (∼ 10−21 m2) and sheet
silicate content (>50 %) (Delle Piane et al., 2014; Flied-
ner and French, 2023j). In some rocks, patchy satura-
tion is also estimated to be important at higher frequen-
cies than we observe, with a fpatchy of 40 Hz for a dif-
ferent shale (Mikhaltsevitch et al., 2020) and∼ 300 Hz
for a limestone (Borgomano et al., 2017), which are also
lithologies with abundant elongated pores. Since both
the Orocopia schist and Goldwyer shale have low per-
meability and small pore throats, bubbles of air can be-
come trapped in their pore network (Pride et al., 2004).
When a pressure wave is propagating through, the non-
mixing air bubbles flow through the pores due to cap-
illary forces (Schmitt et al., 1994; Delle Piane et al.,
2014; Tisato et al., 2015). Thus, the occurrence of non-
mixing patches of fluidsmay bemore common in rocks
rich in sheet silicates and thin elongated pores than
other lithologies (Cleary, 1978; O’Connell and Budian-
sky, 1977). However, the magnitudes of the attenua-
tion peak in the Orocopia schist and limestone (1/QE >
0.13 in Figure 4) are more than double the attenuation
peak in the Goldwyer shale (1/QE <0.07) (Borgomano
et al., 2017; Delle Piane et al., 2014;Mikhaltsevitch et al.,
2020). This might be caused by differences in the relax-
ation strength (Equation 13) which links the difference
in the Young’s modulus and energy dissipation and is
consistent with the nearly one order of magnitude dif-
ference in elastic moduli between the Goldwyer shale
(<7 GPa) and the Orocopia schist (50 GPa) (Figure 6a).
Comparisons between experimental data and models
that predict attenuation magnitude due to patchy satu-
ration are not common. However, the agreement that
we see between experimental data and the model (R2 >
0.78 in Figure 6a and c) has also been observed in lime-
stone (Borgomano et al., 2017).
The squirt flow mechanism is also a relatively com-

mon mechanism of attenuation, particularly in rocks
with thin elongated pores. Squirt flow has been inter-
preted as occurring in several sandstones (Tisato and
Madonna, 2012; Madonna and Tisato, 2013; Pimienta
et al., 2015, 2017; Subramaniyan et al., 2015; Sun et al.,
2020), as well as a thermally cracked limestone (Borgo-
mano et al., 2019), and the frequency of the attenuation
peak is strongly dependent on pore shape. The atten-
uation peak for squirt flow occurs at 10 Hz in the Oro-
copia schist and most sandstones display this peak be-
tween 0.1 and 300 Hz (Pimienta et al., 2017; Borgomano
et al., 2019; Subramaniyan et al., 2015; Sun et al., 2020),
although it can occur above 1000 Hz due to the typically
higher aspect ratio pores in sandstones (Pimienta et al.,
2016b; Tisato and Madonna, 2012; Yin et al., 2019). Be-
cause of the strong dependence on aspect ratio (Equa-
tion 7), the squirt flow mechanism is typically identi-
fied when α is ∼ 10−4 or smaller (Pimienta et al., 2017;
Borgomano et al., 2019; Subramaniyan et al., 2015; Sun
et al., 2020; Fliedner and French, 2023j). To empha-
size the necessity of thin elongated pores even further,
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Borgomano et al. (2019) only observed evidence of the
squirt flow mechanism in limestone after it had been
thermally cracked. Despite the fact that both model-
ing and experimental studies underscore the necessity
of elongated pores for squirt flow (Adelinet et al., 2011;
Pimienta et al., 2016b), the lack of measurements on
schist meant that it was previously unknown whether
squirt flow occurs in these rocks at frequencies below
100 Hz (Delle Piane et al., 2014; Mikhaltsevitch et al.,
2020).
Rocks rich in phyllosilicates have unique properties

that enhance attenuation and dispersion through their
influence on microstructure. For instance, rocks rich
in phyllosilicates like the Orocopia schist often have a
strong shape preferred orientation of grains that then
leads to thin and elongated pores aligned with the fo-
liation (Fliedner and French, 2021). As a result, both
the permeability and aspect ratios are impacted by the
presence of phyllosilicates resulting in high compress-
ibility normal to foliation and high attenuation and
dispersion. In addition, phyllosilicate-rich rocks of-
ten have weaker fracture strength along their cleavage
planes and parallel to foliation, which can cause ad-
ditional microfracture and macrofracture porosity (Es-
cartín et al., 1997). These macroscopic fractures have a
similar shape to thin elongated pores andmay cause ad-
ditional attenuation anddispersion. Specifically, higher
microfracture densities adjacent to faults or the pres-
ence of larger fractures that are not sampled at the labo-
ratory scale may increase the magnitude of attenuation
or cause an additional attenuation peak. Thus, ourmea-
surements can be considered a lower bound on the nat-
ural system.

5.4 Dispersive seismic velocities and attenu-
ation in subduction zones

Because seismic tomography is the primary tool used
to infer potential pore fluid overpressure along the sub-
duction plate boundary, we use our results to evaluate
tomographic evidence for fluid pressurization at depths
of 25-40 km. In several subduction zones, these depths
coincide with regions of low wave velocities, with P-
wave velocities (VP ) of 5.0–6.5 km/s and S-wave veloc-
ities (VS) of 2.0–3.2 km/s, and of high VP /VS of 2.0–2.8
(Audet et al., 2009; Calvert et al., 2011, 2020; Delph et al.,
2018). To compare our results with tomography, we cal-
culate the wave velocities from our measurements of
the elastic moduli (Figure 4). The P-wave velocity is
determined as VP ∼

√

C33/ρ and the S-wave veloc-
ity as VS ∼

√

G/ρ where C33 is the stiffness normal
to foliation, G the shear modulus (Figure 4), and ρ
the density of the Orocopia schist determined in Flied-
ner and French (2021). For the Orocopia schist, the
Young’s modulus normal to the foliation is 30 % lower
than C33 at an effective pressure of ∼ 2 MPa (Fliedner
and French, 2021). At a frequency of 1 Hz and an ef-
fective pressure of 2 MPa, the Young’s modulus is 62
GPa resulting in C33 of 81 GPa and the shear modulus
is 22 GPa (Figure 4. The resulting estimates of P-wave
and S-wave velocities are VP ∼ 5.2 km/s and VS ∼ 2.7
km/s and their ratio is VP /VS ∼ 1.9. Thus, our approxi-

mated velocities at low effective pressure conditions are
consistent with the low velocities and high VP /VS ob-
served in seismic tomography at 20-45 km in subduction
zones (Audet et al., 2009; Calvert et al., 2011, 2020; Delph
et al., 2018). We infer that pore fluid overpressurization
in metapelites adjacent to the megathrust is consistent
with the interpretations of seismic tomography and that
the in-situ velocities are most likely dispersive.
Application of our attenuation results requires con-

sideration of differences in laboratory and geologic con-
ditions. Under water saturated conditions, measure-
ments of attenuation are significant, with 1/QE consis-
tently greater than 0.03. As evaluated in (Fliedner and
French, 2023j), the primary consideration when extrap-
olating to geologic conditions is the effect of fluid viscos-
ity on the positions of the attenuation peaks (Equations
6 and 7). As depth increases, water viscosity decreases
from 1 × 10−3 Pa·s at the near-surface to 1 × 10−4 Pa·s
at 500 ◦C (Audetat and Keppler, 2004). When peak po-
sition is adjusted to account for the supercritical na-
ture of water at depths of 25-40 km, this increases the
characteristic frequencies ofwave-inducedflowmecha-
nisms (Fliedner and French, 2023j). The adjusted peaks
in 1/QE and 1/QS for squirt flow coincide with the
range of depleted frequencies seen in low-frequency
earthquakes (2-8 Hz to 30 Hz) (Farge et al., 2020; Supino
et al., 2020) and part of the range of characteristic fre-
quencies observed in very low-frequency earthquakes
(0.1 Hz - 30 Hz) (Obana and Kodaira, 2009). In addi-
tion, the magnitude of attenuation at these frequen-
cies is sufficient to cause the depletion of these high-
frequency waves. While we predict that squirt flow im-
pacts seismic waves significantly, patchy saturation is
unlikely unless the permeability is higher at geologic
conditions. We estimate the permeability that would be
required for the characteristic frequency of patchy sat-
uration to fall within the seismic frequency range (0.1
to 30 Hz). If we assume a bulk modulus similar to Oro-
copia schist and supercritical water viscosity at in-situ
conditions, Equation 6 indicates that a permeability of
1 × 10−19 to 1 × 10−17 m2 would be necessary to shift
the peak to seismic frequencies. These values are high
but not implausible for metamorphic rocks, and poten-
tially could result frommicrofracturedamage (Johnson,
1983; Katayama et al., 2012). As a result, models show
that our laboratorymeasurements of attenuation due to
squirt flow can explain the limited frequency range of
earthquakes (Fliedner and French, 2023j).
We evaluated the role of fluid viscosity on attenua-

tion at geologic conditions, but lithology is likely an
important control on the importance of attenuation
and dispersion as well. For instance, in warm sub-
duction zones the megathrust typically passes through
greenschist facies, whereas cold subduction zones pass
through blueschist and eclogite facies (Condit et al.,
2020). Thus, although metapelites will undergo some
metamorphism, they are expected to be phyllosilicate
rich even along colder subduction paths. As we docu-
mented for the Orocopia schist, pore structure which
is largely controlled by aligned phyllosilicates is the
strongest control on bulk rock compliance and attenu-
ation. Thus, although constraining the importance of
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lithology on attenuation and dispersion would require
additional laboratory measurements and microstruc-
tural observations of blueschist facies metapelites, we
do not predict significant differences in the viscoelastic
properties at seismic frequencies.

6 Conclusions
Weused the forced oscillation technique tomeasure the
dispersion of elastic moduli in the Orocopia schist at
seismic frequencies (2 × 10−5 - 30 Hz) and then used
our previous measurements of attenuation and Stan-
dard Linear Solid models to evaluate the mechanisms
that control attenuation and dispersion. We find that
the Young’s and shear moduli are dispersive and the
magnitudes depend on both water saturation and ef-
fective pressure. The Standard Linear Solid models fit
the experimental data well and demonstrate that the
dispersion is exclusively related to two peaks in atten-
uation controlled by wave-induced fluid flow. In addi-
tion, we show that the patchy saturation and the squirt
flow mechanisms of attenuation and dispersion can
be described using a single permeability and a single
pore geometry, despite the complexmicrostructure of a
schist. In both the schist and other lithologies, the pre-
dominance of thin elongated pores is the primary mi-
crostructural characteristic controlling the magnitude
of dispersion. As a result, attenuation and dispersion
are significant and can be modeled for geologic condi-
tions in subduction zoneswhere lithologies rich in phyl-
losilicates are present.
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Abstract We investigate the impact of outer-rise normal fault subduction on the structural evolution of
the décollement and frontal prism in a portion of the Japan trench that hosted the 2011 Tohoku earthquake.
We use seismic reflection data to map the relative occurrence of sediment accretion, sediment subduction,
and frontal tectonic erosion in the shallow portion of the subduction zone and correlate these deformation
styles to the magnitude of outer-rise fault throw and incoming plate sediment thickness. These data reveal
spatial heterogeneity in the modes of deformation over distances of 5-10 km that necessitate correlative het-
erogeneity in the geometry and composition of the shallow décollement over similar length-scales. We find
that sediment accretion predominantly occurs in regions where incoming plate sediment thickness is greater
than fault throw. In these areas, thedécollement appears tobenon-planar and compositionally homogenous.
Conversely, frontal tectonic erosion and slope failures are predominantly observed in regions where fault
throw is greater than sediment thickness. In these areas, the décollement may be planar but composition-
ally heterogeneous. Additionally, spatial variations in near trench slip appear to correlate with the dominant
deformation modes, suggesting that both sediment thickness and outer-rise fault throw may be important
controls on shallowmegathrust behavior.

Non-technical summary We investigate how properties of the subducting plate affect the struc-
ture of the shallow subduction zone off the coast of northern Japan, and how thismay impact the earthquake
potential of the region. We use geophysical reflection data to determine how sediment on top of the oceanic
crust, and faults that displace the crust, can allow for sediment to be either scraped off or brought down into
the subduction zone. We determine that these processes depend on both how thick the sediment is and how
much displacement has occurred along faults. In areas where the sediment is thicker than the fault displace-
ment, sediments are off-scraped and the interface between the upper and lower plate is more uniform in
composition. In areas where the faults are larger than sediment thickness, the sediment is subducted, and
the interfacemay have a varied composition. We identify variations in sediment and interface properties that
have important implications for how the subduction zone evolves over time and for the style of shallow earth-
quakes. We suggest that the thickness of the sediment and the size of the faults on the subducting plate can
help us understand such earthquake behavior.

1 Introduction
The subduction of outer-rise normal faults is a nearly
ubiquitous process that plays an important role in the
mechanics of the shallow portion of the plate bound-
ary fault (décollement) as lower plate surface roughness
can modulate the frictional and fluid properties of the
subduction interface (Clift and Vannucchi, 2004; Moore
et al., 1986; Morgan et al., 2007; Polet and Kanamori,
2000; Saffer and Tobin, 2011; Tanioka et al., 1997). In
many sediment-rich margins, this lower plate rough-
ness is covered with a thick sediment sequence that of-
ten allows the décollement to “smooth over” the sub-
ducting topography (e.g., Contreras-Reyes et al., 2007;
Wang and Bilek, 2014). In contrast, in sediment-poor

∗Corresponding author: Christine.Regalla@nau.edu

margins, such as northeastern Japan, outer-rise nor-
mal faults produce significant offsets of the subduct-
ing oceanic crust and the seafloor outboard of the
trench (e.g., Masson, 1991), which impart geometric
and compositional heterogeneities that disrupt the con-
tinuity and evolution of the décollement (e.g., Polet and
Kanamori, 2000; Tanioka et al., 1997). Constraints on
the stratigraphic position and geometric evolution of
the décollement are necessary for understanding the
first-order control on the volumes of subducted versus
accreted sediments, and the composition and strength
of the shallow décollement (Saffer and Tobin, 2011;
Moore et al., 2015; Polet andKanamori, 2000). However,
the factors controlling the evolution of the shallow dé-
collement in response to subducting outer-rise faults re-
main unclear.
We evaluate how incoming plate sediment thickness
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and relief across outer-rise normal faults influence the
evolution of the décollement and sediment fluxes at the
shallow portion of the Japan trench. The Japan trench
is a well-imaged margin that has become a type loca-
tion for studies on outer-rise normal fault subduction
and its impacts on sediment fluxes and forearc evo-
lution (e.g., von Huene and Lallemand, 1990; Tanioka
et al., 1997; von Huene and Culotta, 1989). Two dif-
ferent scenarios have been proposed for the evolution
of the shallow portion of the subduction interface in
northeastern Japan. In the first scenario, the develop-
ment of a planar décollement across subducting horsts
and grabens entraps both lower and upper plate sedi-
ments within subducted grabens and prevents volumi-
nous sediment accretion (e.g., Hilde, 1983; von Huene
et al., 1982; von Huene and Culotta, 1989). This model
is supported by seismic reflection data that show sed-
iment slumping into subducting grabens at the trench
and a décollement that appears to project across lower
plate grabens beneath the frontal prism (e.g., Hilde,
1983; Kodaira et al., 2012; Strasser et al., 2013). In
the second scenario, the shallow décollement geome-
try mimics the subducted seafloor roughness, such that
the majority of the incoming sediment section is off-
scraped and accreted (Nakamura et al., 2013; Regalla
et al., 2019). Thismodel is supported by high-resolution
seismic reflection data (Nakamura et al., 2013, 2020)
and drill cores collected across the plate boundary in-
terface at the Japan trench (Chester et al., 2013) that
show thrust imbrication of sediments near the trench
and image an undulating décollement that appears to
step over subducting horsts and grabens. Recently col-
lected high-resolution seismic reflection data along the
Japan trench show that both modes can occur along
the margin (Nakamura et al., 2020). However, it re-
mains unclear which processes control the evolution of
the décollement in response to subducting horsts and
grabens, the spatial variations in these processes along
strike and down dip, and the relationship to the styles of
slip along the shallow subduction interface.
Here, we analyze 44 seismic reflection profiles in a

40 x 180 km portion of the margin between 38°N and
40°N, in order to evaluate the relationship between sed-
iment thickness, outer-rise fault throw, and modes of
frontal prism deformation in a sediment-starved region
that is known to be capable of hosting tsunamigenic
slip (Figure 1). We calculate incoming plate sediment
thickness and throw across normal faults on the incom-
ing plate and beneath the prism, and identify modes
of frontal prism deformation including sediment ac-
cretion, partial sediment accretion, complete sediment
subduction, and frontal tectonic erosion. Our results
show that the relative magnitudes of fault throw and
sediment thickness together controlmodes of prismde-
formation, sediment flux, and shallow décollement het-
erogeneity. Sediment accretion is generally observed
where sediment thickness is large relative to outer-rise
fault throw, whereas frontal tectonic erosion occurs
where fault throw is large relative to sediment thick-
ness. These two styles of deformation have different
endmember implications for the compositional and ge-
ometric heterogeneity of the shallow décollement that

appear to correlate with different styles of shallow sub-
duction interface slip. Therefore, sediment thickness
and outer-rise fault throw may be important factors for
predictingmodes of frontal prism deformation, hetero-
geneity in the shallow subduction interface, and the
conditions that may promote or inhibit shallow plate
boundary slip.

2 Background

This study is performed along a portion of the NE Japan
trench margin where high-density seismic reflection
data allow for detailed evaluations of the frontal prism
and incoming plate structure. At this location, the Pa-
cific plate subducts beneath northern Honshu at a rate
of ~80mm/yr at the Japan trench (Seno et al., 1993) (Fig-
ure 1). The forearc consists of a high-velocity wedge (4-6
km/s P-wave)made of Cretaceous and younger accreted
sediments (Tsuru et al., 2002; Kodaira et al., 2017), and
a low velocity (2-3.5 km/s P-wave), seismically chaotic
frontal prism, located at the seaward edge of the fore-
arc. The prism is a wedge-shaped sedimentary package
with a width of ~15–30 km that spans the margin paral-
lel to the trench axis (Tsuru et al., 2002; Kodaira et al.,
2017). The wedge appears to be composed of accreted
incoming plate sediments derived from biogenic muds
off-scraped from the incoming Pacific plate (Nakamura
et al., 2013; Regalla et al., 2019), modified by large slope
failures (Nakamura et al., 2020).
The incoming Pacific plate has a relatively thin sed-

iment cover (~50–600 m) (Boston et al., 2014; Naka-
mura et al., 2023) due to limited biologic productivity in
the north Pacific gyre and the relatively small volume
of trench fill derived from the nearby continent and
trench slopes (Moore et al., 2015; Ikehara et al., 2017).
The incoming plate stratigraphy recovered at Deep Sea
Drilling Project (DSDP) Leg 56/57 Site 436 (Figure 1) con-
sists of basaltic crust overlain by ~100–160 m of Creta-
ceous to Oligocene chert, ~20–50 m of Eocene to early
Miocene smectite-rich clay, and ~200–350m ofMiocene
toQuaternary biogenicmud (Kodaira et al., 2020;Moore
et al., 2015; Nakamura et al., 2013; Shipboard Scientific
Party, 1980).
Flexure of the Pacific plate into the subduction zone

generates bending-related normal faults that offset the
oceanic crust and overlying sediments (e.g., Masson,
1991). Horsts and grabens bounded by these normal
faults have widths of ~5–10 km and occur from the
trench to ~120 km seaward of the trench axis. Fault off-
sets are ~100 m and increase towards the trench axis up
to ~500 m (Boston et al., 2014). Horsts and grabens are
also imaged beneath the upper plate up to 50 km land-
ward of the trench axis, at depths up to 15 km, and with
fault offsets up to 2 km (Tsuru et al., 2000; Kodaira et al.,
2017). Some horsts and grabens on the incoming plate
are associated with petit spot volcanism. Petit spot vol-
canoes are young (0–8 Ma) volcanic deposits, <300 m
in height and <5 km in diameter, formed as a result of
subduction-related plate flexure outboard of the trench
axis (Hirano et al., 2006, 2019).
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Figure 1 Location and tectonic setting of the study area at the Japan trench, offshore northeast Japan. A. Regional map
showing the location of the trench, the plate convergence vector, and the Mw 9.0 2011 Tohoku earthquake rupture slip con-
tours (white lines, after Iinuma et al., 2012). The study area (white dashed box, Figure 1b) is a ~40 km x 180 km region where
44 seismic reflection lines were collected by JAMSTEC (survey KR13-11). The survey area overlaps with the northern portion
of the 2011 earthquake rupture. Locations of DSDP Site 436 and IODP Core C0019, which provide key stratigraphic data, are
shown with yellow circles. B. Hillshaded 85 m DEM of the region in the white dashed box in panel A showing the trench axis
(purple dashed line), forearc slope, frontal prism, and incoming plate horsts and grabens. Black lines show the locations of
individual seismic reflection profiles mapped in this study.

3 Methods

We use 44 seismic reflection profiles that are 40 km in
length and spaced ~4 km apart along the trench axis
from ~38–40°N, collected and processed by the Japan
Agency forMarine-Earth Science andTechnology (JAM-
STEC) (Figure 1). Lineswere collectedwithDeepSeaRe-
search Vessel KAIREI during the KR13-11 cruise using a
cluster gun array with a volume of 380 in3, 37.5 m shot
interval, 6.25 m receiver interval, and a 1300 m-long
streamer cable. The data are post-stack depth migrated
lines. The velocity model used in the post-stack depth
migration consists of three layers. The top layer is the
water column and has a fixed velocity of 1525 m/s. The
second layer is the soft sedimentary layer (SU1 and SU2).
The velocity of the top of this layer is 1600m/s and is lin-
early increased down to the bottom of this layer, with a
0.5 (m/s)/m gradient (namely, 1800 m/s at 400 m below
seafloor, 2000 m/s at 800 m below seafloor). The model
of the second layer was determined by comparing post-
stack depthmigrated profiles with several different gra-
dient values. The gradient 0.5 (m/s)/m was chosen as it
generated the best migrated image. The third layer is
the chert and basement units (SU3 and SU4) and has a

fixed velocity of 3000 m/s. We use these depth-migrated
seismic reflection profiles to map seismic units (SUs)
and faults, and to calculate sediment thickness and fault
throw.

3.1 Seismic linemapping
We map seismic units on the incoming and overriding
plate in the study area using the seismic stratigraphy
of Nakamura et al. (2013, 2020, 2023) (Figure 2a). This
work defines four seismic units (SU1 though SU4) based
on seismic characteristics and correlations to known
seismic and lithostratigraphic units of DSDP Site 436
and International Ocean Drilling Program (IODP) Ex-
pedition 343 Core C0019 (Nakamura et al., 2013). Seis-
mic unit SU1, located landward of the trench, is an
acoustically chaotic unit containing weak, discontinu-
ous reflections. This unit is interpreted as the older, de-
formed equivalent of off-scraped incoming plate sedi-
ments (Nakamura et al., 2013, 2020; Regalla et al., 2019).
Seismic unit SU2, located on the incoming plate and
in frontal thrusts of the frontal prism, contains sub-
horizontal, parallel reflections with weak amplitudes.
This unit is correlative to incoming plate sediments

3
SEISMICA | volume 3.1 | 2024



SEISMICA | RESEARCH ARTICLE | Outer-rise faults, heterogeneity, and sediment flux at the Japan trench

composed of diatomaceous muds with a basal pelagic
clay layer (Nakamura et al., 2013). We include trench
fill deposits, parallel and continuous reflections that
overly the incoming plate sediments near the defor-
mation front, as part of the SU2 map unit (Nakamura
et al., 2023). Seismic unit SU3 contains high ampli-
tude, sub-horizontal, semi-continuous reflections and
is correlated to a chert layer stratigraphically below
SU2. Seismic unit SU4 contains high amplitude reflec-
tions that become more discontinuous and weaker am-
plitudewith depth. This unit is correlated to the basaltic
crust of the incoming plate underlying SU3 (Figure 2a).
We identify faults in the incoming and overriding

plate where there is folding, truncation, or offset of par-
allel reflectors in seismic units, or where high ampli-
tude reflectors truncate at seismic unit boundaries or
the seafloor. We map three categories of faults: im-
bricate thrust faults in the frontal prism, the shallow
plate boundary décollement, and normal faults that off-
set seismic units in the incomingplate. Imbricate thrust
faults are identified as low angle (<30°) thrust faults that
sometimes appear as high amplitude reflections sepa-
rating repeating packages of SU2 in the frontal prism
(Figures 3a and b and S1). These imbricate thrust faults
sole into the décollement or higher in the sediment
section. The décollement is a high-amplitude, semi-
continuous reflection that separates undeformed strata
in the subducting plate from deformed material in the
overriding plate (Nakamura et al., 2013, 2020). Prior
mappingdemonstrates that the décollement is localized
within SU1 or within or at the base of SU2 and is gener-
ally parallel to the top of the SU3 and SU4 units in the
subducting plate (Nakamura et al., 2013, 2020). Normal
faults on the incoming plate and subducting plate be-
neath the prism are identified based on truncation of
units SU2, SU3, and SU4 where they are offset at a high
angle (>50°) by landward or seaward dipping faults (e.g.,
Boston et al., 2014; Nakamura et al., 2023).
We also map petit spot volcanic deposits on the in-

coming plate, slope failures at the toe of the frontal
prism, and the position of the deformation front at the
trench axis. Petit spot volcanic deposits are identified as
mounds or knolls with discontinuous, high amplitude
seismic reflections that disturb the top of the oceanic
crust and sediment section (Fujiwara et al., 2007; Fujie
et al., 2020). Slope failures are identified based on the
presence of steep, arcuate topographic slopes and asso-
ciated mass transport deposits (Nakamura et al., 2020).
The deformation front is mapped at the position where
deformed frontal prism sediments intersect the unde-
formed sediments of the incoming plate. We infer the
position of the deformation front where slope failures
modify the frontal prism.

3.2 Incoming plate sediment thickness and
normal fault throw

We measured the thickness of incoming plate sedi-
ments at multiple locations on each seismic reflection
profile (Figure 1) to determine the thickness of sedi-
ment available for accretion. Prior seismic mapping,
core, and borehole data indicate that the biogenicmuds

and clays of seismic unit SU2 can be accreted to the
upper plate, whereas the more strongly lithified cherts
of seismic unit SU3 appear to evade accretion and are
largely subducted (e.g., Nakamura et al., 2013, 2020;
Chester et al., 2013). We therefore calculate the in-
coming plate sediment thickness within SU2 as a proxy
for the total thickness of sediment available for accre-
tion. Here, the term “incoming plate sediment thick-
ness” refers to the biogenic muds and pelagic clays of
SU2 and does not include the cherts of SU3.
We define the thickness of SU2 as the distance be-

tween the top of the uppermost strong reflection of SU3
and the reflection at the top of SU2 at the seafloor (Fig-
ure 2b). We measure apparent sediment thickness as
the vertical distance between these two reflectors, then
convert to true sediment thickness using local strata
dip. Measurement locations were selected at sites that
minimized the impacts of local sediment re-distribution
and alteration. Specifically, we chose locations that are
>1 kilometer away from either outer-rise faults, which
generate local sediment erosion and redistribution; or
petit spot volcanism, that can locally alter sediment
thickness or composition.
We quantified outer-rise fault offset bymeasuring the

vertical separation of stratigraphic units across normal
faults by projecting offset horizons to the faultmidpoint
(Figure 2c). We chose to measure vertical separation
rather than fault throw because fault throw can only
be accurately measured when there are discrete faults
with distinct stratigraphic cutoffs imaged in the seis-
mic reflection profile. However, steeply dipping fault
planes and stratigraphic cutoffs are rarely clearly im-
aged in the seismic reflection data (e.g., Figures S3-8).
In contrast, vertical separation of offset layers can be
measured even if a fault plane or cutoff cannot be di-
rectly imaged, because the offset stratigraphic horizons
can be projected into the fault zone (Figure 2c). In this
study area, vertical separation and fault throw agree to
within +/- 50 m (calculated for fault dips >50° and strata
dips of <5°).
We calculated vertical separation of the top of unit

SU3 because the cherts of SU3 were deposited prior to
the onset of outer-rise faulting, and therefore record to-
tal fault slip. Wemeasured vertical separation of SU3 at
locationswhere thehorizon is clearly imagedandwhere
unit truncations have well constrained positions. These
selection criteria allowed us tomeasure vertical separa-
tion at two to four faulted locations per profile on the in-
coming plate outboard of the trench, and up to three lo-
cations on the subducted plate under the frontal prism.
We ranked the confidence of each vertical separation

measurement from 1 (low) to 3 (high) based on the dis-
tinctness of the fault plane and stratigraphic cutoffs.
For example, sites with a high confidence include a sin-
gle, discrete, fault with clear cutoffs, whereas sites that
containmultiple faults or have unclear unit truncations
have low confidence. We then calculated weighted av-
erages of fault throw using the following equation:

W =

∑ ∫
n

i=1
wiXi

∑ ∫
n

i=1
wi

(1)
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where W is the weighted average, wi is site confidence
weight, and Xi is site vertical separation. This ap-
proach allows us to identify spatial trends in normal
fault throws that are most dependent on our highest
confidence measurements.

4 Results
4.1 Seismic units and structure
4.1.1 Properties of the incoming plate outboard

of the trench

Three seismic units are present on the incoming plate
in themap area: SU2, SU3, and SU4. SU4 (basaltic crust)
is mapped everywhere on the incoming plate outboard
of the deformation front (Figures 3 and 4). SU3 and SU2
(chert, clay, and biogenic muds) are present nearly ev-
erywhere above SU4on the incomingplate, except in re-
gionswhere petit spot volcanic deposits are present. Pe-
tit spot volcanoes mapped in seismic reflection data are
~1–5 km in length and ~100–500m in height (Figure 3e).
There are three main clusters of petit spot volcanic de-
posits located at 39.25°N–39.75°N, 38.7°N–38.9°N, and
possibly at 38.4°N (Figure 5).
Incoming plate sediment thickness varies between

~50 and 400 m, with more than half of the measured
sites having thicknesses of 250–400m (Figure 5a). There
are, however, two ~20 x 20 km regions of anoma-
lously thin (~50–200 m) sediments located at ~39.5°N
and ~38.75°N. These regions are located near mapped
locations of petit spot volcanism, where SU2 is thin or
absent (e.g., Figure 3e). This spatial correlationbetween
thin sediments and petit spot volcanism has been sug-
gested to be a result of volcanic intrusions that meta-
morphose and effectively thin the muds and clays of
the sediment section (e.g., Fujie et al., 2020; Hirano

et al., 2006). The thin sediment regions we map are
surrounded by ~10 km wide margins with intermediate
sediment thicknesses (~200–300 m), and transition into
“background” sediment thicknesses (250–400 m) over
distances of ~>50 km.
Outer-rise faults offset seismic units SU2, SU3, and

SU4 throughout the study area (Figures 4 and 5b). Nor-
mal faults outboard of the trench have strikes that are
subparallel to the trench and are present from 0 to >100
km. Both landward and seaward dipping normal faults
are present and bound networks of horsts and grabens.
Normal faults have throws of ~90m to 900m, and gener-
ally increase inmagnitudewith proximity to the trench,
in agreement with the findings of Boston et al. (2014).
We note that there is one 20 km long region on the in-
coming plate at 39.4°N that contains a cluster of normal
faults with very high fault throw (>300m). This region is
located in the vicinity of the petit spot volcanismaround
~39.5°N (Figure 5b).

4.1.2 Properties of the subductedplateunder the
frontal prism

Seismic units SU4, SU3, and SU2 are also present un-
der the frontal prism. SU4 (basaltic crust) is mapped
everywhere on the subducted plate beneath the frontal
prism (Figures 3 and 4). SU3 can be only definitively
mapped under the frontal prism to within <~5 km of
the deformation front, at which point the resolution of
the seismic data often precludes separation of SU4 from
SU3 (Figure 4). SU2 is typically not present on the sub-
ducting plate under the frontal prism, except at lim-
ited locations where it is present in subducted grabens
(Figure 3b and d) or is underthrust beneath the frontal
prism (Figure 3c).
Wemapped subducted normal faults landward of the
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Figure 3 Annotated seismic lines showing examples of mapped seismic units, normal faults, imbricate thrust faults, and
décollement position (see Supporting Information Figure S1 for non-annotated images). A. Example of a location where
imbricate thrust faults in SU2 sole into the décollement at the base of SU2 (biogenic mud). We interpret this geometry to
indicate that all SU2 sediments are accreted at the deformation front and SU3 and SU4 are locally subducted. B. Example of
a location where imbricate thrust faults sole into décollement within SU2, rather than at its base. We interpret this geometry
to represent partial sediment accretion, where SU2 above the décollement is accreted and SU2, SU3, and SU4 below are
subducted. C. Example showing the décollement at the top of SU2 such that there is complete sediment subduction of units
SU2, SU3, and SU4 beneath the frontal prism (SU1). D. Example of a location where the décollement appears to cut across
SU1 to connect the tops of two horsts. Also note the steeply dipping slope at the deformation indicative of slope failure. We
interpret this décollement geometry to indicate that part of SU1, and likely all of SU2, SU3, and SU4, are locally subducted.
This geometry may lead to frontal tectonic erosion of prism sediments (e.g., Hilde, 1983). E. Example of petit spot volcanism
on the incoming pate. Petit spot volcanoes are identified as seismically chaoticmounds (light green) that intrude and disrupt
the oceanic crust and sediment section.

deformation front (under the frontal prism) and in-
terpolated fault boundaries between adjacent seismic
lines (Figure 5b). Normal faults subducted beneath the
frontal prism branch andmerge along strike and bound
horsts and grabens that have length and widths compa-
rable to that on incoming plate (Figure 5b and c). In
some locations, the displacement along normal faults
decreases along strike such that there are neither horsts

nor grabens present in a line segment. These likely rep-
resent regions where there is flat subducting topogra-
phy or relay ramps between adjacent faults. The aver-
age throw on normal faults under the frontal prism is
354 ± 163 m. This magnitude of offset is greater than
the average throw on outer-rise faults outboard of the
trench (261 ± 103 m), and implies that there is a con-
tinued accumulation of slip on normal faults following
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Figure 4 Examples of variations in mapped deformation modes, sediment flux, and décollement position within a seismic
reflection profile. See Figures 1 and 5 for profile locations and the Supporting Information figures S3 – 5 for un-annotated
versions of these seismic profiles. Inferred position of SU3 is shown as dashed lined on the landward portions of the profiles.
A. Line hdsr223 has a singlemode of deformation along the entire seismic profile. There is complete sediment accretion near
the deformation front and inferred sediment accretion along landward segments. B. Line hdmy113 has twomodes of defor-
mation, alternating between frontal tectonic erosion within subducted grabens and sediment accretion on horsts. C. Line
hdmy069 has three modes of deformation: complete sediment subduction near the deformation front, possible sediment
accretion on the horst top, and potential tectonic erosion in the landward-most half-graben.

subduction under the frontal prism.

4.1.3 Properties of the overriding plate

Two seismic units are present in the overriding plate:
SU1 (chaotic frontal prism) and deformed SU2 (biogenic
muds and clay) (Figures 3 and 4). Unlike many mar-
gins with well-formed accretionary prisms, at the Japan
trench it is difficult to resolve coherent reflectors within
the frontal prismor identify internal deformation struc-
tures within SU1 (Nakamura et al., 2013, 2020). In con-
trast, where SU2 is present in the overriding plate, co-
herent reflectors are deformed into fault-related folds
as the incoming sediments are repeated in imbricate
thrusts that sole into a local décollement (Figure 3a and
b). Imbricate thrust faults repeating SU2 are present in
~2/3 of the mapped seismic lines and comprise the out-
ermost portion of the frontal prism (Figures 3a andb; 4a
and c). In the other ~1/3 of the lines, SU1 is present all
the way to the deformation front (Figures 3c and d; 4b).
The nature of the boundary between SU1 and SU2 varies
among seismic lines and can either be gradational (e.g.,
Figure 3b) or abrupt (e.g., Figure 4a).
In some locations, the internal structure of the prism

is disrupted by slope failures that have heights of ~500
m–1 kmand headwall slopes of ~20–30° (Figure 3d). The
highest density of large slope failures occurs in a re-
gion between 39.3°N and 39.6°N (Figure 5c), inboard of
a region on the incoming plate with very large offset
outer-rise faults, thin sediments, and petit spot volcan-
ism. This correlation suggests that slope failures may
be promoted by the subduction of crust with large fault
throw, thin sediment, and seafloor roughness generated
by volcanism.

4.1.4 Properties of the décollement

The décollement in our study area is expressed in three
ways: 1) a subhorizontal fault into which imbricate
thrusts sole, 2) a high amplitude, subhorizontal reflec-
tor below SU1 and/or SU2 (Nakamura et al., 2013, 2020),
or 3) the contact between SU1/SU2 and the underthrust
units (Figure 3a-d). In locations where imbricate thrust
faults sole into the base of SU2 at its contact with SU3
(Figure 3a), the décollement is likely hosted within
a layer of smectite rich, frictionally weak clays (e.g.,
Chester et al., 2013; Kirkpatrick et al., 2015;Moore et al.,
2015; Nakamura et al., 2013). Where the décollement is
located within SU2 (Figure 3b), it is likely hosted within
frictionally stronger biogenic muds (Ikari et al., 2015;
Sawai et al., 2017).

High amplitude décollement reflectors mapped at
depthmay project into imbricate faultswithin the lower
portion of SU2 (Figure 3a and b), or may project above
SU3 and SU2, below SU1 (Figure 3c and d). Mapped dé-
collement reflectors have two endmember geometries:
a semi-planar trajectory across both horsts and graben
(Figure 3d), or a non-planar geometry where it either
steps down from a horst into a graben or steps up from
graben into a horst (Figure 3b). The strength of the dé-
collement reflector often changes as the décollement
crosses into different seismic units. For example, a pla-
nar décollement that crosses fromahorst top into prism
sediment above a graben weakens in seismic charac-
ter, whereas the décollement often maintains its seis-
mic character as it steps down into a subducting graben
(Figures 3 and S3-5).
In locations where there are neither imbricate thrust

faults nor a clear high amplitude reflector, we infer the
location of the décollement to be the position that sep-
arates SU1/SU2 material in the frontal prism from ma-
terial on the subducted plate (Figure 3c and d), and it
is inferred to have a position that is congruent with the
décollement as mapped in the up-dip and down-dip di-
rections. The unit or units present under the décolle-
ment vary as a function of distance from the trench,
and as a function of its position relative to a subducted
horst or graben. SU2 is mapped under the décollement
in lines where some or all of the SU2 section is under-
thrust at the deformation front (Figure 3b and c) or at
locations where SU2 is entrapped within a subducting
graben (Figure 4c). Where SU2 is present under the dé-
collement, it is usually undeformed and contains flat
parallel reflectors (Figure 3b and c). Greater than ~1–3
km from the deformation front, the décollement typ-
ically separates SU1 in the overriding plate from SU3
or SU4 in the downgoing plate (Figure 4b and c), and
SU2 is absent. Finally, in lines where deep (greater than
~200m) grabens are subducted, SU1 may be present be-
neath the décollement (Figures 3d and 4b), along with
SU2, SU3, and SU4.

4.2 Frontal prism structure and fate of sedi-
ments

We combine our mapping of seismic units, imbricate
thrust faults, and décollement position to generate cri-
teria for identifying portions of the forearc that are the
product of sediment accretion, sediment subduction, or
frontal tectonic erosion (deformation “modes”, Table 1).
Because of the time transgressive nature of deformation
during subduction, structures mapped at greater dis-
tances from the trench reflect the cumulative processes
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that operated when that portion of the subducted plate
was at the trench,while itwas being translated to its cur-
rent position, and those operating in situ today. As such,
we define separate criteria to interpret eachmode in the
up-dip region at the deformation front, and down-dip
regions ~>5km landward of the deformation front.

4.2.1 Complete sediment accretion
Near the deformation front, line segments are catego-
rized as experiencing complete sediment accretion if
they contain imbricate thrust faults in the frontal prism
that sole into a décollement localized at the base of
the incoming plate sediment section, SU2 (Table 1, Fig-
ure 3a). In these locations, SU3 and SU4 are located
below the décollement. We interpret this geometry to
indicate that the complete sediment section of SU2 is
off-scraped and actively accreted to the frontal prism.
Landward of the deformation front, we categorized a
line segment as having experienced complete sediment
accretion if the décollement separates prism sediments
(SU1/SU2) in the overriding plate from the chert and
basalt (SU3/4) of the subducting plate, with no incom-
ing plate sediment (SU2) observed beneath the décolle-
ment. In these locations, we infer that the missing
SU2 was previously accreted at the deformation front,
and that the frontal prism is actively sliding along a dé-
collement that is localized directly above chert/basalt of
SU3/4.

4.2.2 Partial sediment accretion
Near the deformation front, line segments are cate-
gorized as experiencing partial sediment accretion if
they contain thrust faults that sole into a décollement
formed in a horizon within SU2 (Table 1, Figure 3b). In
these locations, parallel reflections of SU2 are often ob-
served beneath the décollement. We interpret that in
these lines, the upper portion of the sediments above
the décollement are actively accreting to the frontal
prism and the sediments beneath the décollement are
locally subducted. Landward of the deformation front,
partial accretion is mapped in locations where the dé-
collement separates prism sediments (SU1/SU2) in the
overriding plate from incoming plate sediments (SU2)
below the décollement. In these locations, either par-
allel reflectors of the lower part of SU2 are observed be-
low the décollement, or the total thickness of SU2 under
the décollement is much less than the total thickness of
SU2 on the incoming plate. We infer that the missing
upper section of SU2 was accreted at the deformation
front, such that only the lower portion was subducted
to depth. These data imply that the frontal prism is ac-
tively sliding along the décollement over the lower por-
tion of SU2, such that there is active subduction of the
lowermost incoming plate sediments.

4.2.3 Complete sediment subduction
Near the deformation front, line segments are catego-
rized as experiencing complete sediment subduction if
the décollement is localized at the top of the incom-
ing plate sediments below prism sediments (Table 1,

Figure 3c). In these locations, seismic reflectors that
represent the complete thickness of the incoming plate
sediments (SU2) are present beneath the décollement.
Here, the complete sediment section is locally sub-
ducted and there is no active accretion occurring at the
deformation front. Landward of the deformation front,
complete sediment subduction is mapped using similar
criteria: reflectors comprising the complete SU2 section
are observed beneath the décollement. In these loca-
tions, we infer that no sediment accretion occurred at
the deformation front, and that there is currently sta-
ble sliding of the prism along the décollement above the
subducted sediment section.

4.2.4 Incipient frontal tectonic erosion
Frontal tectonic erosion, whereby frontal prism mate-
rial is subducted to depth, has been proposed to occur
by entrapment of frontal prism material under the dé-
collement within a subducted graben (e.g., Hilde, 1983).
This process has been proposed to initiate via gravi-
tational collapse and slumping of frontal prism mate-
rial that fills the incoming plate graben at the trench
(e.g., Hilde, 1983; von Huene and Culotta, 1989). The
slope failures and sediment slumping thatwemapat the
trench may indicate the incipient process that can ulti-
mately lead to frontal tectonic erosion (Figures 3d and
5c). Therefore, while we do not map frontal tectonic
erosion as an active process at the deformation front,
slope failures mapped at the deformation front may in-
dicate locations where frontal tectonic erosion will oc-
cur in the future.
We can, however, map portions of line segments at

depth that may be experiencing active frontal tectonic
erosion. Frontal tectonic erosion is mapped at loca-
tions landward of the deformation front where a pla-
nar décollement cuts across a graben within prism sed-
iments (SU1) such that frontal prism material and in-
coming plate sediments (SU2) are entrapped below the
décollement within a graben (Figures 3d and 4b and
c). In these locations, we infer that both tectonic ero-
sion and subduction of incoming plate sediments is oc-
curring. Frontal tectonic erosion is also inferred in lo-
cations where a décollement reflector is not clear, but
where high relief subducted grabens are filled with SU1
and SU2. Where frontal tectonic erosion is mapped, we
infer that the prism slides along the décollement and
that both SU1 and SU2–4 are actively subducted.

4.3 Spatial variability in modes of deforma-
tion

Using the above criteria, we mapped modes of defor-
mation on each seismic line, covering a region that ex-
tends ~180 km along margin strike, from the deforma-
tion front to ~20 km down dip (Figures 4 and 5c; S3–8).
Our mapping shows that modes of deformation are not
constant with depth along a single seismic line (Fig-
ure 5c), and only ~30% of the seismic profiles contain
a single mode of deformation (e.g., Figure 4a). Most
seismic lines contain two or three different deforma-
tion modes (Figures 4b and c; S4 - 8). Transitions be-
tween modes occur at horst or graben boundaries. For
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Figure 5 Results ofmapping seismic reflections profiles along the Japan trench. Thewhite dashed boxes denote the extent
of the seismic profiles in the study area. The purple line indicates the mapped location of the deformation front. The white
triangles represent petit spot volcanic deposits on the incoming plate. A. Sediment thicknessmeasurements at 130 locations
on the incoming plate. B. Map showing measured throw along normal faults developed on the Pacific plate crust at 199
locations. Note that regions with petit spot volcanism are located with thin sediments and high offset faults. Thick outlined
points in panels A and B denote sites used in ratio calculations at the trench. Only sites with both sediment thickness data
within 10 km of the trench and fault throw data on the first subducted horst or graben were used. C.Map of modes of frontal
prism deformation: solid line where certain; dashed where uncertain or inferred. These data show that prism evolution
varies between sediment accretion, sediment subduction, and frontal tectonic erosion over ~5 - 10 km length scales along
strike anddowndip. Cross-comparisonsof all threemaps show that sediment accretionoccurs in regionswith thick incoming
plate sediment and small fault throw, while slope failure and tectonic erosion tend to occur in places with thin sediments,
petit spot volcanism, and large fault throw.

example, line hdmy113 (Figure 4b) is characterized by
alternating modes of tectonic erosion in grabens and
sediment accretion on horsts. Similarly, line hdmy069
(Figure 4c) is characterized by complete sediment sub-
duction in a graben at the trench, complete accretion
in the down-dip horst, and tectonic erosion in the next
graben down dip. Our seismic line mapping shows that
the mode of deformation varies in the study area over
length scales of ~5–20 km along strike, and ~5–10 km
down dip (Figure 5c).
Importantly, we find that the types of deformation

that can occur, and therefore the possible pathways for
incoming and upper plate sediments, differ between
horsts and grabens. Horsts in the study area only ex-
perience complete sediment accretion or partial accre-
tion, and do not experience tectonic erosion or sedi-
ment subduction (Figures 3, 4, and 5c; S3 - S8). This
observation, apparent both at the trench and at depth,
indicates that most or all of the sediment on subducted
horsts is off-scraped by imbricate thrusts and accreted
to the frontal prism at the deformation front.
In contrast, subducted grabens can experience any

of the four modes of deformation (Figure 5c). Our
mapping shows approximately half of the grabens ex-
perience complete or partial accretion and half expe-
rience complete sediment subduction or tectonic ero-
sion. This observation of sediment accretion in grabens
directly contrasts prior models that suggest subducted
grabens ubiquitously lead to sediment subduction and
promote frontal tectonic erosion (e.g., Hilde, 1983; von
Huene and Culotta, 1989). Instead, our data imply that
other processes may control whether sediments in a
subducted graben will be accreted, subducted, or tec-
tonically eroded.

4.4 Correlations between sediment thick-
ness, fault throw, and frontal prism
deformation

The relative magnitudes of outer-rise fault throw and
incoming plate sediment thickness at the time of sub-
duction may play a key role in sediment flux and prism
evolution. We test this hypothesis by correlating the
maps of frontal prismdeformationmodewithmeasure-
ments of fault offset and sediment thickness on the in-
coming plate at the trench (Figure 6). Along each seis-
mic line, we calculate the weighted-average fault throw
from the first one to two normal faults subducted be-

neath the frontal prism and average sediment thickness
using measurements within ~10km of the trench (See
Figure 4 formeasurement locations). We then correlate
these near-trench values with the mode of deformation
mapped closest to the trench in order to determine vari-
ations in sediment thickness and fault throw as a func-
tion of deformation mode.
We find that incoming plate sediment thicknesses

are similar (~300–365 m) in regions experiencing com-
plete accretion, partial accretion, complete sediment
subduction, and frontal tectonic erosion, whereas sedi-
ment thickness outboard of regions with slope failures
are exceptionally low (115 ± 45 m) (Figure 6a). We find
that fault throw varies between the different modes of
deformation, where larger fault throw values correlate
to smaller volumesof accreted sediment. Complete sed-
iment accretion occurs where the subducting oceanic
crust has the smallest average fault throws of 216 ±
65 m. Partial accretion and complete sediment subduc-
tion occur where the subducting crust has intermediate
fault throws of ~295–340 m (Figure 6b). Portions of the
margin experiencing frontal tectonic erosion and slope
failure have significantly larger fault throws, averaging
around ~490 - 500 m.
We evaluate this relationship between the incoming

plate and frontal prism deformation by combining sed-
iment thickness and fault throw measurements (Fig-
ure 6a-b) into a single ratio using near-trench mea-
surements and correlate these near-trench ratios to the
mode of deformationmapped closest to the trench (Fig-
ure 6c). These ratio data show discrete variations be-
tween the relative magnitudes of sediment thickness
and fault throw as a function of deformation mode.
Complete sediment accretion occurs inboard of regions
where there is a high ratio of sediment thickness to fault
throw (1.50 ± 0.6) (Figure 6c). Partial sediment accre-
tion and complete sediment subduction occur inboard
of regions where the ratio of sediment thickness to fault
throw on the incoming plate have intermediate values
of 1.09 ± 0.2 and 1.25 ± 0.2 respectively. Frontal tectonic
erosion occurs inboard of regions with a low ratio of
sediment thickness to fault throw (0.72 ± 0.2). Lastly,
slope failures at the deformation front occur where the
lowest ratio of sediment thickness to fault throw (0.28 ±
0.2).
We note that the total number of observations for

some modes of deformation is small (n=2 to 6). If we
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Mode of
deformation

At deformation front Landward of deformation front
Mapping criteria
(observations) Interpreted processes Mapping criteria

(observations) Interpreted processes

Complete
sediment
accretion

• Imbricate thrust faults
sole into the
décollement

• Décollement is localized
at the base of the
incoming plate
sediment section (SU2)

• SU3 and SU4 are below
the décollement

• Complete incoming
sediment section is
actively accreting to the
frontal prism

• Décollement is localized
above chert/basalt
(SU3/SU4)

• No incoming plate
sediment (SU2) is
observed beneath the
décollement

• Prism (SU1) is sliding
along décollement

• Incoming plate
sediment (SU2) was
previously accreted

Partial sediment
accretion

• Imbricate thrust faults
sole into the
décollement

• Décollement is localized
within the incoming
plate sediment section
(SU2)

• Parallel reflections of
lower SU2 are present
beneath décollement

• Upper portion of
incoming plate
sediments (SU2) is
actively accreting

• Lower portion of SU2 is
locally subducted

• Décollement separates
prism sediments
(SU1/SU2) from lower
portion of incoming
plate sediments (SU2)

• Parallel reflectors of SU2
observed below
décollement

• Prism (SU1) is sliding
along décollement

• Upper portion of SU2
was previously accreted

• Lower portion of SU2 is
locally subducted

Complete
sediment
subduction

• Décollement is localized
between the prism
sediments (SU1) and
the top of the incoming
plate sediments (SU2)

• Complete set of SU2
reflections is present
beneath the
décollement

• Complete sediment
section is locally
subducted; no accretion
occurring

• Décollement is localized
at the top of the
incoming plate
sediment section (SU2)

• Parallel reflectors (SU2)
are present beneath
décollement

• Décollement separates
prism sediments (SU1)
and incoming plate
sediments (SU2)

• Prism (SU1) is sliding on
top of subducted
sediment section (SU2)

• Sediments below
décollement are being
subducted

• No accretion has
occurred

Slope failures and
incipient frontal
tectonic erosion

• Frontal tectonic erosion
does not occur at the
deformation front; it only
occurs landward of the
deformation front

• The precursor to frontal
tectonic erosion may be
slope failures at the
deformation front and
mass transport deposits
into a subducting
graben

• Planar décollement cuts
across a graben within
prism sediments (SU1),
connecting two
adjacent horsts

• Frontal prismmaterial
(SU1) and incoming
plate sediments (SU2)
are entrapped below
the décollement within
a graben

• Stable sliding across
décollement

• Frontal prism sediments
(SU1) and incoming
plate sediments (SU2)
within graben are locally
subducted

Table 1 Criteria for mapping modes of frontal prism deformation.

increase the number of observations by correlating all
measurements of fault throw and sediment thickness
on the incoming and subducted plates with each type
of deformation mode at the trench, we see similar rela-
tive relationships between fault throw, sediment thick-
ness, and deformationmode. However, these data show
greater overlap, with ratios of 1.15 ± 0.6 for sediment
accretion, 1.15 ± 0.4 for partial accretion, 1.06 ± 0.4 for
complete sediment subduction, 0.94 ± 0.5 for frontal tec-
tonic erosion, and 0.41 ± 0.2 m for slope failure (Fig-

ure S9). Similarity in these values may be the result
of averaging across variable fault throws and sediment
thicknesses that exist over larger areas (~15–20 km) as
compared to near trench data (5–10 km) (Figures 5 and
6d). This suggests near-trench values of sediment thick-
ness and fault throw are the better predictor of defor-
mationmode at the trench. These data also suggest that
small-spatial scale variation in fault throw or sediment
thickness on the incoming plate can lead to significant
spatio-temporal variation in deformation mode at the
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trench.

5 Discussion
5.1 Influenceof sediment thickness and fault

throw on modes of frontal prism defor-
mation and sediment flux

Modes of frontal prismdeformation and the fate of both
incoming and upper plate sediments are a direct func-
tion of whether horsts or grabens are being subducted
and the relative magnitudes of fault offset versus sed-
iment thickness. First, we find that sediment accre-
tion always occurs on horsts, but grabens experience all
modes of deformation. Second, we find that sediment
accretion at the deformation front is promoted where
there are thicker incoming plate sediments (~300 m)
and outer-rise faults with low offsets (~225 m); that is,
in regions where the ratio of sediment thickness to fault
throw is >1 (Figures 5 and 6). Third, we find that lo-
cations on the incoming plate where there is petit spot
volcanism, moderate or thin sediments (<~300 m), and
outer-rise faults with large offsets (>350 m) correlate to
locations on the overriding plate with slope failures and
frontal tectonic erosion, where the ratio is <1 (Figures 5
and 6). These observations suggest that there may be a
critical threshold of sediment thickness to fault throw
that controls the modes of deformation and sediment
flux in the presence of subducting grabens. At the Japan
trench, this threshold appears to be approximately 1:1
ratio of sediment thickness to normal fault throw.

5.2 Implications for décollement hetero-
geneity

Spatio-temporal variations in the ratios of incoming
plate sediment thickness to outer-rise fault throw, and
thus modes of frontal prism deformation, directly im-
pact décollement geometry and mechanics by dictat-
ing the stratigraphic position of the décollement and
by introducing geometric barriers (horsts and grabens)
to the décollement. We observe spatial variations over
short length-scales (~5–10 km) in both frontal prism
mode of deformation and incoming plate ratio of sedi-
ment thickness to fault throw (Figures 5 and 6d). There-
fore, equivalent heterogeneity in décollement geometry
and composition must occur at similar spatial scales.
Our data suggest that theremaybe a threshold of fault

throw, given an incoming sediment thickness, that if ex-
ceeded, disrupts the décollement’s ability to localize at
the base of the incoming sediment section. For normal
fault throws below this threshold (ratio >1), a single con-
tinuous, undulating décollement can develop that pro-
motes sediment accretion (Figure 7a). For fault throws
above this threshold (ratio <1), a planar décollement de-
velops across a graben that is mechanically more favor-
able to propagate that promotes sediment subduction
and frontal tectonic erosion (Figure 7b).
Variations in the occurrence of sediment accre-

tion, sediment subduction, and frontal tectonic erosion
therefore have direct implications for two types of het-
erogeneity on the shallow décollement: geometric het-
erogeneity and compositional heterogeneity. First, sub-

ducting horsts and grabens on the incoming plate mod-
ulate shallow décollement mechanics by creating geo-
metric barriers over which the décollement must prop-
agate. We observe two different endmember geome-
tries of the décollement where it interacts with horst
and graben topography. At the Japan trench, when sed-
iment thickness is large relative to fault throw, we ob-
serve that the décollement undulates with subducting
topography, stepping up and down subducted normal
faults to maintain its position in a similar stratigraphic
horizon (e.g., Figures 4a and 7a). This stepping, how-
ever, creates geometric barriers over which the prism
must slide, and these barriers may create local stress
heterogeneities along the shallowmegathrust (e.g., Sun
et al., 2020). In contrast, when sediment thickness is
small relative to fault throw,weobserve that the décolle-
ment does not step down into the graben, but instead at-
tempts to maintain its planarity as it propagates across
the adjacent graben (e.g., Figures 4b and 7b). This pla-
nar décollement “smooths” over the subducting topo-
graphic roughness generated by normal faults without
developing normal fault-related geometric barriers in
the shallow megathrust. Therefore, the ratio of sedi-
ment thickness to fault offset on the incomingplatemay
be used to infer the degree of geometric heterogeneity
present in the shallow décollement, where high ratios
predict undulating décollements that step over geomet-
ric barriers, and low ratios predict planar décollements
that smooth over these barriers.
Second, spatial heterogeneity in the mode of frontal

prism deformation requires correlative heterogeneity
in the composition of the shallow décollement. This
is because in systems with subducting outer-rise nor-
mal faults, the juxtaposition of upthrown and down-
thrown horst and graben blocks on the incoming plate
creates lateral variations in the incoming plate sedi-
ment section. A décollement that has a planar geom-
etry that cuts across subducting grabens will inherently
propagate across different sedimentary units. In con-
trast, a décollement that undulates with the subducting
topography may remain in a continuous stratigraphic
horizon. In the Japan trench, where sediment thick-
ness is large relative to fault throw, we observe that
the décollement undulates with subducting horsts and
graben topography in order to remain in the same strati-
graphic position near the SU3 - SU2 contact (Figure 7a).
Conversely, where sediment thickness is small relative
to fault throw, the décollement is planar and may cut
across different lithologic units, including SU2 and SU1,
introducing compositional heterogeneity to the décolle-
ment (Figure 7b). Therefore, the ratio of sediment thick-
ness to fault throwon the subducting platemaybe apre-
dictor for compositional heterogeneity on the shallow
plate interface, where high ratios correlate to composi-
tionally homogenous décollement segments and low ra-
tios correlate to heterogeneous décollement segments.
These observations imply that, in portions of the

Japan trench where sediment thickness is greater than
normal fault throw, it is mechanically more favorable
for the décollement to make a small bend and remain
in a continuous stratigraphic horizon than to develop a
new décollement segment that smooths over subduct-
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Figure 6 Comparisons between sediment thickness, fault throw, andmode of frontal prism deformation at the trench. Box
plots (A - C) include individualmeasurements (points), weighted averages (horizontal line), and 2σw uncertainty (boxes). See
Figure 4 for measurement locations. A. Sediment thickness as a function deformation mode. Average sediment thickness is
the smallest outboard of regions with slope failures. Average sediment thickness is similar in regions experiencing all other
modes. B. Fault throw as a function of deformation mode. Portions of the prism experiencing complete accretion have the
smallest average fault throw, followedbypartial accretion and full sediment subduction, frontal tectonic erosion, and regions
with slope failures. C. Ratio of sediment thickness to fault throw as a function of deformation mode. Regions experiencing
complete accretion, partial accretion, and complete sediment subduction have ratios >1. Regions experiencing tectonic ero-
sion or slope failure have ratios <1. D. Map of dominant prism deformation mode, interpolated sediment thickness to fault
throw ratio on the incoming plate (1km grid), and slip contours for the 2011 Tohoku earthquake (after Iinuma et al., 2012).

ing topography. Only when normal fault throw is large
is itmore favorable todevelopanewplanardécollement
segment that propagates through subducting sediments
or frontal prism. This mechanical favorability may be
influenced, at least in part, by the frictional properties
of the sediments in the incoming section. Coring of
the incoming plate, frontal prism, and décollement at

IODP site C0019 andDSDP site 436 show that the décolle-
ment is locally developedwithin the basal, smectite rich
clay layer, correlative to the basal portion of SU2 on the
incoming plate (Chester et al., 2013; Nakamura et al.,
2013; Kirkpatrick et al., 2015; Nasu et al., 1980). Fric-
tion experiments indicate that these basal clays have
high concentrations of smectite and lower friction co-
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Figure 7 Endmember models of modes of frontal prism
deformation based on a synthesis of mapped seismic re-
flection lines in survey KR13-11 along the Japan trench. A.
Sediment accretion is promoted in regions where sediment
thickness on the incomingplate is large relative to incoming
plate fault throw on outer-rise faults (ratio >1). In this sce-
nario, the décollement undulates with subducting horsts
and grabens and may remain in the basal clay layer. B.
Frontal tectonic erosion is promoted in regions with small
sediment thickness relative to fault throw (ratio <1). At the
Japan trench, thepresenceofpetit spot volcanismmaycon-
tribute slope failures at the deformation front and facilitate
frontal tectonic erosion.

efficients than the overlying biogenic mudstones (Ikari
et al., 2015). Correlation of cores to seismic reflection
lines imply that this clay layer is present across the study
area, near the base of seismic unit SU2 (Nakamura et al.,
2013) (Figure 1, Core C0019), except in regions where
there is petit spot volcanism (Fujie et al., 2020). There-
fore, thepresenceof this frictionallyweak claymayhelp
promote the development of undulating décollements
that step into grabens in regions of low fault throw, but
segmentation of the clay layer may hinder this process,
leading to a planar décollement and compositional dé-
collement heterogeneity.
Our data therefore provide important insights into

the spatial scales of décollement heterogeneity that oc-
cur in the shallow subduction interface. Our frontal
prismmapping suggests that relatively compositionally
homogenous patches of décollement hosted in friction-
ally weak clays may occur in 5–20 km wide by 15–40
km long regions experiencing sediment accretion (Fig-
ure 6d). These homogeneous regions are likely seg-
mented by ~5 km wide by 5–30 km long patches, or po-
tential asperities, where the décollement is hosted in
frictionally stronger biogenic muds and frontal prism
material, in locations where partial accretion, sedi-
ment subduction, and tectonic erosion aremapped (Fig-
ure 6d).
Similar patterns can be observed in the interpolated

map of incoming plate ratios (Figure 6d). This map
shows 5–20 km wide by 20 to >40 km long laterally con-
tinuous regions of crust with ratios >1 that will likely
promote sediment accretion and the formation of com-
positionally homogenous décollement patches. These

patches are segmented by regions with ratios <1, where
deformationmode, and therefore décollementmechan-
ics, will likely vary over ~5–10 km length scales. These
length scales are similar to those observed on the inter-
polated map of frontal prism deformation mode (Fig-
ure 6d). The incoming plate ratio map, therefore, may
serve as a tool for interpreting patterns and length
scales of spatio-temporal heterogeneity on the shallow
plate interface caused by variations in décollement ge-
ometry and composition.

5.3 Implications for slip potential
The compositional and frictional properties of the dé-
collement in northeast Japan have been proposed to
be important factors in accommodating shallow seis-
mogenic slip to the trench (e.g., Chester et al., 2013;
Kameda et al., 2015; Moore et al., 2015). In partic-
ular, structural and lithological descriptions of cores
and borehole logs crossing the plate boundary (Chester
et al., 2013), interpretations of high-resolution seis-
mic reflection data across the trench (Nakamura et al.,
2013), and frictional heating across the plate bound-
ary (Fulton et al., 2013) suggest that the Tohoku earth-
quake slip surface localized in the basal zone of friction-
ally weak, smectite-rich pelagic clay. Additionally, pub-
lished seismic reflection data collected across the por-
tion of the earthquake with the greatest amount of slip
show a deformation front with imbricate thrust faults
that sole into the décollement, positioned near the base
of the sediment section, that undulates with subduct-
ing horsts and grabens (Boston et al., 2014; Chester and
Moore, 2018; Nakamura et al., 2013, 2020). The décolle-
ment and the branching imbricate thrust faults have
been suggested to be the shallowest faults that hosted
Tohoku earthquake slip (Nakamura et al., 2020).
The degree of heterogeneity along the plate interface

imparted by outer-rise normal fault subductionmay in-
fluence seismogenic slip to the trench. Specifically, we
find that in the southern portion of the map area (south
of 39°N) where shallow slip occurred during the 2011
Tohoku earthquake, incoming plate sediment thickness
is mainly greater than fault throw (ratio >1) and com-
plete or partial sediment accretion are the predominant
modes of deformation. These data suggest that the up-
per ~20 km of the shallow subduction interface in this
region may have a relatively lithologically homogenous
and frictionally weak composition that promotes shal-
low seismogenic slip. These interpretations agree with
prior work which demonstrates that the region of large
slip during the Tohoku earthquake occurred in regions
experiencing sediment accretion via imbricate thrust
faulting (Nakamura et al., 2020).
Conversely, in the northern portion of the map

area (~39.1–39.7°N), there is greater variability in the
mapped deformation modes and lower ratios of sed-
iment thickness to fault throw at the trench. These
data suggest the décollement heremay be composition-
ally heterogeneous and may be developed in friction-
ally stronger materials. This portion of the margin is
known to host tectonic tremors and transient aseismic
slip (e.g., Nishikawa et al., 2023). We identify two pos-
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sible sources of heterogeneity in the shallow plate in-
terface in this region. First, the incoming plate out-
board of this region contains thin sediments and pe-
tit spot volcanism (Figure 5). Petit spot volcanism is
thought to thermallymetamorphose the incoming plate
sediment section, which alters the compositional prop-
erties and may increase the friction of these biogenic
muds and clays (Fujie et al., 2020). Therefore, in these
locations, the compositional and frictional properties
of the incoming plate sediments are different than the
surrounding, unaltered incoming plate sediments, and
may disrupt décollement development and limit slip
potential in these areas. Second, this region contains
large-offset normal faults on the incoming plate (ratios
<1) that may also disrupt décollement development by
introducing large geometric asperities and by promot-
ing lateral heterogeneity in the composition and fric-
tional properties of the sediments in which the décolle-
ment develops. Such geometric asperities and lateral
variations in compositional and frictional properties of
the décollement have been thought to inhibit largemag-
nitude slip to the trench (Kodaira et al., 2019; Fujie et al.,
2020;Moore et al., 2015; Qin et al., 2022). Therefore, our
results demonstrate that sediment thickness and outer-
rise fault throw may exert a significant control on the
composition, friction, and geometric heterogeneity of
the décollement that may help promote or inhibit large
magnitude, shallow tsunamigenic slip. These relation-
ships have important implications for slip potential at
the Japan trench as well as in sediment-starved subduc-
tion systems globally where outer-rise normal faults are
subducted.

6 Conclusion
Outer-rise faults and sediment thickness on the incom-
ing plate are direct inputs into the shallow subduction
zone, and therefore have an important influence on
frontal prism modes of deformation, décollement evo-
lution, and thepotential for shallowplate boundary slip.
We mapped sediment thickness on the incoming plate,
the amount of fault throw across normal faults that
bound horsts and grabens, instances of petit spot vol-
canism on the incoming plate, and slope failures at the
deformation front for a portion of the Japan trench. We
showheterogeneity in themodes of frontal prismdefor-
mation at 5–10 km length scales along strike and down
dip. We find that portions of the incoming plate where
sediment thickness is greater than fault throwmay pro-
mote sediment accretion and the development of an un-
dulating, lithologically homogenous décollement. Con-
versely, subduction of incoming plate segments with a
thin sediment section and high offset faults may pro-
mote tectonic erosion and slope failures, and the de-
velopment of a planar but lithologically heterogeneous
décollement that smooths over subducting horsts and
grabens.
The degree of heterogeneity observed in the frontal

prism deformation mode requires correlative geomet-
ric and compositional heterogeneity in the shallow dé-
collement andmay have important implications for the
mechanics of and potential for shallow plate boundary

slip. In particular, the 2011 Tohoku earthquake rup-
tured the southern portion of the study area, where
outer-rise fault throws are small relative to sediment
thickness and sediment accretion is the dominantmode
of deformation and ended in a region that transitions
to high fault throw and thin sediments. Because the
Japan trench has a range of sediment thicknesses and
fault throws that are characteristic to many sediment-
starved margins around the globe, we propose that the
ratio of sediment thickness to fault throwmay be a use-
ful proxy for understanding how outer-rise fault throw
and incoming sediment thickness impact frontal prism
deformation style, sediment flux, and décollement het-
erogeneity at other margins.
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Abstract Ocean-bottom seismometers (OBSs) are equipped with seismic sensors that record acoustic
and seismic events at the seafloor. One critical parameter for obtaining accurate earthquake locations is the
absolute time of the recorded seismic signals. It is, however, not possible to synchronize the internal clocks
of the OBSs with a known reference time, as GNSS signals do not reach the sea bottom. We address this issue
by introducing a newmethod to synchronize the clocks of large-scale OBS deployments. Similar to some pre-
vious approaches, our method leverages the theoretical time-symmetry of time-averaged cross-correlations
of ambient seismic noise: broken time-symmetry is attributed to clock drift. A non-uniform surface wave
illumination pattern, however, can also break the time-symmetry. Existing noise-based synchronization tech-
niques usually ignore the latter, but we do address it by means of a weighted least-squares inversion (based
on station-to-station distances). The weighted least-squares inversion mitigates the adverse effect of a non-
uniform surface wave illumination on the time-symmetry. Furthermore, our method includes a unique fea-
ture: it estimates and corrects for an initial clock error introduced at the deployment time. This initial clock
error can be attributed to either (i) a wrong initial time synchronization or (ii) the temperature shock during
deployment. The methodology is implemented in an open-source Python package named OCloC and was
testedwithOBS recordings acquired around the Reykjanes peninsula, southwest Iceland. Our results indicate
that all OBSs experienced a clock drift, and that a significant number of them were subject to an initial clock
error at the deployment time. This study provides a substantial improvement in the inherent quality of OBS
data, laying a solid foundation for more robust seismic data analysis.

Non-technical summary Ocean-bottom seismometers (OBSs) are instruments deployed on the
seafloor, equipped with sensors to record seismic activity offshore. However, getting accurate information
from these instruments is challenging because the internal clocks of the OBSs cannot be easily synchronized
with a known reference time. In this study, we developed a new approach to synchronize the clocks of large-
scaleOBSdeployments. Our approach uses cross-correlations of ambient seismic noise to detect errors in the
timing of the sensor clocks. We implemented our methodology in the open-source Python package OCloC
and tested it on data from a seismic network deployed offshore the Reykjanes peninsula, southwest Iceland.
This newapproachwill aid in improving theaccuracyof earthquake locations and imaging the crust andupper
mantle.

1 Introduction
Over the past few decades, there has been an increase
in the use of ocean-bottom seismometers (OBSs). OBS
readings allow one to identify remarkable features such
as undersea volcanic eruptions (Matsumoto et al., 2019)
or seismic activity linked to tectonic strain andgas emis-
sions through fault conduits (Tary et al., 2011). In par-
ticular, OBS readings are frequently used for imaging

∗Corresponding author: d.f.naranjohernandez@tudelft.nl

of the crust and/or mantle (e.g., DongmoWamba et al.,
2023). Despite these successes, a key challenge in us-
ing OBSs remains the accurate (time) synchronization
of the instruments’ recordings. In fact, most OBS clocks
drift, meaning they do not run at the same rate as a ref-
erence clock. This issue might be overcome by using
atomic clocks instead of the traditionalmicroprocessor-
compensated crystal oscillator clocks that most OBSs
have (Gardner and Collins, 2012). This, however, would
increase the inventory costs and power consumption,
implying fewer instruments and less monitoring time,
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respectively. If the network is not properly synchro-
nized, the incorrectly timed recordingsmay result in bi-
ased earthquake locations and Earth structure models.
One simple approach to identify clock drift is to mea-

sure the time difference between the instrument’s inter-
nal clock and aGNSS signal before deployment and after
recovery. This time difference is commonly referred to
as the instrument’s ‘skew’. Assuming the instrument’s
clock drifted at a linear rate, a time correction can then
be applied (e.g., Geissler et al., 2010). The skew, how-
ever, is not always possible to retrieve (e.g., when the
instrument’s battery dies before recovery). For this rea-
son, several authors have proposed alternative meth-
ods for correcting clock errors; many of these exploit-
ing the presumed temporal stability of time-averaged
cross-correlations of ambient seismic noise (e.g., Sens-
Schönfelder, 2008; Loviknes et al., 2020; Hannemann
et al., 2014; Jousset et al., 2013). These approaches, how-
ever, ignore errors that could arise if the initial syn-
chronization with a GNSS signal is either lacking or er-
roneous, or if there is an “initial” clock error resulting
from the temperature shock during deployment (Zhang
et al., 2023).
In theory, time-averaged cross-correlations of record-

ings of ambient seismic noise (henceforth ‘noise cross-
correlations’) result in a signal that is symmetric around
t = 0 (e.g., Stehly et al., 2006). In fact, under favor-
able conditions, the signals at positive andnegative time
lag coincide with the medium’s Green’s function (be-
tween the positions of the two seismic stations) and its
time reverse, respectively. As such, it is referred to as
‘seismic interferometry’ (SI) (Wapenaar and Fokkema,
2006). In practice, these conditions are often not en-
tirely fulfilled. Notwithstanding, provided the illumi-
nation is sufficiently uniform, the operation of averag-
ing noise cross-correlations over time still yields two in-
terferometric surface wave responses: one at the posi-
tive and one at the negative time lag(s). Violation of the
noise cross-correlations’ time symmetry may indicate
the presence of clock errors (e.g., Hannemann et al.,
2014).
Currently, two distinct approaches use noise cross-

correlations to detect and correct clock errors (Goué-
dard et al., 2014). The first approach is based on the pre-
sumed temporal stability of the noise cross-correlations
(Hable et al., 2018; Loviknes et al., 2020). In this ap-
proach, cross-correlation functions (CCFs) of ambient
noise are calculated over different periods. The drift
is then estimated as the time shift that maximizes the
Pearson correlation coefficient between each CCF and a
reference correlation function (Hable et al., 2018). How-
ever, this method ignores the possibility of an initial
clock error at the time of deployment due to a temper-
ature shock during the OBS’ descent to the ocean floor
(Gardner and Collins, 2012; Zhang et al., 2023). The sec-
ond approach exploits the above-mentioned time sym-
metry between the retrieved interferometric responses
(Sens-Schönfelder, 2008; Weemstra et al., 2021). Con-
trary to the first approach, both direct surface wave ar-
rivals (i.e., at positive and negative time lag(s) need to
be retrieved successfully in this case. Low signal-to-
noise ratios or stations that are too close to each other

(in terms of wavelength) prohibit this.

Although existing approaches for correcting clock er-
rors have proven successful, a few challenges remain.
First, the symmetry of ambient noise cross-correlation,
while a valuable theoretical concept, is rarely realized
in practice. A non-uniform illumination pattern may
cause shifts in the arrival time of the interferometric
responses with respect to the true arrival time (a chal-
lenge that is often overlooked). Second, current meth-
ods ignore the possibility of the aforementioned initial
clock error during deployment. This clock error, intro-
duced during the OBS’ descent, is not expected given
the mechanism causing clock drift (e.g., Shariat-Panahi
et al., 2009), but it would nonetheless be good to rule
out; in particular because the first approachmentioned
above (Hable et al., 2018; Loviknes et al., 2020), does
not allow such initial clock error to be detected. Finally,
many of the currentmethods rely on land seismometers
that are considered to be devoid of clock errors, ideally
in the vicinity of the OBS deployment. This, however,
will not be the case when the OBS network is located in
oceanic regions far from the coast.

In this paper, we present a versatile method that ad-
dresses all these challenges. Our approach (i) uses a
weighted least-squares inversion to minimize the detri-
mental effect of non-uniform illumination patterns, (ii)
allows for a potential initial clock error at deployment
time, and (iii) does not require land stations to be in-
cluded in the network to synchronize the recordings.
Regarding the third claim, although our approach al-
lows the OBS network’s recordings to be synchronized,
the combined set of recordings cannot be synchronized
with Coordinated Universal Time (UTC). To achieve
that, a land station (with a UTC-synchronized clock)
needs to be included in the network. The presented
method is implemented in anopen-source Pythonpack-
age named OCloC (OBS Clock Correction), which ac-
companies this paper. It combines the two aforemen-
tioned techniques for clock error detection (i.e., the
one relying on the presumed temporal stability of noise
cross-correlations and the one relying on their pre-
sumed time symmetry). Our method (and hence the
package) is particularly useful in application to large-N
seismic arrays.

To show the validity of our method, we use data from
a seismic network deployed on and around the Reyk-
janes peninsula, SW Iceland (Jousset et al., 2020a). This
seismic network was deployed in the context of the
geothermal project IMAGE (Integrated Methods for Ad-
vanced Geothermal Exploration, see also Jousset et al.,
2020b; Blanck et al., 2020). The data set used consists of
recordings by 30 on-land stations and 17 OBSs (this is a
subset of the stations used in Weemstra et al., 2021). In
the following sections, we detail the theory underlying
our approach (Section 2), discuss and exemplify the im-
plementation of this theory (Section 3), present and dis-
cuss ourfindings (Section 4), and list themost important
conclusions (Section 6). A more detailed description of
the data is included in Section 3 (Section 3.1). In addi-
tion, a brief description of OCloC is given in this section
(Section 3.3).
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2 Theory
In this section, the theory is introduced step-wise. First,
we briefly highlight the most important theoretical as-
pects of Seismic Interferometry (SI). Second, we in-
troduce a model adequate for determining clock drift,
which is an extension of the model introduced by
Weemstra et al. (2021). Third, we introduce potential
additional time shifts (i.e., in addition to clock drift)
affecting the arrival times of the interferometric re-
sponses. Fourth, we describe how a single noise cross-
correlation’s drift, anddeviation fromsymmetry, canbe
retrieved. Fifth, we present the matrix notation of the
introduced model. Finally, we briefly describe two dif-
ferent inversion approaches.

2.1 Seismic interferometry
Early types of seismic interferometry (SI) were intro-
duced to the geophysics community by Aki (1957) and
Claerbout (1968). Over the last two decades, the the-
ory underlying SI has been established (Lobkis and
Weaver, 2001; Wapenaar and Fokkema, 2006; Snieder,
2004; Shapiro and Campillo, 2004), and the method
has been exploited in numerous applications. Ex-
amples include subsurface characterization (Draganov
et al., 2007; Jousset et al., 2016), reservoir monitoring
(Sánchez-Pastor et al., 2019), and glaciology (Lindner
et al., 2018). In this study, SI is used as an independent
method to recover clock errors without needing skew
measurements.
Applying SI to recordings of ambient seismic noise

allows one to retrieve new seismic responses be-
tween pairs of stations by means of simple cross-
correlations (Wapenaar and Fokkema, 2006; Stehly
et al., 2006). Under specific conditions, the time-
averaged cross-correlation contains the response to two
‘virtual sources’: one at negative lag times (usually re-
ferred to as the ‘acausal part’) and another at positive
lag times (referred to as the ‘causal part’), and with
the virtual sources coinciding with the receiver loca-
tions. Time averaging is required to suppress spuri-
ous travel time delays that arise from constructive in-
terference of signals coming from different sources.
The time-averaged noise cross-correlation is propor-
tional to the medium’s Green’s function if: (i) the noise
sources illuminate the station pairs uniformly from all
angles, (ii) the noise sources are uncorrelated, (iii) the
medium is lossless, and (iv) sourceshave coinciding am-
plitude spectra (Wapenaar and Fokkema, 2006). Under
these assumptions, the time-averaged cross-correlation
of noise recorded by stations at xi and xj , which we de-
note by Ci,j(t), is proportional to the Green’s function
G (xj , xi, t) and its time-reversed version, convolved
with the autocorrelation of the signal emitted by the
(noise) sources, i.e.,

(1)Ci,j(t) ∝ [G (xj , xi, t) + G (xj , xi, −t)] ∗ P (t),

where P (t) denotes the signal’s autocorrelation gener-
ated by noise sources. In this study, we focus on the
direct surface wave part of the Green’s functions, ig-
noring the scattered signal. We refer to Wapenaar and

Fokkema (2006) and Halliday and Curtis (2008) for a
more detailed discussion of the assumptions underly-
ing SI.

2.2 Amodel to account for clock drift
When it comes to the recovery of clock errors, an es-
sential feature of the noise cross-correlation is its pre-
sumed time symmetry: under the assumptions listed
in the previous section, the direct surface waves in
Ci,j(t) arrive at time lags of equal magnitude but oppo-
site signs (Figure 1a). A violation of this time symme-
try, such as the one in Figure 1b, indicates the presence
of clock errors. To infer these clock errors from noise
cross-correlations, Weemstra et al. (2021, Section 4) re-
cently introduced an appropriate model. These au-
thors, however, didnot include clockdrift in theirmodel
as they assumed the instrumental clock errors to be
time-independent (or constant). We extend the model
introduced by Weemstra et al. (2021) to account for
time-dependent clock errors such as clock drift.
Here we assume the (potential) OBS clock drift to be

linear. This is based on the fact that (i) the drift rate
should be steady at constant temperature and (ii) the
ambient temperature tends to be rather stable in deep
water (note that the drift rate at a certain temperature
is dictated by the frequency of the quartz oscillators in
seismic clocks; Shariat-Panahi et al., 2009). The valid-
ity of this assumption has been demonstrated for OBSs
at larger depths in previous studies (Hable et al., 2018;
Loviknes et al., 2020).
To estimate clock drift, we compute time-lapse cross-

correlationsCi,j(t, t(lps)), where t(lps) is the timingof the
time-lapse cross-correlation. We refer to Ci,j(t, t(lps)) as
the ‘lapse cross-correlation’. Note that t(lps) is the av-
erage time of all time windows contributing to the lapse
cross-correlation. Therefore, t(lps) is not necessarily the
timeexactly inbetween the timeof thefirst and last time
window contributing toCi,j(t, t(lps)): in case the record-
ings by one of the two stations (or both) contain gaps,
t(lps) maybe skewed towards the beginning or end of the
entire period over which individual cross-correlations
are averaged.
For the considered linear parametrization, the time-

dependent clock error of station i, denoted by δt
(ins)
i , is

written as

(2)δt
(ins)
i

(

t(lps)
)

= ait
(lps) + bi,

where δt
(ins)
i is the clock error of station i at t(lps), t(lps) is

the average time of the time-lapse cross-correlation, ai

is the clock drift rate of station i, and bi is the incurred
clock error of station i at t(lps) = 0.
Note that t(lps) is a continuous variable and that it is

conveniently (but arbitrarily) set to 0 at the 21st of Au-
gust 2014. This is the approximate time of deployment
of theOBSs considered in this study (theOBSshave been
deployed over the course of a number of days around
that date). Furthermore, δt

(ins)
i is defined such that neg-

ative values imply that the recordings by station i are
subject to a time delay. The rate at which the clock of
station i is drifting is given by ai, whereas bi represents
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Figure 1 a. Noise cross-correlations computed using two stations without clock errors. The noise cross-correlation is al-
most symmetric in this case (for a relatively uniform illumination), and t

(+,app)
i,j = −t

(−,app)
i,j . b. Noise cross-correlations

computed while one of the two stations is subject to clock errors (e.g., due to clock drift of one or both instruments). The
noise cross-correlation is asymmetric (even for a relatively uniform illumination), and t

(+,app)
i,j 6= −t

(−,app)
i,j . In b, station j is

subject to a clock error of δt
(ins)
j , which causes the noise cross-correlation to shift to negative time by that amount.

a possible clock error of station i at t(lps) = 0. These are
the two unknown parameters that we want to recover
in this study (for all the OBSs). A different parametriza-
tion of δt

(ins)
i in terms of, for example, cubic splines or

trigonometric basis functions (i.e., Fourier series) is rel-
atively straightforward.
A deviation from time symmetry can result from

clock errors in either one or both stations involved in
the noise cross-correlation. Similar to Weemstra et al.
(2021), we denote the arrival time of the causal direct
surface wave in Ci,j(t, t(lps)) by t

(+,app)
i,j and the arrival

time of the acausal direct surface wave by t
(−,app)
i,j . Ac-

counting for the time-dependent clock errors above, we
obtain the following expression for the apparent arrival
time of the causal direct surface wave:

t
(+,app)
i,j

(

t(lps)
)

= t
(+)
i,j + δt

(ins)
i

(

t(lps)
)

− δt
(ins)
j

(

t(lps)
)

.

(3)

Similarly, the apparent arrival time of the acausal di-
rect surface wave is given by

t
(−,app)
i,j

(

t(lps)
)

= t
(−)
i,j + δt

(ins)
i

(

t(lps)
)

− δt
(ins)
j

(

t(lps)
)

.

(4)

Here, t
(+)
i,j and t

(−)
i,j are the true arrival times of the

direct surface waves, i.e., the direct surface waves
in G (xj , xi, t) and G (xj , xi, −t), respectively. Conse-
quently, by definition, t

(+)
i,j = −t

(−)
i,j . It is useful to note

that a temporal change in the medium (e.g. Lindner
et al., 2018) does not affect the equality between t

(+)
i,j and

−t
(−)
i,j , as it merely modifies the Green’s function.

Summing the left-hand and right-hand sides of equa-
tions (3) and (4), and subsequently substituting the lin-
ear parametrization defined in Equation (2), we find

(5)

(

t
(+,app)
i,j + t

(−,app)
i,j

) (

t(lps)
)

= 2δt
(ins)
i

(

t(lps)
)

− 2δt
(ins)
j

(

t(lps)
)

= 2ait
(lps) + 2bi − 2ajt(lps) − 2bj .

The variables here are shown schematically in Figure 1.
In the ideal case that (i) the station couple is illumi-
nated uniformly from all angles, (ii) spurious energy
has effectively been stacked out in the time-averaging
process, and (iii) the recordings are not subject to clock
errors and/or drift, the right-hand side of Equation (5)
evaluates to zero. If this is the case, then t

(+,app)
i,j =

−t
(−,app)
i,j = −t

(−)
i,j = t

(+)
i,j . If, however, the mea-

sured t
(+,app)
i,j and t

(−,app)
i,j are such that the left-hand

side of Equation (5) does not coincidewith zero (and the
aforementioned conditions are fulfilled), this indicates
a clock error at either one or both stations. The associ-
ated broken time symmetry is illustrated in Figure 1b.
Assuming the number of lapse cross-correlations

N (lps) to coincide for all cross-correlation pairs, t(lps)

can be discretized as t
(lps)
k , where k = 1, 2, . . . , N (lps).

In that case, Equation (5) can be written as

(6)t
(+,app)
i,j,k + t

(−,app)
i,j,k = 2ait

(lps)
k + 2bi − 2ajt

(lps)
k − 2bj .

where the indices k in t
(+,app)
i,j,k indicate that the arrival

times of the direct surface waves are associated with
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lapse time t
(lps)
k . The procedure involving the determi-

nation of the t
(+,app)
i,j,k + t

(−,app)
i,j,k is based on the study

by Weemstra et al. (2021), and detailed in Section 2.4.
The associated practical implementation is explained in
Section 3.2. Finally, it is useful to note thatwemerely as-
sume the number of lapse cross-correlations per station
couple to coincide for notational convenience. In prac-
tice, both the number of lapse cross-correlations and
their timing (i.e., the values of the t

(lps)
k ) may (and will)

vary from one station couple to the other.

2.3 Additional arrival time shifts
Differences in amplitude between the causal and
acausal arrivals occur if the noise intensity is larger in
one stationary-phase direction than in the other (Stehly
et al., 2006). Importantly, a non-uniform illumination
pattern may also introduce (small) deviations, or time
shifts, from the correct arrival time of the causal and
acausal surface waves. We denote these additional time
shifts by δt

(src)
i,j,k (the superscript ‘src’ implies that the

time shift is associated with the source distribution).
This time shift depends on all three indices since the
(noise) illumination pattern usually varies as a func-
tion of both time (hence the index k) and station couple
(hence the indices i and j). The time dependence of this
term is due to the fact that the illumination pattern is
usually non-stationary (e.g., Yang and Ritzwoller, 2008;
Weemstra et al., 2013). The i, j dependence of this term
is explained by the fact that the retrieved causal and
acausal direct surface wave responses are associated
with opposite stationary-phase regions (e.g., Snieder,
2004; Boschi andWeemstra, 2015). Azimuthal variations
of the noise intensity in the two directions along the line
connecting a station pair i and j, determine the magni-
tude of this arrival time shift. We therefore distinguish
between δt

(+,src)
i,j,k and δt

(−,src)
i,j,k , which represent (illumi-

nation related) arrival time shifts of the direct waves
at positive (causal) and negative (acausal) time lag(s),
respectively. In other words, the illumination-induced
(additional) arrival time shifts of the causal and acausal
direct surfacewaves can be expected to differ fromeach
other (Weaver et al., 2009; Froment et al., 2010). We par-
enthetically note that the medium appears to be slower
for a positive δt

(+,src)
i,j,k , whereas a positive δt

(−,src)
i,j,k makes

themediumappear to be faster than the actualmedium.
In addition to the illumination-related arrival time

shifts, we account for the presence of spurious en-
ergy by defining the additional time shifts δt

(+,spur)
i,j,k and

δt
(−,spur)
i,j,k , which, similar to δt

(+,src)
i,j,k and δt

(−,src)
i,j,k , repre-

sent shifts in the arrival times of the causal and acausal
direct surface waves, respectively (for details we refer
to Weemstra et al., 2021). Including these time shifts in
our model, Equation (6) reads:

t
(+,app)
i,j,k + t

(−,app)
i,j,k

= 2ait
(lps)
k + 2bi − 2ajt

(lps)
k − 2bj

+ δt
(+,src)
i,j,k + δt

(−,src)
i,j,k

+ δt
(+,spur)
i,j,k + δt

(−,spur)
i,j,k . (7)

2.4 Determination of t
(+,app)
i,j,k + t

(−,app)
i,j,k

As explained in Section 2.2, clock errorsmanifest them-
selves by breaking the time-symmetry of the lapse
cross-correlations. In order to solve for a large number
ofai and bi (i.e., to determine clockdrift for largeOBSar-
rays), time shifts of individual lapse cross-correlations
need to be extracted in an automated fashion.
The t

(+,app)
i,j,k + t

(−,app)
i,j,k (for all i, j, and k) are the en-

tries of the data vector t
(app). Our procedure starts by

computing a priori estimates of these t
(+,app)
i,j,k + t

(−,app)
i,j,k .

This estimate is based on the assumption that, for an in-
dividual station couple i, j, the drift accumulated over
the interval from t

(lps)
1 to t

(lps)

N(lps) is the combined result
of ai and aj (i.e., that it is linear). Based on the pre-
sumed stability of both the medium and the noise illu-
mination, the accumulated drift is estimated by cross-
correlating the earliest lapse cross-correlation with the
latest lapse cross-correlations: (Ci,j(t, t

(lps)
1 ) is cross-

correlated with Ci,j(t, t
(lps)

N(lps))). Assuming the drift to be
linear and clock errors to coincide with zero at t

(lps)
k =

0 then results in the sought-after a priori estimates of
t
(+,app)
i,j,k + t

(−,app)
i,j,k , which we denote by t

(a priori)
i,j,k . Note

that, as such, the a priori estimate of 2bi − 2bj is as-
sumed to be zero (see Equation 6). Clearly, this is a
rather strong assumption. If an initial screening reveals
that this assumption is not justified, it may be necessary
to combine the procedure here with the procedure de-
scribed in Section 5 of Weemstra et al. (2021). Finally, it
is useful to note that instead of station-couple-specific
a priori estimates, Weemstra et al. (2021) use station-
specific a priori estimates to obtain t

(a priori)
i,j (without an

index k because the analysis by Weemstra et al. (2021)
does not account for clock drift, but merely allows one
to determine time-independent clock errors).
The t

(a priori)
i,j,k are used to fill an initial estimate of the

data vector t
(app). By solving the inverse problem (ex-

plained below in Section 2.6), we recover a priori esti-
mates of the ai and bi. As soon as these estimates are
obtained, we apply the procedure described in Section 5
of Weemstra et al. (2021). In summary, this involves de-
termining the time windows in which the causal and
acausal direct surface waves are expected using (i) a
reference surface wave velocity (which can be station-
couple specific), (ii) the station-to-station distance, and
(iii) a priori estimates of ai and bj . Knowing the ap-
proximate time windows in which the direct causal and
acausal surface waves can be expected, the envelopes
of the lapse cross-correlations are subsequently com-
puted. The envelopes are used to determine the ar-
rival time of the direct surface wave (either causal or
acausal) with the largest amplitude difference between
the top and bottom envelope (denoted by test in Weem-
stra et al., 2021). Finally, after interpolating the lapse
cross-correlation for a time window (with a length of
about one period) centered around the a priori esti-
mates of t

(+,app)
i,j,k and t

(−,app)
i,j,k , and cross-correlating the

signals in these two-time windows, the desired mea-
surement t

(+,app)
i,j,k + t

(−,app)
i,j,k can be obtained. For a

detailed description of the entire process, we refer to
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Figure 2 Processing steps for calculating an a priori estimate of the combined clock drift of a given station pair.

Weemstra et al. (2021, Section 5).

2.5 Matrix formulation
Assuming we possess synchronous noise recordings by
a total of N seismic stations and we compute a total
of N (lps) lapse cross-correlations between each station
pair, amaximumofN (lps) timesN(N −1)/2 lapse cross-
correlations can be obtained. The set of equations gov-
erning the t

(+,app)
i,j,k + t

(−,app)
i,j,k can in that case be written

as
(8)At

(ins) + n
(src) + n

(spur) = t
(app),

where the vector t
(ins) contains the sought-for clockdrift

rates ai and initial clock errors bi. This vector has a
length of 2N . The rows of A relate to different station
pairs and lapse times t

(lps)
k , i.e., they are associated with

different Ci,j

(

t, t
(lps)
k

)

. Each column of A is associated
with either an ai or a bi. Consequently, A has dimen-
sion N (lps)(N(N − 1)/2) × 2N . The length of the vec-
tors t

(app), n
(src), and n

(spur) obviously coincides with
the number of rows of A. The vector t

(app) contains
the measurements and is often referred to as the ‘data
vector’. For the sake of clarity, we have detailed these
vectors and matrices in Appendix A. Note that through-
out this work, both matrices and vectors are indicated
in bold; matrices are also capitalized, vectors not.

2.6 Inverting for clock drift
In themodel introduced above, we considered the num-
ber of lapse cross-correlations N (lps) to coincide for all
stationpairs. In addition,weassumed these lapse cross-
correlations to exist for all possible combinations of
stations, i.e., N(N − 1)/2. In application to field data
however, t(+,app) and/or t(−,app) often cannot be deter-
mined for all lapse cross-correlations (i.e., all combi-
nations of i, j and k). This implies that the number of

rows M of the matrix A (and hence the number of ele-
ments of t

(app), n
(src), and n

(spur)) will in practice often
be smaller than N (lps)N(N − 1)/2.

The inability to accurately determine t(+,app) and/or
t(−,app) can be due to a number of reasons. First, if
two stations are too close to each other with respect
to the wavelengths considered, the direct surface-wave
response at a positive time will overlap with the di-
rect surface-wave response at a negative time. Sec-
ond, the absence of sources in one of the two station-
ary phase directionswill prevent the retrieval of the cor-
responding direct surface-wave response (e.g., Snieder,
2004). Clearly, this also prevents determining the as-
sociated arrival time. Third, gaps in the recordings by
one or more stations may lead to fewer lapse cross-
correlations.

Before we explain the two inversion approaches, we
clarify the relation between matrix A and the ability to
obtain a unique (least-squares) estimate of t

(ins). Be-
cause, as defined in Appendix A, the rank of A is two
lower than the number of unknowns 2N (having a ma-
trix with a rank that is lower than the number of un-
knowns is often referred to as ‘rank deficient’). This in-
dicates that the system of equations is effectively under-
determined. In other words, a unique estimate of t

(ins)

does not exist for the system of equations defined in
Equation (8). We distinguish between two cases: a land
station is included in the network, or no land station is
included in the network. In the first case, a unique es-
timate of t

(ins) exists if a number of conditions are ful-
filled. We will detail these in the paragraph below. If
the network consists solely of OBSs, a unique estimate
of t

(ins) does not exist. We discuss that further below.
Finally, an intuitive explanation of the rank deficiency
is provided. Consider 10 lapse cross-correlations, each
associated with a different t

(lps)
k but with the same two

OBSs. ThematrixAwouldbe a 10× 4matrix in that case
(see Equation 6). Clearly, an infinite number of (least-
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squares) solutions exist for b1 and b2 since adding any
(arbitrary) value to both b1 and b2 would result in the
same left-hand side. In other words, a unique solution
for b1 and b2 does not exist. The same applies to a1 and
a2.
In case a station with a UTC-synchronized clock is

included in the network (i.e., a land station), the en-
tries of that station can be eliminated from t

(ins) and
the associated columns eliminated from A (see also
the discussion in Section 6 and Appendix A in Weem-
stra et al., 2021). Subsequently, a number of conditions
need to be fulfilled for a unique estimate of t

(ins) to ex-
ist. First, the system of equations (as defined in Equa-
tion 8) needs to contain at least two lines associatedwith
lapse cross-correlations involving that station. These
two lapse cross-correlations should be associated with
a different lapse time t

(lps)
k . The land station in the first

of the (at least) two lapse cross-correlationsmay, in fact,
be a different land station from the land station associ-
ated with the second lapse cross-correlation, as long as
the two lapse cross-correlations are associated with dif-
ferent t

(lps)
k . Second, each of the OBSs needs to be “part

of” at least two lapse cross-correlations: there need to
be two rows in A for which the entries associated with
that OBS are non-zero. And again, these entries should
be associatedwith different t

(lps)
k . In case these two con-

ditions are fulfilled, the rank of A coincides with the
number of unknowns (2N ), and a unique least-squares
estimate of the ai and bi in t

(ins) exists. Finally, the
larger the difference in time between the various lapse
cross-correlations of an OBS, the more accurate the es-
timates of its ai and bi.
If the network consists solely of OBSs, a unique es-

timate of t
(ins) does not exist. In that case, that least-

squares estimate of t
(ins) is chosen that has the lowest

norm, i.e., that minimizes ||t̃(ins)||, where t̃
(ins) is any

least-squares solution (or least-squares estimator) of the
underdetermined system of equations. This solution
is usually referred to as the minimum norm solution.
The second condition above, which needed to be ful-
filled to obtain a unique estimate of t

(ins), still applies
in this case. That is, each of the OBSs still needs to
be “part of” at least two lapse cross-correlations. The
minimum-norm solution yields an estimator of t

(ins)

that allows the OBS recordings to be synchronized with
respect to each other, but not with respect to UTC. This
is of course, still useful as it would enable tomographic
studies using only the OBSs or the localization of seis-
mic events (earthquake hypocenters) below the OBS ar-
ray.
Weconsider twoestimators of t

(ins). These are the ‘or-
dinary least-squares estimator’ t̃(ins)

(ols) , and the ‘weighted
least-squares estimator’ t̃

(ins)
(wls). We refer to Weemstra

et al. (2021) for a detailed description (and derivation)
of these estimators and will only provide a brief ex-
planation of these two estimators here. The ordinary
least-squares estimator minimizes the misfit function
||t(app)−At

(ins)|| andhence does not account for (poten-
tial) variations in the δt

(src)
i,j,k and/or δt

(spur)
i,j,k for different

i, j, k. The weighted least-squares estimator, instead,
exploits the inverse proportionality of the illumination-

related arrival time shifts (i.e., the inverse proportion-
ality of δt

(src)
i,j,k ) to the true station-to-station travel time

ti,j (as derived by Weaver et al., 2009). But since this
travel time is usually not known, it uses the station-to-
station distances |xj − xi| as a proxy for the ti,j . Mea-
surements (i.e., individual t

(+,app)
i,j,k + t

(−,app)
i,j,k ) associated

with lapse cross-correlations between stations (i and j)
that are further apart are hence assigned larger weights
in the inversion.

3 Implementation & application to
data

In this section, we describe the workflow that allows
the estimators of t

(ins) to be computed (Section 3.2). Al-
though predominantly methodological aspects of the
workflow are discussed (results are presented in Sec-
tion 4), some examples with field data are shown. We
therefore start by introducing the IMAGE’s seismic net-
work and its lapse cross-correlations (Section 3.1). After
describing the workflow, we dedicate one subsection to
our package OCloC (Section 3.3). We finish this section
with a description of a bootstrapping procedure that al-
lows the stability of the recovered clock drift values to
be assessed (Section 3.4).

3.1 The IMAGE data set
For heuristic purposes, the explanation of some pro-
cessing steps of our workflow includes these steps’ ap-
plication to a set of lapse cross-correlations. These
lapse cross-correlations are retrieved from recordings
of ambient seismic noise acquired on and around the
Reykjanes peninsula, SW Iceland (Jousset et al., 2020a).
It concerns lapse cross-correlations between a subset
of the stations considered by Weemstra et al. (2021).
Specifically, about one year of noise recorded by 30 land
stations and 17 OBSs is used (see Figure 3 for the station
locations). The OBSs in this experiment are equipped
with Seascan clocks (SEASCAN microcomputer com-
pensated crystal oscillators), which are temperature-
compensated.
The lapse cross-correlations are computed by averag-

ing individual station-to-station cross-correlations over
a 100-day period. These individual cross-correlations
are computed per hour with a 50% overlap. We refer to
Weemstra et al. (2021) for a detailed description of the
computation of the hourly cross-correlations. Averag-
ing individual (hourly) cross-correlations is performed
in a two-step process. First, daily cross-correlations
are computed based on a maximum of 47 hourly cross-
correlations (24 × 2 − 1). Subsequently, these daily
cross-correlations are averaged. Importantly, gaps in
the recordings by one or both stations are accounted for
in the sense that the timing of a lapse cross-correlation,
i.e., its t

(lps)
k , is defined as the average time of the indi-

vidual cross-correlations. Gaps in the data can cause
the average time of the correlations (t(lps)

k ) to deviate
from the center of the 100-day period. Note that the
t
(lps)
k are allowed to differ between different station
couples, as they are explicitly included in A (see also
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Figure 3 On-and off-shore stations of IMAGE’s seismic network, SW Iceland, whose lapse cross-correlations were used in
this study. Note that the numbering of the OBSs runs up to 23, whereas only 17 OBSs are included in our set of lapse cross-
correlations (some stations did not sample the ambient seismic field sufficiently long and were hence excluded from our
analysis; see also Figure S1 in Weemstra et al. (2021)). Only the land stations ‘HAH’ and ‘RET’, which are analyzed in Sec-
tions 3.2.5 and 4, are labeled due to space constraints.

Appendix A). In case the number of individual cross-
correlations contributing to a lapse cross-correlation
does not exceed 75% of the maximum number of indi-
vidual cross-correlations (which is 100 × 47), that lapse
cross-correlation is discarded. An overview of the data
availability is given in Figure S1 of Weemstra et al.
(2021).

3.2 Workflow
To determine and correct clock drift using lapse cross-
correlations of ambient seismic noise, we adopt the pro-
cessing sequence in Figure 4. It is this workflow that
is implemented in OCloC. The workflow comprises five
steps. We now dedicate one subsection to explain and
discuss each of these steps.

3.2.1 Initial screening
In Figure 5a, all stations and ray paths associated with
the available lapse cross-correlations are shown. To get
a first impression of whether or not the OBS recordings
are subject to clock drift, one can plot the different lapse
cross-correlations in a single plot (i.e., time-averaged
cross-correlations associated with different t

(lps)
k ). In

Figure 5b, we depict lapse cross-correlations between
stations 020 and HAH (land station) for 5 different lapse
times. Potential clock drift of an OBS manifests itself as
a shift in time of the lapse cross-correlations: for this
specific station couple, the lapse cross-correlations as-
sociated with larger t

(lps)
k are shifted to a later time.

Prior to the determination of clock drift, it is impor-
tant to choose an adequate bandpass filter. For the IM-
AGE data, the surface waves in the retrieved interfero-
metric responses have the highest signal-to-noise ratios
(SNRs) between 0.1 and 0.4Hz. In general, however, the

Figure 4 Workflow for the determination of OBS clock
driftusing lapse cross-correlationsof ambient seismicnoise
between a large number of OBSs (computed from large-N
ocean-bottom seismometer deployments).

pass band depends on parameters such as the nominal
station-to-station distance, the amplitude of the noise
sources, the illumination pattern, and the geographi-
cal location of the OBS array (e.g., Yang and Ritzwoller,
2008). Note that, due to surface-wave dispersion, lower
frequency bands usually result in smaller separations
in time of the causal and acausal surface wave peaks.
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Figure 5 a. All seismic stations and ray paths; blue and orange circles correspond to OBSs and land seismometers, respec-
tively. Only the station names of the OBSs are indicated. Below each station name, the number of available lapse cross-
correlations involving that specific station is depicted. b. All lapse cross-correlations for a given station pair. The colors
indicate the average timing (t(lps)

k ) of the lapse cross-correlation.

Importantly, the choice of frequency band also strongly
affects the capability to determine the t

(+,app)
i,j,k + t

(−,app)
i,j,k

of individual lapse cross-correlations.

3.2.2 Selecting eligible lapse cross-correlations
There are two parameters that determine a lapse cross-
correlation’s eligibility to be included in the clock error
estimation process: the SNR threshold and the station-
to-station distance threshold. Together, these param-
eters determine which lapse cross-correlations are in-
cluded in the inversion and which are not (i.e., whether
their t

(+,app)
i,j,k + t

(−,app)
i,j,k will be determined and added to

data vector t
(app) or not).

In general, the quality of the measurements (i.e., the
t
(+,app)
i,j,k + t

(−,app)
i,j,k ) strongly depends on the signal-to-

noise ratio (SNR). If the SNR is too low, the algorithm
experiences difficulties determining the arrival times of
the interferometric responses. Low SNRs are mainly
due to low-intensity illumination from (one of) the
stationary-phase regions (Snieder, 2004; Weaver et al.,
2009). Consequently, themeasurementsmay be inaccu-
rate, or even subject to cycle skipping (Weemstra et al.,
2021). Obviously, inaccurate entries in the data vector
t

(app) (i.e., inaccurate t
(+,app)
i,j,k + t

(−,app)
i,j,k ) adversely af-

fect the inversion results. A clear example is shown in
Figure 6a, where the causal peaks of the lapse cross-
correlations between stations O08 and O21 have low
SNRs. In this case, the determination of the arrival time
of the causal peak is not straightforward and hencemay
result in inaccurate t

(+,app)
i,j,k + t

(−,app)
i,j,k . Both SNRs, of

the causal and acausal interferometric direct surface
waves, need to exceed the SNR threshold for the lapse
cross-correlations to be included in the inversion. For
details regarding the computation of the SNR, we refer

to Weemstra et al. (2021).

The second important parameter when it comes to
the accuracy of the t

(+,app)
i,j,k + t

(−,app)
i,j,k is the station-to-

station distance. If two stations are too close to each
other, the direct surface-wave response at a positive
time (i.e., the causal arrival) will overlap with the di-
rect surface-wave response at a negative time (i.e., the
acausal arrival). Consequently, our algorithm will sim-
ply not be able to correctly determine the t

(+,app)
i,j,k +

t
(−,app)
i,j,k for those station couples. To prevent the in-
clusion of such measurements in the system of equa-
tions, the user must set a station-to-station distance
threshold. This threshold is expressed in terms ofwave-
lengths since the ability to distinguish the causal from
the acausal arrival does not merely depend on the sur-
facewave travel time, but on the ratio between the travel
time and the (dominant) period of the interferometric
surface waves. This threshold needs to be set at the
start of the workflow (for further details regarding the
station-to-station distance threshold we refer to Weem-
stra et al., 2021). A lapse cross-correlation’s station-to-
station distance needs to exceed the distance threshold
for that lapse cross-correlation to be included in the in-
version (i.e., for the t

(+,app)
i,j,k + t

(−,app)
i,j,k to be determined

and added to data vector t
(app)).

Using the IMAGE lapse cross-correlations, we investi-
gate how different thresholds affect the number of el-
igible lapse cross-correlations. If the thresholds are
set too high, there will not be sufficient lapse cross-
correlations to (accurately) determine the clock drift of
all OBSs (i.e., the vector t

(app) will be relatively short).
Conversely, if the thresholds are too low, we add too
many inaccurate data points to the data vector, in turn
leading to less accurate ai and bi (and hence less accu-
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Figure 6 a. Lapse cross-correlations between OBSs O08 and O21: the signal-to-noise ratio of the causal wave is rather
low, complicating the determination of t

(+,app)
i,j,k + t

(−,app)
i,j,k . b. Lapse cross-correlations between stations O14 and O19: The

station-to-station distance of these stations is so small (10.6 km) that the causal and acausal surfacewaves overlap (note that
for surface waves with a period of 5 seconds that propagate at 3000 m/s, 10.6 km corresponds to only 2/3 of a wavelength).

rate clock drift estimates). Figure 7 depicts the number
of eligible station pairs exceeding a specific combina-
tion of thresholds. Obviously, lower thresholds result
in a higher number of eligible lapse cross-correlations.
Although a higher number of lapse cross-correlations
implies a larger number of measurements, it has been
shown that station-to-station distance thresholds in the
range of 2 to 4 wavelengths and SNR thresholds of about
15 yield themost accurate clock errors (Weemstra et al.,
2021). The latter values, however, are based on syn-
thetic data. Here, we therefore choose a slightly more
conservative SNR threshold of 30, while setting the
station-to-station distance threshold to 2.5. The lapse
cross-correlations fulfilling these criteria (i.e., exceed-
ing these thresholds) are added to t

(app) and hence en-
ter the inversion.

Figure 7 Number of eligible lapse cross-correlations for
different station-to-station distances and SNR thresholds.

3.2.3 Determination of the t
(+,app)
i,j,k + t

(−,app)
i,j,k for all

selected combinations i, j, k

Although the calculation of t
(+,app)
i,j,k + t

(−,app)
i,j,k is ex-

plained in Section 2.4, a few “practicalities” require at-
tention. First, the algorithm computes the aforemen-
tioned a priori clock drift estimate only for lapse cross-
correlations that exceed the SNR and station-to-station

distance thresholds. This may result in some stations
having few unique “connections” with other stations. It
may be better to, for each station, set both a minimum
number of unique connections and a minimum num-
ber of total lapse cross-correlations. The lapse cross-
correlations, associated with a station that does not ex-
ceed these thresholds, will be eliminated from the sys-
tem of equations (i.e., the data vector t

(app) will be
shortened, and the number of rows and columns of the
matrix A decreases).
Second, to recover a unique estimate of a station’s

clock drift (i.e., of the ai), that station needs to be as-
sociated with lapse cross-correlations at various lapse
times t

(lps)
k (recall thediscussion in Section 2.6). In other

words, t
(+,app)
i,j,k + t

(−,app)
i,j,k needs to have been determined

for various k for that station. By defining (i) a minimum
number of correlation periods, (ii) the number of differ-
ent lapse times required, and (iii) the minimum separa-
tion in days between an OBS’ lapse cross-correlations, a
unique solution can be guaranteed (i.e., provided lapse
cross-correlations involving a land station are present,
the system of equations will then not be rank deficient).
These parameters can be set in OCloC.
Finally, a notorious problem in the inversion is what

has been referred to as “cycle skipping” by Weemstra
et al. (2021). That is, a measurement deviates from
the true t

(+,app)
i,j,k + t

(−,app)
i,j,k by approximately one period.

Needless to say, the inclusion of thesemeasurements in
the inversion leads to incorrect ai and bi. InAppendixB,
we describe a procedure allowing one to detect such
outliers and discard them.

3.2.4 Solving the inverse problem
As mentioned in Section 2.6, two inversion strategies
can be adopted (both implemented in OCloC): the or-
dinary least squares estimator t̃

(ins)
(ols) and the weighted

least-squares estimator t̃
(ins)
(wls) can be computed. The or-

dinary least-squares estimator can be used if the noise
sources uniformly illuminate the stations from all di-
rections. In that case, the vector n

(src) in Equation (8)
coincides with 0 and the only source of noise is n

(spur).
Assuming the entries of the latter vector tohave coincid-
ing variance, the ordinary least-squares estimator t̃

(ins)
(ols)
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will give the most accurate estimate of t
(ins) (in a least-

squares sense).
In case the surface wave illumination is not uni-

form (as is in practice often the case; Yang and Ritz-
woller, 2008; Stehly et al., 2006), n

(src) does not coin-
cide with zero, and it is more appropriate to compute
the weighted least-squares estimator t̃

(ins)
(wls), where the

station-to-station distances |xj − xi| act as weights (see
Section 2.6, and, for further details, Weemstra et al.,
2021). In Section 5.1, we demonstrate the superiority
of the weighted least-squares estimator, which was pre-
viously shown using synthetic noise cross-correlations.
Finally, in the absence of lapse cross-correlations with
recordings by a land station, the minimum-norm solu-
tion is computed. In this case, the recovered bi differs
from the true (unknown) bi by a common time shift.

3.2.5 An iterative approach

Upon solving the inverse problem using the a priori es-
timates t

(a priori)
i,j,k , we obtain an initial estimate of the

ai and bi values of each station. The latter can subse-
quently be used to improve the estimation of t

(+,app)
i,j,k +

t
(−,app)
i,j,k as they can be used to predict the arrival time
of the interferometric surface wave responses (see also
Weemstra et al., 2021). It is therefore recommended
to perform several inversions, each iteration using the
previously obtained ai and bi to guide the estimation of
the t

(+,app)
i,j,k + t

(−,app)
i,j,k resulting in an updated data vec-

tor t
(app), until the recovered ai and bi do not change

anymore. By simply plotting the evolution of the recov-
ered ai and bi, it is possible to determine when this is
the case.
By plotting all lapse cross-correlations associated

with a single station couple in one frame, and doing
this separately for the corrected (using the obtained ai

and bi) and uncorrected set of lapse cross-correlations,
a (qualitative) impression of the result is obtained. If the
lapse cross-correlations associated with different lapse
times align, then the clock drift is successfully removed.
An example of a successful clock drift removal is shown
in Figure 8. It is clear that the lapse cross-correlations
suffered from clock drift of OBS O20 (Figure 8a). Once
the clock drift is removed, the lapse cross-correlations
associated with different lapse times nicely align, as
shown in Figure 8b.

3.3 OCloC
The methodology presented in this paper has been im-
plemented in OCloC. In particular, OCloC allows the
workflow detailed in the previous subsection to be ex-
ecuted. OCloC is an open-source Python package that
has been tested for the operating systems Linux and
macOS. We chose Python as OCloC’s main program-
ming language for its open-source, versatile, and cross-
platform compatible nature, which is widely used in the
Earth sciences (e.g., Werthmüller et al., 2021; Rücker
et al., 2017). In the case of OCloC, the portability of
Python enabled us to outsource specific computational
aspects to a pre-compiled Fortran module.

Figure 8 Lapse cross-correlations between land station
HAH and OBS O20 for different lapse times. a. Cross-
correlations before applying time corrections b. Lapse
cross-correlations after correcting the clock drift of O20
using the ai and bi recovered by means of the iterative
weighted least-squares inversion.

Through the application of seismic interferometry,
the proposed correction of clock errors is contingent on
the availability of synchronous noise recordings. The
computation of the lapse cross-correlations, however,
is deliberately left out of OCloC. The reason is that it
will be nearly impossible to account for the plethora of
different (pre-)processing approaches (Seats et al., 2012;
Groos et al., 2012;Weemstra et al., 2014; Fichtner, 2014).
This implies that users of the package have complete
freedom regarding pre-processing (e.g., one-bit nor-
malization, spectral whitening, etc.) and potential filter
settings while computing the lapse cross-correlations,
and that they are expected to do this themselves prior to
the application of OCloC. The lapse cross-correlations
can subsequently be imported as OCloC objects.
OCloC’s functionality includes loading lapse cross-

correlation files, storing and accessing station meta-
data, and solving the linear systems of equations in Sec-
tion 2.5 in a (weighted) least-squares sense. It also has
some other supporting functions. To keep the use of
OCloC simple, a hierarchical object-orienteddesignhas
been adopted. This kind of architecture breaks down
the whole process of determining and correcting clock
errors into solvable chunks while letting the user know
when an error occurred and how to prevent it.
The main object types of OCloC are: ClockDrift,

ProcessingParameters, Correlation, and Sta-
tion. Figure 9 depicts, schematically, the algorithm’s
object hierarchy. These objects need some clarification:

1. ClockDrift: The outermost layer of the hierar-
chical structure. The user deals with this object for
themain processing steps described in Section 3.2.
This object stores the different Station and Cor-
relation objects in the form of lists. This ob-
ject also stores the system of equations, described
in Section 2, in the form of a Pandas dataframe
(Wes McKinney, 2010a). The different methods of
ClockDrift provide access to correlation files,
station metadata, plotting functions, and different
processing tools required for the algorithm’s usage.
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Figure 9 Object hierarchy of OCloC.

2. ProcessingParameters: The recovery of clock
errors depends on the adequate selection of some
pre-processing steps. ProcessingParameters
object stores the value of these parameters. These
parameters are the band-pass filter’s corner fre-
quencies, the SNR threshold, and the station-to-
station distance threshold. These parameters are
detailed in Section 3.2.

3. Correlation: Stores the metadata of each cross-
correlation file such as the station names, the lapse
time t

(lps)
k , and station-to-station distance, among

others. Additionally, this object has functions to
compute t

(+,app)
i,j,k +t

(−,app)
i,j,k , togetherwith the signal-

to-noise ratios of the causal and acausal surface
wave arrivals.

4. Station: Contains metadata such as location,
code, and timestamp when the station started
recording. Moreover, after solving the linear sys-
tem of equations, the recovered clock errors, i.e.,
the ai and bi, can be retrieved through these ob-
jects.

In addition to the core module, OCloC incorporates
third-party dependencies that yield advanced function-

ality, namely, the Numpy programming library (Har-
ris et al., 2020), several signal processing functions
from Obspy (Krischer et al., 2015), and the data visu-
alization tools of Pandas (Wes McKinney, 2010b) and
Matplotlib (Hunter, 2007). For specific details re-
garding the package installation and usage, please re-
fer to the online documentation available at https://
ocloc.readthedocs.io.

3.4 Bootstrap re-sampling
To verify the robustness of the obtained results, we re-
peat the inversion several times using different sets of
measurements t

(+,app)
i,j,k + t

(−,app)
i,j,k . By repeating the in-

version multiple times, mean values and confidence
intervals of the sought-after parameters are obtained.
One way to artificially generate different sets of mea-
surements is using bootstrap re-sampling (Efron, 1982).
Bootstrapping is a statisticalmethod that falls under the
broader class of re-sampling methods. It allows one to
estimate statistical properties of interest such as sample
averages and variances (Schnaidt and Heinson, 2015).
Effectively, it gives an indication of which results are
likely and which are less likely without computing new
lapse cross-correlations. Here, we seek to obtain an es-
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timate of the variance of the estimated ai and bi. In-
stead of using all the measured data points, we sam-
ple with replacement (Efron, 1982, 1992). In practice,
we generate a large number of data vectors t

(app) (usu-
ally referred to as ‘realizations’), each with the same
length as the original data vector, but with values that
are drawn from the original data vector, allowing dupli-
cates. Specifically, we perform the following steps:

I. An initial estimate of clock drift is obtained follow-
ing steps one to five of Figure 4. A SNR threshold of
30 and a station-to-station distance threshold of 2.5
wavelengths are applied. It is necessary to check
that the recovered ai and bi values are no longer
changing after several iterations. This results in
the data vector t

(app) that serves as the input of our
bootstrapping procedure.

II. Allow sampling with replacement by randomly se-
lecting measurements of t

(+,app)
i,j + t

(−,app)
i,j (boot-

strapped samples).

III. Once having re-sampled the measurements, per-
form the inversion and store the recovered a∗

i and
b∗

i values of each station.

IV. Repeat steps II and III one thousand times. By do-
ing so, we store 1000 possible realizations of the re-
covered a∗

i and b∗

i values.

V. Based on all the a∗

i and b∗

i realizations, compute a
statistical measure, such as 95% confidence inter-
vals, for each of the stations.

To identify stations with relatively uncertain a and b
values (either due to a limited number of data points, or
due to a lot of noise on the lapse cross-correlations asso-
ciated with that specific station), we estimate the stan-
dard deviation and 95% confidence intervals (CI) from
the 1000 realizations. The CI represents the range in
which 95% of the a∗

i and b∗

i values lie.
The bootstrap approach allows one to identify OBSs

with narrow or large confidence intervals. Narrower
confidence intervals suggest the recovered a and b are
well-determined, whereas stations with larger confi-
dence intervals point to larger uncertainties in the re-
covered clock errors. In the absence of noise, i.e., n

(src)

and n
(spur) both coinciding with 0, all a∗

i and b∗

i of a
given station should coincide and hence the 95% con-
fidence interval would be zero.

4 Results
4.1 Clock drift rates
We computed the weighted least-squares estimator of
t

(ins) for the OBSs in the IMAGE’s network. Our findings
indicate that all OBS stations experienced clock drift.
Compared to the other OBSs, the clock drift of OBS O20
was particularly large. Table 1 summarizes the esti-
mated clock drift rates (i.e., the ai) and incurred clock
errors at the time of deployment. The latter may de-
viate slightly from the bi because the bi represents the
clock errors on August 21, 2014 (t(lps) = 0), whereas

most stations were not deployed exactly on that date.
In addition, we list the measured skews in the last col-
umn. To compare these skew values, we provide in the
fifth column the clock error at the time of recovery com-
puted using the estimated ai and bi. Note that most OBS
recordings end prior to that date due to full disks. We
also obtained a drift estimate for OBS O21, which had
no skew value documented due to a dead battery at the
time of recovery. The incurred initial clock errors at the
timeof deployment ranged fromaminimumof−0.404 s
to a maximum of 0.037 s.
The bootstrap re-sampling introduced in Section 3.4

allows us to estimate the variance of the recovered
ai and bi. By generating 1000 different data vec-
tors (realizations) and subsequently performing a sep-
arate inversion for each of the generated data vectors,
1000 weighted least-squares estimators of t

(ins)) are ob-
tained. The standard deviation of the recovered a∗

i from
theai (recoveredusing theoriginal t(app)) is listed in col-
umn 3 of Table 1. In Figure 10, we visualize the recov-
ered ai and bi, including the bootstrap-derived uncer-
tainties.

Figure 10 Comparison between clock drifts obtained in
this study, and themeasured skews. a. Comparisonof clock
drift rates estimated based on the skew values and the to-
tal recording time (red dots) and the ai obtained from our
weighted least-squares inversion (black crosses). The error
bars correspond to the 95% confidence intervals resulting
from the bootstrap re-sampling. Note that no skew value
was reported for OBS O21 as this instrument’s battery died
before recovery. b. Comparison of the initial clock error at
the OBS’ deployment time. In both a and b, OBS O23 has
no error bars as this OBS was associated with too few data
points in t

(app) to be successfully included in the bootstrap-
ping procedure.

For all station pairs, we plotted the waveform
(mis)alignment of the different lapse cross-correlations
to verify the effective removal of the clock errors. Fig-
ure 11 shows the time-lapse cross-correlations between
OBS O01 and land station RET (which is devoid of clock
errors) in three states: a) uncorrected, b) corrected
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Table 1 Estimated clock drift rates (ai) of theOBSs (2nd column), and their corresponding standard deviation (3rd column).
The clock drift rates in column four are based on the measured skew values, assuming a linear drift and no clock errors at
t(lps) = 0. The estimated clock errors at deployment and recovery time in the fifth and sixth columns, respectively, are
computed by substituting the estimated ai and bi in Equation (2)with t(lps) set to eachOBS’ day of deployment and recovery.
OBS O21 had no skew value reported, as the battery died before recovery. Station O23 has no standard deviation because it
was associatedwith too fewdata points in t

(app) to be successfully included in the bootstrapping procedure. This is probably
due to the relatively low SNRs of the lapse cross-correlations involving this station.

Station
name

Clock drift rate
based on OCloC
[s/year]

σ [s/year] Clock drift rate
based on skew
values [s/year]

Clock error at
deployment time
(OCloC) [s]

Clock error at re-
covery time [s]

Measured
skew [s]

O01 -0.734739 0.042760 -1.011740 -0.312892 -1.055899 -1.023125
O02 -1.055136 0.097011 -0.782087 -0.115908 -1.182942 -0.790906
O03 -0.401807 0.251438 -0.136396 -0.109015 -0.515270 -0.137906
O04 -0.770560 0.153252 -0.765888 -0.189565 -0.968726 -0.774437
O06 -0.172589 0.152249 -0.126476 -0.167177 -0.343849 -0.129468
O08 -0.104288 0.245437 -0.096861 -0.326683 -0.433947 -0.099625
O10 -1.095582 0.073045 -0.789557 -0.225825 -1.354066 -0.813093
O11 -0.667440 0.179920 -0.457559 -0.404513 -1.089599 -0.469656
O14 -0.304885 0.147440 -0.326255 -0.211671 -0.462262 -0.268156
O15 -1.465134 0.340357 -1.633493 -0.342048 -1.839114 -1.669093
O16 -0.712585 0.131879 -0.635126 -0.216183 -0.944088 -0.648781
O17 -0.547051 0.034074 -0.350884 -0.161655 -0.720530 -0.358468
O19 -0.985476 0.115891 -1.119642 -0.378849 -1.388873 -1.147531
O20 -4.652023 0.176057 -4.324439 0.038416 -4.744142 -4.445781
O21 -1.234367 0.141809 N/A -0.185787 -1.456213 N/A
O22 -0.415065 0.077167 -0.643822 -0.315925 -0.743071 -0.662562
O23 -0.312865 N/A -0.289709 -0.300249 -0.620852 -0.296875

using skew-derived drift rates, and c) corrected using
OCloC’s weighted least-squares estimates of the drift
rates and the initial clock errors. Before correction,
the later lapse cross-correlations shift monotonically to
an earlier time (Figure 11a). The skew-derived correc-
tions shift the lapse cross-correlations to later times.
In this case, however, the skew-derived drift rate ap-
pears to “overcorrect” the lapse cross-correlations: later
lapse cross-correlations now shift monotonically to a
later time (Figure 11b). Finally, shifting the lapse cross-
correlations using the weighted least-squares inversion
for the ai and bi results in lapse cross-correlations that
properly align (Figure 11c).
In Figure 11, the skew-derived drift and the drift

recovered using the weighted least-squares inversion
are compared for a single station couple only. In Fig-
ure 12, a more systematic and quantitative compari-
son of the linear drift based on our code (‘OCloC-drift’)
and the skew values (‘skew-drift’) is presented for three
OBSs. The drifts of all the other OBSs are shown in Ap-
pendix C. Figure 12 also shows the time offsets between
the lapse cross-correlations and a reference lapse cross-
correlation (RCF). We only use the cross-correlations
between the OBSs and land stations. For each station
pair, the highest signal-to-noise ratio cross-correlation
is selected as theRCF.The timeoffsets correspond to the
time shift thatmaximizes the Pearson correlation coeffi-
cient between the RCF and each cross-correlation. The
skew-derived drift in the top figures assumes that there
is no initial clock error at the onset of deployment (i.e.,
b = 0), and all subsequent time offsets are linearly inter-
polated based on this assumption. For the bottom fig-
ures, the time offset at deployment time corresponds to

Figure 11 Lapse cross-correlations betweenOBSO01 and
land-station RET in the frequency range of 0.2 to 0.4Hz. Col-
ors indicate the average time of all time windows that con-
tribute to the lapse cross-correlation, and this color scheme
is consistent across all three sub-figures (legend provided
in the upper right corner of figure a). a. Original lapse
cross-correlations prior to any corrections. b. Lapse cross-
correlations after clock drift correction using skew values.
c. Lapse cross-correlations after clock drift correction using
the (OCloC-derived) drift rates (ai) and initial clock errors
(the bi) estimated in this study.

the OBS’ b value (or initial clock error) estimated from
the weighted least-squares inversion (again, all subse-
quent offset times are interpolated accordingly).
TheOCloC-drift corrections ofOBS01 andOBS02 (Fig-

ures 12a and 12b) seem to align better with the time
offset between the cross-correlations and the RCF. This
is not the case for OBS10 (Figure 12c), where the skew-
based clock drift aligns better with the time offsets. Sta-

14 SEISMICA | volume 3.1 | 2024



SEISMICA | RESEARCH ARTICLE | OBS Clock Correction

tion O10, however, is also one of the stations with the
shortest recording time, which results in fewer time-
lapses. This highlights one limitation of our approach:
the need for longer monitoring time to include more
lapse cross-correlations, because that provides tighter
constraints for the inversion process. In Section 5.3, we
further discuss the implications of the OBSs not moni-
toring for a full year.

4.2 Comparing inversion strategies
The fact that a non-uniform illumination pattern can
break the time symmetry of the retrieved surface-wave
responses is detrimental to the method presented in
this study. Weemstra et al. (2021) showed that apply-
ing a weighted least-squares inversion based on station-
to-station distances decreases the adverse effects of a
non-uniform surface wave illumination. Using syn-
thetic recordings of ambient seismic noise, these au-
thors demonstrated the advantage of theweighted least-
squares estimate over the ordinary least-squares es-
timate. To evaluate the accuracy of the weighted
least-squares estimator t̃

(ins)
(wls) in the presence of a non-

uniform surface wave illumination, we compare it to
the ordinary least-squares estimator t̃

(ins)
(ols) . To do so, we

used the bootstrap re-sampling approach introduced in
Section 3.4. Figure 13 shows the histogram and cumu-
lative distribution of 1000 bootstrap realizations of the
a∗ values of both inverse strategies. We used the same
starting parameters and data vectors in both cases. The
weighted inversions are shown in red, whereas the or-
dinary least-squares inversions are shown in blue. Fig-
ure 13a shows the distribution of the bootstrap real-
izations for all stations centered around 0 (mean val-
ues have been subtracted for each OBS individually).
Figure 13b shows the cumulative distribution of the
bootstrap realizations, with the 5th and 95th quantiles
marked as vertical lines. The weighted least-squares
distribution has narrower confidence intervals than the
ordinary least-squares distribution.
For data vectors associated with large station-to-

station distance thresholds, we do not find significant
differences between both inversion strategies. This
is expected because the threshold removes measure-
ments associated with station couples that are closer
to each other, which hence removes those lapse cross-
correlations that are susceptible to larger illumination-
related noise errors. For data vectors resulting from
decreasing station-to-station distance thresholds, how-
ever, we find that the weighted inversion results in nar-
rower bootstrap confidence intervals.

5 Discussion
5.1 The effect of the surface wave (noise) il-

lumination pattern
A limitation of the presented method is the fact that
a non-uniform illumination pattern can lead to devia-
tions of the retrieved surface-wave responses from the
true surface-wave responses (e.g., Tsai, 2009; Weaver

Figure 12 Comparison between (i) the skew-derived lin-
ear clock drift and (ii) the linear clock drift recovered us-
ing the weighted least-squares inversion for three selected
OBSs. Top: Time offsets between cross-correlations and a
reference cross-correlation (RCF) assuming no initial clock
error at the onset of deployment. Bottom: Time off-
sets considering the initial clock error (b value) at deploy-
ment time. The drift based on our code (weighted least-
squares inversion) and the confidence intervals are dubbed
‘OCloC-drift’, while the drift based on the skew values is
termed ‘skew-drift’. The highest signal-to-noise ratio cross-
correlation for each station pair is chosen as the RCF. The
depicted time offsets result from maximizing the Pearson
correlation coefficient between the RCF and the other lapse
cross-correlations, plus a correction based on the b value to
the skew correction.

et al., 2009). As such, timing errors due to a non-
uniform illumination pattern (captured in n

(src)) lead
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Figure 13 Bootstrap analysis of a∗ values for all stations showing the 1000 realizations stacked for all stations. The mean
values have been removed. The results of the weighted least-squares inversion are shown in red, and the results of the or-
dinary least-squares inversion are depicted in blue. a. Frequency histogram of the recovered values for all stations, with the
probability density function overlaid. b. Cumulative distribution of the bootstrap realizations, with the 5th and 95th quan-
tiles marked.

to deviations of the recovered drift from the true clock
drift. Consequently, bootstrap confidence intervals can
be expected to be larger for more pronounced non-
uniform illumination patterns. The bootstrapping re-
sults presented in Section 4.2 show that the distance-
based weighted least-squares inversion result in both a
lower spread of the distribution of the a∗ values (Fig-
ure 13a) and a narrower range between the 5th and 95th
quantiles (Figure 13b).
The bootstrapping results presented in Section 4.2

confirm the earlier, synthetic-data-based findings by
Weemstra et al. (2021). Compared to the ordinary
least-squares inversion, the weighted least-squares in-
version decreases the adverse effects of a non-uniform
illumination pattern. Note that the reasoning above
can also be turned around: the fact that the weighted
least-squares inversion results in more accurate clock
drift estimates strongly suggests a (time-varying) non-
uniform surface wave illumination. Given the available
literature (Stehly et al., 2006; Mulargia, 2012; Weemstra
et al., 2013) in general, and the large differences in SNRs
between (some of) the causal and acausal direct surface
waves in particular, this can hardly be surprising.

5.2 Validation using only land stations
We run a separate test using only the lapse cross-
correlations between the land stations. Lapse cross-
correlations involving OBSs are discarded. Apart from
two stations, we pretend these land stations to be suffer-
ing from clock errors and hence neither eliminate the
columns associated with any of them from A (in real-
ity, those stations’ a and b coincide with zero of course)
nor any of its two entries from t

(ins). We subsequently
compute the weighted least-squares estimator of t

(ins).
The inversion yields drift rates (i.e., ai) of maximum
0.1 s/year, which demonstrates that (i) noise on the data
(i.e., non-zero n

(src) and n
(spur)) prevents the recovery

of drift rates of 0 s/day and (ii) that drift rates lower than
10−4 s/day cannot be recovered unambiguously (for our
specific station configuration, noise illumination, and
frequency band). Themaximum bi that is recovered has
a value of 0.12 s, but this is an outlier in the sense that
formost of the stations, the estimated initial clock error
at t(lps) = 0 does not exceed 0.05 s. Although the recov-

eredai and bi donot coincidewith zero,weknow that, in
practice, the land stations do not suffer from clock drift
and/or initial clock errors. Effectively, this experiment
tells us that our approach allows us to successfully re-
cover a seismic station’s clock drift with an uncertainty
of approximately 0.1 s/year.

5.3 On the validity of the assumption of lin-
ear clock drift and an initial clock error

While introducing our model (Section 2.2), we assumed
the clock drift rates to be constant. Specifically, we
formulated a time-dependent clock error δt

(ins)
i (t(lps))

which drifts at a constant rate ai, while allowing for a
possible clock error bi at t(lps) = 0. The latter is in-
troduced to allow for an initial clock error at deploy-
ment time. This could, for example, be invoked by the
temperature shock while the OBS is sunk (Zhang et al.,
2023). We discuss in this section (i) the differences be-
tween the skew-derived drift rates and the recovered
drift rates (i.e., the ai), (ii) the fact that the bi are non-
zero, and (iii) the relation between these two observa-
tions.
First, we would like to emphasize that the differences

between the skew-derived drift rates and the parame-
ters recovered using the weighted least-squares inver-
sion (i.e., the ai and bi) yield clock errors at the time
of recovery that differ at maximum 0.62 s (compare the
last two columns of Table 1); most of them much less.
This suggests that the skew values are rather represen-
tative of the clock drift of the OBSs at the time of recov-
ery (see also Figure 10). Furthermore, Figure 12 and
Appendix C preclude a decision as to which drift rate
is“better” based on the time offsets of the consecutive
lapse cross-correlations.
Second, Figure 12 and Appendix C also do not allow

us to drawfirmconclusions regarding the estimated ini-
tial clock errors at the onset of deployment (i.e., the bi).
Upon comparison with the time offsets between the in-
dividual lapse cross-correlations and the RCF, however,
the clock errors estimated using our weighted least-
squares inversion seem to be slightly more accurate
than the skew-derived clock errors for most OBSs. This
would confirm the existence of a (non-zero) initial clock
error. For OBS O01, for example, the waveform align-
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ment presented in Figure 11 strongly supports the es-
timated initial clock error (b) of −0.31 s. In particular
because the estimated clock error at the time of recov-
ery almost coincides with the skew for this station (see
Table 1). By not taking into account the initial clock er-
ror for this OBS, the skew-based corrections effectively
overcompensate the observed clock drift. This is evi-
dent from the shift of later lapse cross-correlations to
positive times in Figure 11b. In contrast, OCloC-based
corrections do not yield any (visible) residual drift (Fig-
ure 11c). This implies that an initial clock error at the
time of deployment (i.e., a non-zero b) is indeed needed
to explain the observed clock errors. Note that OBS O01
is used as an example because this station has one of the
largest initial clock errors at deployment time, whereas
its estimated clock error at recovery time almost coin-
cides with the measured skew.
The fact that the OCloC-corrected lapse cross-

correlations align better than the skew-corrected lapse
cross-correlations can hardly be surprising. The drift
rate estimates and the initial clock errors at the time
of deployment are based on these very lapse cross-
correlations. Therefore, it can be misleading to con-
clude from this observation that our approach yields
more accurate drift rates than the skew-derived drift
rates. This is because although the weighted least-
squares inversion mitigates the effect of arrival time
shifts resulting from a non-uniform surface wave il-
lumination, it will not undo it entirely. Illumination-
related arrival time shifts (i.e., non-zero δt

(+,src)
i,j,k ) may

still have some effect. However, given the fact that (i) we
averaged hourly cross-correlations over a period of 100
days, (ii) an SNR-threshold of 30 was imposed, and (iii)
a station-to-station separation threshold of 2.5 wave-
lengths needed to be exceeded, we do not expect that
these illumination-related arrival time shifts to be the
cause of bi as high as 0.3 or 0.4 s. The experiment dis-
cussed in Section 5.2 supports this claim.
Considering the above, we identify two possible ex-

planations for the fact that the initial clock errors at
the time of deployment are found to be non-zero and
have values as high as (minus) 0.4 s. One explanation is
that they result from the temperature shock during the
OBS’ descent to the ocean floor (see e.g., Zhang et al.,
2023). In other words, they are real. This would not
be surprising considering the experimental results by
Gardner and Collins (2012), who find that the drift rates
of the SEASCAN clocks may change significantly in the
weeks after a temperature shock (in practice: after de-
ployment). A second possible explanation for their de-
viation from zero stems from the fact that the OBSs ex-
perience seasonal temperature variations during their
deployment at (relatively) shallow depths. The study by
Jochumsen et al. (2016), for example, reports on sea-
sonal seawater-temperature variations on the order of
five degrees centigrade at those depths. This is con-
sistent with the temperature variations within the data
logger, which reveal annual temperature variations of
about four degrees centigrade (these temperature sen-
sors have a resolution of one degree only). In general,
an OBS’ drift rate is temperature dependent (Shariat-
Panahi et al., 2009). However, we do not expect the drift

rate of the SEASCAN clocks to suffer from such temper-
ature variations: the SEASCAN clocks are temperature
compensated (Gardner andCollins, 2012). Nonetheless,
if such a seasonally varying drift would exist, it may be
more appropriate to have our drift model (Equation 2)
include a sinusoid with a period of one year. This may
be the topic of future work.
Of all recovered drift rates, the drift rate by OBS O20

stands out (see Figure 10). This may well be explained
by the fact that, compared to the other OBSs, the log-
ger and hence SEASCAN crystal oscillator of OBS O20
was newer. It was only two years old at the time of de-
ployment, whereas the loggers (andhence clocks) of the
other OBSs were approximately 8 years old (Alfred We-
gener Institute, personal communication, 2023). This
matters because of a natural process in the crystal os-
cillator, which is referred to as aging. Aging implies
that the drift rate of an oscillator slowly changes with
time. Essentially, it is the time derivative of the drift rate
(Gardner and Collins, 2012). The aging of the crystal is
a very important factor when it comes to the drift rate
of the SEASCAN clocks, with younger crystals usually
aging faster. And even though aging can be mitigated
by regular recalibration of the SEASCAN clocks, it could
well have been the cause of the larger drift rate of the
SEASCAN clock of OBS O20.

5.4 Performance in the absence of land sta-
tions?

OBS arrays in remote oceanic regions will not have the
benefit of land stations in their near vicinity. In that
case, lapse cross-correlations between the OBSs and a
station with a correct (UTC) reference time do not con-
tribute to the data vector t

(app). The systemof equations
will, in that case, be underdetermined (the rank of A

being lower than the number of unknowns) and that
weighted least-squares estimator t̃

(ins)
(wls) is chosen that

has the lowest norm (see Section 2.6). The minimum-
norm solution yields an estimator of t

(ins) that allows
the OBS recordings to be synchronized with respect to
each other, but not with respect to UTC. In other words,
the recovered bi differs from the true (unknown) bi by a
common time shift, but the drift rates (i.e., the ai) can
still be recovered (with some uncertainty, of course).
This is still useful as it would enable tomographic stud-
ies using only the OBSs, or the localization of seismic
events (earthquake hypocenters) below the OBS array.
The accuracy of the recovered clock drift parameters

depends linearly on the wave frequency. That is, lapse
cross-correlations at higher frequencies will hence re-
sult in more accurate estimates of clock drift than lapse
cross-correlations at lower frequencies, provided the il-
luminationpattern and the SNRs at both frequencies co-
incide. In practice, the latter is often not the case: lapse
cross-correlations at lower frequencies usually benefit
from more uniform noise illumination patterns (e.g.,
Yang and Ritzwoller, 2008). It may therefore be benefi-
cial to include measurements associated with different
frequency bands in t

(app). It is beyond the scope of this
work to investigate this here.
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5.5 Which projects can benefit from OCloC?
There are several methods that can be used for correct-
ing OBS clock errors. The fastest to implement is simply
using the recovered skew values and assuming a linear
drift rate. Here, however, we show that thismethodmay
not be reliable. Moreover, it may not be possible be-
cause the battery has died before recovery. Othermeth-
ods require correcting each OBS one by one by simply
evaluating cross-correlations of ambient seismic noise
in a non-automated manner. This requires a level of
inspection that is not attractive (time-wise) for large-N
OBS arrays. OCloC is suitable for such type of deploy-
ment as it automatically and simultaneously computes
clock drift rates of all OBSs. Other cases where a GPS
clock is lost, particularly with only on-land-station de-
ployments, can significantly benefit from OCloC.
Projects that do not benefit from our approach are

those with a limited deployment time. The reason is
thatOCloC requires the retrieval of interferometric sur-
face wave responses at positive and negative times. In
addition, lapse cross-correlations need to be computed
at different lapse times t

(lps)
k (at least two). To retrieve

both responses, noise cross-correlations need to be av-
eraged over a sufficiently long time. Here “sufficiently
long” is location, processing, and frequency depen-
dent (e.g., Yang and Ritzwoller, 2008; Seats et al., 2012;
Snieder, 2004). In our case (Reykjanes peninsula, spec-
tral whiting prior to cross-correlation, and 0.2–0.4 Hz
frequency band), individual noise cross-correlations
were averaged over 100 days to obtain surface waves
with sufficiently high SNRs at bothpositive (causal peak)
and negative (acausal peak) time.
For projects that might not be suitable for OCloC, al-

ternative solutions exist, suchas themethodologies pro-
posed by Sens-Schönfelder (2008); Hable et al. (2018);
Loviknes et al. (2020); Jousset et al. (2013); Gouédard
et al. (2014), among others.

6 Conclusions
We introduced a new method to recover, simultane-
ously, clock drift rates of large numbers of ocean bot-
tom seismometers. Our approach relies predominantly
on the time-symmetry of the retrieved interferomet-
ric surface wave responses, but also includes the per-
ceived temporal stability of the lapse cross-correlations
in the workflow (see Appendix B). Contrary to existing
approaches, our method also (i.e., in addition to the
drift rate) allows one to recover an initial clock error at
the time of deployment. Two situations can be distin-
guished: OBS deployments including land stations and
OBS deployments without stations devoid of a clock er-
ror. Drift rateswill successfully be recovered in both sit-
uations. The absolute time, however, will be meaning-
less in case no land station (or another station devoid
of clock errors) is “connected” to OBS deployment by
means of a number of lapse cross-correlations. Results
can be analyzed using a qualitative uncertainty anal-
ysis via bootstrap re-sampling. Finally, the presented
methodology is implemented in OCloC, an accessible
Python package with an object-oriented design.

We test OCloC using the seismic noise data acquired
during IMAGE’s seismic campaign in and around the
Reykjanes Peninsula (Iceland). We find that all OBSs
in the network suffered from clock drift. In particular,
we find that the skew did not allow accurate recovery of
the OBSs’ drift rates. Using our approach, it was possi-
ble to detect the OBSs’ initial clock error at the time of
deployment. Finally, we showed that a weighted least-
squares inversion, where receiver pairs are weighted by
station-to-station distances, significantly reduces errors
caused by deviations of the noise illumination pattern
from uniform.
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Appendices
A Matrix formulation
To clarify the rather mathematical description of the
inverse problem, let’s consider the following example.
If one would compute monthly time-averaged cross-
correlations for an OBS deployment of 10 stations that
would last one full year, N (lps) would be 12 and N (obvi-
ously) 10. This would imply the number of rows of the
matrixA (and the length of the vectors t

(app),n
(src), and

n
(spur)) would coincide with 12 × (10 × 9)/2 = 540. The

length of t
(ins) would coincide with 20 (2 × 10) and so

would the number of columns of A. Expressing then
t
(lps)
k in terms of days (instead of seconds, which is the
customary unit of time) and setting it to zero at the on-
set of the OBS deployment, this would imply t

(lps)
1 ≈ 15,

t
(lps)
2 ≈ 46, and so on, and so forth.
For N stations, vector t

(ins) can be written as:

(9)t
(ins) ≡























a1

b1

a2

b2

...
aN

bN























,

To aid in the interpretation of Equation (8), we depict
below (Figure 14) the rows associatedwith thefirst lapse
cross-correlations (i.e., the lapse cross-correlations as-
sociated with t

(lps)
1 ) are shown in light blue. In addition,

we have depicted in purple (for t
(lps)
1 only) the elements

of thematrix associatedwith the lapse cross-correlation
between stations 1 and 2, and in yellow the elements of
the matrix associated with the lapse cross-correlation
between stations 2 and 3. Note that, as it stands, thema-
trix in Figure 14 is rank deficient. This implies that the
system of equations is underdetermined, and a unique
solution does not exist. If one of the 10 stations is a
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land station devoid of clock errors, the two columns as-
sociated with that station could be eliminated from A

(that OBS’ a and b would coincide with zero), and its
two entries eliminated from t

(ins). The resulting matrix
A would be full rank, and a unique estimator of t

(ins)

would exist.

Figure14 ExampleofmatrixAwhenusingN stationsand
n lapse times

B Detection of outliers
When measuring the t

(+,app)
i,j,k + t

(−,app)
i,j,k it might be pos-

sible to get an erroneous measurement due to a phe-
nomenon that is similar in nature to what is referred
to as ‘cycle skipping’ in full-waveform inversion (e.g.,
Warner and Guasch, 2014). That is, the measured
t
(+,app)
i,j,k + t

(−,app)
i,j,k deviates from the “true value” by ap-

proximately one period (see alsoWeemstra et al., 2021).
Needless to say, inclusion of thesemeasurements in the
inversion leads to incorrect ai and bi. To prevent such
measurements, we implemented a method that com-
pares the measured t

(+,app)
i,j,k + t

(−,app)
i,j,k with the expected

t
(+,app)
i,j,k + t

(−,app)
i,j,k . The latter is computed using the a’s

and b’s recovered during a first inversion. After identify-
ing the outliers, i.e., points that do not follow the overall
trend (blue areas in Figure 15), we set a certain thresh-
old for removing or keeping measurements. Repeating
this process multiple times allows us to“clean” the data
vector from such measurements.

C Clock drifts of each OBS station
In this appendix section, we provide an extended com-
parison of linear corrections from our code against the

Wrong measurements

suffering from cycle

skipping

Observed time-symmetry shift 

vs 

computed time-symmetry shift after inversion

Figure 15 Observed time symmetry shifts plotted against
the estimated time symmetry shifts after inversion. The
clusters in blue might indicate inaccurate measurements
product of cycle skipping.

skew values for each OBS. The figures display the time
offsets between the cross-correlations and a chosen ref-
erence cross-correlation, offering a detailed view of our
approach’s alignment with standard skew value correc-
tions across different OBSs. Stations with very high un-
certainty (for example O03, O06, andO08) yielded fewer
data points (t+,app

i,j,k + t−,app
i,j,k ) as their SNR and distance

separation did not meet the required thresholds (see
Figure 6 for examples of those cross-correlations).

ThearticleOceanbottomseismometer clock correctionusing
ambient seismic noise © 2024 by David Naranjo is licensed
under CC BY 4.0.
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Figure 16 Comparison between the observed clock drift, (i) the skew-derived linear clock drift, and (ii) the linear clock drift
recovered using the weighted least-squares inversion of each OBSs (except O01, O02, and O10, which are in Section 4). Top:
Time offsets between cross-correlations and a reference cross-correlation (RCF) assuming no initial clock error at the onset
of deployment. Bottom: Time offsets considering the initial clock error (b value) at deployment time. The drift based on
our code (weighted least-squares inversion) and the confidence intervals is dubbed ‘OCloC-drift’, while the drift based on
the skew values is termed ‘skew- drift’. The highest signal-to-noise ratio cross-correlation for each station pair is chosen as
the RCF. The depicted time offsets result frommaximizing the Pearson correlation coefficient between the RCF and the other
lapse cross-correlations, plus a correction based on the value of b in the skew correction.
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Abstract Hypersonic re-entries of spacecraft are valuable analogues for the identification and tracking
of naturalmeteoroids re-entering the Earth’s atmosphere. We report on the detection of seismic and acoustic
signals from the OSIRIS-REx landing sequence, acquired near the point of peak capsule heating and recorded
using a fully off-grid Raspberry PiShake sensor. This simple setup is able to record the salient features of
both the seismic andacousticwavefields, including theprimary shockwave, later reverberations, andpossible
locally induced surface waves. Peak overpressures of 0.7 Pa and ground velocities of 2x10−6 m/s yield lower
bound on the air-to-ground coupling factor between 3 and 44 Hz of 1.4x10−6 m/s/Pa, comparable to results
from other re-entries.

1 Introduction
1.1 Seismoacoustic measurements of hyper-

velocity re-entry
Seismic and acoustic measurements are invaluable
tools for identifying and locating meteoroids entering
the Earth’s atmosphere (Edwards et al., 2008). Un-
like optical techniques, seismoacoustic techniques al-
low over-the-horizon measurements to be made, and
can continue to track bolides during their dark-flight
phase.
The entry, descent, and landing (EDL) of artificial

spacecraft can serve as an analogue for these natural
meteoroid events, enabling calibration of seismoacous-
tic measurements using an object of known trajectory,
mass, and dimensions (Silber et al., 2023).
However, very rarely do re-entering spacecraft ap-

proach velocities representative of naturally-occurring
meteorites (>11 km/s, Ceplecha et al., 1998). The excep-
tions to this are capsules re-entering on interplanetary
(as opposed to de-orbital) trajectories.
Such encounters are extremely rare, having occurred

∗Corresponding author: bfernan9@jh.edu

only four times on Earth. Sample return capsules from
the Genesis (ReVelle et al., 2005), Stardust (ReVelle and
Edwards, 2007), Hayabusa (Yamamoto et al., 2011), and
Hayabusa2 (Sansom et al., 2022) missions underwent
EDLs at around 12 km/s, on the lower end of the velocity
distributions of natural meteoroids, though still some-
what representative.
In each case, seismic and acoustic measurements en-

abled information about the capsule’s hypersonic dy-
namics and the propagation of the sonic boom shock-
wave to be collected. Ironically, these EDL events are
muchmore common on other planets visited by human
spacecraft, but only one has been (unsuccessfully) in-
strumented (Fernando et al., 2021, 2022).

1.2 The OSIRIS-REx Entry, Descent, and
Landing Sequence

The OSIRIS-REx (ORX) sample return capsule was
scheduled to re-enter theEarth’s atmosphere at 14:41:55
UTC on 2023-09-24, carrying samples from asteroid
Bennu (Lauretta et al., 2017). Its atmospheric interface
was expected to occur off the coast of San Francisco,
California, at an altitude of ∼133 km and a velocity of
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approximately Mach 25 (43,000 km/h; 11.9 km/s).
ORX’s heat shield was expected to experience peak

frictional heating from the atmosphere (∼3100 K) at
a speed of Mach 30 (39,000 km/h; 10.8 km/s) ∼62 km
above northern Nevada around 14:42:45 UTC, before
continuing downrange to a soft landing at the Dugway
ProvingGround inUtah at 14:55UTC (Ajluni et al., 2015).

1.3 Project aims

This project aimed to co-locate a seismoacoustic station
with anoptical tracking station close to thepoint of peak
heating, in order to study the re-entry process at the
point where the maximum amount of kinetic energy is
being dissipated into the atmosphere. Exact co-location
of acoustic and seismic measurements enables estima-
tion of coupling parameters across the surface inter-
face, helping to constrain how incident acoustic signals
produce their seismic counterparts. This is particularly
useful when detecting natural meteoroids given that
the worldwide seismic network is much denser than its
acoustic equivalent.
Whilst other instrumentation campaigns were

planned to record seismic and acoustic signatures
using more conventional deployments, these were not
co-located with an optical tracking station (Silber et al.,
2023).
The nearest permanent seismic station was 50 km

away (NN.Q11A at Duckwater, Nevada), precluding the
use of an existing seismic network to provide local data.
Similarly, no permanent infrasound stations were lo-
cated nearby. Further constraints were imposed on this
deployment by the absence of mains power or wired
data connections at the optical tracking sites and the
stipulation that the data be live-streamed in real-time
over the internet for education and outreach purposes.
Our identified solution was to use a low-cost Rasp-

berry PiShake seismic and infrasound sensor1 coupled
to a portable generator and satellite internet connection
to fulfil these aims.
In this paper we present the methodology and ini-

tial results from this project, whilst also exploring the
scalability of a network of this type. For temporary de-
ployments where real-time data access is required (e.g.
for monitoring or triggering purposes) in remote areas,
such a configuration may serve as a template. This is
especially true for phenomena like EDLs where dense
instrument spacings are of interest, and the co-location
of seismic and acoustic sensors on a single instrument
offers both logistical and processing advantages.
This work builds on previous use of distributed off-

grid sensors for seismic sensing (e.g. Kong et al. (2016))
and past incorporation of PiShakes into seismic net-
works (Winter et al., 2021; Mikael, 2020; Manconi et al.,
2018; Lecocq et al., 2020). However, it is the first exam-
ple of which we are aware of a direct PiShake-satellite
connection.

1Raspberry Shake & Boom, https://manual.raspberryshake.org/
boom.html

2 Methodology
2.1 Location
The location of the optical tracking station with which
the PiShake (station code: ‘RD04A’) was co-located was
selected by NASA’s Scientifically Calibrated In-Flight
Imagery (SCIFLI) Team to be close to the point of peak
heating in the ORX EDL trajectory, whilst also being re-
mote and far from any artificial light sources.
The selected location was in Eureka County, Nevada

(39.264605°N, 116.026934°W), at an elevation of 1843 m
AMSL. This site was ∼40.5 km laterally offset from the
closest point on the nominal EDL trajectory at a bearing
of 199° (meaning theminimumsource-receiver distance
was expected to be 72.2 km). A schematic illustration of
the projected EDL trajectory is shown in Fig. 1. Note
that the lateral offset was chosen to enable a reduced
slewing rate across the sky for the optical tracking in-
struments.
A range of hills with peaks up to 2900m (700mpromi-

nence) to the north and north-east at a range of 5-10 km
were also noted.
The chosen site was a flat, dry bed, which was iden-

tified as having a surface of unconsolidated alluvium.
A small section of the ground was artificially brushed
clean and smoothed before the seismometer was de-
ployed. P-wave speeds in unsaturated northern Nevada
alluvium are reported in the literature as varying be-
tween 365 and 1035 m/s (Allander and Berger, 2009).
At a location this distance fromand altitude below the

EDL track, we anticipated detection both of the direct
sonic boom (on the acoustic sensor) and the induced de-
formation of the ground (on the seismometer). It was
also expected from published literature analysing con-
ventional explosive sources that further features might
be detected in the seismic coda, for example coupled
surface waves (Novoselov et al., 2020; Langston, 2004).
Previouswork indicates that these observations are site-
specific and hence not a given, with a dependence on
both local ground properties and current atmospheric
conditions (Wills et al., 2022; Chen et al., 2023).

2.2 Weather
The nearest weather station to the seismometer
deployment was at Eureka Airport (39.600506°N,
116.006467°W). The distance between the PiShake
location and the airport point is 37.4 km, at a bearing
of 2.7° from north. A weather measurement was made
at the airport at 14:53 UTC, around 11 minutes after the
expected overflight of the capsule.
The recorded air temperature was 8.9°C, with a dew-

point of -1.7°C and a resulting relative humidity of 47%.
Barometic pressure was 1022.1 hPa, and the windspeed
was recorded as 2.1 m/s from an origin bearing 210°.
The resulting surface sound speed is calculated to be
337 m/s.

2.3 Setup
A PiShake ‘Shake and Boom’ equipped with an infra-
sound sensor and vertical component geophone was

2 SEISMICA | volume 3.1 | 2024

https://manual.raspberryshake.org/boom.html
https://manual.raspberryshake.org/boom.html


SEISMICA | DATA REPORT | Measurements of the OSIRIS-REx re-entry with a PiShake

Figure 1 Schematic views of the pre-landing projected ORX EDL path in blue, showing top-down (upper panel) and side-on
(lower panel) views. Capsule heights above sea level are indicated along the trajectory. The total length of the path flown
after atmospheric interface is approximately 1500 km.

used in this experiment. The instrument was levelled
on the ground but not rotationally oriented due to the
absence of horizontal component geophones. This
setup is shown in Fig. 2. Due to the soil conditions, the
sensor could not be feasibly anchored into the ground
and simply rested on the surface.

Both the acoustic and seismic sensors sampled us-
ing default settings, at 100 samples/second with an es-
timated bandwidth of -3dB between 0.7 and 44 Hz in ve-
locity for the geophone and -3dB between 1 and 44 Hz
for the infrasound sensor.

The sensor was powered by connection to a portable
generator approximately 12maway,whichwas shielded
bymakeshift acoustic baffles (bins and camping chairs).
A direct connection into a Starlink terminal provided
real-time access to the data and livestreaming capabil-
ity over the PiShake website. Due to the lack of multiple
ethernet ports on the terminal, instrument configura-
tion to update metadata could not be done on-site and
was executed remotely.

Timingwas executed via the instrument’s defaultNTP
over the Starlink connection. Data collected between
14:00 and 15:00 UTC is considered reliable, and the
background noise levels are representative of the en-
vironmental conditions; data are available from before
14:00 UTC on the day of landing but are contaminated
by noise from the site setup.

Figure 2 Instrument setup. The PiShake is visible as the
transparent box in the foreground, with the geophone and
infrasound sensor mounted within the same instrument
and levelled using the built-in spirit level. Power (white ca-
ble) and data (black cable) are routed through the weath-
erproof black box. The generator and acoustic baffles are
not shown, but theStarlink connection is visible in theback-
ground. The unconsolidated alluvial surface and range of
hills with peaks 5-10 km away are also visible. Image direc-
tion: north (toward EDL trajectory).
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Figure 3 (a) Traces of the seismic (blue) and acoustic (red) data, inset is a detail of the first arrivals. (b) Spectrogram of the
seismic data, inset shows a detail of the seismic chirp observed which lasts around four seconds and is dispersive. Bright,
vertical spikes at 14:47:15 and 14:48:00 UTC are glitches in the system electronics. Horizontal lines are resonances produced
by the generator. (c) Acoustic data, showing a single impulsive arrival at 14:46:45 UTC with no clear coda, but potentially
elevated noise levels post-arrival.

3 Results
Pre-landing estimates suggested that any sonic boom
would likely arrive at the deployment location around
240 seconds (4 minutes) after the point of peak heating
or around 14:46:45 UTC.
Data from the seismic and acoustic instruments are

shown in Fig. 3. A sharp peak in both datasets, elevated
significantly above the background noise, is recorded
at 14:46:41 UTC. This sound was also recorded by the
ground team as a loud ‘popping’ noise at 14:46:45 UTC
± 00:00:03; extremely short in duration and lacking any
discernible internal structure or audible rumbling.
As best as could be determined by the ground team,

this boom originated from the north of the observation
station (toward the EDL trajectory), but from the direc-
tion of the horizon rather than from an elevated angle.
We attribute this observation to the fact that the cap-
sule is not behaving as a point source. Rather, it behaves
as an elongated cylindrical source producing a conical
shock with a hyperbolic footprint on the ground.

We note that the arrival time of the sonic boom was
in very close agreement with our pre-landing predic-
tion. However, we expect that this degree of agreement
is not particularly consequential (i.e., cannot be used to
confirm that the EDL trajectory was totally nominal), as
our pre-landing estimate of the boom propagation time
was linear and neglected atmospheric refraction of the
shockwave.

3.1 Infrasound data
The infrasound signal displays rounded ‘N-wave’ be-
haviour expected of a downward-propagating sonic
boom (Plotkin, 2002), with a rapid overpressure (0.7 Pa)
pulse and sharp peak followed by an underpressure
trough (0.6 Pa) lasting approximately 0.5 s total.
This shape is characteristic of a shockwave which has

been distorted by propagation through a turbulent at-
mosphere (Pierce and Maglieri, 1972). It is very simi-
lar to previously recorded signals from hypersonic re-
entries (e.g. ReVelle et al., 2005). Hence, we conclude

4 SEISMICA | volume 3.1 | 2024



SEISMICA | DATA REPORT | Measurements of the OSIRIS-REx re-entry with a PiShake

that the main infrasound signal is the direct detection
of the sonic boom from the capsule and not an acoustic
reflection (echo) or rumbling produced by the incident
acoustic wave upon the ground.
The background infrasound noise level appears to be

slightly enhanced at low frequencies (<10 Hz) follow-
ing the arrival as compared to before, though not enor-
mously so (Fig. 3, ∼5 s before and after the infrasound
arrival). This feature may be the signature of a low-
frequency sub-audible infrasonic rumble ormay simply
be associated with elevated wind noise.

3.2 Seismic data
The seismic dataset appears to be considerably richer
than the infrasound signature, with a signal lasting ap-
proximately 120 seconds (2 minutes). The first seis-
mic arrival is exactly coincident with the infrasound ar-
rival. This likely represents the shaking of the surface
induced by the overpressure (Ben-Menahemand Singh,
1981).
This conclusion is also supported by the polarity of

the signal, with thedownwardmotion at first arrival cor-
responding to thedisplacement downwardof the sensor
and ground in response to the acoustic overpressure.
Peak shaking of 2x10−6 m/s is observed, with the boom
itself lasting approximately 5 seconds.
The complex coda is likely to have multiple origins,

including the excitation of surface waves (Cook et al.,
1972), scattering of the shockwave in the atmosphere
(Garcia et al., 2022), reflections of the direct shockwave
off of topography (Emmanuelli et al., 2021) and of the
transmitted shockwave off sub-surface geological fea-
tures, and the gradual restoration of the equilibrium
surface position following compliance-induced defor-
mation.
A short, dispersive, chirp-like signal is apparent be-

tween approximately 1 and 7 Hz in the 3-4 seconds
following the initial seismic arrival (see inset spec-
trogram, beginning at 14:46:41 UTC), with higher fre-
quencies arriving later than lower ones. Two potential
chirping structures are also observed later in the data
(around 14:46:46 and 14:46:50 UTC), though at much
lower signal-to-noise ratios.
‘Normal’ dispersion in chirp structures is indicative of

higher frequencies propagatingmore slowly than lower
ones. Such behaviour would be expected for seismic
surface waves propagating in the uppermost layers of
the ground, where the gradient in sound speed with
depth is significant on the scale of the seismic wave-
length. Because these surface phases do not arrive be-
fore the initial boom, we conclude that they are pro-
duced locally to the receiver; as seismoacoustic cou-
pling in the far-field directly below the ORX trajec-
tory would likely see coupled surfacewaves ‘overtaking’
the boom due to the higher propagation speeds in the
ground.
Similar features, identified as Airy waves, are seen

during the Stardust EDL by Edwards et al. (2007), whilst
Novoselov et al. (2020) identify Stoneley waves in seis-
mic coda generated by seismoacoustic coupling. These
propagate in the thin, low-velocity surface layers where

the shear velocity approaches the acousticwavespeed in
air (Wills et al., 2022). This is comparable to the geolog-
ical setting here, with the PiShake sensor resting on a
low-velocity alluvial layer.

3.3 Air-to-ground coupling
The co-location of seismic and acoustic instruments
allows us to estimate the ground compliance (the
ground’s response to the pressure loading from the
shockwave at the surface (Sorrells, 1971; Kenda et al.,
2020). A number of physical phenomena contribute to
the compliance, here we consider the inertial effects
originating from the continuity of normal stress anddis-
placement at the ground surface. We note that mea-
surements of seismoacoustic coupling strength are in
general very sensitive, in particular to the frequency
bands considered, surface topography, and wavefront
shape/incident angle (Matoza and Fee, 2014; Bishop
et al., 2022).
We estimate the inertial effects by considering how

the vertical deformation recorded by the seismometer
is related to the surface overpressure. The ground is
modelled as a homogeneous, isotropic half-space and
the shockwave is modelled as a planar wave. Following
Kenda et al. (2020), the compliance Kv is then:

Kv = 2c
1 − ν2

E
, (1)

whereE is theYoung’smodulus, ν is thePoisson ratio,
and c is the advection speed of the pressure loading.
We choose elastic properties for the subsurface cor-

responding to canonical values for soft superficial allu-
vium, with Vp = 585m/s and Vs = 350m/s, ν = 0.22, and E
= 0.4488 MPa. These are commensurate with detailed
surveys from the wider region (Allander and Berger,
2009). Local variations in these values may be substan-
tial, butwould require a full geophysical survey to better
constrain.
These values lead to a compliance dependent on the

advection speed c of:

Kv = 4.23x10
−9c m/s/Pa (2)

As we expect the shockwave to propagate at or faster
than the speed of sound, we use a value for the advective
speed c of 337 m/s, as derived in Sec. 2.2. This is very
mucha lower limit, as the actual speedof the shockwave
is not simple to measure. We also note that this value is
much faster than conventional derivations of the com-
pliance, which use wind-driven ground deformation as
a source (c ∼2 m/s in Kenda et al., 2020).
These parameters yield a minimum value for the

ground compliance of 1.4x10−6. This gives us a calcu-
lated minimum value for the air-to-ground coupling of
4x10−6 m/s/Pa, using the vertical component of the ve-
locity only.
This value is comparable to that derived from

the Stardust EDL by Edwards et al. (2007) of 7.3±

0.2x10−6 m/s/Pa, which used a similar capsule and tra-
jectory but required a far more complex deployment to
estimate.
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3.4 Seismoacoustic noise
For completeness, we comment on a number of seis-
moacoustic noise sources which are apparent in the
wider dataset.
Strong resonances in both instruments are observed

at 30 Hz, with weaker resonances in the seismic data at
∼11 Hz and ∼19 Hz. These appear as horizontal lines in
Fig. 3. These are identified as coming from the gen-
erator, and over a longer timescale (not shown here),
they display subtle changes in frequency as the gener-
ator load varies with changes in the power demand of
the optical tracking instruments.
Occasional spikes in the seismic power are also ob-

served, for example at 14:46:45 UTC. These are also
thought to be electromagnetic glitches associated with
rapid changes in the generator’s load. These appear as
vertical spikes lines in Fig. 3. One glitch at 14:47:15 UTC
partially overprints the seismic coda, though well be-
yond the point at which the identified surface wave
phases have dropped below the noise floor.

4 Discussion
4.1 Scientific utility
This deployment demonstrated the ability of a fully
off-grid Raspberry PiShake ‘Shake and Boom’ sensor to
capture valuable data from a transient seismoacoustic
event, whilst also making said data publicly accessible
via livestream.
Whilst naturally limited in sensitivities to long pe-

riods (lower than 1 Hz), this work also demonstrates
the ability of the PiShake instrument to capture many
of the notable features in the wavetrain, from the ini-
tial rounded N-wave to the coda likely associated with
Stoneley waves propagating in the low-velocity subsur-
face. Whilst our single station does not offer the same
seismic insight as arrays or co-located broader spec-
trum instruments would, these features of the wave-
train are recorded comparably to past studies (e.g. ReV-
elle et al., 2005; ReVelle and Edwards, 2007).
These include the primary shockwave (0.7 Pa over-

pressure and 2x10−6 m/s peak ground velocity), an ex-
tended seismic coda, and possible air-to-ground surface
wave phases. We derive a lower bound on the air-to-
ground coupling ratio of 4x10−6 m/s/Pa, comparable to
previous capsule re-entries.

4.2 Deployment suggestions
The use of a surface instrument which is locally pow-
ered and not hard-coupled to the ground obviously
brings with it disadvantages, not least of which is the
generator noise apparent on both sensors. For those
looking to undertake similar deployments, we also
make the following suggestions:

• The addition of a wind cover to the instrument
would likely substantially reduce the noise levels of
both the acoustic and seismic data.

• Better anchoring of the instrument into the ground
would be expected to especially benefit the seismic
data.

• The use of a well-tuned and lubricated generator
can minimise the amount of acoustic noise pro-
duced, enabling data to be recorded with higher fi-
delity. A rechargable battery or solar panel would
of course decrease noise levels even further.

• Adedicated instrumentpower supply (whetherbat-
tery or generator) can avoid fluctuations in the gen-
erator load which lead to variations in the genera-
tor resonant frequencies. Such variations make re-
moval of the generator noise harder.

• For standard Starlink terminals, the single ethernet
output portmeans that LANconfiguration of the in-
strument must be modified, i.e. it is not possible
to connect a laptop and a PiShake to the terminal
simultaneously without additional hardware. This
can be avoided by connecting the PiShake through
a laptop to enablemetadata edits, or configuring lo-
cation and elevation parameters on a different net-
work prior to deployment.

4.3 Scaling to larger arrays
The nominal data uplink rate from a Raspberry Pi
Shake&Boom sensor of this type is approximately
2.8 kb/s. A standard Starlink connection comes with a
minimum expected data rate of 5 Mb/s. As such, data
volumes are unlikely to prove problematic for realistic
array sizes (<1000 instruments). We again note, how-
ever, that additional hardware would be required to en-
able multiple wired uploads through a Starlink connec-
tor due to the single ethernet port on the terminal.
The power requirements of the sensor are at least

5.0 V DC at 2.5 A, for an electrical power of 12.5W. As
such, an intermediate-sized array (∼100 instruments)
could likely be powered from a single generator for a
number of hours. For signals such as those discussed
in this paper, that is likely to be more than sufficient.
Finally, we suggest the co-location of 3D PiShakes

with PiShake infrasound sensors would also be advan-
tageous, enabling the the air-to-ground coupling factor
to be more robustly estimated as all three components
of ground displacement can be considered. A larger ar-
ray would also enable a more realistic estimation of the
shock velocity.

5 Conclusions
We have demonstrated that a fully off-grid, live-
streaming Raspberry PiShake sensor was able to cap-
ture the notable seismic and acoustic features within
the waveforms produced by the OSIRIS-REx EDL se-
quence. A classical rounded ‘N-wave’ was recorded by
the acoustic sensor (peak overpressure 0.7 Pa), and the
reverse polarity signal was recorded by the seismome-
ter (peak downward ground velocity 2x10−6 m/s), in-
dicating the recording of a sonic boom impacting the
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ground with an acoustic coupling of at least 4x10−6

m/s/Pa.
No unambiguous acoustic coda is recorded, though a

possible detection of low-frequency rumbling is made.
An extended seismic coda of more complex origin is
also recorded, and lasts several minutes.
Although the initial configuration required substan-

tial bespoke setup with satellite internet and data con-
nections, the marginal cost or challenge of adding ex-
tra instruments was small. As such, we believe there
is substantial potential for low-cost arrays of this type
to be scaled to larger sizes when there is a scientific
need to record seismoacoustic phenomena at high SNR
in remote locations. Such potential has already been
demonstrated with conventional seismometers (Busby
and Aderhold, 2020) but not to our knowledge with
PiShake-type arrays.

6 Environmental impact
As part of efforts to make scientific researchmore envi-
ronmentally accountable and sustainable, we have es-
timated the ‘carbon cost’ (expressed as tCO2e) directly
associated with this paper. As is common with such
projects, scope definition is challenging. Therefore, we
focus on carbon costs directly attributed to this project
(i.e., those which would not have otherwise been in-
curred). We exclude background costs such as the in-
strument manufacture.
We estimate the total equivalent CO2 burden of this

work at approximately 1.0 tCO2e, made up of:

• 0.5 tCO2e associated with a round-trip flight from
Baltimore, Maryland to Salt Lake City, Utah; in
economy class as estimated by the IATA CO2 con-
nect calculator 2

• 0.5 tCO2e associated with driving an SUV off-road
field vehicle from Salt Lake City, Utah to the field
site near Eureka, Nevada (approximately 800 miles
total); estimated using the US EPA Equivalencies
Calculator 3. Note that this ride was shared by sev-
eral other instrument groups, we quote here the to-
tal cost.

• A negligible amount (<0.01 tCO2e) produced by
running the gasoline-powered generator for one
hour.

The above values are estimates only, and we note that
differences between calculation methodologies can be
substantial.
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Abstract Bayesian inference has become an important methodology to solve inverse problems and
to quantify uncertainties in their solutions. Variational inference is a method that provides probabilistic,
Bayesian solutions efficiently by using optimisation. In this study we present a Python Variational Inversion
Package (VIP), to solve inverse problems using variational inference methods. The package includes auto-
matic differential variational inference (ADVI), Stein variational gradient descent (SVGD) and stochastic SVGD
(sSVGD), and provides implementations of 2D travel time tomography and 2D full waveform inversion includ-
ing test examples and solutions. Users can solve their own problems by supplying an appropriate forward
function and a gradient calculation code. In addition, the package provides a scalable implementation which
canbedeployedeasily on adesktopmachineor usingmodernhighperformance computational facilities. The
examples demonstrate that VIP is an efficient, scalable, extensible and user-friendly package, and canbe used
to solve a wide range of low or high dimensional inverse problems in practice.

1 Introduction
In a variety of academic and practical applications that
concern the Earth’s subsurface we wish to find answers
to specific scientific questions. In the geosciences this is
often achieved by imaging subsurface properties using
data recorded on the surface, and by interpreting those
images to address questions of interest. The subsur-
face is usually parameterised in some way, and a physi-
cal relationship is defined that predicts data that would
be recorded for any particular set of model parameters,
while the inverse relationship can not be determined
uniquely. Once real data have been observed, the imag-
ing problem is thus established as an inverse problem
(Tarantola, 2005).
Because of non-linearity in the physical relationship,

insufficient data coverage and noise in the data, in-
verse problems almost always have non-unique solu-
tions: many sets of parameter values can fit the data
to within their uncertainty. It is therefore important to
characterize the family of possible solutions (in other
words, the solutionuncertainty) in order to interpret the
results with the correct level of confidence, and to pro-
vide well-justified and robust answers to the scientific
questions (Arnold and Curtis, 2018).
Solutions to an inverse problem are often found by

seeking an optimal set of parameter values that min-
imizes the difference or misfit between observed data
and model-predicted data to within the data noise.
Since most inverse problems have non-unique solu-
tions, some form of regularization is often imposed on
the parameters in order to make the computational so-

∗Corresponding author: xzhang@cugb.edu.cn

lution unique (Aki and Lee, 1976; Tarantola, 2005; Aster
et al., 2018). Many codes have been developed using
this class of methods (Rawlinson, 2005; Rücker et al.,
2017; Afanasiev et al., 2019; Wathelet et al., 2020; Ko-
matitsch et al., 2023). However, since regularization is
often chosen using ad-hoc criteria, these methods pro-
duce deliberately biased results, and valuable informa-
tion can be concealed in the process (Zhdanov, 2002).
Moreover, no such optimisation method can provide
accurate estimates of uncertainty. To overcome these
issues, the SOLA-Backus-Gilbert inversion method has
recently been applied to large scale linearised tomo-
graphic problems. This method evaluates the weighted
average of the true model parameters and provides
both resolution and uncertainty estimates (Zaroli, 2016;
Zaroli et al., 2017). In addition, the method does
not require regularization and can be conducted in a
parameter-freewaywhich avoids bias caused by param-
eterisation (Zaroli, 2019). Unfortunately, the method is
only developed for linear problems; since most Geo-
physical problems are significantly nonlinear, our goal
is to providemethods that estimate solutions anduncer-
tainties for that class of problems.
Bayesian inference solves both linear and nonlinear

inverse problems by updating a prior probability den-
sity function (pdf) with new information contained in
the data to produce a posterior pdf which describes the
full state of information about the parameters post in-
version (Tarantola, 2005). If we define the prior pdf as
p(m), the posterior pdf p(m|dobs) can be computed us-
ing Bayes’ theorem:

p(m|dobs) =
p(dobs|m)p(m)

p(dobs)
(1)
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where p(dobs|m) is the likelihood function which de-
scribes the probability of observing the recorded data
dobs if model parameters took the values in m, and
p(dobs) is a normalization factor called the evidence.
This posterior pdf describes the full uncertainty in pa-
rameter values by combining the prior information and
the uncertainty contained in the data.
Markov chainMonte Carlo (McMC) is one commonly-

used method to solve Bayesian inference problems and
has been used widely in many fields. The method
constructs a set (chain) of successive samples that are
distributed according to the posterior pdf by perform-
ing a structured randomwalk through parameter space
(Brooks et al., 2011); thereafter, these samples can be
used to estimate statistical information about param-
eters in the posterior pdf (Mosegaard and Tarantola,
1995; Tarantola, 2005) and to find answers to specific
scientific questions (Arnold and Curtis, 2018; Siahkoohi
et al., 2022b; Zhang and Curtis, 2022; Zhao et al., 2022b;
McKean et al., 2023). The Metropolis-Hastings algo-
rithm is one such method that originates from physics
(Metropolis and Ulam, 1949; Hastings, 1970), and has
been applied to a range of geophysical inverse prob-
lems (Mosegaard andTarantola, 1995;Malinverno et al.,
2000; Andersen et al., 2001; Mosegaard and Sambridge,
2002; Sambridge and Mosegaard, 2002; Ramirez et al.,
2005; Gallagher et al., 2009). However, the algorithmbe-
comes inefficient in high dimensional space because of
poor scaling due to its random walk behaviour.
In order to solve Bayesian inference problems more

efficiently, a variety of more advanced methods have
been introduced to geophysics, such as reversible-jump
McMC (Green, 1995; Malinverno, 2002; Bodin and Sam-
bridge, 2009; Galetti et al., 2015; Zhang et al., 2018b),
Hamiltonian Monte Carlo (Duane et al., 1987; Sen and
Biswas, 2017; Fichtner et al., 2018; Gebraad et al., 2020),
Langevin Monte Carlo (Roberts et al., 1996; Siahkoohi
et al., 2020), stochastic Newton McMC (Martin et al.,
2012; Zhao and Sen, 2019), and parallel tempering
(Hukushima and Nemoto, 1996; Dosso et al., 2012; Sam-
bridge, 2013). Gaussian process models have also been
used to solve linearised probabilistic problems (Valen-
tine and Sambridge, 2020). Based on these studies a
range of methods and codes have been developed to
solve geophysical inverse problems usingMcMC (Bodin
and Sambridge, 2009; Shen et al., 2012; Hawkins and
Sambridge, 2015; Zhang et al., 2018b; Zunino et al.,
2023). Nevertheless, these papers mainly address 1D,
2D or sparsely-parametrised 3D spatial imaging prob-
lems; Bayesian solutions to large scale problems (e.g.,
those involving thousands of parameters to be esti-
mated) remain intractable because of their unafford-
able computational cost due to the curse of dimension-
ality (Curtis and Lomax, 2001).
In an attempt to improve the efficiency of Bayesian

inference for certain types of problems, variational in-
ference has been introduced to geophysics as an alter-
native to McMC. In variational inference one seeks a
best approximation to the posterior pdf within a pre-
defined family of (simplified) probability distributions
by minimizing the difference between the approximat-
ing pdf and the posterior pdf (Bishop, 2006; Blei et al.,

2017). One commonly-used measure of the difference
between the pdfs is the Kullback-Leibler (KL) diver-
gence (Kullback and Leibler, 1951) as it is easier to esti-
mate computationally than othermeasures. Variational
inference therefore solves Bayesian inference problems
by minimizing the KL divergence, which is an optimi-
sation rather than a stochastic sampling problem. The
method has been demonstrated to be computationally
more efficient andmore scalable to high dimensionality
in some classes of problems (Bishop, 2006; Zhang et al.,
2018a). Themethod can also be applied to large datasets
by dividing the data set into random minibatches and
using stochastic and distributed optimisation (Robbins
and Monro, 1951; Kubrusly and Gravier, 1973). By con-
trast, the same strategy cannot easily be used forMcMC
because it breaks the detailed balance condition re-
quired by most McMC methods (O’Hagan and Forster,
2004). In addition, variational inference methods can
usually be parallelized at the individual sample level,
whereas in McMC this cannot be achieved because of
dependence between successive samples.
Variational inference has been applied to a range of

geophysical inverse problems. Nawaz and Curtis (2018)
used mean-field variational inference to invert for sub-
surface geological facies distributions and petrophysi-
cal properties using seismic data, with further devel-
opments by Nawaz and Curtis (2019) and Nawaz et al.
(2020). Although thesemethods are computationally ef-
ficient, the mean-field approximation ignores correla-
tions between parameters, and the methods of Nawaz
and Curtis involved the development of bespokemathe-
matical derivations and implementations for each class
of problem. While these developments result in excep-
tional speed of calculation, this approach restricts the
method to a small range of problems for which corre-
lations are not important and the derivations can be
performed (Parisi, 1988; Bishop, 2006; Blei et al., 2017).
To extend variational inference to general inverse prob-
lems, Kucukelbir et al. (2017) used a Gaussian family
in variational inference to create a method called au-
tomatic differential variational inference (ADVI), which
has been applied to travel time tomography (Zhang
and Curtis, 2020a) and earthquake slip inversion (Zhang
and Chen, 2022), and extended to the family of sums
(mixtures) of multiple Gaussians by Zhao and Curtis
(2024). By using a sequence of invertible and differ-
ential transforms (called normalizing flows), Rezende
and Mohamed (2015) proposed normalizing flow vari-
ational inference in which flows (functions, or simply,
relationships) are designed which convert a simple ini-
tial distribution to an arbitrarily complex distribution
that approximates the posterior pdf. In geophysics and
related fields the method has been applied to travel
time tomography (Zhao et al., 2022a), seismic imaging
(Siahkoohi et al., 2020, 2022a), seismic data interpola-
tion (Kumar et al., 2021), transcranial ultrasound to-
mography (Orozco et al., 2023) and cascading hazards
estimation (Li et al., 2023).
By using a set of samples of parameter values (called

particles) to represent the density of an approximating
pdf, Liu and Wang (2016) introduced a method called
Stein variational gradent descent (SVGD), which itera-
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tively updates those particles by minimizing the KL di-
vergence so that the final particle density provides an
approximation to the posterior pdf. SVGD has been
demonstrated to be an efficient method in a range of
geophysical applications, such as travel time tomog-
raphy (Zhang and Curtis, 2020a), full waveform inver-
sion (FWI) (Zhang and Curtis, 2020b, 2021; Lomas et al.,
2023; Wang et al., 2023), earthquake source inversion
(Smith et al., 2022), hydrogeological inversion (Ram-
graber et al., 2021), post-stack seismic inversion (Izzat-
ullah et al., 2023) and neural network based seismic to-
mography (Agata et al., 2023). However the method be-
comes inefficient and inaccurate in high dimensional
problems because of the finite number of particles and
the practical limitation of computational cost (Ba et al.,
2022). To reduce this issue, Gallego and Insua (2018) in-
troduced the stochastic SVGD (sSVGD) method by com-
bining SVGD and McMC: the efficiency of this method
has recently been demonstrated when it was used to es-
timate the first Bayesian solution for a fully nonlinear,
3D FWI problem (Zhang et al., 2023).
Despite these theoretical and practical advances,

variational inference has not been widely used in geo-
physics. This is partly because the method is not easily
accessible to non-specialists, and also because there is
no common code framework to performgeophysical in-
versions using the method. In this study we therefore
present a Python variational inversion package (VIP),
which includes ADVI, SVGD and sSVGD, tomake itmore
straightforward to solve geophysical inverse problems
using variational inference methods. The package pro-
vides complete implementations of 2D travel time to-
mography and 2D fullwaveform inversion problems, in-
cluding test results for users to check that their imple-
mentation is correct. Users can also solve other inverse
problems by supplying their own forward functions and
gradient calculation codes. In addition, to solve large
inverse problems the package is designed in a scalable
way such that it can be deployed on a desktop computer
as well as in modern high performance computational
(HPC) facilities.
In the following section we describe the concept of

variational inference, and algorithmic details of ADVI,
SVGD and sSVGD. In section 3 we provide an overview
of theVIP package, and in section 4we demonstrateVIP
using examples of 2D travel time tomography and 2D
full waveform inversion. We thus show that VIP is an
efficient, scalable, extensible and user-friendly package
that will enable users to solve geophysical inverse prob-
lems using variationalmethods. Making thesemethods
more tractable for practitioners should allow them to be
tested on a wide range of problems.

2 Theoretical background
2.1 Variational inference
Variational inference solves Bayesian inference prob-
lems using optimisation. To achieve this, we first de-
fine a simplified family of pdf’s Q = {q(m)}, for ex-
ample, the family of all Gaussian distributions. The
method then seeks an optimal approximation q∗(m) to

the posterior probability distribution p(m|dobs) within
this family by minimizing the KL divergence between
q(m) and p(m|dobs):

q∗(m) = arg min
q∈Q

KL[q(m)||p(m|dobs)] (2)

The KL divergence measures the difference between
two probability distributions:

KL[q(m)||p(m|dobs)] = Eq[logq(m)] − Eq[logp(m|dobs)]

= Eq[logq(m)] − Eq[logp(m, dobs)]

+ logp(dobs)
(3)

where logp(m, dobs) is the joint distribution of model m

and data dobs. The expectations are calculated with re-
spect to the known pdf q, and we have used Bayes’ the-
orem to expand the posterior pdf p(m|dobs) in the sec-
ond line of equation (3). It can be shown that the KL
divergence is non-negative and only equals zero when
q(m) = p(m|dobs) (Kullback and Leibler, 1951). Be-
cause the evidence term logp(dobs) is computationally
intractable, the KL divergence cannot be calculated di-
rectly. We therefore rearrange the above equation by
moving the evidence term and the KL divergence onto
the same side:

logp(dobs) − KL[q(m)||p(m|dobs)]

= Eq[logp(m, dobs)] − Eq[logq(m)]
(4)

Given that the KL divergence is non-negative, the left-
hand side defines a lower bound on the evidence, which
is therefore called the evidence lower bound (ELBO):

ELBO[q] = logp(dobs) − KL[q(m)||p(m|dobs)]

= Eq[logp(m, dobs)] − Eq[logq(m)]
(5)

The latter epxression can be estimated in practice using
numerical methods because it does not involve the in-
tractable evidence term. Since the evidence logp(dobs)
is a constant for a specific problem, minimizing the KL-
divergence is equivalent to maximizing the ELBO. Vari-
ational inference in equation (2) can therefore be ex-
pressed as:

q∗(m) = arg max
q∈Q

ELBO[q(m)] (6)

In variational inference, the choice of the variational
familyQ is important because it determines both the ac-
curacy of the approximation and the complexity of the
optimisation problem. A good choice should be a fam-
ily which is rich enough to approximate the posterior
pdf accurately or at least provides the information that
we seek, but simple enough such that the optimisation
problem is tractable. Different choices of family may
also allow different types of algorithm to be developed.
In the VIP package we implement three different algo-
rithms, ADVI, SVGD and sSVGD to solve inverse prob-
lems.

2.2 Automatic differential variational infer-
ence (ADVI)

ADVI uses the family of (transformed) Gaussians to
solve variational inference problems (Kucukelbir et al.,
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2017). The transform arises because physical model
parameters describe quantities that often have hard
bounds, while Gaussian variables have infinite support.
We therefore first transform the physical parameters
into an unconstrained space using an invertible trans-
form T : θ = T (m). In this unconstrained space the
joint distribution p(m, dobs) becomes:

p(θ, dobs) = p(m, dobs)|detJT −1(θ)| (7)

where JT −1(θ) is the Jacobian matrix of the inverse of
T which accounts for the effects of changes in hyper-
volumebetween the unconstrained and constrained pa-
rameter spaces. In this unconstrained space define a
Gaussian variational family

q(θ; ζ) = N (θ|µ, Σ) (8)

where ζ represents variational parameters, that is, the
mean vector µ and the covariance matrix Σ. To ensure
that the covariance matrix Σ is positive semi-definite,
we use a Cholesky factorization Σ = LLT where L is a
lower triangular matrix, to reparameterise Σ.
With the above definition, the variational problem in

equation (6) becomes:

ζ∗ = arg max
ζ

ELBO[q(θ; ζ)]

= arg max
ζ

Eq[logp(θ, dobs)] − Eq[logq(θ; ζ)]

= arg max
ζ

Eq[logp
(

T −1(θ), dobs

)

+ log|detJT −1(θ)|]

− Eq[logq(θ; ζ)]
(9)

This optimisation problem can be solved by using
a gradient ascent algorithm. As shown in Kucukelbir
et al. (2017), the gradients of the ELBO with respect to
variational parameters µ andL can be calculated using:

∇µELBO = EN(η|0,I)

[

∇mlogp(m, dobs)∇θT −1(θ)

+ ∇θlog|detJT −1(θ)|
]

(10)
∇LELBO = EN(η|0,I)

[(

∇mlogp(m, dobs)∇θT −1(θ)

+ ∇θlog|detJT −1(θ)|
)

ηT
]

+ (L−1)T

(11)
where η is a random variable distributed according to
the standard normal distribution N(η|0, I). The expec-
tations can be estimated using Monte Carlo (MC) in-
tegration, which in practice only requires a low num-
ber of samples because the optimisation is performed
over many iterations so that statistically the gradients
will lead to convergence towards the correct solution
(Kucukelbir et al., 2017). The variational problem in
equation (9) can now be solved by using gradient ascent
methods. In the VIP package we implement four opti-
misation algorithms: stochastic gradient descent (SGD),
ADAGRAD (Duchi et al., 2011), ADADELTA (Zeiler, 2012)
andADAM (Kingma andBa, 2014). The final approxima-
tion to the Bayesian solution can be obtained by trans-
forming q(θ; ζ∗) back to the original space.
For transformT we implement a commonly-used log-

arithmic transform (Teamet al., 2016; Zhang andCurtis,

2020a)

θi = T (mi) = log(mi − ai) − log(bi − mi)

mi = T −1(θi) = ai +
(bi − ai)

1 + exp(−θi)

(12)

where mi and θi represent the ith parameter in the
original and transformed space respectively, and ai and
bi are the lower and upper bound on mi. The final
approximation obtained using ADVI is therefore lim-
ited in complexity by the Gaussian distribution q(θ; ζ∗)
and the transform T . Note that if no transform is per-
formed, the method approximates the posterior pdf us-
ing a Gaussian distribution directly.

2.3 Steinvariationalgradientdescent (SVGD)
Instead of using a specific form of pdf (for example, the
Gaussian distribution in ADVI) in variational inference,
it is also possible to use the density of a set of samples
to represent the approximatingprobability distribution.
SVGD is one such method in which the set of samples
are called particles. In SVGD those particles are itera-
tively updated by minimizing the KL divergence so that
the density of the final set of particles is distributed ac-
cording to the posterior probability distribution. If we
define the set of particles as {mi}, SVGD updates each
particle using a smooth transform:

T (mi) = mi + ǫφ(mi) (13)

where mi is the ith particle, φ(mi) is a smooth vector
function which describes the perturbation direction,
and ǫ is the magnitude of the perturbation. When ǫ is
sufficiently small, the transform is invertible since the
Jacobian of the transform is close to an identity matrix.
Denote q(m) as the pdf represented by the set of parti-
cles, and qT (m) as the transformed probability distribu-
tion of q(m) using equation (13). In order to reduce the
KL divergence between qT (m) and p(m|dobs), we first
calculate the gradient of the KL divergence with respect
to ǫ, which is found to be (Liu andWang, 2016):

∇ǫKL[qT ||p] |ǫ=0 = −Eq [trace (Apφ(m))] (14)

where Ap is the Stein operator defined as Apφ(m) =
∇mlogp(m|dobs)φ(m)T + ∇mφ(m). This equation im-
plies that one can obtain the steepest descent direc-
tion of the KL-divergence bymaximizing the right-hand
expectation Eq [trace (Apφ(m))], and consequently the
KL divergence can be reduced by stepping a small dis-
tance in that direction. Iteratively re-calculating equa-
tion (14) and stepping in each revised direction locates
a minimum in the KL divergence.
The optimal directionφ

∗ thatmaximizes the expecta-
tion Eq [trace (Apφ(m))] in equation (14) can be found
using kernels. Assume x, y ∈ X and define a mapping
φ from X to a space where an inner product 〈, 〉 is de-
fined (called a Hilbert space); a kernel is a function that
satisfies k(x, y) = 〈φ(x), φ(y)〉. Given a kernel function
k(m′, m), the optimal φ∗ can be calculated using (see
details in Liu andWang, 2016):

φ
∗ ∝ E{m′∼q}[Apk(m′, m)] (15)
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In the VIP package, we implement a commonly-used
kernel function, the radial basis function (RBF):

k(m, m′) = exp[−‖m − m′‖2

2h2
] (16)

where h is a scale factor that controls the magnitude of
similarity between the two particles based on their dis-
tance apart. Given equations (14) and (15), the KL di-
vergence can be minimized by iteratively applying the
transform in equation (13) with the optimal φ∗ to a set
of initial particles:

ml+1
i = T (ml

i) = ml
i + ǫlφ

∗
l (ml

i) (17)

where l represents the lth iteration. Note that the expec-
tation in equation (15) can be estimated using the parti-
cles’ mean value, so we can computeφ∗

l using:

φ
∗
l (m) =

1

n

n
∑

j=1

[

Apk(ml
j , m)

]

=
1

n

n
∑

j=1

[

k(ml
j , m)∇ml

j
logp(ml

j |dobs)

+ ∇ml
j
k(ml

j , m)
]

(18)

where n is the number of particles. For sufficiently
small {ǫl} the transform is invertible, and the process
converges to the posterior distribution asymptotically
as n → ∞ (Liu andWang, 2016). Note that even though
the posterior distribution p(ml

j |dobs) is unknown in
practice, we can always calculate its value up to an un-
known constant for a specificmodel. As a result, its gra-
dient∇ml

j
logp(ml

j |dobs) can be obtained, and hence the
φ

∗
l .
The first term in equation (15) is the kernel weighted

average of gradients of the posterior pdf from all par-
ticles, and drives particles toward high probability ar-
eas. For the RBF kernel the second term becomes
∑

j

m−mj

σ2 k(mj , m) which move particles away from its
neighbouring particles. This term therefore acts as a re-
pulsive force that prevents particles from collapsing to
a single mode. SVGD balances the drive towards high
probabilities and the repulsive force such that the den-
sity of particles moves towards the posterior pdf.
Note that the scale factor h in the RBF kernel controls

the weighting value of particles. As suggested in several
studies (Liu and Wang, 2016; Zhang and Curtis, 2020a),
we take h as d̃/

√
2lognwhere d̃ is themedian of pairwise

distancesbetweenall particles. This choice enables that
for particlemi the contribution form its own gradient is
balanced from all other particles as

∑

j 6=i k(mi, mj) ≈
nexp(− 1

2h2 d̃2) = 1. If h → 0, the method reduces to
independent gradient ascent for each particle.
In SVGD the accuracy of estimation increases with

the number of particles. For one single particle the
method becomes a standard gradient ascentmethod to-
ward the model with maximum a posterior (MAP) pdf
value. This implies that even for a small number of par-
ticles SVGD can still produce an accurate parameter es-
timate as MAP estimation has been demonstrated to be
an effective method in practice. Thus, in practice, one

can start from a small number of particles and gradu-
ally increase the particles to produce more accurate es-
timates of the uncertainty.

2.4 Stochastic SVGD
Although SVGD has been applied in many fields (Gong
et al., 2019; Zhang and Curtis, 2020a; Pinder et al., 2020;
Ramgraber et al., 2021; Ahmed et al., 2022), the method
can produce biased results in high dimensional prob-
lems because of the finite number of particles and the
limitation of computational cost in practice (Ba et al.,
2022). In order to further improve accuracy of the
method, Gallego and Insua (2018) proposed a variant of
SVGD, called stochastic SVGD (sSVGD), which combines
SVGD and McMC by adding a Gaussian noise term to
the dynamics of SVGD. By doing this sSVGD becomes
an McMC method with multiple interacting Markov
chains, and since every set of particle values can be re-
garded as a sample of the posterior pdf, themethod can
generate many samples that are distributed according
to the posterior pdf. Under certain conditions (see be-
low), sSVGD guarantees asymptotic convergence to the
posterior pdf as the number of iterations tends to infin-
ity, which standard SVGD with a finite number of par-
ticles cannot achieve. As a result sSVGD can produce
more accurate results than the SVGDmethod, provided
that the number of iterations is sufficient to remove ef-
fects of the distribution of samples near the start of the
chain (the so-called burn-in period) (Gallego and Insua,
2018; Zhang et al., 2023).
To introduce sSVGD, we start from a stochastic differ-

ential equation (SDE). For a random variable z, the SDE
is defined as:

dz = f(z)dt +
√

2D(z)dW(t) (19)

where f(z) is called the drift, W(t) is a Wiener pro-
cess, and D(z) represents a positive semidefinite diffu-
sion matrix. All continuous Markov process can be ex-
pressed as an SDE, and consequently one can construct
a Markov chain by simulating the SDE (Oksendal, 2013).
Assume p(z) as the posterior distribution, an SDE that
converges to the p(z) can be constructed as (Ma et al.,
2015):

f(z) = [D(z) + Q(z)] ∇logp(z) + Γ(z) (20)

where Q(z) is a skew-symmetric curl matrix, and
Γi(z) =

∑d
j=1

∂
∂zj

(Dij(z) + Qij(z)). To simulate this
process, we can discretize the above equation using the
Euler-Maruyama discretization:

zt+1 = zt + ǫt [(D (zt) + Q(zt)) ∇logp(zt) + Γ(zt)]

+ N (0, 2ǫtD(zt))
(21)

where N (0, 2ǫtD(zt)) represents a Gaussian distribu-
tion with covariance 2ǫtD(zt). The gradient ∇logp(zt)
can be computed using the full data set, or using uni-
formly randomly selectedminibatchdata subsetswhich
results in a stochastic gradient approximation. In either
case the above process converges to the posterior distri-
bution asymptotically as ǫt → 0 and t → ∞ (Ma et al.,
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2015). MatricesD(z) andQ(z) can be adjusted to obtain
faster convergence to the posterior distribution. For ex-
ample, if we set D = I and Q = 0, one obtains stochas-
tic gradient Langevin dynamics (Welling andTeh, 2011).
If we construct an augmented space z = (z, x) by con-
catenating amoment term x to the state space z, and set

D = 0 and Q =

(

0 −I

I 0

)

then the stochastic Hamil-

tonianMonte Carlo method can be derived (Chen et al.,
2014).
In sSVGD we define an augmented space z =

(m1, m2, ..., mn) by concatenating the set of particles
{mi}, and use equation (21) to generate samples from
the posterior distribution p(z) =

∏n
i=1 p(mi|dobs). De-

fine a matrix K

K =
1

n







k(m1, m1)Id×d . . . k(m1, mn)Id×d

...
. . .

...
k(mn, m1)Id×d . . . k(mn, mn)Id×d






(22)

where k(mi, mj) is a kernel function defined in equa-
tion (16) and Id×d is an identitymatrix. According to the
definition of kernel functions, the matrix K is positive
definite (Gallego and Insua, 2018). By setting Q(zt) = 0

and D(zt) = K, we obtain the stochastic SVGD algo-
rithm:

zt+1 = zt + ǫt[K∇logp(zt) + ∇ · K] + N (0, 2ǫtK) (23)

Note that without the noise term N (0, 2ǫtK), the above
equation becomes the standard SVGD method – com-
pare equations (23) with equation (18), repeated here:

zt+1 = zt + ǫt[K∇logp(zt) + ∇ · K] (24)

sSVGD is therefore anMcMCmethod that uses the gradi-
ents fromSVGD to produce successive samples. Accord-
ing to equation (20), this process converges to p(z) =
∏n

i=1 p(mi|dobs) asymptotically. Note thatwhenn is suf-
ficiently large, the noise term N (0, 2ǫtK) becomes ar-
bitrarily small. In such cases sSVGD and SVGD produce
the same results.
Theprocess defined in equation (23) requires samples

to be generated from the distributionN (0, 2ǫtK). In or-
der to perform this efficiently, we first define a matrix
DK

DK =
1

n





K
. . .

K



 (25)

where K is an n × n matrix with Kij = k(mi, mj).
The matrix DK can be constructed from K using DK =
PKPT where P is a permutation matrix

P =



































1
1

. . .
1

1
1

. . .
1

. . . . . . . . . . . .
1

1
. . .

1



































(26)

The action of this permutationmatrix on a vector z rear-
ranges the order of the vector from the basis where the
particles are listed sequentially to that where the first
coordinates of all particles are listed, then the second,
etc. With these definitions, a random sample η can be
generated efficiently using

η ∼ N (0, 2ǫtK)

∼
√

2ǫtP
TPN (0, K)

∼
√

2ǫtP
TN (0, DK)

∼
√

2ǫtP
TLDK

N (0, I)

(27)

where LDK
is the lower triangular Cholesky decompo-

sition of matrix DK. Taking into account the fact that
DK is a block-diagonal matrix, LDK

can be computed
easily as only the lower triangular Cholesky decompo-
sition of matrix K is required. In practice this calcula-
tion is computationally negligible because the number
of particles n is usually modest (< 1000). One can now
use equation (23) to generate samples from the poste-
rior distribution.

3 Code overview
The VIP package implements the suite of variational
methods to solve geophysical inverse problems using
the Python programming language. The package in-
cludes a set of specific forward and inverse problems
such as 2D travel time tomography and 2D fullwaveform
inversion, and also allows users to provide their own
forward functions. In variational inference one needs
to compute the gradient of the posterior pdf with re-
spect to model parameters. We use the adjoint method
to calculate the gradient in the case of seismic full wave-
form inversion (Lions, 1971; Tarantola, 1984; Tromp
et al., 2005; Fichtner et al., 2006; Plessix, 2006), and
the ray tracing method in the case of travel time to-
mography (Rawlinson and Sambridge, 2004). For user-
specified forward problems it is required that users im-
plement their own function that computes gradients.
The prior pdf is important in Bayesian inference as

it provides information about model parameters inde-
pendent of the data. The VIP package provides two
commonly-used prior distributions: UniformandGaus-
sian pdf’s (note that these are only used as prior pdf’s,
and do not place any additional constraints on the varia-
tional families described above). To implement theUni-
form distribution we employ two strategies. In the first
strategy we impose hard constraints on model param-
eters, that is, for any parameter that assumes a value
outside the distribution we reset the value to be the
closest limit. Note that a similar strategy cannot be
used in ADVI as the method assumes a Gaussian vari-
ational family which cannot be defined in a constrained
space. The second strategy involves using equation (12)
to transform model parameters into an unconstrained
space and perform variational inversion in that space,
which provides a more flexible way to employ a vari-
ety of variational families. In addition, users can pro-
vide their own prior distributions by implementing an
appropriate pdf function (see details in the code docu-
mentation).
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Figure 1 Code structure of VIP. Each rectangle represents a folder or file in the package. Users can implement their own
forward functions similarly to the way this is implemented in examples tomo and fwi2d.

Python is a popular high-level interpreted program-
ming language which suffers from slow execution for
computationally intensive numerical simulations. We
therefore implement time-consuming components of
the code (e.g., the forward modelling functions) using
Fortran and produce compiled C extensions for these
codes using the Cython framework (Behnel et al., 2010).
By doing this the code achieves C-like speeds. To fur-
ther improve efficiency of the code, we use a Python
library called Dask, which is designed for parallel and
distributed computing, to parallelize the forward com-
putation at the sample (particle) level (Rocklin et al.,
2015). The package therefore provides an efficient, scal-
able and user-friendly implementation which can be
deployed on a desktop as well as modern high perfor-
mance computation facilities. Our aim is to implement
a framework which can be used to solve various inverse
problems, ranging from educational examples to com-
plex, realistic studies.

Figure 1 shows the structure of VIP. The inversion
code (vip in Figure 1) is implemented separately from
forwardmodelling codes (forward in Figure 1), and only
requires an interface of forward functions that returns
logarithmic posterior pdf values and gradients (details
can be found in the code documentation and in two ex-
amples tomo and fwi2d). Thus, users can easily combine
their own forward functionswith thepackage. In the vip
code the prior distributions, kernel functions and vari-
ational algorithms are implemented in three different
directories (prior, kernel and pyvi in Figure 1) so that the
code can easily be extended to other prior pdfs, kernel
functions and variational methods. For example, users
can implement their own prior pdfs by adding a proper
pdf function in the pdf code in the prior directory. Note
that both SVGDand sSVGDmethods are implemented in
the svgd code.

4 Applications

4.1 Travel time tomography

As a first example we use the VIP package to solve a
2D tomographic problem. Specifically, we create Love
wave group velocity maps of the British Isles using
ambient seismic noise data recorded by 61 seismome-
ters (blue triangles in Figure 2a). The geological set-
ting and the main terrain boundaries of the British
Isles are shown in Figure 2b. The ambient noise data
were recorded in 2001-2003, 2006-2007 and in 2010 us-
ing three different subarrays. The two horizontal com-
ponents of the data (N and E) were first rotated to the
transverse and radial directions, and the obtained trans-
verse data were cross correlated to produce Love waves
between different station pairs. Travel times associated
with group velocity at different periods between differ-
ent station pairs are then estimated from those love
waves. Details of the data processing procedures can be
found in (Galetti et al., 2017). In this study we use a total
number of 401 travel timemeasurements at 10 s period.
We parameterise the study region using a regular grid

of 37 × 40 cells with a spacing of 0.33◦in both longitude
and latitude directions. The prior pdf for group velocity
in each cell is set to be a Uniform distribution between
1.56 km/s to 4.8 km/s, of which the lower and upper
bound were chosen to exceed the range of group veloci-
ties between all station pairs when assuming a great cir-
cle ray path (Zhao et al., 2022a). The likelihood function
is chosen to be a Gaussian distribution to represent the
data noise, which is estimated from independent travel
timemeasurements by stacking randomly selected sub-
sets of daily cross correlations (Galetti et al., 2017). In
the inversion the predicted travel times are calculated
using the fast marching method (Rawlinson and Sam-
bridge, 2004).
We apply the above suite of methods to solve this

tomographic problem, and compare the results with
those obtained using the Metropolis-Hastings McMC
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Figure 2 (a) Locations of seismometers (blue triangles) around British Isles used in this study. (b) Terrane boundaries in
the British Isles from Galetti et al. (2017). Abbreviations are as follows: OIT, Outer Isles Thrust; GGF, Great Glen Fault; HBF,
Highland Boundary Fault; SUF, Southern Uplands Fault; WBF, Welsh Borderland Fault System.

(MH-McMC) method (Zhao et al., 2022a). The Uni-
form prior distribution is implemented using the sec-
ond strategy that transforms variables into an uncon-
strained space in variational inversions. For ADVI, we
started the method with a standard Gaussian distribu-
tion in the unconstrained space, and performed 10,000
iterations at which point the misfit value ceases to de-
crease using theADAMoptimisation algorithm (Kingma
and Ba, 2014). To visualize the results we generated
5,000 samples from the obtained Gaussian distribution
and transformed them back to the original space to es-
timate posterior statistics. For SVGD, we generated 500
particles from the prior distribution and updated them
using equation (18) for 3,000 iterations at which point
themeanand standarddeviationmodels became stable.
The final particles are used to calculate the mean and
standard deviation of the posterior distribution. For
sSVGD, we started from 20 particles generated from the
prior distribution, and updated them using equation
(23) for 6,000 iterations after an additional burn-in pe-
riod of 2,000 iteration, after which the average misfit
value across all particles becameapproximately station-
ary. To reduce thememory and storage cost, we only re-
tained samples every fourth iteration after the burn-in
period, which results in a total of 30,000 samples.
Figure 3 shows the mean and standard deviation

maps obtainedusing the suite of variationalmethods, as
well as those obtained using the MH-McMC algorithm
(Zhao et al., 2022a). Overall the results obtained using
different methods show similar mean structures which
have a good agreementwith the knowngeology andpre-
vious tomographic studies in the British Isles (Nicolson
et al., 2012, 2014; Galetti et al., 2017; Zhao et al., 2022a).
For example, in the Scottish highlands the mean maps
clearly exhibit high velocities (annotation 1 in Figure 3)
which are consistent with the distribution of Lewisian
and Dalradian complexes in this area. Similarly high
velocities associated with the accretionary complex of
the Southern Uplands (annotation 2) are clearly visible
around 4°W, 55°N following a SW-NE trend. Between
the Highland Boundary Fault and the Southern Uplands
Fault a similar trend of low velocity zone (annotation 3)
is found in the Midland Valley. Low velocities are also
observed in a number of sedimentary basins such as the
East Irish Sea (4.5°W, 54°E - annotation 4), the Cheshire
Basin (2.5°W, 52.5°E - annotation 6), theAnglian-London
Basin (0°, 52°N - annotation 7), theWeald Basin (0°, 51°N
- annotation 8) and the Wessex Basin (3°W, 50.5°N - an-
notation 9). By contrast, high velocities can be found
in granitic intrusion regions, for example, in northwest
Wales (around 4°W, 53°N - annotation 5) and Cornwall
(around 4.5°W, 50.5°N - annotation 10). More detailed
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Figure 3 Mean (top row) and standard deviation (bottom row) maps of group velocity at 10 s period obtained using ADVI,
SVGD, sSVGD and MH-McMC respectively. White triangles denote locations of seismometers. Black dashed lines show the
Terrane boundaries in Figure 2. Black numbers are referred to in the main text.

discussion and interpretation of the velocity structures
can be found in Galetti et al. (2017).

Among these results the mean map obtained using
ADVI shows the smoothest structure, whereas other
maps provide more detailed information. This has also
been observed in previous studies (Zhang and Curtis,
2020a; Zhao et al., 2022a) and is likely caused by the lim-
itation of implicit Gaussian assumption made in ADVI.
In far offshore areas because few ray paths go through
the open marine regions, the mean maps obtained us-
ing ADVI and SVGD show almost homogeneous veloc-
ity structure across these areas whose value is consis-
tent with the mean of prior distribution. In compari-
son, the results obtained using sSVGD and MH-McMC
exhibitmore heterogeneous structures, which probably
indicates that the two methods have not converged suf-
ficiently. These areas are only loosely constrained by
the data (or not at all) and hence have large posterior
uncertainties requiring many more randomly gener-
ated samples in order to explore and represent the pos-
terior distribution accurately compared to areas with
tighter constraints from the data. Note that both sSVGD

and MH-McMC involve random sampling of the poste-
rior distribution, whereas samples obtainedusing SVGD
are found deterministically by optimisation. As a re-
sult, SVGD produces smoother results (Zhang and Cur-
tis, 2021; Zhang et al., 2023).

Overall the standard deviation maps obtained using
SVGD, sSVGD and MH-McMC show similar structures.
For example, the results show lower uncertainties in
the Scottish highlands and southern England because
of dense arrays in those areas. In the offshore areas
the standard deviation is around 0.93 which is the stan-
dard deviation of the prior as no ray path goes through
these regions. On the east side of the island just off the
coast, although no seismometer is deployed, there are
rays that travel through those areas (see details inGaletti
et al., 2017), and consequently the standard deviation
is smaller than that of the prior. There is a high un-
certainty loop around the low velocity anomaly in the
Anglian-London Basin (annotation 7 in Figure 3), which
has also beenobserved inprevious studies (Galetti et al.,
2015, 2017) and reflects uncertainty in the shape of the
anomaly. In addition, the East Irish Sea (annotation 4)
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shows high uncertainties. This is probably because few
ray paths go through this area due to its lower veloc-
ity, and consequently the area is not well constrained
by the data. By contrast, the standard deviationmap ob-
tained usingADVI shows different features. Although in
the Scottishhighlands the results still show loweruncer-
tainty, the rest of the area within the receiver array has
almost the same uncertainty level with little variation.
In addition, in theWest Irish Sea and the North Sea area
betweenNorthern Scotland and Shetland Islands the re-
sults show lower uncertainties which are not observed
in the results obtained using other methods. This sug-
gests that ADVI can produce biased results because of
its underlying Gaussian assumption as found in previ-
ous studies (Zhang and Curtis, 2020a).
Table 1 compares the number of forward simulations

required by each method to obtain these results, which
provides a good metric of the computation cost as the
forward simulation is the most computationally expen-
sive component of each method. Note that the three
variational methods require computation of derivatives
of the posterior pdf with respect to model parameters,
which adds computational cost compared with theMH-
McMCmethod. In this travel time tomography example
the derivatives are calculated using ray paths, which are
traced through the computed travel time field. This cal-
culation requires a computation equivalent to approxi-
mately 0.08 forward simulations. We therefore compute
the equivalent number of simulations by multiplying
the number of simulations required by the three vari-
ational methods by 1.08, which are shown in the third
column in Table 1.
The results indicate that ADVI is apparently the most

efficient method as it only requires 10,000 simulations,
but we have demonstrated that the method probably
produces biased results. SVGD demands the highest
computational cost among the three variational meth-
ods, while sSVGD requires about 10 times fewer sim-
ulations than SVGD. This makes sSVGD a good choice
for practical applications as noted in Zhang et al. (2023).
Nevertheless, all three variational methods are signifi-
cantly more efficient than the basic MH-McMCmethod
implemented here as a bench-mark, which required 15
millions simulations in total with 10 independent paral-
lel chains.
We note that the above comparison depends on sub-

jective assessment of the point of convergence for each
method, so the absolute number of simulations re-
quired by eachmethodmay not be entirely accurate (es-
pecially the number used for theMH-McMCalgorithm).
Nevertheless the comparison at least provides insights
into the relative computational cost of each method.
A more careful and thorough comparison between the
same MH-McMC method and variational methods can
be found in Zhao et al. (2022a) which again demon-
strated that variational methods were computationally
efficient.

4.2 Full-waveform inversion
For the second example we use theVIP package to solve
a 2D full waveform inversion problem. The inputmodel

is selected to be a part of the Marmousi model (Figure
4a,Martin et al., 2006), and is discretized using a regular
120 × 200 grid with a spacing of 20 m. Ten sources are
equally distributed at 20mwater depth (red stars in Fig-
ure 4), and 200 receivers are equally spaced at the depth
of 360 m on the seabed across the horizontal extent of
themodel. We simulate thewaveformdata using a time-
domain finite difference method with a Ricker wavelet
of 10 Hz central frequency, and added Gaussian noise
to the data whose standard deviation is set to be 2 per-
cent of the median of the maximum amplitude of each
seismic trace. The gradients of the logarithm posterior
pdf with respect to velocity are calculated using the ad-
joint method (Tarantola, 1988; Tromp et al., 2005; Ficht-
ner et al., 2006; Plessix, 2006).
The prior distribution is set to be a Uniform distribu-

tion over an interval of 2 km/s at each depth (Figure 4b).
To ensure that the rock velocity is higher than the ve-
locity in the water, we imposed an extra lower bound of
1.5 km/s. For the likelihood function we use a Gaussian
distribution to represent uncertainties on thewaveform
data:

p(dobs|m) ∝ exp

[

−1

2

∑

i

(

dobs
i − di(m)

σi

)2
]

(28)

where i is the index of time samples, and σi is the stan-
dard deviation of that sample.
We apply SVGD and sSVGD to solve this full waveform

inversion problem as we have demonstrated that these
methods provide more accurate results than ADVI. For
SVGD we used 600 particles that are initially generated
from the prior distribution (an example is shown in Fig-
ure 4c) and updated them using equation (18) for 600 it-
erations. The final particles are used to calculate statis-
tics of the posterior distribution. For sSVGD we gen-
erated 20 particles from the prior distribution and up-
dated them for 4,000 iterations after an additional burn-
in period of 2,000. Similarly, to reduce the memory and
storage cost we only retain samples from every tenth it-
erations, which results in a total of 8,000 samples. Those
final samples are then used to compute statistics of the
posterior distribution.
Figure 5 shows themeanand standarddeviationmod-

els obtained using SVGD and sSVGD. Overall the two
methods produce similar results. For example, both
mean models (Figure 5a and c) show similar structures
to the true structure, especially in the shallow part (<
1.5 km). In the deep part (> 1.5 km) and close to the
sides, the mean models appear to be less similar to the
true structure because the waveform data are less sen-
sitive to the velocity structure in those areas. However,
the mean obtained using sSVGD is more similar to the
true structure than that obtained using SVGD. This re-
flects the fact that sSVGD can producemore accurate re-
sults than SVGD in high dimensional spaces, which has
also been observed in other studies (Gallego and Insua,
2018; Zhang et al., 2023). Note that similarly to the travel
time tomography example above, themeanobtainedus-
ing SVGD shows smoother structures than that obtained
using sSVGD. This is likely because sSVGD is an McMC
method which generates samples using stochastic sam-
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Method Number of simulations Comparable number of simulations
ADVI 10,000 10,800
SVGD 1500,000 1620,000
sSVGD 160,000 172,800

MH-McMC 15,000,000 15,000,000

Table 1 A comparison of computational cost for ADVI, SVGD, sSVGD and MH-McMC.

Figure 4 (a) The true structure used in the full waveform inversion example. Ten sources are located at the depth of 20 m
(red stars) and 200 receivers (not shown) are equally spaced at the depth of 360mon the seabed. (b) The prior distribution of
seismic velocity, which is set to be a Uniformdistributionwith an interval of 2 km/s at each depth. An additional lower bound
of 1.5 km/s is also imposed on the velocity to ensure that the rock velocity is higher than the velocity in water. (c) An example
particle generated from the prior distribution.

pling, whereas in SVGD particles are obtained deter-
ministically using optimisation. A similar phenomenon
has also been observed in other studies when compar-
ing results obtained using SVGD and sSVGD or McMC
(Zhang and Curtis, 2021; Zhang et al., 2023).

Overall the standard deviation models show similar
structural shapes to those in the mean model as has
been observed in other studies (Gebraad et al., 2020;
Zhang and Curtis, 2020b, 2021; Zhang et al., 2023). In
the shallow part (< 1.0 km) the results show lower un-
certainties and in the deeper part the uncertainty is
higher because of lower data coverage. Those higher
velocity anomalies in the deeper part are clearly asso-
ciated with lower standard deviations, which likely re-
flects that those anomalies have large influences on the
waveformdata and hence have lower uncertainty. Simi-

larly to themean structures, the standard deviations ob-
tained using SVGD show smoother structures than are
obtained using sSVGD. In addition, the magnitude of
the standard deviation obtained using SVGD is slightly
lower than that obtained using sSVGD, which is likely
because SVGD can underestimate uncertainties in high
dimensional spaces due to the limited number of pos-
terior samples produced (Ba et al., 2022; Zhang et al.,
2023).

To further understand the results we show marginal
distributions obtained using SVGD and sSVGD along
three vertical profiles whose locations are denoted by
dashed black lines in Figure 5. Overall the results show
broader distributions in the deeper part (> 1 km) than
in the shallow part as we have observed in the stan-
dard deviation models. Furthermore, the distributions
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Figure5 Themean (top row) and standarddeviation (bottomrow)obtainedusingSVGD (leftpanel) and sSVGD (right panel),
respectively. Black dashed lines denote well log locations referred to in the main text.

Method Number of simulations
SVGD 360,000
sSVGD 120,000

Table 2 Computational cost required by SVGD and sSVGD
for FWI.

obtained using sSVGD are broader than those obtained
using SVGD, which again demonstrates that SVGD can
underestimate uncertainties. Note that in the results
obtained using SVGD some true velocities lie outside
the high probability area at large depths (> 1.5 km),
whereas those obtained using sSVGD generally include
the true velocity in values with non-zero uncertainty.
This shows that SVGD can produce biased results for
high dimensional problems as noted in several studies
(Ba et al., 2022; Zhang et al., 2023).
Similarly to the above sectionwemeasure the compu-

tational cost requiredby eachmethodusing thenumber
of forward and adjoint simulations (Table 2). Specifi-
cally, SVGD required 360,000 simulations to converge,
while sSVGD used 120,000 simulations. This again
demonstrates that sSVGD can be more computationally
efficient than SVGD because sSVGD requires fewer par-
ticles yet generates many more samples. To give an
overall idea of the computational cost, the above inver-
sions required 49 hours for sSVGD using 40 AMD EPYC
CPU cores, and 3 days for SVGD using 90 CPU cores.

5 Discussion
Although in the VIP package we only implemented 2D
travel time tomography and 2D full waveform inversion,
the code can easily be applied to other types of prob-
lems, and also to larger scale problems by using mod-
ernhighperformance computation (HPC) facilities. For
example, users can implement 3D full waveform inver-
sion by providing a 3D forward and adjoint simulation

code (see more details in the code documentation, and
an example in Zhang et al., 2023). In order to enable
easy deployment on HPC facilities, the code provides a
guide on how to parallelize the computation using the
Sun Grid Engine queuing system. Other queuing sys-
tems can be implemented in a similar way.

Although we have demonstrated that sSVGD can gen-
erate more accurate results than SVGD in high dimen-
sional problems and requires less computational cost
in total, the method generally requires many more it-
erations. As a result, sSVGD may be less efficient than
SVGD in wall clock time when a large number of CPU
cores is available. This is why we implement SVGD in
the VIP package as in practice it may be a better choice
for low dimensional problems.

ADVI may become inefficient in a high dimensional
space because of the increased size of the covariance
matrix. To enable applications in such cases, we also
implement a diagonal covariance matrix, that is, a
mean-field approximation (Kucukelbir et al., 2017). In
SVGD and sSVGD besides the radial basis function ker-
nel used in above examples, the package also imple-
ments diagonal matrix-valued kernel functions which
are constructed by combining a positive definite diago-
nal matrix Q and the radial basis function (Wang et al.,
2019; Zhang and Curtis, 2021). The elements of Q can
be set as the inverse of the variance calculated across
particles (Zhang and Curtis, 2021).

To promote reproducibility and show how to use the
code, we included several examples alongwith the code
which can be used to reproduce those results obtained
in the above section. We encourage interested readers
to begin with these examples to familiarize themselves
with the code. Finally, we note that VIP is actively be-
ing developed and expanded, and contributions from
the community are welcome.

12
SEISMICA | volume 3.1 | 2024



SEISMICA | SOFTWARE REPORT | Variational Inversion Package

0.0

0.5

1.0

1.5

2.0

Z 
(k

m
)

(a)

2 4
Vp (km/s)

0.0

0.5

1.0

1.5

2.0

Z 
(k

m
)

(b)

2 4
Vp (km/s)

2 4
Vp (km/s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ob

ab
ilit

y

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ob

ab
ilit

y

Figure 6 Marginal distributions at three well logs (black dashed lines in Figure 5) obtained using (a) SVGD and (b) sSVGD,
respectively. Red lines show the true velocity profiles and white dashed lines show the lower and upper bound of the prior
distribution.

6 Conclusion

VIP is a Python package which solves general inverse
problems using variational inference methods, includ-
ing automatic differential variational inference (ADVI),
Stein variational gradient descent (SVGD) and stochas-
tic SVGD (sSVGD). The package is designed to be easy
enough for beginners to use, and efficient enough to
solve complex inverse problems. In addition, VIP is
implemented in a scalable way such that it can be de-
ployedonadesktop aswell as inhighperformance com-

putation facilities. We demonstrated the package us-
ing two examples: 2D travel time tomography and 2D
full waveform inversion. Users can also use the pack-
age to solve their own inverse problems by providing
an appropriate forward modelling and gradient calcu-
lation code. We conclude that VIP can be used to solve a
wide range of inverse problems in practice. The most
recent release of the code can be downloaded from
GitHub (https://github.com/xin2zhang/VIP) and a sta-
ble version is available on Zenodo (Zhang and Curtis,
2023).
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Abstract We present SeisMIC, a fast, versatile, and adaptable open-source software to estimate seismic
velocity changes from ambient seismic noise. SeisMIC includes a broad set of tools and functions to facili-
tate end-to-end processing of ambient noise data, from data retrieval and raw data analysis via spectrogram
computation, over waveform coherence analysis, to post-processing of the final velocity change estimates. A
particular highlight of the software is its ability to invert velocity change time series onto a spatial grid,making
it possible to create maps of velocity changes. With the software, we implement new data formats ensuring
uniformity, flexibility, interoperability, and integrity. To tackle the challenge of processing large continuous
datasets, SeisMIC can exploit multithreading at high efficiency with an about five-time improvement in com-
pute time compared to MSNoise, probably the most widespread ambient noise software. In this manuscript,
we provide a short tutorial and tips for users on how to employ SeisMIC most effectively. Extensive and up-
to-date documentation is available online. Its broad functionality combined with easy adaptability and high
efficiency make SeisMIC a well-suited tool for studies across all scales.

1 Introduction
Over the past twenty years, the analysis of temporal
changes in seismic velocity has become a standard tool
in seismology. Seismologists exploit records of repeat-
ing sources, such as explosives (e.g., Nishimura et al.,
2000; Hirose et al., 2017), vibrators (e.g., Clymer and
McEvilly, 1981; Ikuta et al., 2002), airguns (e.g., We-
gler et al., 2006; Yang et al., 2018), or earthquake dou-
blets (e.g., Poupinet et al., 1984; Sawazaki et al., 2015),
to quantify such changes. Commonly, the analysis
of delays focuses on the later arriving, multiply scat-
tered wave train - the so-called coda, which samples the
medium to a greater spatial extent than thefirst-arriving
energy and is sensitive even to minute velocity changes
(dv/v) in the order of per-mills (Snieder et al., 2002). We
refer to this technique as coda wave interferometry.
While active source coda wave interferometry accu-

rately resolves dv/v, studies using artificial sources are
logistically challenging and expensive. Repeating nat-
ural sources, on the other hand, rarely occur in regular
patterns, allowing only for a coarse temporal resolution
of dv/v in seismically active regions. Sens-Schönfelder
and Wegler (2006) obtained dv/v by analysing modifi-
cations in the correlations of continuous waveforms.
Their method, passive image interferometry (PII), re-
lies on the diffusive energy field of the ubiquitous ambi-
ent seismic noise (Sens-Schönfelder andWegler, 2011).
PII has successfully been applied to quantify velocity
changes, for example due to seasonal meteorological

∗Corresponding author: makus@gfz-potsdam.de

cycles (e.g., Sens-Schönfelder and Wegler, 2006; Wang
et al., 2017), earthquake damage (e.g., Brenguier et al.,
2008; Minato et al., 2012), volcanic deformation (e.g.,
Sens-Schönfelder et al., 2014b; Donaldson et al., 2019),
groundwater fluctuations (e.g., Clements and Denolle,
2018; Illien et al., 2021;Mao et al., 2022), landslides (e.g.,
Bièvre et al., 2018), or climate-change-induced thaw-
ing (e.g., Mordret et al., 2016; Lindner et al., 2021).
This breadth of applications makes PII a widely used
methodology.
Processing and analysing continuous waveforms

comeswithmultiple challenges due to the large amount
of raw and derived data, such as the need for efficient
processing and storage strategies (Arrowsmith et al.,
2022). Still today, many authors use unpublished codes
to produce results for later publication and interpreta-
tion making it difficult for fellow researchers to repro-
duce or adapt the analyses. Using community codes
published in the spirit of the FAIR principles (Barker
et al., 2022) can facilitate the reproducibility of re-
search, exchange in the community, and progress in
science. Only a few software solutions exist for ambi-
ent noise seismology. Perhaps the most popular among
these are MSNoise (Lecocq et al., 2014) and NoisePy
(Jiang andDenolle, 2020). However, aswewill show and
discuss here, the existing software still leaves a niche to
fill. For example, MSNoise is more specialised for end-
to-end workflows and automated monitoring solutions,
lending itmore towards applications in large observato-
ries, whereas, recently, NoisePy has undergone devel-
opment towards cloud computing. To fill the remain-

1 SEISMICA | ISSN 2816-9387 | volume 3.1 | 2024

https://doi.org/10.26443/seismica.v3i1.1099
https://orcid.org/0000-0002-6377-5888
https://orcid.org/0000-0002-0150-9365


SEISMICA | SOFTWARE REPORT | SeisMIC - Seismological Monitoring using Interferometric Concepts

seismic.utils seismic.plot

FDSN 

Retrieve 
StatXML & 

MSEED

seismic.db

seismic.trace_data

Local 
DB 

Preprocess Correlate

seismic.correlate

CorrTrace 
CorrStream

CorrBulk
CorrDB

hdf5

Data Access & 
Storage 

Management

seismic.monitor

DV

Compute 
Velocity Change

SpatialPostprocess

Figure 1 A flowchart summarising SeisMIC’s modules and their purposes. A general workflow starts with data retrieval,
continues with the computation of correlation functions, fromwhich a velocity change time series can subsequently be esti-
mated. We illustrate this with the example given in section 3. The depicted floppy disk marks database management mod-
ules. Operations and processes are shown in blue, whereas objects and databases are shown in orange. For the sake of
simplicity, we omit non-essential objects and functions, instead, the flowchart focuses on the core processes.

ing gap, we introduce SeisMIC (Seismological Monitor-
ing using Interferometric Concepts, Makus and Sens-
Schönfelder, 2022), a fast, robust, flexible, and easily
adapted Python tool to compute, process, and analyse
dv/v. Due to these attributes, SeisMIC especially excels
in the analysis of campaign data, where both ease of use
and flexibility are crucial.

2 Modular Structure
2.1 Whom is it for? - The Philosophy behind

SeisMIC
As outlined above, monitoring surveys are applied to a
broad spectrum of research scopes resulting in a high
diversity of requirements for research software. With
that in mind, we developed SeisMIC to be flexible and
adaptable to user needs. As opposed to working with a
black box, users work close to the source code, making
it easy to develop individualised workflows. Modules,
submodules, or even single objects and functions of the
code can also be used individually. Yet, the software re-
mains a light and fast package, in which we avoid over-
head due to non-essential functionality. For example, in
contrast to MSNoise, we avoid heavy database manage-
ment structure for continuous observatory monitoring,
resulting in a significantly faster processing (see section
2.3.2) and giving SeisMIC an advantage in the analysis of

campaign based data.

Learning to use a new code and even only deter-
mining whether a code satisfies one’s need is a large
time investment. To guarantee a fast start and a steep
learning curve, we aligned SeisMIC closely with ObsPy
(Beyreuther et al., 2010), with whose syntax almost all
seismologists are familiar. In addition, we host tutori-
als and extensive, regularly-updated documentation at
https://petermakus.github.io/SeisMIC/. All objects,meth-
ods, and functions have documentation strings accord-
ing to the Sphinx standard.

As developers, we follow the FAIR principles (Hong
et al., 2022). That is, we make SeisMIC findable, acces-
sible, interoperable, and reusable. SeisMIC is a commu-
nity code with clearly communicated community stan-
dards, and users can discuss or report issues, suggest
changes, or submit pull requests via GitHub. We dis-
tribute SeisMIC under the European Union Public Li-
cense 1.2.

Lastly, we keep up to high standards regarding func-
tional robustness. We test functional integrity using a
combination of integral and unit tests. To date, SeisMIC
has successfully been applied to a broad range of appli-
cations, such as volcanic environments (Makus et al.,
2023b,a), lab-scale applications (Asnar et al., 2023), and
cryoseismological analyses (Nanni et al., 2023).
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2.2 Implementation
As commonplace in Python, we structure SeisMIC in
a modular fashion. We divide the program into clear
modules, which, in turn, are subdivided into submod-
ules. These modules can either be used separately or
connected into a workflow/pipeline, starting from data
retrieval and concluding with the computation, plot-
ting, and postprocessing of dv/v objects. We show a
chart with a simplified overview of SeisMIC’s modular
structure in Figure 1.
As shown in Figure 1, SeisMIC consists of four main

modules. seismic.trace_data hosts the code for
reading raw waveform data and station information.
Alternatively, it can request data from FDSN servers.
SeisMIC handles waveform data in miniseed format in
daily chunks, while it saves station information in Sta-
tionXML format. Generally, station response informa-
tion is only necessary if the user opts to remove the sta-
tion response before correlating. However, basic sta-
tion information, such as the station’s geographic coor-
dinates, is always required.
All objects and functions to preprocess waveform

data and compute correlation functions (CFs) are lo-
cated in seismic.correlate . We include commonly
used preprocessing functions such as detrending, ta-
pering, amplitude clipping, sign-bit-normalisation, or
spectral whitening (Bensen et al., 2007). For a complete
and up-to-date list of preprocessing functions, consult
SeisMIC’s documentation. Users can easily import cus-
tom processing functions into the workflow. We com-
pute CFs by transferring traces to matrices, computing
the Fourier transform, and then computing their cross-
correlation in the frequency domain. Suppose we want
to calculate all available correlations from a dataset of
M waveforms, of which each has N samples (indices m

and n, respectively). Then, the respectivemathematical
operations can be expressed as follows:
First, we compute the discrete Fourier transform of

the matrix s containing the waveforms in the time do-
main:

Sm,k =

N
∑

n=1

sm,ne−
i2π
N

kn (1)

where i =
√

−1 and k is the sample index of the signal in
the frequency domain. Secondly, we obtain the corre-
lation matrix C by computing the product of the matrix
with the complex conjugate of itself. We then repeat the
operation M times, each time rolling the complex con-
jugate matrix by j = {1, 2, .., M} lines:

Co,k = Sm,kSm+j,k (2)

where the bar indicates the complex conjugate and o in-
dexes the station pair. In the described scenario, we ob-
tain M2 CFs, which are subsequently transferred back
to the time domain:

Co,n =
1

N

N
∑

k=1

Co,ke
i2π
N

kn (3)

The CFs are then stored as special objects with at-
tributes, plotting and post-processing methods. Fi-
nally, SeisMIC writes the CFs to a storage- and

computationally-efficient HDF5 container (Koranne,
2011).
All functionality to estimate velocity changes from

the CFs resides in seismic.monitor . Currently, Seis-
MIC supports the estimation of velocity changes us-
ing the stretching technique (Sens-Schönfelder andWe-
gler, 2006) and we are implementing the wavelet-cross-
spectrum analysis (Mao et al., 2020).
The stretching technique compares a reference cor-

relation function C̃n to a CF Cl
n computed from data

at an arbitrary subwindow l of the total time series.
Note that we omit the index o indicating the station pair
since this operation is independently executed for each
station pair. There are several approaches to obtain-
ing C̃, all with their unique advantages, SeisMIC sup-
ports the use of single or multiple references (Sens-
Schönfelder et al., 2014b). In SeisMIC, we implemented
a grid search, in which we evaluate C̃ at a new time vec-
tor τ̃ stretched (or compressed) with the stretching fac-
tor κj:

τ̃j = τe−κj (4)

Note thatwe base the exponential stretching on aTay-
lor extension for small velocity changes. This assump-
tion is more accurate than themore common τ̃j ≈ τ(1 +

κj) and has the advantage of yielding linearly reversible
stretched functions. In the supplementarymaterial, we
provide a derivation.
Using our stretched time vector, we obtain a stretched

reference correlationmatrix with J lines, where J is the
total number of tested stretch factors. Afterwards, we
compute the zero-lag correlation (i.e., the normalised
dot product) between each stretched reference and C

l:

Rl
j =

N
∑

n=1

C̃j
nCl

n

(

N
∑

n=1

(C̃j
n)2

N
∑

n=1

(Cl
n)2

)

−1/2

(5)

The stretching factor κj = −dv/v resulting in themax-
imum Rl

j corresponds to the negative apparent velocity
change at time step l. The maximum value of R mea-
sures the velocity change estimate’s stability and is of-
ten referred to as coherence. We then computeRl

j for all
time steps resulting in the similarity matrix R, the final
velocity change time series, and a corresponding coher-
ence time series. Note that R is usually not computed
for the whole coda, but just for a user-defined subset of
lag time samples. In SeisMIC, dv/v can either be jointly
inverted from causal (right) and acausal (left side) or es-
timated from either side, which might be desirable for
active source experiments or if one side of the CF ex-
hibits a superior signal-to-noise-ratio.
Finally, the computed velocity change time series can

be post-processed and plotted using pre-implemented
or custom functions. In addition, SeisMIC can invert
a set of velocity change time series from different sta-
tions onto a map using the inversion method described
byObermannet al. (2013). To our knowledge, SeisMIC is
currently the only publicly available software that sup-
ports spatial inversion of velocity change time series.
The workflow steps outlined above rely entirely on

well-known Python libraries, including NumPy (Har-
ris et al., 2020), SciPy (Virtanen et al., 2020), ObsPy
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Table 1 Extraction from the header of a correlation function computed in section 3.

Field name Value Explanation
network X9-X9 SEED network codes, dash-separated
station IR1-IR1 SEED station codes, dash-separated
channel HHE-HHE SEED channel codes, dash-separated
location - SEED location codes, dash-separated (may be empty)
corr_start 2016-01-25T01... UTC start time of the correlated traces
corr_end 2016-02-25T01... UTC end time of the correlated traces
start_lag -25.0 computed start lag in seconds
...

...
...

(Beyreuther et al., 2010), Matplotlib (Hunter, 2007), and
h5py (Collette et al., 2020). To ensure the best stability,
we only utilise the most well-maintained projects and
keep the number of dependencies to aminimum. Some
of SeisMIC’s core functionalities are based on the MIIC
software project (Sens-Schönfelder et al., 2014a). Seis-
MIC’s latest beta version 0.5.3 is compatiblewithPython
3.10 and 3.11.

2.2.1 Data Formats and Standards
At the time of writing, there are no established stan-
dards for data handling in ambient noise seismology
that would facilitate the exchange of correlation func-
tions and subsequent processing with different tools.
In the seismological community, excellent examples of
well-designed data representations that developed into
quasi-standards are the ObsPy (Beyreuther et al., 2010)
trace and stream classes for waveform data and the in-
ventories for station metadata. Such successful repre-
sentations require some core attributes:

1. Uniformity: Various datasets have the same set of
attributes, making them directly comparable.

2. Easy andflexible I/O (i.e., input/output), wheredata
canbe read,modified and stored later. Reading and
writing operations are fast and easy. Modifications
can be stored safely.

3. Interoperability: Data can easily be imported
and exported into broadly used applications or li-
braries, facilitating data exchange.

4. Integrity: The data format must contain all infor-
mation required for later processing, analysis, or
cataloguing. No crucial information should be lost.

With SeisMIC, we suggest a representation of noise
correlation functions implementing these attributes.
For correlation functions, we base our data representa-
tion on the successful ObsPy streams and traces by in-
troducing the CorrTrace and CorrStream classes that
incorporate the specific requirements of CFs to ensure
uniformity and integrity.
For the storage of CFs, the seismological standard

for waveform data, MiniSEED, is not appropriate since
it does not allow for the storage of the required meta
information. The solution provided in SeisMIC stores
the data itself in the form of a NumPy array comple-
mentedwith a header containing information about the

recording and correlation computation, such as sam-
ple rate, start and duration of the correlated time win-
dows, minimum and maximum lag times, seed identi-
fiers of the used stations, and coordinates of these sta-
tions. We show an extract of the header fields for an
exemplary dataset in Table 1. CorrTrace headers also
contain information about executed processing steps,
such as filtering or tapering. The naming of stations fol-
lows the SEED convention. To ensure interoperability,
data and header can easily be converted into NumPy ar-
rays and Python dictionaries, respectively. The objects
come with processing and plotting methods. As out-
lined above, SeisMIC saves CorrStreams in hdf5 con-
tainers, from which they can later be read, modified,
and saved again.

2.3 Benchmark and Performance
In ambient noise seismology, it is not uncommon to
workwith data volumes in the order of terabytes. Wead-
dress the arising computational and storage challenges
with efficient and high-performance computing (HPC)
compatible code design. To this end, SeisMIC enables
parallel computing of correlations, velocity change esti-
mates and spatial inversions, where the computation of
CFs is the most expensive operation by a large margin.
We implement parallel computing using mpi4py (Dal-
cin and Fang, 2021), which relies on the message pass-
ing interface (MPI). In contrast to other Python multi-
threading solutions, MPI-based solutions work seam-
lessly on high-performance computing (HPC) and clus-
ter solutions.
In SeisMIC, the computationally most expensive

parts of the workflow described in section 2.2 are the
calculation of correlation functions, the associated pre-
processing, and the estimation of the final velocity
change time series. Therefore, an effective parallelisa-
tion scheme matters the most in these steps. For users,
it is also important to understand howmemory require-
ments scale. For the computation of CFs and the pre-
processing of raw data, each core reads different raw
data in chunks of equal length (see Listing 3 for details).
Subsequently, the same core performs the preprocess-
ing. For the cross-correlation operation, each core is re-
sponsible for a different component combination. This
implementationmakes the RAMusage practically inde-
pendent of the number of cores used. Thus, RAM us-
age will mainly depend on the length of the raw data
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Figure 2 Multi-core scaling properties of SeisMIC. We show compute times for auto-correlations as a function of number of
three-component datasets and number of parallel processing threads. The data points correspond to the mean processing
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chunks read in each step (i.e., a smaller read length will
lead to lower memory usage) and its sampling rate (i.e.,
a lower sampling rate will lead to lowermemory usage).
Resulting CFs are written to h5 files immediately after
correlation or stacking and thememory is freed. In con-
trast, SeisMIC computes the final dv/v estimate with ”1-
core per component combination”. Here, a single core
loads all available CFs for one component combination
and executes the stretching algorithm and the associ-
ated processing. Therefore, for the final dv/v calcula-
tion, the memory requirement scales with the number
of employed cores.

2.3.1 Multicore Scaling
To test how SeisMIC’s computational performance
scaleswith the number of used threads, we compute au-
tocorrelations from three component data on a single
cluster node featuring an Intel Cascadelake CPU struc-
ture that is equipped with 2 CPU sockets, each holding
20 physical cores that can each execute two threads in
parallel. For our test, we compute CFs from 30 days of
waveformdata. SeisMIC reads daily chunks ofminiseed
files, which it subsequently decimates, here to a sam-
pling rate of 25 Hz, after imposing an anti-alias filter.
The daily waveforms are then detrended, tapered, and
filtered with a pass band between 0.01 and 12 Hz. The
data is then sliced into hourly traces, which are again
linearly detrended, filtered between 2 and 8 Hz, and
clipped if the amplitude exceeds a threshold of 2.5 times
its standard deviation. Then, SeisMIC computes hourly
CFs in the frequency domain and saves them in a cus-

tomised HDF5 container after performing an inverse
Fourier transform. We provide the YAML file containing
the processing parameters in the supplementary mate-
rial. We execute this operation using 1, 2, 4, 8, 16, 32,
and 64 threads for data from 1, 2, 4, and 8 stations (i.e.,
3, 6, 12, and 24 channels and component combinations).
For each configuration, we repeat the computation ten
times.

Figure 2 shows the mean processing time and stan-
dard deviation over the ten operations per unique
nthreads-nstations-combination. We normalise the pro-
cessing times by the time required for nthreads = 1 and
nstations = 1. While nthreads ≤ nchannels, where, in our
case, nchannels = 3nstations, the processing time scales
close to linearly with the number of used threads, in-
dicating an excellent parallel computing performance.
As most of the parallel processing in SeisMIC works on
a one-core-per-channel basis, only very little increase
can be expected beyond this threshold. Indeed, for
nchannels < nthreads, the code reaches a performance
plateau. From here on, the processing time increases
with a further increase of nthreads, probably due toMPI’s
communication overhead. Based on the shown results,
we would discourage hyperthreading (i.e., using more
threads than available physical cores), which leads to
a significant performance drop. Generally, one should
not employmore threads than the total number of avail-
able channels for the computation of correlation func-
tions or the total number of channel combinations for
the dv/v estimation.

5 SEISMICA | volume 3.1 | 2024



SEISMICA | SOFTWARE REPORT | SeisMIC - Seismological Monitoring using Interferometric Concepts

1 2 4 8 16 32
Number of Threads

0

500

1000

1500

2000

2500

3000

3500

Pr
oc

es
si

ng
 T

im
e 

[s
]

MSNoise
SeisMIC

Figure 3 Compute times for a cross-correlationworkflow for all six unique component combinations between eight seismic
stations using MSNoise 1.6.3 (Lecocq et al., 2014) and SeisMIC 0.5.3. The height of the bars indicates the mean processing
time over five iterations with the error bars representing the standard deviation. For hardware information and the exact
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2.3.2 Comparison with MSNoise

To analyse howSeisMIC’s processing speed compares to
the latest release of MSNoise (Lecocq et al., 2014), 1.6.3,
we choose to calculate cross-correlations, which is the
most expensive operation in a standard workflow, tak-
ing upmore than 95% of the total compute time. In this
benchmark, we retrieve hourly cross-correlations for 14
days of raw waveform data between eight 3-component
broadband seismometers sampling at 100 Hz. We set
the preprocessing to be identical for both programs.
First, the data are decimated to 25 Hz. Subsequently,
we detrend, taper, andband-pass filter the data between
2 and 4 Hz. Before computing the CFs, we apply one-
bit normalisation and spectral whitening. We do not
remove the instrument response. Note, however, that
both MSNoise and SeisMIC execute the response re-
moval using ObsPy (Beyreuther et al., 2010) and will
therefore take the same amount of compute time and
resources. Finally, we save the hourly CFs and daily CF
stacks for all six unique component combinations with
a length of 50 seconds. We perform the benchmark on
the same Intel-Cascadelake-based node that we use in
section 2.3.1.
We show the processing times required by MSNoise

and SeisMIC for the outlined operation as a function
of employed threads in Figure 3. Despite having re-
ceived a significant performance boost with the update
to version 1.6.x, MSNoise still needs about five times as
long and thrice asmuch random accessmemory (RAM)
as SeisMIC to execute the cross-correlation workflow,
putting SeisMIC at a similar efficiency level as NoisePy
(see Jiang and Denolle, 2020). In addition, SeisMIC

offers a broader range of preprocessing options than
NoisePy or MSNoise. MSNoise creates one miniseed
file per CF, resulting in less complexwriting operations,
which aremore evenly distributed across the cores. For
this benchmark, this translates to a slightly better scal-
ing between thenumber of cores and the computational
time but also in a high number of files, which can be
undesirable for large datasets. SeisMIC, on the other
hand, creates one file per component combination. In
every case,MSNoise remainsmore than twice as slowas
SeisMIC. Note that the shown times do not include the
time that MSNoise takes to set up a database and scan
new data, which can take a significant amount of time,
whereas these operations are practically instantaneous
in SeisMIC.
While the presented results are encouraging, we re-

mark that we could decrease compute times even fur-
ther by exploiting the potential of modern graphic pro-
cessing units (GPUs), which can correlate ambient seis-
mic noise with high efficiency (Clements and Denolle,
2021; Wu et al., 2022). Implementing such algorithms
belongs to the intermediate-term goals of SeisMIC’s de-
velopment.

3 A Practical Example of a Workflow:
FromRawWaveformData to a Veloc-
ity Change Time Series

In this section, we demonstrate how to obtain a dv/v

time series using aminimal workflow in SeisMIC. In the
supplementary material, we provide two Jupyter note-
books containing the source code used for this work-
flow. The exemplary data are recorded by stationX9.IR1
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Figure 4 Time dependent spectrogram of the raw waveform at X9.IR1. We compute the spectrogram after removing the
instrument response using 2 hours Welch windows. Note the energy spike caused by the Zhupanov earthquake. The energy
amplitude is normalised by its maximum.

around the date of the M7.2 Zhupanov earthquake in
Kamchatka, Russia. In the following, we investigate the
impact of the event on the seismic velocity in the sta-
tion’s vicinity. A discussion of the result lies beyond the
scope of this technical paper and has already been per-
formed byMakus et al. (2023b). We conducted this anal-
ysis using SeisMIC’s implemented workflow, which is
parametrised using a simple YAML file (see supplemen-
tary material). In the following, we will take a step-by-
step tour through said workflow and provide somemin-
imal code examples. For further examples, we advise
the reader to consult SeisMIC’s documentation and our
GitHub page.

3.1 Data Retrieval
To start, we download data from an FDSN-compatible
server. In our case, we download data from station
X9.IR1, available over the GEOFONFDSN service (Quin-
teros et al., 2021). For conciseness, we restrict this ex-
ample to 11 days of data from 25 January to 5 February
2016. In section 2.3, we show how SeisMIC performs
when confronted to larger datasets recorded on several
stations and how compute time scales when employing
multiple cores. Our exemplary time window comprises
the 28 January Zhupanov earthquake, whose coseismic
velocity drop we want to investigate. In SeisMIC, we
can initiate the data download using the Store_Client
class and its method download_waveforms_mdl :

Listing 1 Downloading data using SeisMIC
from obspy import UTCDateTime

from seismic.trace_data.waveform import
Store_Client

starttime = UTCDateTime(2016, 1, 25)

endtime = UTCDateTime(2016, 2, 5)

# Decide where data are stored
sc = Store_Client('GEOFON', '/path/to/project

', read_only=False)
sc.download_waveforms_mdl(

starttime, endtime, clients=['GEOFON'],
network='X9',

station='IR1', location='*', channel='HHE
')

Under the hood, this will initiate ObsPy’s (Beyreuther
et al., 2010) MassDownloader to download continuous
waveform data from the specified station if not already
present locally. Here, we will compute autocorrelations
using only the east component of the seismogram. We
can use SeisMIC to get a first idea of the spectral content
of our waveform and to investigate in which frequency
bands we might find stable noise sources suitable for
PII.We showa spectrogramcomputed usingWelchwin-
dows (see, e.g., Barbe et al., 2010) as implemented in
SeisMIC in Figure 4.

3.2 Computing Autocorrelations
After downloading the waveforms, we can correlate
them to obtain CFs. When computing correlations, we
have ample preprocessing options, which, for brevity,
we will not discuss here in detail. Most fundamentally,
we must set the correlation length, corr_len , (i.e., the
duration of the time windows to be correlated), the in-
crement between these time windows, corr_inc , the
correlation method (in our case, autocorrelation), and
the frequency window to be filtered. The user defines
all options in the YAML file, but they can also provide
parameters in a Pythondictionary. For this example, we
choose a correlation length of one hour and a frequency
band between 2 and 4 Hz. In SeisMIC, the Correlator
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Figure 5 Hourly autocorrelations of ambient noise recorded by the east component of X9.IR1. This plot showcases two
styles to plot correlations in SeisMIC. (a) Autocorrelations plotted as a colour image. The colours scale with the amplitude
of the correlation. We superimpose the average of all shown autocorrelations on top of the heatmap. (b) Autocorrelations
plotted as a section plot. In this plot, each hourly CF corresponds to one curve. Here, we only show the causal side of the CF.

class handles the correlation workflow.

Listing 2 Downloading data using SeisMIC
from seismic.correlate.correlate import

Correlator

# sc is the previously initatied Store_Client
c = Correlator(sc, options='path/to/params.

YAML')
st = c.pxcorr()

To illustrate the syntax of the parameter file, we showan
extract of it below. Note that the keys preProcessing ,
TDpreProcessing , and FDpreProcessing can also im-
port custom, external functions as long as input argu-
ments and return objects follow a predefined syntax.

Listing 3 params.YAML
...
read_start : '2016-01-25 00:00:01.0'

read_end : '2016-02-05 00:00:00.0'
sampling_rate : 25
remove_response : False
combination_method : 'autoComponents'
preProcessing : [

{'function':'seismic.correlate.
preprocessing_stream.detrend_st',
'args':{'type':'linear'}},

{'function':'seismic.correlate.
preprocessing_stream.cos_taper_st',
'args':{'taper_len': 100,

'lossless': True}},
{'function':'seismic.correlate.

preprocessing_stream.stream_filter',
'args':{'ftype':'bandpass',

'filter_option':{'freqmin':0.01,
'freqmax':12.49}}}]

subdivision:
corr_inc : 3600
corr_len : 3600
...
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Figure 6 The waveform coherence as a function of lag time and frequency for the dataset from station X9.IR1 and channel
HHE. For details, consult the text body.

corr_args : {'TDpreProcessing':[
{'function':'seismic.correlate.

preprocessing_td.detrend',
'args':{'type':'linear'}},

{'function':'seismic.correlate.
preprocessing_td.TDfilter',
'args':{'type':'bandpass','freqmin'

:2,'freqmax':4}},
],
'lengthToSave':25,
'center_correlation':True,
'normalize_correlation':True,
...
}

...
Its pxcorr method will internally handle preprocess-
ing and correlation. It will also initiate MPI to enable
parallel processing. In Figure 5, we plotted the CFs us-
ing SeisMIC’s plotting tools. Due to the high noise level
in the chosen time window and frequency band, a well-
defined coda emerges from the CFs (see Makus et al.,
2023b, for details).

3.3 Waveform Coherence
For a first assessment of which frequency bands are
well-suited for a velocity change analysis, we can use
a spectrogram like the one we show in Figure 4. Ad-
ditionally, one can use SeisMIC’s waveform coher-
ence function. The waveform coherence corresponds
to the averaged zero-lag cross-correlation between a
reference CF and CFs at time t (Steinmann et al.,
2021). In Figure 6, we show the waveform coherence
for our exemplary dataset computed between hourly
CFs and the average CF as a reference. We deter-
mine the coherence for 5s long lapse-time windows
and one-octave-wide frequency bands jointly for pos-
itive (causal) and negative (acausal) lag times. Seis-

MIC computes waveform coherence using the Monitor
class and its compute_waveform_coherence_bulk()
method (see supplementary material).
Figure 6 leads us to infer a high stability and energy

content between 0.5 and 4 Hz. The coherence remains
high until late lag times, e.g. for 3 Hz centre frequency,
up to 75 periods. From this, we infer a highly scattering
medium paired with a high energy content in this fre-
quency band originating from the volcanic system (see
Makus et al., 2023b). Therefore, we henceforth focus on
the analysis of dv/v between 2 and 4 Hz.

3.4 Computing Velocity Changes Using the
Stretching Method

Using the procedure theoretically outlined in section
2.2, we can estimate the evolution of the seismic veloc-
ity in the study period. Like previously, the parametri-
sation is handled over the YAML file (see supplementary
material). Before computing dv/v, we smooth the one-
hour CFs with a 4-hour long Hanning window. As refer-
ence CF, we use the mean of all CFs. Then, we compute
dv/v for lag times between 3.5 s and 12 s simultaneously
from the causal and acausal parts of the coda. We plot
the resulting velocity change time series using one of
SeisMIC’s standard plotting templates in Figure 7.
Even though we do not focus on data interpretation

in this article, we should take a brief look at the pre-
sented results. Most notably, we identify a clear velocity
drop coincidingwith the regionalM7.2 Zhupanov earth-
quake. Interestingly, the resolution of the dv/v time se-
ries is high enough to identify a diurnal cycle that could
be caused by air temperature and pressure variations,
for example, observed by Wang et al. (2020), or might
be due to lunar and solar tides as reported by Yama-
mura et al. (2003) and Sens-Schönfelder and Eulenfeld
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Figure 7 Velocity change time series estimated from the CFs shown in Figure 5. The increment between each data point
is one hour and the shown dv/v is derived from CFs that are smoothed over 4 hours. The points’ colour scales with the
correlation coefficient (coherence) between the stretched CF and the reference CF. We plotted the origin time of the M7.2
Zhupanov earthquake,which occurredon 28 January 2016, as a vertical red line. Anobvious velocity drop coincidingwith the
event can be identified. A subsequent recovery and more subtle differences in seismic velocity between day- and nighttime
are visible.

(2019). Lastly, we note that the correlation coefficient
is significantly lower before 26 January 2016. We link
this observation to a transient change in thewavefield as
described by Makus et al. (2023b) and Steinmann et al.
(2023).

3.5 Spatial Imaging of Velocity Changes
Velocity change estimates like the one presented in Fig-
ure 7 show dv/v as a function of time but do not di-
rectly yield insight into the spatial distribution of these
velocity changes. Coda waves, as used in PII, sam-
ple the medium at a high spatial extent. While this
allows to detect distributed weak velocity changes or
changes located away from the path of direct waves,
it prevents a simple inference of the affected location
along a ray path or Fresnel volume. The affected loca-
tion can, however, be estimated using sensitivity ker-
nels that describe the time-dependent energy distribu-
tion of the wavefield for a statistically uniformmedium.
For a theoretical derivation of the sensitivity kernels
based on the Radiative Transfer Theory, refer to Mayor
et al. (2014), Margerin et al. (2016), and Zhang et al.
(2022).
In SeisMIC, we implemented a simplified approach

relying on sensitivity kernels derived from an approxi-
mate solution of the Boltzmann equation for a homoge-
neous medium (Paasschens, 1997) describing isotropic
scattering of acoustic waves. Using these sensitivity
kernels and a linearised inversion scheme proposed by
Obermann et al. (2013), we can map a 2-dimensional
distribution of dv/v at a fixed time ti resulting in
dv/v(ti, x, y).
In SeisMIC, the module seismic.monitor.spatial

contains the necessary functions for the outlined ap-
proach. To illustrate the procedure and make our ex-

ample easily adaptable and reproducible, we create a
synthetic velocity-change model, which we then for-
ward model onto a random station configuration. After
adding noise to the synthetic data, we try to recover the
initial model using the inverse algorithm. In detail, we
proceed as follows: First, we create a synthetic veloc-
ity change model with an extent of 40 km×40 km and
a spatial resolution of 1 km (Figures 8 (b) and (d)). The
background medium has a homogeneous velocity of 3
km

s
and a transportmean free path l0 of 30 km. Then, we

place an arbitrary number of stations on random posi-
tions along the grid. Using sensitivity kernels of cross-
and autocorrelations, we solve the forward problem to
compute dv/v, as it would be obtained from the CFs in
the presence of the spatial velocity variations. The sen-
sitivity kernels are computed for lapse timewindowsbe-
tween 14 and 34 s. To the dv/v values, we add random
noise. This noise follows aGaussiandistribution around
0% velocity change with a standard deviation of 0.1%.
Finally, we invert for the synthetic model employing
the damped linearised inversion (Tarantola andValette,
1982). We show the results of this inversion in Figures
8 (a) and (c) for 4 and 32 stations, respectively. There,
we also indicate the used damping parameters. The op-
timal damping parametersminimise both themisfit be-
tween the initial and the retrievedmodel and themodel
complexity and can be found using the L-curve crite-
rion, as discussed by Obermann et al. (2013). This in-
version relies on two damping parameters, the correla-
tion length λ determining how strongly related neigh-
bouring grid cells are and the model variance σm that
the model may assume.

The results demonstrate that increasing the number
of stations is themost powerful tool to decrease themis-
fit between the inversion result and the input model.
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Figure 8 Two examples of the spatial inversion using different parametrisations and station configurations.(a)Result of the
spatial inversion algorithm using four stations, a model variance σm = 0.1 km

km2 , and a correlation length λ = 2 km. (b) The
synthetic velocity model and station configuration used to obtain (a). (c) Result of the spatial inversion algorithm using 32
stations, σm = 0.01

km

km2 , and λ = 2 km. (d) The synthetic velocitymodel and station configuration used to obtain (c). For an
exhaustive description of the parametrisation and the inversion steps, consult the text body.

While the geometry of the synthetic model is poorly re-
trieved for a configuration using only four stations, we
can reproduce the model quite accurately with 32 sta-
tions.
The supplementary material contains a Jupyter note-

book to reproduce or modify these results with an ar-
bitrary number of stations, velocity change model, and
damping parameters. We also include options to in-
vert for dv/v only utilising data from auto- or cross-
correlations and using sensitivity kernels from split
coda windows (i.e., with lapse time windows sliced into
narrow sub-windows). In the supplement, we show re-
sults that exploit these options. Based on these, we ar-
gue that adding dv/v information from auto- and cross-
correlations, improves the accuracy of the result no-
tably, whereas splitting the coda yields only minor im-
provements.

4 Conclusion and Outlook
We presented SeisMIC, a software to estimate changes
in the seismic propagation velocity from continu-
ous records of seismic ambient noise. SeisMIC con-
tains functionalities for the end-to-end processing of
velocity-change time series, including data retrieval,

the computation of correlation functions, calculat-
ing velocity change time series using the stretch-
ing method, and postprocessing as well as inverting
dv/v time series onto a spatial grid. While these func-
tions can be part of a workflow, they are also intended
to be used separately and can easily be altered and
adapted to individual processes. In SeisMIC, we imple-
ment anewdata format for correlation functions, which
provides uniformity, flexibility, interoperability, and in-
tegrity. Thereby, we hope to foster a broader discussion
in the community regarding data standards, which, we
believe, would aid data exchange, efficiency, and repro-
ducibility of ambient noise studies.
In the near future, we will release versions capa-

ble of estimating dv/v employing algorithms other than
the stretching method, like the wavelet-cross-spectrum
analysis (Mao et al., 2020). Other future milestones in-
clude exploiting the computational power ofGPUs to de-
crease the compute time of noise correlations even fur-
ther and adding solutions that automatically update cor-
relation function databases.
SeisMIC complements existing software to process

ambient noise. Highlights are its broad functionality,
high efficiency, and versatility applicable to local small-
scale studies on a laptop computer as well as surveys us-
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ing large-Narraysprocessedoncomputer clusters. Seis-
MIC is available on GitHub as a well-documented and
regularly maintained open-source software.
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Abstract We have assembled CREW, the Curated Regional Earthquake Waveforms Dataset, which is a
dataset of earthquake arrivals recorded at local and regional distances. CREW was assembled from millions
of waveforms with quality control through semi-supervised learning. CREW includes 1.6 million waveforms
that have global coverage. Each waveform consists of a 5 minute three component seismogram with labels
for both a P andS arrival. CREWprovides a high quality labeledwaveformdata set that can be used to develop
and test machine learning models for the analysis of earthquakes recorded at regional distances.

1 Introduction
The Deep Learning seismological data landscape is
dominated by local recordings. STEAD (Mousavi et al.,
2019) contains over 1.2 million three component earth-
quake waveforms recorded at distances up to 350 km,
with 8 percent of the data recorded at more than 110
km. STEAD provides 60 s waveforms from around the
world that include both P and S arrival labels. IN-
STANCE (Michelini et al., 2021) contains over 1.1 mil-
lion three component earthquake waveforms recorded
at distances up to 600 km. INSTANCE provides 120 s
waveforms from Italy and its surroundings with at least
a P or S arrival. LENDB (Magrini et al., 2020) contains
over 600,000 three component earthquake waveforms
recorded at distances up to 134 km. LENDB provides
27 s waveforms from around the world with picked P ar-
rivals. The Pacific Northwest AI-ready Seismic Dataset
(Ni et al., 2023) contains 190,000 three componentwave-
forms for earthquakes and exotic events. This dataset
provides 150 s waveforms. These four datasets also con-
tain noise waveforms. The NEIC dataset (Yeck et al.,
2020) contains over 1.3 million earthquake waveforms
recorded at distances up to 90 degrees. This dataset pro-
vides 60 seconds long waveforms around the phases P,
Pn, Pg, Sn, Sg and S, with themajority corresponding to
P phases. The MLAAPDE dataset (Cole et al., 2023) con-
tains 5.1 million three component waveforms for earth-
quakes recorded at distances ranging from local to tele-
seismic. This dataset provides 120 s waveforms. The
GEOFON dataset (Woollam et al., 2022) also covers the
local to teleseismic distance range, with nearly 275K la-
beled arrivals, mostly P waves.

∗Corresponding author: aguilars@stanford.edu

Most seismological deep learning research on earth-
quake detection and phase picking has used short du-
ration waveforms from small earthquakes at short dis-
tances. PhaseNet (Zhu and Beroza, 2019) was trained
on 30 second waveforms to predict the timing of P and
S wave arrivals in Northern California. Earthquake
Transformer (Mousavi et al., 2020) was trained on 60
s waveforms to simultaneously detect earthquakes and
pick the arrival times of P and S waves. (Woollam et al.,
2019) used 6 s windows for phase picking and (Ross
et al., 2018) employed 4 s windows to predict the type
of dominant energy in the seismogram (P or S), train-
ing on seismograms recorded within 100 km from the
epicenter.
Most of the world is sparsely instrumented andmany

earthquakes are recorded only at distances over 100 km.
This is true for the important case of seismicity near
most subduction trenches, which are often more than
100 km from the nearest land. At regional distances,
which are often taken to bemore than 100 km and up to
1,000 km, seismic waves are strongly modified by inter-
action of the wavefield with the crust and uppermantle.
S and P arrivals are also separated by greater times than
for shorter distances, such that existing deep learning
models may not perform well on these out of distribu-
tion data. This provides the motivation for developing
CREW. The increase in source-receiver distance comes
with mounting complexity in the waveforms due to the
accumulation of propagation effects and the decrease
in wave amplitudes. Figure 1 schematically compares
wave propagation at local distances vs. regional dis-
tances.
Thewaveforms on top are recordings of the 2023 Lake

Almanor earthquake in Northern California. This MW
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Figure1 Comparisonof local and regional recordings for the 2023 LakeAlmanor earthquake inNorthernCalifornia. The top
waveform was recorded at around 50 km while the bottom one was recorded at about 500 km. Note: The focal mechanism,
elevation and fault geometry are not related to the real Lake Almanor earthquake setting.

5.5 earthquake was recorded over many instruments at
both distance ranges. The top seismogram comes from
stationBEK from theNevada SeismologicalNetwork at a
distance of around 50 km. In this case the arrivals of the
crustal phases Pg and Sg are very impulsive and they are
around 10 seconds apart. The bottom waveform, from
station BBGB of the Northern California Seismic Net-
work recorded the earthquake at a distance close to 500
km from the epicenter, shows that the waves that trav-
eled through the uppermost mantle, Pn and Sn, arrive
before the direct crustal arrivals, Pg and Sg. The Pn and
Sn arrivals are emergent and more difficult to see. Both
seismograms are 5 minutes long and are aligned on the
first arrival. The vertical scale of both seismograms is
the same, with the top one having a peak ground veloc-
ity of 1.81mm/s while the regional recording has a peak
ground velocity of 0.40mm/s, which is almost a five fold
decrease in peak ground velocity.

As indicated in Figure 1, for earthquakes recorded
at short local distances, the first arrivals are the direct
crustal phases Pg and Sg, which propagated through
the crust. As the source to receiver distance increases,
earthquake recordings may include the Moho-reflected
phases PmP and SmS. Beyond the crossover distance,
Pn and Sn will be the first arrivals. These waves travel
from the source and propagate through the uppermost
mantle before turning to the surface again (Storchak
et al., 2003). The crossover distance is a function of
earthquake depth and crustal thickness, and ranges
from 30 km in thin oceanic crust to 200 km in thick con-
tinental crust, since crustal thickness can vary from 6
km to 70 km (Mooney et al., 1998). For reference, for
a 30 km thick continental crust and assuming typical
seismic velocities for the crust and upper mantle, the
crossover distance for a surface source would be ∼ 150
km.

For most regional earthquake recordings the first ar-
rival is thePnphase and for Swaves, thefirst arrival is its
analog Sn. As seen in Figure 1, the characteristics of the
waveforms are different for the local and the regional
recordings. The first arrivals Pn and Sn are known to be
emergent, compared to the impulsive nature of Pg and
Sg. The decay of coda (its envelope) for local record-
ings tends to follow a one over time pattern (Sato et al.,
2012), with the maximum amplitude very close to the
first arrival. In contrast, for the regional recording, the
envelope of the P and S codas looks more like a spindle,
with the maximum amplitudes not as close to the first
arrivals. This change in shape is attributed to scattering,
which is strongest in the crust and uppermost mantle
(Shearer and Earle, 2004). Even though in Figure 1 the
secondary S arrival is labeled as Sg, at longer distances,
close to 1000 km the high frequency S wave train has
been attenuated and only S waves trapped in the crustal
waveguide, known as Lg will be the secondary S wave
arrival. Lg phases are complex, and can be blocked by
changes in crustal structure (Al-Damegh et al., 2004).
Careful attention to the demanding task of precise pick-
ing of these regional seismic phases leads to improved
earthquake catalogs in zones that are otherwise chal-
lenging to monitor (Fuenzalida et al., 2013), which sug-
gests that deep-learning-based methods should be ex-
tremely useful at these distances.

Figure 2 shows the International Seismological Cen-
tre station inventory list with the inverted blue trian-
gles. Seismically active parts of Europe, Japan, New
Zealand and the United States, have the greatest con-
centration of instruments. The green contours and ar-
eas are those for which there is aminimum of 5 stations
within a radius of 3 degrees. These green outlines en-
close those highly instrumented regions of the world
where ”local” earthquakemonitoringwith direct crustal
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Figure 2 Top. Stations in the ISC inventory list. Bottom. Global seismicity. In both panels the green regions are those for
which there are at least 5 stations within a 3 degree radius and the purple regions are those for which there are a minimum
of 5 stations within a 10 degree radius and the azimuthal gap for an earthquake within this region would be less than 180
degrees.

phases should be possible. The purple-shaded region
indicates where there is aminimum of 5 stations within
a 10 degree radius and where the azimuthal gap for an
earthquake at each point is less than 180 degrees. These
purple regions are those that can be considered suitable
for regional monitoring. The area ratio between the
green and purple regions is about 10, which indicates
that there should be great benefit to more effective re-
gional earthquake monitoring. For the important case
of small islands, such as the Azores or Ascension in the
SouthAtlantic, they donotmeet the azimuthal gap crite-
ria due to their limited areal footprint. From thepoint of
viewof earthquakemonitoring,mid-ocean ridgesmight
be considered the least well-monitored seismic zones
onEarth. Also, note that this set of stations doesnot rep-
resent current monitoring conditions accurately, since

we do not consider information on the lifespan of these
stations. For example, the Transportable Array sta-
tions across the United States only operated for approx-
imately two years at any particular location, such that
much of that area is covered by regional, rather than lo-
cal, monitoring. That is, monitoring from permanent
seismic networks in much of the world is not as effec-
tive as this figure suggests.

Adapting themachine learning workflows to regional
earthquake monitoring and earthquake catalog build-
ing requires adapting the data and the algorithms.
The Curated Regional Earthquake Waveforms (CREW)
dataset is the first step towards extending deep (i.e.,
deep learning-based) earthquake catalogs to regional
earthquake monitoring, by assembling a high quality
benchmark dataset for training deep-learning models.
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Figure 3 Stations and sources in CREW. Earthquakes are color-coded by depth.

2 Metadata and Data Collection
We queried all datacenters available through Obspy
(Beyreuther et al., 2010) to retrieve their earthquake cat-
alogs (see Table 2). We retained only those catalogs that
contain information on both P and S arrivals, including
phase arrivals P,Pg,Pn and S,Sg,Sn. For instance, cata-
logs that report only P arrivals were excluded from our
workflow. Of the over 30 million metadata entries, we
kept only those which for the same station-earthquake
pair there were at least one picked arrival of P, Pg, Pn
and one picked arrival of S,Sg,Sn on the same trace.
That is, we required at least one of the P set and one of
the S set to be labeled for each example. The number
of traces for which simultaneous P and S information
is available is an order of magnitude less than those for
which only the first arriving P wave is labeled. Later, we
queried all datacenters accesible via Obpsy to retrieve
the appropriate waveforms in the distance range of 1
to 20 degrees of source to receiver distance, which is
the range where the first arrivals are mainly Pn and Sn.
Initially, we retrieved 7 minute waveforms, including 2
minutes before the earliest arriving P phase and 5 min-
utes after. This included all the instruments for each sta-
tion, encompassing seismometers and accelerometers,
with sampling rates ranging from 20 to 200 Hz. We de-
trended and resampled these data at 100 Hz. We then
cut the waveforms randomly so that the earliest arriv-
ing P wave is at least 10 seconds after the start of the
seismic trace and the total duration is 5 minutes (300
seconds), zero paddingwhen required to complete the 5
minutes. Then, the waveforms were normalized to the
absolute peak amplitude among the three channels. Ul-
timately, we kept the data from the ISC catalog (Stor-
chak et al., 2013) and waveforms from the IRIS DMC
(Trabant et al., 2012). The initial pool of data included
nearly 3.3 million waveforms and their corresponding
arrivals. The sources and receivers represented in the
dataset are shown in Figure 3. The database includes
523,294 unique events recorded at 4,071 unique stations
around the world. The distribution of earthquakes is
representative of global seismology, spanning all lati-
tudes, longitudes and all depths. In contrast, the cov-
erage of receivers is not uniform, as the places with the
highest density of instruments are the USA, Chile, and
Europe.
Figure 4 displays five examples in the dataset, with

their three-component waveforms, along with the ar-

rivals and their labels, and indicate the instrument type
and information on the earthquake location and mag-
nitude, as well as the source to receiver distance. These
examples are shown for the presence of 2,3 and 4 picked
arrivals. Panels A and B represent the most common
cases in CREW, where only the first arriving P wave and
the first arriving S wave are labeled. For the example
in (A), generic P and S labels are provided, whereas for
(B), more specific Pn and Sn labels are provided. Panel
(C) depicts a case in which three labels are provided, P,
Pn and S, but P and Pn represent the same timestamp,
so there are effectively two labeled arrivals. (D) shows
the case of three distinct phases labeled, Pn, Sn and Sg.
The bottom panel of Figure 4 (E) shows an uncommon
example, in which the four phases Pn,Pg, Sn and Sg are
all labeled, only a few thousand such examples occur
in the dataset because most datacenters do not label ar-
rivals other than the first arrival. Note that this exam-
ple has been bandpass filtered to enhance the visibil-
ity of the arrivals. These rare examples typically come
from stable continental regions, where the propagation
of regional phases is not blocked by crustal and mantle
structure (Gök et al., 2003). Panel C is a case in which
there are two differently labeled arrivals, Pn and P that
are very close in time, corresponding to the same ar-
rival, but having an almost negligible time difference.
In cases like this, we preserved all the available labels,
but in subsequent workflows we only employed the ear-
liest of the available P arrivals and the earliest of the S
arrivals.

3 From Big Data to Good Data
In several fields employing machine learning, perfor-
mance gains fromdataset cleaning and refinement have
been shown to surpass those from model architecture
improvements (Northcutt et al., 2021a,b). Moreover, if
data quality is high, effective training of deep neural
networks requires fewer data (Motamedi et al., 2021).
This has caused a shift in attention from the quantity
of data to the quality of the data, as Data-Centric AI has
gained traction (Zha et al., 2023) and led to data-centric
initiatives (https://cleanlab.ai/) and competitions (Ng
et al., 2021) (https://https-deeplearning-ai.github.io/data-
centric-comp/) formore controlled benchmark datasets.
(Northcutt et al., 2021a) documented the prevalence
of faulty examples for ten of the most used machine
learning benchmark datasets including image, text and
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Figure 4 Examples from CREW with 2 (A,B), 3 (B,C), and 4 (E) labeled arrivals. Depth is in km, and distance in degrees.
Example in panel (E) has been bandpassed filtered between 1 and 10 Hz to facilitate visualization of the arrivals.

audio, MNIST, CIFAR, and ImageNet among others
(https://labelerrors.com/). These examples contain ei-
ther faulty data or defective or incomplete labels, that
end up affecting model selection and performance.
Seismological data can contain errors such as inaccu-
rate picked phase arrivals, and seismometer data is
prone to corrupted transmission or storage. Strategies
to mitigate the effects of bad labels and bad data have
been devised (Cordeiro and Carneiro, 2020; Northcutt
et al., 2021b), and it remains an active research field.
This motivated our shift in approach, from iterating
over a fixed dataset and optimizing for model param-

eters, to fixing the architecture and iteratively improv-
ing the dataset by identifying faulty examples, outliers,
and edge cases, and/or by synthesizing new examples.
CREWwas built to have both big and good data.

Upon inspection of the initial dataset, it was clear that
there were many faulty examples of various types. We
manually checked a random sample of 10,000 exam-
ples and classified them into the following categories:
(1) good examples, which have seemingly accurate ar-
rival time labels on clean seismograms and (2) bad ex-
amples, which have inaccurate arrival time labels, cor-
rupted seismograms, or other problems. Another cate-
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A

B

C

D

Figure 5 Comparison of labels and predictions, dotted lines are the labels in red for P waves and blue for S waves. The
solid lines are the predictions and the inferred picks. The time difference between the two are displayed in the bottom right.
Examples in A and B were kept in CREW, while examples in C and D were removed.
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Figure 6 Examples rejected fromCREW. (A) uncataloged earthquake. (B) multiple uncataloged earthquakes. (C) accurate P
arrival next to an inaccurate S arrival. (D) no earthquake signal visible. (E) accurate Pn arrival but data is incomplete for the
Sn arrival.
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Figure 7 Number of picks in each category.

gory, (3) multiplets, accounted for the class where there
aremultiple earthquakes, but only one is labeled. From
this sorting scheme 72%of the datawas deemed as good
(category 1) and the remaining 28% was flagged (cate-
gories 2 and 3) because it was deemed to contain inac-
curate training labels, or corrupted data.
To automate the screening of faulty examples, we

trained a convolutional neural network, a U-Net with
skip connections, based on the architecture of PhaseNet
(Zhu andBeroza, 2019). Ourmodel has several extra lay-
ers to process input waveforms that are 10 times longer
than those for the original PhaseNet, such that it pro-
duces representations in the deepest layers of similar
size. The CNNwas trained to learn triangular labels that
are centered on the pick positions. These labels have a
half width of 5 seconds, or 500 sample points on each
side, for a total duration of 10 seconds, with a linear in-
crease from 0 to 1 and then a linear decrease from 1
to 0. The labels are the same for both P and S waves,
and there is a third channel for noise, which is equal
to one minus the label of P and minus the label of S.
These triangular labels were made using the earliest ar-
rival among the available arrivals. For instance for the
example displayed in Figure 4 the labels used were Pn
and Sn. There are multiple examples in the dataset for
which multiple arrivals are reported, but in some cases
they are very close in time and hard to distinguish. For
instance, in Figure 4 panel C there labels for both P and
Pn and they are almost overlapping. We leave at the dis-
cretion of the user the use of these labels but note that
the pruning procedure described here used the earliest
arriving among P,Pn, and Pg and the earliest arriving
among S,Sn, and Sg. Future research will address work-
ing with secondary arrivals.
The training data consists of a mix of data in its raw

form, augmented data, and synthetic noise. The details
of the architecture, training and deployment of these
models and other auxiliary models will be presented in
a forthcoming paper. The augmented versions of the
data consisted of a superposition of multiple copies of
the same example waveforms with a time delay. De-

pending on the S minus P time, we added a random
choice between two or three copies, and with the ap-
propriate labels, those were added to the example. We
did this to train the model to work for the frequently
encountered scenariowheremore than one earthquake
occurs during a 5-minute window.
Once our phase picker was trained, we applied it to

the dataset to remove examples with faulty labels. The
criteria used was that the time difference between the
dataset labels and the inferred phase picks was under 2
seconds. A large time difference between the label and
the prediction was an indication of mistimed arrivals.
Figure 5, shows data that passed this criteria and that
did not pass it. The delay between labels and predic-
tions are indicated in the bottom right, with red and
blue for P and S waves. panel A shows very good align-
ment of the triangular labels and themodel predictions,
such that they appear totally superimposed. The pre-
dicted arrival times differ by only a tenth of a second,
which is an example of what we consider good quality
data and labels. Panel B shows good agreement in the
P wave, but a delay of nearly a second and a half for the
S wave, which is still considered sufficiently good data.
Panels C and D show data that was rejected from the
dataset because either the P or S prediction differs by
more than 2 seconds from the dataset labels. For C, it is
the S label that seems to be inaccurate, whereas for D,
both the P and S labels are inaccurate, being evident for
the S wave, but it requires zooming in to see the P label
mislocation.
Figure 6 shows a variety of examples thatwereflagged

as faulty by the describedworkflow. From top to bottom
A through E. (A) Two earthquakes in one window, but
only one of them has picked arrivals. (B) At least three
uncataloged earthquakes, while only one is labeled. A
and B represent the most common way in which the la-
bels are inaccurate. (C) Correct P arrival but faulty S
arrival. Without the need for hardcoding a travel time
sanity check, our model flagged this type of error. (D)
No visible earthquake signal in the waveforms. (E) Data
gaps or outages, in this case there is a seemingly accu-
rate Pn arrival, but there is a data gap before the Sn ar-
rival.
The quality-controlled dataset contains 1,599,323 ex-

amples (nearly 50% of the initial data pool, nearly 1.1
TB), each a three component waveform sampled at 100
Hzwith at least one of P,Pg,Pn and at least one of S,Sg,Sn
arrivals. The total number of arrivals is 3,589,986. The
proportions of these arrivals are displayed in Figure 7.
For the P family there are 1,871,317 arrivals: 1,225,778
for generic P, 564,373 for Pn and 81,166 for Pg. For
the S family, there are 1,718,669 arrivals: 1,192,110 for
generic S, 446,880 for Sn, and 79,679 for Sg. The rela-
tively low number of Pg and Sg phases is a consequence
of excluding data in the 0 to 1 degree distance range.
There aremultiple existing data sets for those distances
as described above.
The resulting dataset consists of 523,294 earthquakes

that are globally distributed. The magnitude ranges
from 0 to 7.1, with very few earthquakes at either ex-
treme. Figure 8 (left) shows the magnitude-frequency
distribution of the earthquakes in CREW as solid bars.
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Figure 8 Left. Magnitude-Frequency distribution, the solid bars display the distribution of unique earthquakes in the
dataset. The empty bars display the frequency distribution if each example is treated as a separate magnitude. Middle. Dis-
tribution of source to receiver distances, which span 1 to 20 degrees. Right. Number of waveforms of examples in the dataset
per each unique origin ID, for most earthquakes there is only one or two observations, whereas having more than 5 is rather
scarce in the CREW.

The outlined bars show the distribution if each exam-
ple is treated as a different earthquake, that is count-
ing the same earthquake multiple times. Figure 8 (mid-
dle) shows the distance distribution of the examples.
Each bar represents a 1 degree distance bin. Most of
thedata is at the closest distances (distance< 4degrees).
The number of recordings decays dramaticallywith dis-
tance, due to the combined effects of amplitude decay
and recording limitations, with only larger earthquakes
visible at greater distances.
Table 1 summarizes themetadata attributes in CREW.

These can be separated into three main categories, sta-
tion information, earthquakeorigin informationandar-
rivals information. CREW is stored in hdf5 format, the
examples are stored in a group called data, where each
individual example is named a combination of the sta-
tion id and the event origin ID. Examples of these names
are shown at the top of each panel in Figure 4. For
the arrivals, the timestamps are available as well as the
sample position corresponding to the location of the ar-
rivals in the waveforms. In Figures 4 and 5 part of the
metadata is displayed in the right panels. The names of
the variables are mostly in Seisbench format (Woollam
et al., 2022), except for the channels list.
The right panel of Figure 8 shows how many exam-

ples there are that correspond to a unique earthquake.
The most common scenario is that only one record-
ing per earthquake made it through the quality control.
Nearly 230,000 earthquakes have only one example, i.e.,
at least two phase arrivals. On the other hand, 1,251,900
examples correspond to an earthquake with at least 6
phase readings, i.e. a seismic source forwhich there are
at least 3 examples in the dataset. This aspect should
be useful for machine learning implementations that
perform seismic phase picking incorporating informa-
tion from multiple stations, e.g. (Feng et al., 2022), or
formodels that perform earthquake arrival association,
e.g. (McBrearty and Beroza, 2023). The plot is clipped at
15, but the earthquake that has themost examples asso-
ciated with it has 121, which means over 242 picked ar-
rivals. CREW contains more examples with both P and

S arrival information than other datasets that cover the
same distance range.
We reviewed the data and metadata in CREW, which

is global in coverage, containingwaveforms from earth-
quakes from all longitudes, latitudes and depths. CREW
includes events up tomagnitude 7. Moreover it provides
data and labels useful at the single station level as well
as the network level, with themajority of the data corre-
sponding to earthquakes with at least 6 arrivals, which
should be enough to produce a location.

4 Conclusions and Future Directions
We introduce CREW as a large, high-quality labeled
data set for simultaneous regional seismic P and S
phasewaveforms recordedon seismometers around the
world. CREW is the first benchmark data set that fo-
cuses on regional phases, rather than phases from local
earthquake recordings or teleseismic recordings. Mon-
itoring using regional phases is essential for large parts
of the Earth where local monitoring is logistically im-
practical or is not a high priority due to relatively low
seismic hazard. It should also prove useful for the im-
portant case of nuclear test ban treaty monitoring. We
hope that its availability will enable progress in ma-
chine learning for regional earthquake monitoring and
structural imaging.
Most machine learning research on seismology has

focused on supervised learning (Mousavi and Beroza,
2023), especially for earthquakemonitoring, and CREW
contributes to this paradigm by curating data with the
best available labels for regional first and secondary ar-
rivals. The combination of algorithmic advances and
data advances will contribute to multiscale earthquake
monitoring.
Future research directions include working on sec-

ondary arrivals, such as reflected e.g. PmP, PP or con-
vertedwaves e.g. SP, PS, that even thoughnot oftenused
for earthquake location, are nevertheless very sensitive
to Earth structure and provide insight into the deep in-
terior of the planet. These secondary arrivals are also
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Station information Event Information Arrivals Information
network_station_code source_id {P,Pg,Pn}_arrival_time
station_code source_origin_time {P,Pg,Pn}_arrival_sample
channels source_latitude_deg {S,Sg,Sn}_arrival_time
station_latitude_deg source_longitude_deg {S,Sg,Sn}_arrival_sample
station_longitude_deg source_depth_km trace_start_time
station_elevation_m source_magnitude

path_ep_distance_deg

Table 1 Metadata attributes in CREW. Most ot these attributes are in seisbench convention.

a challenge for machine learning due to the relative
scarcity of labeled examples. For these phases, archi-
tectures that rely less heavily on labeled data, such as
semi-supervised and self-supervised learning that can
learn from incomplete labels or partial datamight prove
successful (Assran et al., 2023). Also, future imple-
mentations that aim to characterize the full wavefield
by picking all types of seismic phases present should
provide improved capabilities for both monitoring and
studies of the deep Earth.

Data and Code Availability
CREW is hosted in Stanford University DataFarm: https:
//redivis.com/datasets/1z6w-e1w70hpmt (https://doi.org/
10.57761/60b3-cv76). All codes used to generate and
process the dataset are available at https://github.com/
albertleonardo/CREW, as well as example data and note-
books. CREW will be made accessible via SeisBench
Woollam et al. (2022).
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7D Wenyuan Fan et al. (2018)
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8A Andy Nyblade (2015)
8G Anne Meltzer and Susan Beck (2016)
AC Institute of GeoSciences (IGEO), Polytechnic University of Tirana (PUT) (2002)
AE Arizona Geological Survey (2007)
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AF Penn State University (2004a)
AI Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (1992)
AK Alaska Earthquake Center, Univ. of Alaska Fairbanks (1987)
AR Northern Arizona Network
AT NOAA National Oceanic and Atmospheric Administration (USA) (1967)
AU Geoscience Australia (2021)
AV Alaska Volcano Observatory/USGS (1988)
AY Haitian Seismic Network
AZ Frank Vernon (1982)
BC Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada (1980)
BE Royal Observatory of Belgium (1985)
BK Northern California Earthquake Data Center (2014)
BL Brazilian Lithospheric Seismic Project
BX Botswana Geoscience Institute (2001)
C Chilean National Seismic Network
C0 Colorado Geological Survey (2016)
C1 Universidad de Chile (2012)
C8 Canadian Seismic Research Network
CA Institut Cartogràfic i Geològic de Catalunya (1984)
CB Institute of Geophysics China Earthquake Administration (IGPCEA) (2000)
CC Cascades Volcano Observatory/USGS (2001)
CD Albuquerque Seismological Laboratory (ASL)/USGS (1986)
CH Swiss Seismological Service (SED) At ETH Zurich (1983)
CI California Institute of Technology and United States Geological Survey Pasadena (1926)
CK CAREMON Central Asian Cross-border network
CM Servicio Geológico Colombiano (1993)
CN Natural Resources Canada (1975)
CO University of South Carolina (1987)
CS Caucusus Array (CS)
CW National Centre for Seismological Research (CENAIS Cuba) (1998)
CY Cayman Islands Seismic Network
CZ Charles University in Prague (Czech) et al. (1973)
DK Danish Seismological Network
DR National Seismological Centre (1998)
EC Ecuador Seismic Network
EI Dublin Institute for Advanced Studies (1993)
ET CERI Southern Appalachian Seismic Network
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Table 2 continued: Seismological Networks used in CREW

G Institut de physique du globe de Paris (IPGP) and École et Observatoire des Sciences de la Terre de Strasbourg
(EOST) (1982)

GB British Geological Survey (1970)
GE GEOFON Data Centre (1993)
GI Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hidrologia (INSIVUMEH) (1976)
GO National Seismic Network of Georgia
GR Federal Institute for Geosciences and Natural Resources (1976)
GS Albuquerque Seismological Laboratory (ASL)/USGS (1980)
GT Albuquerque Seismological Laboratory (ASL)/USGS (1993)
HK Hong Kong Seismograph Network
HL National Observatory of Athens, Institute of Geodynamics, Athens (1975)
HT Aristotle University of Thessaloniki (1981)
HV USGS Hawaiian Volcano Observatory (HVO) (1956)
IC Albuquerque Seismological Laboratory (ASL)/USGS (1992)
IE Idaho National Laboratory (1972)
II Scripps Institution of Oceanography (1986)
IM Various Institutions (1965)
IN National Seismic Network of India
IO Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (2014)
IU Albuquerque Seismological Laboratory/USGS (2014)
IW Albuquerque Seismological Laboratory (ASL)/USGS (2003)
JP Japan Meteorological Agency Seismic Network
KC Central Asian Institute for Applied Geosciences (2008)
KG Korean Seismic Network - KIGAM
KN Kyrgyz Institute of Seismology, IVTAN/KIS and University of California, San Diego (1991)
KO Kandilli Observatory And Earthquake Research Institute, Boğaziçi University (1971)
KP Won Sang Lee and Yongcheol Park (2013)
KR Kyrgyz Institute of Seismology, KIS (2007)
KS Korea National Seismography Network (KNSN-KMA) (KNSN)
KY Kentucky Geological Survey/Univ. of Kentucky (1982)
KZ KNDC/Institute of Geophysical Research (Kazakhstan) (1994)
LB Leo Brady Network (LB)
LD Lamont Doherty Earth Observatory (LDEO), Columbia University (1970)
LO Instituto Politecnico Loyola (2012)
LX Instituto Dom Luiz - Faculdade de Ciências da Universidade de Lisboa (2003)
MB Montana Bureau of Mines and Geology/Montana Tech (MBMG, MT USA) (1982)
MG Centro de Geociencias, UNAM (2003)
MI USGS Alaska Anchorage (2000)
MN MedNet Project Partner Institutions (1990)
MP Seismological Laboratory of University of Basrah (2014)
MX Universidad Nacional Autónoma de México (UNAM) (1970)
MY Malaysian National Seismic Network
N4 Albuquerque Seismological Laboratory/USGS (2013)
NE Albuquerque Seismological Laboratory (ASL)/USGS (1994)
NI OGS (Istituto Nazionale di Oceanografia e di Geofisica Sperimentale) and University of Trieste (2002)
NK National Seismological Centre (1978)
NL KNMI (1993)
NM Cooperative New Madrid Seismic Network
NN University of Nevada, Reno (1971)
NO Norsar (1971)
NR Utrecht University (UU Netherlands) (1983)
NU Instituto Nicaraguense de Estudios Territoriales (INETER) (1975)
NV Ocean Networks Canada (2009)
NY University of Ottawa (uOttawa Canada) (2013)
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Table 2 continued: Seismological Networks used in CREW

NZ GNS Science (2021)
O2 Oklahoma Geological Survey (2018)
OC Observatorio Sismológico CIGEOBIO CONICET (OSCO)
OE ZAMG - Zentralanstalt für Meterologie und Geodynamik (1987)
OH Ohio Geological Survey (1999)
OK Oklahoma Geological Survey (1978)
ON Observatório Nacional, Rio de Janeiro, RJ (2011)
OV Obsercatorio Vulcanológico y Sismológico de Costa Rica, Universidad Nacional (1984)
OX Istituto Nazionale di Oceanografia e di Geofisica Sperimentale - OGS (2016)
PA Red Sismica Volcan Baru (2000)
PE Penn State University (2004b)
PL Polish Seismological Network
PM Instituto Português do Mar e da Atmosfera, I.P. (2006)
PO Portable Observatories for Lithospheric Analysis and Research Investigating Seismicity (POLARIS)
PQ Geological Survey of Canada (2013)
PR University of Puerto Rico (1986)
PS Pacific21 (ERI/STA)
PT Pacific Tsunami Warning Center (1965)

QZ LTD Seismological Experience and Methodology Expedition of the Committee of Science of the Ministry of Edu-
cation and Science of the Republic of Kazakhstan (2003)

RM Regional Integrated Multi-Hazard Early Warning System (RIMES Thailand) (2008)
RV Alberta Geological Survey / Alberta Energy Regulator (2013)
S1 Australian National University (ANU, Australia) (2011)
SB UC Santa Barbara (1989)
SC New Mexico Tech Seismic Network
SE Southeastern Appalachian Cooperative Seismic Network
SS Incorporated Research Institutions For Seismology (1970)
SV Servicio Nacional de Estudios Territoriales (SNET), El Salvador (SNET-BB)
TA IRIS Transportable Array (2003)
TC Universidad de Costa Rica (2016)
TJ Geophysical Survey of the National Academy of sciences of Tajikistan (2009)
TM Thai Seismic Monitoring Network (TM)
TR Eastern Caribbean Seismograph Network
TT Seismic Network of Tunisia
TW Institute of Earth Sciences, Academia Sinica, Taiwan (1996)
TX Bureau of Economic Geology, The University of Texas at Austin (2016)
UO University of Oregon (1990)
US Albuquerque Seismological Laboratory (ASL)/USGS (1990)
UU University of Utah (1962)
UW University of Washington (1963)
WA West Central Argentina Network
WI Institut De Physique Du Globe De Paris (IPGP) (2008)
WM San Fernando Royal Naval Observatory (ROA) et al. (1996)
WU The Southern Ontario Seismic Network (SOSN)
WY University of Utah (1983)
XA Paul Silver (1997), Kate Miller (2002)
XB Douglas Wiens (1993)
XE Douglas Christensen et al. (1999)
XF Douglas Wiens (2012)
XI Frank Vernon (1995)
XJ Cynthia Ebinger (2013)
XR Jim Ni et al. (1997)
XS Stephane Rondenay (2006)
XW Sylvie Leroy et al. (2009)
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Table 2 continued: Seismological Networks used in CREW

XY Susan Schwartz (1999),Steve Roecker and Ray Russo (2010)
XZ Roger Hansen and Gary Pavlis (2005)
YC Susan Beck et al. (2000),Anne Meltzer (2011)
YG Carpathian Basins Project Regional Array (CBPRA)
YH DANA (2012)
YI Vadim Levin (2003)
YJ Ethiopia-Afar Geoscientific Lithospheric Experiment (EAGLE)
YK Coordinated Seismic Experiment in the Azores (COSEA)
YL Anne Sheehan et al. (2001)
YO Geoffrey A. Abers and Karen M. Fischer (2003)
YQ Jim Gaherty et al. (2013)
YV North East Atlantic Tomography (NEAT)
ZA Michael West (2006)
ZC Jay Pulliam (2013)
ZE Cindy Ebinger (2007)
ZF Afar Consortium Network (AFAR)
ZP Andy Nyblade (2007)

The article Curated Regional EarthquakeWaveforms (CREW)
Dataset©2024 by Albert L. Aguilar Suarez is licensed under
CC BY 4.0.
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Abstract We introduce a community stress drop validation study using the 2019 Ridgecrest, California,
earthquake sequence, in which researchers are invited to use a common dataset to independently estimate
comparable measurements using a variety of methods. Stress drop is the change in average shear stress on
a fault during earthquake rupture, and as such is a key parameter in many ground motion, rupture simula-
tion, and source physics problems in earthquake science. Spectral stress drop is commonly estimated by
fitting the shape of the radiated energy spectrum, yet estimates for an individual earthquake made by differ-
ent studies can vary hugely. In this community study, sponsored jointly by the U. S. Geological Survey and
Southern/Statewide California Earthquake Center, we seek to understand the sources of variability and un-
certainty in earthquake stress drop through quantitative comparison of submitted stress drops. The publicly
available dataset consists of nearly 13,000 earthquakes of M1 to 7 from two weeks of the 2019 Ridgecrest se-
quence recorded on stations within 1-degree. As a community study, findings are shared through workshops
andmeetings and all are invited to join at any time, at any interest level.

Non-technical summary The stress release (or stress drop) during an earthquake provides infor-
mation on how geologic forces are converted to radiated seismic energywhen a fault ruptures, and the condi-
tions under which an earthquake will continue to increase in size or trigger earthquakes nearby. Stress drop
is also an important element of seismic hazard mapping and building design, since high stress drop earth-
quakes radiate more high frequency energy, resulting in stronger ground shaking. Unfortunately, stress drop
estimates made in different studies have large systematic and random differences, implying that they are not
as reliable as we need for use in groundmotion prediction and earthquake source physics research. We intro-
duce a Community Stress Drop Validation Study in which we invite all interested scientists from the interna-
tional community to analyze the same earthquakes and compare and contrast their results. We use a public
dataset of recordings of aftershocks of the 2019 Ridgecrest, California earthquake. Our aim is to understand
where the differences and similarities in stress drop come from, and then work with the wider user commu-
nity to develop improved methods for characterizing earthquake rupture and the resulting ground motions
for more reliable and informed earthquake hazard forecasts.

1 Introduction
“What is earthquake stress drop, and what does it rep-
resent physically?” is a long-standing, open question
in earthquake physics (e.g., Abercrombie, 2021). Seis-
mologists and ground-motion modelers often mean dy-
namic stress drop, the change in shear stress driving
earthquake faulting that goes into radiated seismic en-
ergy, which controls the amplitude and frequency con-
tent of ground shaking during earthquakes and is thus
of great interest to ground-motion modelers and struc-
tural engineers. Geologists often mean static stress
drop, the change in average stress resolved onto the
fault before and after an earthquake rupture, which
controls the mechanics of crustal deformation and
should be related to slip on a fault, which can feed into

∗Corresponding author: abaltay@usgs.gov

earthquake occurrence statistics. In idealized, theoreti-
cal earthquake models, static and dynamic stress drops
are equivalent: the dynamic high-frequency stress drop
that canbemeasured from the radiated far-field seismo-
gram is the same physical parameter as the static low-
frequency stress drop that relates earthquake moment
to rupture area.

To first order, this equivalency between various stress
drop definitions and estimates has been observed, sug-
gesting that earthquakes rupture in approximately the
same way in a variety of geologic settings and over a
wide range of magnitudes. This allows us to extrapo-
late current models and knowledge to predict ground-
motion, slip, recurrence rates and other parameters
to poorly recorded large-magnitude events, close dis-
tances, or new regions of interest. To improve our un-
derstanding of earthquake rupture dynamics, and de-
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termine the factors that control earthquake rupture nu-
cleation, propagation and arrest, weneed to understand
the real variation in earthquake stress drop (see Aber-
crombie, 2021).
Typically, seismologists estimate an average spectral

stress drop ∆σ for an earthquake from the recorded
Fourier frequency-amplitude spectrum by first fitting
an ideal displacement source spectrum u(f), with f the
frequency, as a function of seismic moment (Mo) and
corner frequency (fc)

u(f) =
M0

[

1 +
(

f
fc

)nγ]

1

γ

(1)

where n is the high-frequency falloff rate and γ governs
the shape near the corner. The commonly-used Brune
(1970) model has n=2 and γ = 1. Then ∆σ is simply
derived from the estimated corner frequency and mo-
ment, assuming a circular crack (Eshelby, 1957):

∆σ = cMo

(

fc

kβ

)3

(2)

where c is a constant accounting for rupture geometry
(7/16 for a circular rupture) and k depends on the rup-
ture velocity, wave type, and sourcemodel (typically 0.2-
0.3, e.g., Brune, 1970; Madariaga, 1976; Sato and Hira-
sawa, 1973; Kaneko and Shearer, 2015). The corner fre-
quency is inversely proportional to the wavelength of
peak radiated energy from the source. Thus, stress drop
can be thought of as the link between the low-frequency
estimates of seismic moment and the high-frequency
radiated energy assuming simple Brune-type circular
crack models (Brune, 1970; Madariaga, 1976) in which
corner frequency is inversely proportional to the rup-
ture radius. Other sourcemodels are also possible, such
as (Boatwright, 1978)withn=2 and γ = 2 inEq. 1) or dou-
ble cornermodels where the low-frequency fc is related
to the source duration and hence dynamic stress drop
discussed herein, and the higher fc is related to a sec-
ondary process such as rise time, starting or stopping
phases, or a dynamic weakening process (e.g., Denolle
and Shearer, 2016),
Throughout our study, and in this paper, we focus

on this widely used spectral estimate of stress drop,
whether it comes directly from the corner frequency or
a related parameter, such as duration, energy, or high-
frequency ground motion. While the alternate name
of “stress parameter” is in use to describe the source
spectral shape in ground motion modeling (i.e., Atkin-
son and Beresnev, 1997), due to the large uncertainties
and difficulties relating it to any actual stress drop in the
earth, hereweuse the simple term“spectral stress drop”
for spectral estimates tomatch current practice. Appar-
ent stress, defined as rigidity times the ratio of broad-
band radiated seismic energy to moment, is theoreti-
cally a more model-independent estimate of the stress
drop (e.g., Ide and Beroza, 2001; Baltay et al., 2010). In
practice, however, accurate measurement of radiated
broadband energy is challenging as it requires extrap-
olation to high frequencies, and often depends on the
same spectral modeling as the spectral stress drop es-
timates, because of the need to model high-frequency

attenuation and other path effects. These measure-
ments are especially difficult at the higher frequencies
required to quantify radiated energy of smaller earth-
quakes (e.g. Abercrombie, 1995; Ide and Beroza, 2001;
Abercrombie, 2021). This spectral stress drop is an av-
erage stress drop over an earthquake rupture, and the
relationship between that average and time- and space-
varying stress drop on a fault is not always well resolved
(Noda et al., 2013). Similarly, the details of the relation-
ship between this seismological spectral stress drop and
the actual stress release on a fault or numerical simula-
tions are poorly understood (e.g., Kaneko and Shearer,
2015; Ji et al., 2022). Beforewecanattempt to connect all
these parameters, we need to first ensure our estimate
of the spectral stress drop is reliable and reproducible;
this is the aim of the community study.
The easewithwhich it canbemeasured and its impor-

tance for both earthquake physics and high-frequency
ground-motion modeling, have led to spectral stress
drop becoming a frequent subject of study worldwide
(e.g., Aki, 1967; Hanks, 1977; Abercrombie, 1995; Ide
and Beroza, 2001; Baltay et al., 2011; Abercrombie et al.,
2016). However, for as long as stress drop has beenmea-
sured, it has been a topic of debate, as stress drop esti-
mates are rifewithuncertainties and appearhighly vari-
able (Cotton et al., 2013; Abercrombie, 2021).
While we often observe an approximately constant

range of stress drop over a wide range of earthquake
magnitudes, the variation within individual studies can
be three orders ofmagnitude (e.g., Figure 1). Howmuch
of this is due to measurement uncertainty, and how
much to real inter-event variation is unknown. For in-
dividual earthquakes, stress drops estimated by differ-
ent researchers or using different methods rarely agree
(e.g., Abercrombie, 2013; Pennington et al., 2021), with
differences between estimates larger than the reported
uncertainties, implying that calculated uncertainties of
at least some approaches must be significantly under-
estimated. On a larger scale, it is still an open ques-
tion as to whether stress drop scales with magnitude
(e.g., Baltay et al., 2010; Bindi et al., 2020), depth (e.g.,
Hardebeck andAron, 2009; Trugman and Shearer, 2017;
Abercrombie et al., 2021), faulting regime or tectonic
setting (e.g., Allmann and Shearer, 2009; Boyd et al.,
2017; Huang et al., 2017), or even nature and extent of
dynamic weakening or thermal pressurization (Beeler
et al., 2012; Nielsen et al., 2016; Rice, 2006). However,
the large scatter currently obscures these trends, so for
stress drop to be most reliably used both to understand
rupture physics and inmodels and simulations, weneed
to understand how physical processes, methodological
differences, and data processing artifacts contribute to
these variations.
Various studies have investigated the effects of differ-

ences in methods or data selection, including Shearer
et al. (2019), Goertz-Allmann and Edwards (2013), Aber-
crombie (2015), Chen and Abercrombie (2020), Pen-
nington et al. (2021), and Shible et al. (2022); Aber-
crombie (2021) provides a broad review of the difficul-
ties, uncertainties and methods in stress drop estima-
tion and comparison. These studies found that although
methodological differences can lead to some system-
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atic biases, the main differences come from the sim-
plifying assumptions and model parameterization, and
the limited quality and quantity of the data. Objectively
determining the most reliable approaches for calculat-
ing stress drop, and more representative estimates of
uncertainties, is beyond the abilities of any individual
group.
Awareness of the need for a community-wide study to

resolve these discrepancies has been growing over the
years (e.g., Baltay et al., 2017; E.C.G.S.Workshop, 2012).
Therefore, this Community StressDropValidationStudy
was initiated by co-leads Annemarie Baltay and Rachel
Abercrombie in 2021, with support from the U.S. Ge-
ological Survey (USGS) and Southern California Earth-
quake Center (SCEC); the Statewide California Earth-
quakeCenter (SCEC) continues to support this project in
2024. The goals of this group are to understand: (1) the
sources of agreement or difference between different
methods and data sets used in estimating stress drop,
(2) how physical attributes of the earthquake source af-
fect the variability or degree of agreement of those esti-
mates, and (3) ultimately, what is the best path forward
for measuring stress drop and characterizing the high
frequency radiation for various end-user needs. The
2019 Ridgecrest earthquake sequence provides the per-
fect dataset for such a comparative study.

2 Researchpriorities andorganization
2.1 Research priorities
The goals of this Community Stress Drop Validation
Study are to understand the nature and causes of vari-
ability and uncertainty in spectral earthquake stress
dropestimates andhowphysical effects, randomerrors,
differing data sets and methodological variability may
contribute to these discrepancies, so that we best un-
derstand and account for these uncertainties.
Our specific research priorities are to:

1. Understand how different methods and assump-
tions lead to variations in estimated stress drop
and predicted high frequency radiation. Do cer-
tain methods highlight different frequency aspects
of the source? How do data selection and prepro-
cessing affect the results? How are different ana-
lysts implementing methods?

2. Determine how variations in the estimated spec-
tral stress drops reflect physical variations in earth-
quake source processes or material properties.
Do simpler or smoother events yield more agree-
ment between stress drop estimates while complex
events show more variability? How do these stress
drop estimates depend on the physical size, depth,
location or tectonic setting of the earthquake?

3. Develop best practices for estimating a measure
of spectral stress drop that can reliably be used
in ground motion and hazard modeling, and by
the wide community seeking to understand earth-
quake source physics and dynamic rupture pro-
cesses (including laboratory work and numerical

modeling). Ultimately, the best way to estimate
stress dropmay vary between events depending on
factors such as its tectonic setting, inferred rheo-
logical properties and rupture behavior, but canwe
develop a baseline method that is consistent for a
particular type of earthquake?

2.2 Study organization
The overall process for the Stress DropValidation Study
is to: provide and distribute a common dataset from
the 2019 Ridgecrest sequence; solicit community re-
searchers to carry out analyses of stress drop, or related
parameters, for those events; return results of these
analyses to the project leads for systematic comparison
and meta-analysis; and discuss and disseminate these
findings through scientific conferences, workshop dis-
cussions, and publications. In addition to attracting
participants to makemeasurements, a major aim of the
group is to engage end users to promote informeduse of
observationalmeasurementswith understanding of the
uncertainties, and also assist in developing and mak-
ing the most useful measurements needed to advance
hazards and earthquake physics research. This study is
envisioned as an iterative and community-driven pro-
cess to help the seismological community strengthen
our understanding of stress drop variability and uncer-
tainty, and what it can tell us about the physics of earth-
quake rupture and the resulting ground motions.
This project has focused on building community

and encouraging collaboration between participants to
stimulate validation efforts, leading to sub-groups per-
forming comparative analysis, and investigating the ef-
fects of method variations (e.g., Bindi et al., 2023a,b).
Through support from SCEC, we have hosted three vir-
tual workshops in November 2021, January 2023 and
January 2024, and one in-person workshop at the SCEC
Annual Meeting in September 2022. The virtual work-
shops have attracted over 100 participants each from 20
countries and all continents (except Antarctica), while
the more focused in-person workshop was 30 partic-
ipants. At each workshop, recent results and meta-
analysis are shared, and the group discusses future di-
rections including also hearing from stress drop users,
rather than just analysts. At the most recent January
2024 workshop, for example, we discussed creation
and analysis of synthetic datasets, hearing about sev-
eral different methods for simulating waveforms (full
workshop reports can be found at https://www.scec.org/
research/stress-drop-validation). In between workshops,
we hold ~monthly video-conference calls for commu-
nity building and validation activities, which are typi-
cally held at two different times in the same day to en-
courage and enable global contributions; we currently
have broad geographical participation.

3 Current validation study: 2019
Ridgecrest earthquake sequence

The current community stress drop validation study is
focused on the 2019 Ridgecrest earthquake sequence
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Figure 1 Published stress drop compilation showing stress drops versus magnitude for global earthquakes across a wide
range of magnitudes. For each study, the stress drop is corrected assuming the k=0.21 value fromMadariaga (1976), to avoid
discrepancies purely from author choice of k. While there is very large scatter between and across studies, stress drops are
generally boundedbetween0.1 and100MPa, for events ranging fromacoustic emissions recorded in the labandduringmine-
break experiments, (Yoshimitsu et al., 2014; Sellers et al., 2003; Kwiatek et al., 2011; Spottiswoode andMcGarr, 1975; Urbancic
et al., 1996; Urbancic and Young, 1993; Gibowicz et al., 1991; Collins and Young, 2000; Oye et al., 2005; Yamada et al., 2007;
Goodfellow and Young, 2014; Blanke et al., 2021; McLaskey et al., 2014), to regional studies (Abercrombie, 1995; Imanishi and
Ellsworth, 2006; Trugman, 2020; Shearer et al., 2022; Bindi et al., 2021; Malagnini et al., 2013; Baltay et al., 2011; Huang et al.,
2017; Ide et al., 2003; Mori et al., 2003; Baltay et al., 2010; Ruhl et al., 2017) and global compilations (Allmann and Shearer,
2009; Viesca and Garagash, 2015).

using a set of common waveforms. The study is di-
vided into two main research activities: 1) Indepen-
dent analysis of stress drop for the Ridgecrest sequence
by researchers, and submission to the group validation
repository; and 2)Meta-analysis to compare the submit-
ted results. The study is inclusive and iterative, in that
any researchersmay join at any time to provide their es-
timates of stress drops; then as a group we compare all
stress drop estimates and refine the stated problem and
narrow the data set to best achieve our goals. Individual
researcherswill then repeat someaspects of their analy-
sis with newfound insight and using amore limited data
set.

We have created and provide a common data set for
this study, including waveforms and metadata, avail-
able for download through the Southern California
Earthquake Data Center: https://scedc.caltech.edu/data/
stressdrop-ridgecrest.html, where a “Quick-reference
guide” is also posted for more information on the wave-
form data. This dataset consists of ~13,000 earthquakes
ofmagnitude 1+ over twoweeks from July 4 until July 17
(Figure 2). This contains the M7.1 and M6.4 Ridgecrest
mainshocks, three M5 earthquakes and 86 M4 events.
This two-week window was chosen to avoid introduc-
ing selection biases yet retain a set of earthquakes suf-
ficient for the wide variety of expected stress drop anal-
yses. It is unlikely that any individual contributor will
analyze all the earthquakes, and the approaches of dif-
ferent groups will be suitable for different subsets. To
increase comparison, we have selected a subset of 55
events, by choosing well recorded events over a range
of magnitudes from 2 to 4.5, at a range of depths and
along different parts of the rupture. We ask researchers
to prioritize these events in their analysis, if possible.

3.1 Waveform data

The provided data are recorded on 107 local and
regional stations within 1-degree (~110km) of each
epicenter, and consist of broadband velocimeter,
accelerometer and geophone instruments—including
both horizontal and vertical components. Data come
from the Southern California Data Center (SCEDC),
International Research Institutions for Seismology
Data Management Center, and the Northern California
Earthquake Data Center. We included network codes
CE, CI, GS, NN, NP, PB, SN, and ZY but excluded the
nodal network 3J, and used channels HH (up to 200 sps)
and CH (> than 200sps) for broadband, HN (<200 sps)
and CN (>200 sps) for accelerometers, and EP (<200
sps), EH (S200sps) and DP (>200 sps) for geophones (see
Data and Code Availability section); in each case the
channel with the highest sampling rate is chosen for
co-located instruments. The length of each record is
proportional to the magnitude, with the record starting
15s before the origin time (OT) and ending 60s after
for M1; for the M6+ the records start 90 before OT
and end 310s after. The waveforms are provided in
miniSEED format and can be directly downloaded as
tar files grouped by magnitude, to reduce file size for
any one archive. Within each tar file is a folder for
each earthquake; within that folder is a list of stations
for that event, accompanying response information
(SAC pole-zero files) and StationXML metadata. The
ObsPy (Beyreuther et al., 2010) script used to create this
dataset is available for use as well, either to facilitate
direct download of the waveforms, or to adjust any of
the parameters.
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Figure 2 Event locations (left), magnitude (top right) and time-vs.-magnitude distribution (bottom right). Insetmap shows
location of Ridgecrest region (red box) within the state of California. Entire two-week relocated event catalog of ~13,000
earthquakesbyTrugman (2020), shown incircles coloredbydepthandsizedbymagnitudeand inbluehistogrambars. Subset
of 55 events for focused study shown encircled in black, and in red histogram bars.

3.2 Metadata
Alongwith thewaveformdata, we provide severalmeta-
data to assist in analysis, and remove unnecessary
sources of variation between results.

• Earthquake Catalog. Full earthquake catalog with
SCSN magnitudes and relocations from Trugman
(2020).

• P- and S-wave phase picks. Initial P- and S-wave
phase picks for each record (although if a method
requires improved picks, participants are free to
adjust or repick the data) through two methods:
The first are the SCEDC phase picks, which are not
available for all events or all stations; the second
are theoretical travel time calculations using a 1D
velocity model. Both sets of phase-picks are in-
cluded batched into the .tar files with the wave-
forms.

• Vs30 station estimates. Time-averaged shear-wave
velocity in the upper 30m (Vs30) for each station.
The Vs30 values are preferentially measured, as re-
ported byYong et al. (2013); if directmeasurements
are not available then Vs30 is estimated based on
the mosaic proxy of Heath et al. (2020).

• Ridgecrest 1D velocity model. A simple 1D velocity
model for those wanting depth-dependent rupture
velocity correction, developed by White (2021), by
combining and discretizing the models from Lin

et al. (2007) (25% weight), Zhang and Lin (2014)
(25% weight) and White et al. (2021) (50% weight).

4 Earthquake stress drop analysis
4.1 Individual stress drop analysis
Throughout the study, we solicit submissions of stress
drop or other source parameter estimates (source dura-
tion, finite fault inversions, high-frequency energy, etc.)
in a defined spreadsheet format from the community
via the email distribution list. New and updated sub-
missions of results and participation are still encour-
aged, especially from students, early career, and inter-
national (non-US) participants. To participate in the
community study, we ask that participants be willing
to provide their analyses potentially ahead of publica-
tion, so that they can iterate on methods and analysis.
This allows them to understand and isolate sources of
discrepancy or variability in their analyses, which will
both improve the quality and impact of their own pub-
lications and eventually better inform other commu-
nity members about alternative approaches and possi-
ble outcomes. Submission of the results is made only
to the authors (study PIs), to ensure confidentiality of
the results. Participants are asked for their permission
before any results are shown to the larger group or in-
cluded in presentations. To date, we have received 47
unique submissions from 20 research groups.
The common methods of estimating spectral stress

drop, and their limitations, are reviewed by Abercrom-
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bie (2021). The original, simplest method of fitting in-
dividual earthquake spectra to determine source, path
and site (e.g., Thatcher and Hanks, 1973) is still in use
(e.g., Kemna et al., 2021) but has proven to be poorly
constrained (e.g., Ko et al., 2012). When sufficient quan-
tity andquality of recordings are available, variations on
two distinct approaches are currently preferred to iso-
late the source, and estimate corner frequency, source
duration or stress drop, and they both can use body
or coda waves (see Abercrombie, 2021). Variations and
combinations of these have been used by participants
in the Community Study to date, and the authors cited
belowhave all submitted preliminary results at the time
of writing.

1. Spectral Decomposition / Generalized Inversion:
A range of different inversion strategies are now
in use, commonly known as spectral decomposi-
tion or generalized inversion techniques (GIT), for
example, Shearer et al. (2006), Chen and Shearer
(2011), Pennington et al. (2021), Trugman (2020),
Bindi et al. (2021), Devin et al. (2021), Vandevert
et al. (2022). These inversions simultaneously in-
vert large numbers of earthquakes and stations for
stability to obtain single, station-averaged values.
Obtaining absolute values of source parameters, in-
cluding earthquake magnitude, requires assump-
tion of a sourcemodel (typically a Brune-type spec-
trum) or a constraint on the average site effect,
for example, assuming a flat response at a refer-
ence rock site. These inversions also incorporate
an azimuthally independent attenuation structure,
which is assumed to be either homogeneous (con-
stant) or a simple function of travel time.

2. Empirical Green’s Function (EGF) Analysis: In
this empirical approach, a small, co-located earth-
quake is used as an EGF to remove path and site ef-
fects from the spectrum or seismogram of a larger
target earthquake. The deconvolution requires no
assumptions about path or site effects, and can be
applied to individual pairs of events, at individual
stations to enable investigation of azimuthal vari-
ation in the source radiation and path effects. It
requires an independent estimate of seismic mo-
ment of one or both events, a source model with
which to fit the corner frequencies (could be one as
given in Eq. 1 or an assumption that the EGF event
is flat to displacement in the relevant frequency
range), and depends on the availability of an appro-
priate, well-recorded EGF earthquake, which sig-
nificantly limits the number of events that can be
studied using this method. The results also de-
pend on the correctness of the EGF assumption,
and research into the effects of EGF choice is on-
going (e.g., Abercrombie et al., 2016). Spectral ra-
tios are usually calculated by direct division of the
amplitude spectra, but the source time functions
can be calculated either by complex spectral divi-
sion or by time-domain inversion. To obtain source
parameters, the spectral ratios are fit with a simple
Brune-sourcemodel (e.g., Abercrombie et al., 2020;
Kemna et al., 2021; Liu et al., 2020; Ruhl et al., 2017;

Boyd et al., 2017; Chen and Shearer, 2011; Mayeda
et al., 2007). Alternatively, a finite fault or other in-
version can be used to model the source time func-
tions (e.g., Dreger et al., 2021; Fan et al., 2022).

Many approaches in common usage are variations
and combinations of these two. For example, the coda
calibration tool approach (Mayeda et al., 2003) uses coda
spectral ratios of one or two calibration events to con-
strain the path and site corrections for other individual
events andEulenfeld et al. (2021) combine codawave es-
timation of attenuation with a generalised inversion of
the direct wave spectra. Kemna et al. (2021) and Boyd
et al. (2017) use cluster-based approaches to constrain
individual spectral fitting and spectral ratio modelling,
respectively. Supino et al. (2019) develop a probabilistic
framework for the inversion, and Satriano (2022) uses
an iterative approach, first fitting individual body wave
spectra then refining the fits with station-specific aver-
age constraints.
Several methods are distinct from the two main ap-

proaches, such as Knudson et al. (2023) and Al-Ismail
et al. (2023), who calculate the amplitude spectra at in-
dividual points from the amplitudes of narrow-band fil-
tered seismograms. Baltay et al. (2019) use ground-
motion intensities to directly estimate stress drop, and
Ji et al. (2022) estimate stress drop based on radiated en-
ergy.

4.2 Initial results andmeta analysis
Direct comparison of the stress drops submitted to the
Community Stress Drop Validation study so far reveals
considerable scatter, but some stronger correlation be-
tween results using similar methods. The relative vari-
ations between different earthquakes are more consis-
tent across the various studies, than are the absolute
values, in line with the results of Pennington et al.
(2021). We also observe some systematic magnitude-
and depth-dependent overall offsets between different
authors’ submissions. Overall, we observe a stronger
increase of stress drop with earthquake source depth
for methods that do not allow travel-time dependent at-
tenuation to vary with source depth. This implies that
someof the increased stress dropwithdepthmaybedue
to tradeoffs with attenuation and near-source structure,
consistent with the results of Abercrombie et al. (2021).
To date, we have focused primarily on the estimates

of corner frequency, and many methods also estimate
seismic moment. We see large scatter in estimated
corner frequency and also some considerable scatter
in moment; some studies find an increase in spectral
stress drop with increasing moment, but a constant
stress drop is within the uncertainties for most, if not
all, results. Whether any magnitude dependence to
stress drop is real, or a consequence of the frequency
bandwidth, simplistic assumptions and method selec-
tions used (e.g., Abercrombie, 2021) is not yet clear.
Of the 47 unique stress drop submissions received

so far, 21 are published (Figure 3): Trugman (2020),
Shearer et al. (2022), Bindi et al. (2021) and Bindi et al.
(2023b), the latter of which included 18 variations using
different parameters. These results all show relatively
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Figure 3 Comparison of published corner frequency results as part of the Community Stress Drop Validation Study. (a)
Estimated corner frequency vs. estimated moment from Trugman (2020), Shearer et al. (2022), Bindi et al. (2021) and Bindi
et al. (2023b), with dashed diagonal lines showing constant values of stress drop under the assumption of aMadariaga (1976)
k=0.21 for both P and S waves. (b) Comparison of resultant corner frequency from the 12 different parameter choices using a
Brune (1970) spectra, from Bindi et al. (2023b) for three representative events (Event 1 M2.7; Event 2 M3.3; Event 3 M4.2). For
the case shown in red filled circle and bar, the 95% confidence interval on that estimate sometimes doesn’t overlap with the
other estimates given other parameter choices. Figure (b) reproduced from Bindi et al. (2023b) Figure 6b.

constant stress drop scalingwithmagnitude (i.e., falling
along a line of constant stress drop) and are recover-
ing stress drops in a range of 3 to 30 Mpa, upholding
expectations for regions in California. All these pub-
lished results are large scale spectral decomposition/-
generalized inversion technique methods on the Ridge-
crest 2019 sequence, so although thesemethods are very
similar, there are significant systematic differences be-
tween them. Corner frequencies derived from P waves
should be larger than those from S waves. While we see
that estimates from both Trugman (2020) and Shearer
et al. (2022), who use P waves, are indeed larger than
those from the Bindi et al. (2021, 2023a,b) studies which
all use S waves, the difference is larger than predicted
by theoretical models; there is still significant offset be-
tween the two P-wave studies, similar to the range in the
S-wave estimates obtained using different method vari-
ations. We need to further understand if there is a phys-
ical or simply methodological reason behind these dis-
crepancies, and comparative studies such as Bindi et al.
(2023a,b) are extremely valuable indetermining the real
systematic and random errors.

Bindi et al. (2023a,b) iterated over several parame-
ter choices, including spectral window duration, source
depth dependent or independent attenuation, differ-
ent approaches for normalizing the site constraint, and
fitting with a Brune (1970) or Boatwright (1978) spec-
tral shape. For some specific events, the different cor-
ner frequencies estimated over these different itera-
tions show good agreement (i.e., Event 1 in Figure 3b)
while some events show large disagreement (i.e., Event
3). When considering the standard error of 95% con-
fidence on one iteration, shown as the red bar in Fig-
ure 3b, sometimes the standard error encompasses the

variability of the various iterations and sometimes does
not, implying thatmethod choices and assumptions can
lead to wider variation than the formal errors in a sin-
gle preferred approach, that are typically published. It
remains to be seen if there are physical predictors or
complexity that might indicate when estimated corner
frequencies will agree or not.

We also find that a major source of disagreement
stems from estimated seismic moments submitted for
the same events. Manymethods that generate displace-
ment source spectra fit an estimated moment as well
as a corner frequency, typically using a Brune (1970)
spectra and fitting for the seismic moment M0 as well
as the corner frequency (Equation 1). Thus, there is in-
herent tradeoff in the two fitted parameters M0 and fc
and we observe almost as much variability in submit-
ted moments, as do submitted corner frequencies. We
also convert the submitted moments to moment mag-
nitude as M = 2

3
(log

10
M0 − 9.05) , following Hanks

and Kanamori (1979), and find both scatter and sys-
tematic differences between these M and the catalog
moment magnitudes. The relationship between cata-
logmeasurements of local magnitude, codamagnitude,
etc. and moment magnitude below M~4 is not sim-
ple (e.g., Hanks and Boore, 1984), and an incomplete
understanding of magnitude can cause systematic bias
in source parameter estimates as well as in statistical
estimation of b-value, for example. However, the re-
sults compiled in this study provide a unique oppor-
tunity to improve moment-magnitude relationships in
Southern California, and also potentially lead to a more
physics based revised local magnitude scale (Mlr, https:
//scedc.caltech.edu/eq-catalogs/change-history.html).
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5 Outlook
From the initial submitted and published results, it is
apparent that more detailed analysis will improve un-
derstanding of why different methods and assumptions
for estimating stress drop, or different researchers ap-
plying similar methods, yield different results. There
aremany places where workflows can differ, and so iso-
lating how different choices affect the estimates, and
which have the largest effects may improve coherency
of results. Toward this end, it is encouraging to see
many researchers within our community starting to
study the sensitivity of estimated parameters to the vari-
ous input choices (e.g., Bindi et al., 2023a), and initiating
collaborations to compare approaches (e.g., Morasca
et al., 2022).
To isolate and quantify specific sources of variability,

we are conductingbenchmark studies. In thefirst study,
we are testing how results from different researchers
vary even when they start out with the same source
spectra. Wehave found that the variability in the bench-
markfittingwithfixed source spectra is about 3-10 times
smaller when compared to overall results, indicating
that spectral fitting is a small but relevant portion of
the overall variability. Future benchmarks will enable
us to isolate the effects of window length and frequency
band selection, and other pre-processing choices. Pro-
viding an augmented dataset to include a processed
ground-motion style flat file will facilitate participation
of ground motion researchers in the study.
Joining the ongoing Community Stress Drop Valida-

tion Study is straightforward: one can download the
data and perform analysis for stress drop, corner fre-
quency or other source parameters, become involved in
the meta-analysis to compare different results, or sim-
ply join in workshops to learn more about stress drop
analysis or understand better how seismological mea-
surements can constrain or inform their own research
(https://www.scec.org/research/stress-drop-validation, or
contact the authors). Even after this stage of the study
is completed and published, the data and study descrip-
tion will enable future researchers to test and compare
new methods and codes to existing methods.
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Abstract The European-Mediterranean Seismological Centre (EMSC) provides rapid information on
earthquakes and their effects, but does not operate seismic stations. It collects andmerges parametric earth-
quakedata fromseismological agencies andnetworksaround theworldandcollects earthquakeobservations
from global earthquake eyewitnesses. Since its creation in 1975, it has developed strategies to complement
earthquake monitoring activities of national agencies and coordinated its activities in Europe with its sister
organisations ORFEUS and EFEHR as well as with global actors, while being part of the transformative EPOS
initiative. The purpose of this article is to give a brief history of the EMSC and describe its activities, services
and coordination mechanisms.

Introduction

The European-Mediterranean Seismological Centre
(EMSC) has become one of the most important global
earthquake information centres in the world over
the last decades. While some of its activities are well
known in the seismological community, the organ-
isation itself, its history, structure and governance,
its links with other European and global bodies, the
way its services are organised and the basic principles
that guide them have never been described in a single
and open document and thus remain unclear to many
actors in seismology and users of its services. The aim
of this paper is to describe these different aspects of
the EMSC and to illustrate how a regional non-profit
non-governmental organisation can complement
rapid public earthquake information in coordination
with national actors thanks to a well-established and
community-agreed policy. We also outline the current
evolution of EMSC activities and the major overhaul
of its processing system, and call for new networks to
contribute data, as well as potential sponsors whose
contributions are needed to maintain and further
develop our activities and services.

EMSC brief history

In 1975, the European Seismological Commission (ESC),
considering the level of seismic risk in the Euro-
Mediterranean region, recommended the creation of
the Centre Sismologique Euro-Mediterranéen (CSEM,

∗Corresponding author: bossu@emsc-csem.org

or Euro-Mediterranean Seismological Centre, EMSC) to
”determine in near real time the epicenters of poten-
tially damaging earthquakes” in this region, as well
as the epicentral location of smaller magnitude earth-
quakes using data from existing monitoring networks
(Mueller, 1980). This recommendation was supported
by both IASPEI (International Association for Seismol-
ogy and Physics of the Earth’s Interior) and IUGG (In-
ternational Union of Geodesy and Geophysics). In prac-
tice, it was away ofmaintaining in Strasbourg the earth-
quake location activities of the Bureau Central Inter-
national de Sismologie (BCIS, Rothé, 1981) which be-
ganpublishing an instrumental catalogue in early 1900’s
and ceased to exist in 1975 in the Euro-Mediterranean
region (Adams, 2002). EMSC practically started operat-
ing in 1976.

It may not be well known, but during the Cold War
EMSC was instrumental in the global exchange of para-
metric data across the Iron Curtain. Direct telegraphic
exchanges from some of the Warsaw Pact countries
to the USA were restricted. The parametric data re-
ceived at the EMSC by telex via the World Meteorolog-
ical Organisation’s Global Telecommunications System
(WMO/GTS) were forwarded, still by telex, to the Na-
tional Earthquake Information Center in Boulder, USA
(NEIC was then part of the National Oceanic and Atmo-
spheric Administration) and integrated into the Prelim-
inary Determination of Epicenters (PDE) monthly bul-
letin, itself established in 1940. The Soviet bloc coun-
tries were aware of and pleased with this arrangement,
which was seen as a way of solving a sensitive political
problem (B. Presgrave, personal communication 2022).
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Data were usually sent to NEIC 2 to 3 times a week,
thanks to Elie Peterschmitt and his staff at Louis Pasteur
University in Strasbourg.
The EMSC, despite its lack of formal legal exis-

tence, continued to locate earthquakes in the Euro-
Mediterranean region on an ad hoc basis until its
founding meeting held in Strasbourg in December 1982
chaired by Jean Bonnin and attended by representa-
tives from 8 countries (Belgium, Finland, France, Ger-
many, Israel, Portugal, Switzerland, United-Kingdom)
in addition to the ESC. Seismological institutes from 4
other countries (Albania, Italy, Spain, Yugoslavia) had
expressed their support for this creation but did not at-
tend the meeting. The statutes of the EMSC were pre-
sented in 1983 and officially registered in 1984 as a non-
profit association under French law, a status that still ex-
ists today. The geographical area covered ranged from
the Arctic in the north to the southern shores of the
Mediterranean in the south, and from the Mid-Atlantic
Ridge in the west to the Urals in the east. The aim was
to rapidly locate earthquakes, improve data exchange,
earthquake information and cooperation in the Euro-
Mediterranean region.
In 1993, the agreement between theEMSCand its host

Louis Pasteur University in Strasbourg was terminated
and in 1994 the EMSC moved to the Laboratoire de Dé-
tection et de Géophysique (LDG) of the Commissariat à
l’Energie Atomique et aux Energies Alternatives (CEA)
in Bruyères le Châtel, near Paris, its current location.

EMSC among the scientific bodies and
actors

The EMSC operates under the auspices of the ESC (Eu-
ropean Seismological Commission), the oldest regional
commission of IASPEI (Adams, 2002). It coordinates
its activities with its sister organisations in Europe, OR-
FEUS (Observatories & Research Facilities for European
Seismology), a non-profit foundation for the coordina-
tion and promotion of digital broadband seismology in
the Euro-Mediterranean area (Strollo, 2021), and more
recently EFHER (European Facilities for Earthquake
Hazard and Risk, Haslinger et al., 2022). Schematically,
although operations, roles and responsibilities are dif-
ferent, in terms of services, EMSC is the European-
Mediterranean version of NEIC (Hayes et al., 2011;
Masse and Needham, 1989), while ORFEUS is that of
IRIS-DMC (Incorporated Research Institutions for Seis-
mology; Data Management Center. Smith, 1987; Hutko
et al., 2017) now Earthscope.
The coordination between these three European or-

ganisations has been developed through a series of
European funded projects for research infrastructures
(e.g. Giardini et al., 2008), which in turn led to the estab-
lishment of EPOS (European Plate Observing System)
as a European infrastructure for solid Earth sciences
(Cocco et al., 2022). EMSC, ORFEUS and EFHER are
jointly responsible for the seismology services within
EPOS (Haslinger et al., 2022).
The EMSC was also involved in the now defunct

UNESCO programme RELEMR (Reducing Earth-
quake Losses in Extended Mediterranean Region,

https://en.unesco.org/disaster-risk-reduction/science-
technology-resillience/REL) from the late 1990s to the
mid-2010s to improve collaboration and data exchange
with institutes around the Mediterranean. The bulletin
exchanges established thanks to RELEMR significantly
improved the availability of parametric data, adding
readings from several hundred stations and in turn,
the images of the seismicity in the region (Godey et al.,
2006, 2013).

Membership, governance and funding

The EMSC has 3 types of membership, active members,
key nodal members (a type of membership created in
1993 and introduced in 1994) andmembers by right. Ac-
tive members are seismological institutes that partici-
pate in the activities of the EMSC and contribute to its
objectives. Currently there are 66 of them from54 coun-
tries (Table 1). Key Nodal Members are active mem-
bers that provide specific support to the EMSC. Recog-
nised Key Nodal Members are LDG (France) for hosting
the EMSC, the GeoForschungsZentrum Potsdam (GFZ,
Germany) for its key contribution to the EMSC ser-
vices for global earthquake monitoring through its GE-
FON programme (Quinteros et al., 2021), the Istituto
Nazionale di Geofisica e Vulcanologia (INGV, Italy) cen-
tres in Roma and Milan for thematic support on earth-
quake locationmethods and theAHEAD (Archive ofHis-
torical Earthquake Data) programme on European his-
torical seismicity, respectively (Locati et al., 2014), and
finally the Instituto Geografico Nacional (IGN, Spain)
for maintaining a back-up website for EMSC mem-
bers (www.ign.es/web/resources/sismologia/www/csem/
fso.html). The ESC, the International Seismological
Centre (ISC), NEIC/USGS and ORFEUS are members by
right due to their international activities and coopera-
tion with the EMSC.
The EMSC is governed by its annual General Assem-

bly of members and advised by an Executive Council
that consists of the President, threemembers elected by
the General Assembly, representatives of the Key Nodal
Members and the Secretary General. The Secretary
General, who is responsible for day-to-day operations,
administration, human resources and funding, is an
employee of LDG, the host of the EMSC. The EMSC also
benefits from the operational environment provided by
LDG, which is responsible for informing the French au-
thorities in case of earthquakes on the national main-
land territory and operates the French Tsunami Warn-
ingCentre (Gailler et al., 2013; Roudil et al., 2013). LDG’s
support also includes the IT infrastructure of the EMSC
and its maintenance.
Thanks to LDG hosting, the EMSC’s expenses con-

sist mainly of salaries and travel expenses of its staff,
with minor allocations for other operational and ad-
ministrative tasks. Funding comes from membership
fees, participation in research projects (mainly Euro-
pean Union Framework Programmes), more recently
EPOS, and sponsorship. A major challenge has been
to maintain and improve services while being funded
largely by soft money mainly dedicated to research. In
2020, the SCOR Foundation for Science offered a three-
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Figure 1 Schematic of EMSC services. Parametric data is collected fromseismic networks to derive earthquakeparameters,
and eyewitness observations are collected through websites and the LastQuake smartphone app. Information is dissemi-
nated through various channels, including social networks and webservices.

year sponsorship to initiate a long overdue major up-
grade of the service - the first in the last two decades -
completed in June 2023. Sponsorship and financial do-
nations remain an essential element of the EMSC’s fi-
nancial sustainability plan.

In addition to the Secretary General, there are cur-
rently 8 EMSC staffmembers comprising seismologists,
IT experts, software developers and a sociologist. The
size of the teamhas not changed recently and is unlikely
to increase significantly due to the funding structure.

Roles and operation principles

The EMSC provides rapid information on earthquakes
and their effects. It does not operate seismic sta-
tions. It merges seismic data, mainly parametric
data (earthquake parameters, amplitudes, arrival times
and CMTs) collected by network operators and crowd-
sourced ground truth data from eyewitnesses to pro-
vide services on a global scale with a focus on the Euro-
Mediterranean region. (Figure 1; Table 2).

In contrast to many national seismological institutes,
the EMSC has no legal mandate for earthquake infor-
mation. Its scientific role is to provide redundancy and
back-up to the authoritative national earthquake infor-
mation services and to complement them, especially
for earthquakes felt in several countries. Experience
shows that redundancy and back-up may be needed af-
ter major earthquakes, as heavy traffic can bring down
national earthquake information websites, hampering
public communication and international data and in-
formation exchange. Merging seismic data can also im-
prove earthquake information in border regions if bi-
lateral exchange between neighboring countries is not
optimal, or for offshore earthquakes. Complementar-
ity of services is best illustrated by the online collection
of macroseismic data, where collection at the national
level optimizes the volume of data collected within na-
tional territories, but does not provide a complete pic-
ture when an earthquake is felt across borders. While
methods exist tomerge suchgeographically fragmented
datasets (e.g., Van Noten et al., 2016), global-scale col-
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Figure 2 Geographical distribution of earthquakes reported in 2022: 22 148 earthquakes in the Euro-Mediterranean re-
gion (top) and 89 529 earthquakes on a global scale (bottom). Low-magnitude earthquakes are mainly reported in the Euro-
Mediterranean region.
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lection, like the one of the EMSC remains the fastest
way to capture the full spatial distribution of impacts for
such earthquakes.

One practical consequence of the lack of a legal man-
date is that EMSC does not get involved in matters of
national interest. In practice, it does not contact or
develop projects with national civil protection services
and media interviews on earthquake-related-issues are
refused if they come from journalists in the affected
countries. However, through its participation in the
ARISTOTLE consortium, EMSC services contribute to
the rapid earthquake impact assessment sent within 3
hours to the 24/7 Emergency Response Coordination
Centre (ERCC), which is part of the EU Civil Protection
Mechanism and coordinates the delivery of assistance
to disaster-stricken countries (Michelini et al., 2020).

There are two basic principles for earthquake loca-
tion at the EMSC, which were officially approved by the
General Assembly in 2010 and described in Bossu and
Mazet-Roux (2012). First, a provider can generally be
trusted for earthquake information in the geographi-
cal area covered by its network, but its locations out-
side that area should not be reported unless they are
consistently confirmed by another network. Applica-
tion of this first principle implies that earthquake in-
formation can be maintained, at least for earthquakes
large enough to be reported by several networks, even
when information from the local network is not avail-
able. Second principle, relocations by the EMSC (ob-
tained by merging the collected parametric data from
the different contributors) should be limited to cases
where a significant improvement in quality can be ex-
pected, or in other words, locations provided by data
providers that are both reliable and accurate should be
considered authoritative andpublishedwithout change.
In practice, a location is considered reliable if it can be
reproduced with the associated data set of arrival times
within its uncertainty range. It is considered accurate if
it meets criteria related to the geometry and azimuthal
distribution of reporting stations at short distances (up
to 250 km, see details in Bossu and Mazet-Roux, 2012).

The implementation of these principles is more com-
plex than described here, firstly because the system is
fully dynamic, with new data constantly flowing in and
manual observations replacing automatic ones. The im-
plementation must also take into account the hetero-
geneity of network density and performance, and en-
sure the quality of information while avoiding missing
significant earthquakes. For example, in a number of
cases amoderate earthquake (M>4.5) was only reported
by a local networkwithin the boundaries of its network,
while such an earthquake, given its magnitude, should
havebeen reportedby other networks, especially neigh-
bouring ones. To cover such cases, a maximummagni-
tude is set for the network, above which an earthquake
in its area of coverage will not be reported by the EMSC,
unless confirmed by another network.

The presented approach of limiting the number of re-
locations performed by the EMSC is essential for pub-
lic communication, where even slight discrepancies in
earthquake locations between international organisa-
tions and national institutes can lead tomisunderstand-

ings and endanger public trust. It also implicitly recog-
nises that the locations provided by national institutes
are likely to be more accurate than those calculated by
the EMSC using a similar dataset, thanks to their local
knowledge and experience. By 2022, 85% of the 90,000
earthquake locations in the Euro-Mediterranean region
publicly reported by the EMSC had been determined by
data providers (Figure 2).
The situation for magnitude is more complex and

magnitudes are not homogeneously determined. For
small earthquakes, reported only by the local network,
the magnitude is reported unchanged. For large earth-
quakes, the Mw provided notably by GFZ and NEIC
is favoured. The main difficulty is for earthquakes
3<M<4.5, where available magnitude estimates are gen-
erally limited to ML (local magnitude) and often show
large differences between different institutions. When-
ever possible, themagnitude is recalculated using avail-
able amplitude measurements - if the definition and
units are clearly defined - or using the EMSC instance
of the SeisComp system (Weber et al., 2007). The final
choice is then left to the seismologist performing the
manual review.

Data contributors, data policy and data
access

In 2022 there were 100 parametric data contributors,
many of them EMSC members, representing a total of
8,130 seismic stations (Figure 3). The preferred data ex-
change tools are messaging systems, but despite our ef-
forts to phase out email, it is still widely used because
of its ease of setup. For 26 of these 100 contributors,
earthquake location and magnitude are scanned from
the institute’s website when attempts to establish data
exchange fail. In 2022, 4,871 focal mechanism and mo-
ment tensor solutions for 1,596 earthquakes were also
collected from 12 different institutes. Finally, 249 000
felt reports representing the local level of shaking or
damage were collected from earthquake eyewitnesses
worldwide in 2022. The number varies as a function
of seismicity and 250 000 have already been collected
in the first 3 months of 2023 due to the earthquakes in
Turkey.
All data collected is open, but no formal licensing of

data and products has been finalised at this stage. This
is a time-consuming process as it requires unanimity,
certified by a signed document from each contributor.
Thanks to the EPOS push, the aim is to apply the CC BY4
licence (https://creativecommons.org) and eventually to
meet the FAIR (Findability, Accessibility, Interoperabil-
ity, and Reuse) principles.
Data can be accessed via the website (www.emsc-

csem.org) or the earthquake portal. The website serves
multiple audiences (public, scientists...) and provides
fast information on earthquakes. It is more suitable for
exploring individual events and recent activity, while
the earthquake portal is aimed at researchers and pro-
vides access to larger datasets via web services (https:
//www.seismicportal.eu/webservices.html). Hosting the
web services separately from the website limits the risk
of slowdowns due to high traffic on the main site after
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Figure 3 Locations of stations with reported arrival times in 2022, color depending on number of reported arrival times.
Different organisations can pick phases from the same station due to open real-time waveform exchange. This means that
EMSC can receive the same phase data for a station frommultiple sources even if there is no parametric exchange between
the station operator and the EMSC. However, parametric data exchange is essential for properly monitoring low magnitude
local seismicity.

widely felt earthquakes. The FDSN event webservice
(https://www.fdsn.org/webservices/fdsnws-event-1.2.pdf)
is heavily used (average of 250 000 requests/day from 4
600 daily unique visitors). It was upgraded in 2023 and
now has a limit of 20 000 events per request. The FDSN
event service only publishes earthquake parameters
once they have stabilised and so there is a typical delay
before publication of a few to 20 minutes.

EMSC services

Although they are somewhat intertwined, theEMSC ser-
vices can be schematically divided into 2 groups, one
for the public and earthquake eyewitnesses, and one
for the seismological community. The group of public
activities, called LastQuake, aims to provide informa-
tion about felt earthquakes and their effects. As it has
been described in several publications, it is only out-
lined here.
LastQuake is a multi-component information and

crowdsourcing system consisting of a smartphone ap-
plication, a website formobile devices and a Twitter bot
(Bossu et al., 2018a, 2023). The eyewitness engagement
strategy is based on crowdsourced detection, where felt
earthquakes are detected not by seismic data, but by
the online behavior of eyewitnesses immediately after
they feel the shaking. Three types of crowdsourced de-

tections are implemented at EMSC. Two of them reveal
information-seeking behaviour, either by visiting our
websites (Bossu et al., 2008, 2012, 2014) or by launching
the LastQuake app (Bossu et al., 2018b), which gener-
ates a detectable and localizable change in the spatio-
temporal characteristics of the traffic. The third, origi-
nally developed by Earle et al. (2012), monitors the rate
of tweets (messages published on the microblogging
siteTwitter) containing thekeyword ”earthquake” indif-
ferent languages, a rate that increases after a felt earth-
quake in a region where Twitter is popular, as eyewit-
nesses share their experiences.

Crowdsourced detections generally precede seismic
locations and are typically available within 15 to 90 sec-
onds of the earthquake. To be comprehensive, in 2022
these crowdsourced detections were supplemented by
those independently performed by the Earthquake Net-
work app, the first smartphone-based earthquake early
warning (Finazzi, 2016). It detects felt earthquakes
(Bossu et al., 2021) using the internal motion sensor of
its users’ smartphones. Crowdsourced detections are
immediately published on the various components of
the LastQuake system, and users are invited to confirm
the existence of an earthquake by reporting their expe-
rience using a series of cartoons representing the 12 lev-
els of the EMS 98 macroseismic scale (Grunthal, 1998).
It initiates a rapid and massive collection of these re-
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Figure 4 Geographical distribution of the density of the 2M felt reports crowdsourced up to April 18h 2023. The Europe-
Mediterranean region is characterised by a high rate of crowdsourcing.

ports, called felt reports, with a median collection time
of 10 minutes in 2022 (Figure 4). For example, more
than 2,000 were collected within the first 15 minutes
of the M7.8 2023, Kahramanmaras, Turkey earthquake.
Felt reports are consistent with well calibrated “Did You
Feel it?” (DYFI) responses (especially after a small cor-
rection of the bias for the high intensities, Wald et al.,
1999; Quitoriano and Wald, 2020) as well as with inde-
pendently andmanually derivedmacroseismic datasets
(Hough et al., 2016; Kouskouna et al., 2021; Bossu et al.,
2015, 2017).

The determination and sharing of earthquake param-
eters have always been, and still is, the core service pro-
vided to the seismological community. Today, it deals
exclusively with rapid determinations. However, a bul-
letin covering the European-Mediterranean region was
produced for theperiod January 1998 to July 2012,which
included data from 78 contributing networks from 53
countries and a total of 3,400 seismic stations. At the
time, it significantly improved data availability in the re-
gion (Godey et al., 2006, 2013). However, due to fund-
ing difficulties and to avoid duplication with ISC activ-
ities, this activity has been discontinued. The bulletin
is hosted at the ISC (https://doi.org/10.31905/EC1TT8WX)
and data, metadata and local contacts have been trans-
ferred to the ISC to ensure long-term ingestion in its
global bulletin. During this period, coordination with
the ISC and NEIC was particularly close on issues such
as the International Seismic Station Registry. The ”For
seismologists only” web page publishes the data sent
by each contributor (earthquake parameters, moment

tensors) as well as the parameters recalculated by the
EMSC. It may contain several tens of locations for the
same large earthquake, as determined by the different
reporting networks. To limit misuse of the data, it con-
tains a disclaimer pointing out the uncertain quality of
the information, as many locations are fully automatic
and outside the reporting networks. It is a popular
webpage with network operators (20,000 accesses per
day). The general public is invited to use themain page,
whichdisplays one set of parameters per earthquake. In
the EMSC procedures, the data from the different net-
works are automatically merged. They are manually
validated by EMSC staff during working hours, at least
once a day duringweekends andholidays, and for larger
earthquakes in a more or less concentric scheme (M>5
in the Euro-Mediterranean region, M>6 in continen-
tal Asia and M>7 worldwide) by an on-call seismologist
from our host institute in typically 20 minutes. Since
July 2022, the Crowdseeded Seismic Location (CsLoc)
method, which combines crowdsourced detections and
seismic data analysis for fast (60-90s) and reliable loca-
tions of felt earthquakes (Steed et al., 2019; Bondár et al.,
2020), has been fully implemented.

The only service restricted to members and acces-
sible by login is the results of rapid impact assess-
ment by the tool named EQIA (Earthquake Qualitative
Impact Assessment, Julien-Laferrière, 2019; Guérin-
Marthe et al., 2021). It offers heads-up on the scale of
damage. However, such result is considered vulnerable
to misinterpretation and over-interpretation by layper-
sons and journalists due to the inherent uncertainties of

7 SEISMICA | volume 3.1 | 2024



SEISMICA | REPORT | History and activities of the European-Mediterranean Seismological Centre

Figure 5 Abbreviated timeline -relative to origin time- of the main EMSC product releases and updates as well as their
distribution channels for the 8 September 2023 M 6.8 Morocco earthquake.

such estimates and access is restricted to identified end-
users (Bossu et al., 2015). Figure 5 shows an abbrevi-
ated timeline -relative to origin time- of the main EMSC
product releases and updates as well as their distribu-
tion channels for the 8 September 2023 M 6.8 Morocco
earthquake.

Current evolutions

There have been 2 major developments over the last
few years. The first is the complete refactoring of both
the back-end (processing part) and front-end (websites,
smartphone app, etc.) systems, made possible thanks
to the support of the SCOR for Science Foundation. The
second concerns new methods related to rapid impact
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Figure 6 Schematic of the Global Landslide Detector (GLD), developed in collaborationwith theQatar Computing Research
Institute and the British Geological Survey Landslide Team. Tweets containing both an image and a landslide-related word
in different languages are collected. Images not related to landslides are automatically rejected. The 2 images on the right
were collected 12 hours after the M7.8 Kahramanmaras earthquake in Turkey.

assessment, some of which optimise the use of felt re-
ports for the calculation of shaking maps and damage
assessment, and other harvesting of information from
social media for the detection of landslides.

The refactoring of the systems is the first of its kind
andwas long overdue. It startedwith a newmobileweb-
site in 2020, followed by a new version of the Twitter
bot (Twitter is now called X) in February 2022 (Bossu
et al., 2023). The new version of the smartphone app is
currently being tested and a new desktop website was
launched at the end of June 2023. The main change
concerns the backend and the processing of the seis-
mic data, including in particular a new data model, a
modular structure and the implementation of the iLoc
location algorithm, particularly suitable for unbalanced
networks and with more accurate formal uncertainty
estimates (Bondár et al., 2018). It was originally devel-
oped at the ISC, where its implementation has resulted
in consistent locations improvements (Bondár and Stor-
chak, 2011). The new system and associated website for
desktops allow better crediting of data contributors and
different types of contributions (e.g. phase picking, sta-
tion operators...). By adding a third digit to the earth-
quake locations, the grid patterns visible on the highly

zoomed map of the earthquake sequence accompany-
ing the Cumbia Vieja volcano on the island of La Palma
in 2021, which led to rumours and conspiracy theories,
will not be repeated (Fallou et al., 2022). Onlyminor ad-
justments have been made to the new seismic data pro-
cessing system since its release in June 2023. So far, the
main use of the felt reports has been limited to purely
data-driven products such as earthquake impact maps
and intensity vs distance curves. This is now evolv-
ing rapidly. Quitoriano and Wald (2022) developed a
methodology to incorporate them into ShakeMap prod-
ucts, resulting in a lower level of uncertainty. Böse et al.
(2021) apply the Finite-Fault Rupture Detector (FinDer)
algorithm, which typically requires real-time ground
motion observations from a dense seismic network op-
erated in the vicinity of the earthquake (Böse et al.,
2012), to felt reports to compute line-source models.
The system has been in operation for the last 18months
and the results already appear promising when using
the first 10 or 20 min of felt reports, but they still need
to be fully evaluated. The inclusion of both felt re-
ports and, for larger earthquakes, an early finite rupture
model, could significantly speed up the production of
reliable Shakemaps for global earthquakes, and in turn
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reduce the uncertainties of the impact models derived
from ShakeMap. Recently, Lilienkamp et al. (2023) de-
veloped a data-driven approach that bypasses the com-
putation of ShakeMap and is completely independent
of seismic data to discriminate high-impact from low-
impact earthquakes globally based only on felt reports
available within the first 10 minutes. It is a first step
and could evolve into a traffic light system by adding
additional crowdsourced data. However, it can already
correctly classify a significant proportion (39%) of low-
impact events with high confidence and then quickly
and reliably rule out the need for emergency response.
Still related to the use of crowdsourced data, Contreras
et al. (2022) performed a sentiment and topic analysis
on the comments of users providing felt reports. As hy-
pothesised, negative polarity in the comments is associ-
ated with higher intensities, while positive polarity pre-
vails in those associated with the lowest intensities.

Finally, a prototype called the ”Global Landslide De-
tector” is available online (https://landslide-aidr.qcri.org/
service.php#home). It collects tweets (messages pub-
lished on Twitter) containing both the keyword ”land-
slide” and related words in different languages, as well
as an image. A trained AI engine rejects the images not
related to landslides (more than 99% of the collected
tweets, Pennington et al., 2022; Ofli et al., 2022, Fig-
ure 6). Initiated by the EMSC to detect triggered land-
slides, which can significantly hamper rescue opera-
tions by blocking roads, the project was expanded to
detect and document all types of landslides. A land-
slidewas detected 12 hours after theM7.8 earthquake in
Kahramanmaraş, Turkey (Figure 6). GLD’s operations
are currently affected by Twitter’s data access restric-
tions. These developments aim to improve the ability to
quickly and reliably assess the impact of global earth-
quakes.

Concluding remarks

The EMSC is a non-profit organisation created by the
seismological community to provide it with rapid infor-
mation on earthquakes and their effects, with a portfo-
lio of services complementary to those of the national
institutes. It has benefited fromnumerousEuropean re-
search projects to fund the development of its services
and to pioneer citizen seismology, and is now imple-
menting a sustainability plan thanks to its participation
in long-term initiatives such as EPOSorARISTOTLE, but
also thanks to private donations and sponsorships. It
has an open data policy and aims to improve its dissem-
ination services in the coming years. Finally, this paper
is also an opportunity to call on network operators to
consider sharing their parametric data.
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Table 1 (continued)

Key Nodal Members

Laboratoire de Détection et de Géophysique (LDG) France

GeoForschungsZentrum (GFZ) Germany

Istituto Nazionale di Geofisica e Vulcanologia (INGV) Italy, Roma

Istituto Nazionale di Geofisica e Vulcanologia (INGV) Italy, Milano

Instituto Geografico Nacional (IGN) Spain

Active Members

Institute of Geosciences, Polytechnic University of Tirana (IGEO) Albania

Centre de Recherche en Astronomie, Astrophysique et Geophysique (CRAAG) Algeria

National Survey for Seismic Protection (NSSP) Armenia

GeoSphere Austria Austria

Republican Seismic Survey Center of Azerbaijan National Academy of Sciences (RSSC) Azerbaijan

Center of Geophysical Monitoring (CGM) Belarus

Royal Observatory of Belgium (ORB/ROB) Belgium

Republic Hydrometeorological Institute (RHI) Bosnia-Herzegovina

Federal Meteorological Institute (FMI) Bosnia-Herzegovina

National Institute in Geophysics, Geodesy and Geography - BAS Bulgaria

Croatian Seismological Survey (CSS) Croatia

Geological Survey Department (GSD) Cyprus

Institute of Physics of the Earth, Brno (IPE) Czech Republic

Geophysical Institute of the Academy of Sciences (GFU) Czech Republic

Geological Survey of Denmark and Greenland (GEUS) Denmark

Observatoire Geophysique d’Arta (CERD) Djibouti

National Research Institute of Astronomy and Geophysics (NRIAG) Egypt

Institute of Seismology, University of Helsinki (ISUH) Finland

Bureau Central Sismologique Francais (BCSF) France

ISTerre, Institut des Sciences de la Terre France

Seismic Monitoring Centre of Georgia (SMC) Georgia

Federal Institute for Geosciences and Natural Resources (BGR) Germany

National Observatory of Athens (NOA) Greece

University of Thessaloniki (AUTH) Greece

Institute of Engineering Seismology and Earthquake Engineering (ITSAK) Greece

Laboratory of Seismology, University of Patras Greece

Kövesligethy Radó Seismological Observatory Hungary

Icelandic Meteorological Office (IMO) Iceland

Dublin Institute for Advanced Studies (DIAS) Ireland

Geological Survey of Israel (GSI) Israel

National Data Center (NDC) of Israel, Soreq Nuclear Research Center Israel

Istituto Nazionale di Oceanografia e Geofisica Sperimentale (OGS) Italy

Jordan Seismological Observatory Jordan

Seismological Institute of Kosovo Kosovo

Geophysics Centre at Bhannes (SGB) Lebanon

Libyan Center for Remote Sensing and Space Science (LCRSSS) Libya

European Center for Geodynamics and Seismology (ECGS) Luxembourg

Seismological Observatory North Macedonia

Department, University of Malta (UM) Malta

Institute of Geology and Seismology Moldova

Direction de l’Environnement Monaco

Institute of Hydrometeorology and Seismology (MSO) Montenegro

Centre National pour la Recherche Scientifique et Technique (CNRST) Morocco

Département des Sciences de la Terre Morocco

University of Bergen (BER) Norway
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NORSAR Norway

Institute of Geophysics, Polish Academy of Sciences (IGPAS) Poland

Instituto de Meteorologia (IMP) Portugal

Universidade de Evora Portugal

Faculdade de Ciências da Universidade de Lisboa Portugal

National Institute for Earth Physics (NIEP) Romania

Geophysical Survey of the Russian Academy of Sciences (GSRAS) Russia

Seismological Survey of Serbia (SSS) Serbia

Earth Science Institute, SAS, Department of Seismology Slovakia

Agencija Republike Slovenije za okolje (ARSO) Slovenia

Institut Cartografic i Geologic de Catalunya (ICGC) Spain

Swedish National Seismic Network (SNSN) Sweden

Schweizerischer Erdbebendienst (ETH) Switzerland

Royal Netherlands Meteorological Institute (KNMI) The Netherlands

Institut National de la Météorologie (INMT) Tunisia

Disaster and Emergency Management Presidency, Earthquake Department (ERD) Turkey

Kandilli Observatory and Earthquake Research Institute (KOERI) Turkey

Main Centre for Special Monitoring (MCSM) Ukraine

Dubai Municipality Seismic Network United Arab Emirates

British Geological Survey (BGS) United Kingdom

National Seismological Observatory Centre (NSOC) Yemen

Members by right

European Seismological Commission (ESC)

Observatories and Research Facilities for EUropean Seismology (ORFEUS)

International Seismological centre (ISC)

U.S. Geological Survey (USGS) United States

Table 1 List of member institutions in January 2023.

Table 2 (continued)

Institute Country/Region
Exchange

tool
Parametric data MT

Institute of Geosciences, Polytechnic University of Tirana (IGEO) Albania Email L P A MT

Centre de Recherche en Astronomie, Astrophysique et Géo-
physique (CRAAG)

Algeria Web L

Instituto Nacional de Prevencion Sismica (INPRES) (NSNA) Argentina Web L

National Survey of Seismic Protection (NSSP) Armenia Email L P A

Geoscience Australia, Canberra, ACT, Australia (AUST) Australia Mail L P A

Geosphere Austria (GBA) Austria Email L P

Republican Seismic Survey Center or Azerbaijan National
Academy of Sciences (RSSC)

Azerbaijan Email L P A

Royal Observatory of Belgium (UCC) Belgium Email L P A

Rede Sismografica Brasileira (RSBR) Brazil Web L P A

National Institute in Geophysics, Geodesy and Geography - BAS
(SOF)

Bulgaria Email L P A

Canadian National Seismic Network (CNSN) BB stations (CN) Canada Web L

Departamento de Geofisica, Universidad de Chile (CSN) Chile Email L

SecciondeSismologia, Univ. deCostaRica, San Jose, CostaRica
(UCR)

Costa Rica Web L

Seismological Survey,University of Zagreb (ZAG) Croatia Email L P

Servicio Sismologico Nacional de Cuba (CENAIS) (SSNC) Cuba Web L

Geological Survey Department (GSD) Cyprus Email L P A

Geophysical Institute of the Academy of Sciences (GFU) Czech Rep. Email L P

Institute of Physics of the Earth (IPEC) Czech Rep. Email L P A
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Table 2 (continued)

Universidad Autonoma de Santo Domingo (UASD) Dominican Rep. Web L

Escuela Politecnica Nacional, Quito, Ecuador (QUI) Ecuador Web L

National Research Institute of Astronomy and Geophysics
(NRIAG)

Egypt Email L P A

Servicio Nacional de Estudios Territoriales (SNET) El Salvador Web L

Laboratoire de Detection et de Geophysique (LDG) France Email L P A

Institut de Physique du Globe de Paris (IPGP) France Email DC

Géoazur (Université Cote d’Azur, IRD, CNRS, Observatoire de la
Cote d’Azur) (OCA)

France Email L P A DC

Réseau National de Surveillance Sismique (ReNaSS) France Web L P A

Seismic Monitoring Centre of Georgia (TIF) Georgia Email L P

Bundesanstalt fur Geowissenschaften und Rohstoffe, German
Regional Seismograph Network (BGR)

Germany Email L P A

GeoForschungsZentrum (GFZ) Germany HMB L P A MT

Landsamt fur Geologie, Rohstoffe und Bergbau (LED) Germany Email L P

National Observatory of Athens, Geodynamic Institute (NOA) Greece Email L P A MT

Aristotle University of Thessaloniki, Department of Geophysics
(THE)

Greece Email L P A

University Of Athens (UOA) Greece Email MT

University of Patras Seismological Laboratory (UPSL) Greece Email MT

Observatoire Volcanologique et Sismologique de Guadeloupe
(OVSG - IPGP) (OVSG)

Guadeloupe Web L P A

URGeo, Geoazur (Universite Cote d’Azur, IRD, CNRS, Observa-
toire de la Cote d’Azur) (AYIT)

Haiti Email L P A

MTA CSFK GGI Kovesligethy Rado Seismological Observatory
(BUD)

Hungary Email L P A

Department of Geophysics, Icelandic Meteorological Office
(IMO)

Iceland Web L

India Meteorological Department, New Delhi, India (NDI) India Web L

Badan Meteorologi, Klimatologi dan Geofisika (BMKG) Indonesia Web L

Institute of Geophysics, University of Tehran (IGUT) Iran Email L P A

International Institute for Earthquake Engineering and Seismol-
ogy (IIEES)

Iran Email L

Irish National Seismic Network (INSN) Ireland Email L P A

Geological Survey of Israel, Seismology Division (GSI) Israel Email L P

Instituto Nazionale di Geofisica e Vulcanologia (INGV) Italy Email L P A MT

Instituto Nazionale di Oceanografia e Geofisica Sperimentale -
OGS (OGS)

Italy Email L P A

Kazakhstan National Data Center (KNDC) Kazakhstan Email L P A

Korean Meteorological Administration (SEO) S. Korea Web L

Kyrgyz Institute of Seismology (KIS) Kyrgyzstan Email L P A

National Center for Geophysical Research (GRAL) Lebanon Email L P A

Malaysian Meteorological Department (MMD) Malaysia HMB L P A

Malta Seismic Network, Seismic Monitoring and Research Unit
(SMRU), University of Malta (MLT)

Malta Email L P A

Observatoire Volcanologique et Sismologique de Martinique
(OVSM - IPGP) (OVSM)

Martinique Web L P

Servicio Sismologico Nacional, Instituto de Geofisica, UNAM
(UNM)

Mexico Web L

Institute of Geophysics and Geology (MOLD) Moldova Email L P A

Montenegro Seismological Observatory (MSO) Montenegro Email L P A

Centre National de la Recherche Scientifique et Technique
(CNRST)

Morocco Email L P

National Seismological Centre, Department of Mines and Geol-
ogy (NSC)

Nepal Web L

Koninklijk Nederlands Meteorologish Instituut (KNMI) Netherlands Web L

Geonet, GNS science (GNS) New Zealand Web L P
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Table 2 (continued)

Instituto Nicaraguense de Estudios Territoriales (INET) Nicaragua Web L

Seismological Observatory (SKO) N. Macedonia Email L P A

University of Bergen (BER) Norway Email L P A

NORSAR Norway Email L P A

Centre Polynésien de Préventions des Tsunamis (CPPT) Pamatai Email MT

Universidad de Panama (IGC) Panama Web L

Instituto Geofisico del Peru (LIM) Peru Web L

Philippine Inst. of Volcanology and Seismology, Quezon City,
Philippines (PIVS)

Philippines Web L

Instituto Portugues do Mar e da Atmosfera (IPMA) Portugal Email L P A

Instituto Portugues do Mar e Atmosfera (PDA) Portugal Email L P A

PuertoRicoSeismicNetwork (PRSN) andPuertoRicoStrongMo-
tion Program (PRSMP), University of Puerto Rico at Mayaguez
(PR)

Puerto Rico PDL L P A

National Institute for Earth Physics (NIEP) Romania Email L P

Geophysical Surveyof theRussianAcademyofSciences (GSRAS) Russia Email L P

Seismological Survey of Serbia (SSS) Serbia Email L P A

Agencija Republike Slovenije za okolje, Seismological Office
(LJU)

Slovenia Email L P

South African Seismological Network (SASN) South Africa Web L

Instituto Cartografic i Geologic de Catalunya (ICGC) Spain Email L P A

Instituto Geografico Nacional (IGN) Spain Email L P A

Swiss Seismological Service (ETHZ) Switzerland Email L P A

Central Weather Bureau (CWB) Taiwan Email L P

Thailand Seismological Bureau (TSB) Thailand Web L

University of the West Indies, St. Augustine, Trinidad (TRN) Trinidad and Tobago Email L

Institut National de Meteorologie (INMT) Tunisia Email L P A

Disaster and Emergency Management Presidency, Earthquake
Department (AFAD)

Turkey Email L P A MT

Kandilli Observatory and Earthquake Research Institute (KOERI) Turkey Email L P MT

Carpathian Seismological Department, Ukraine Academy of Sci-
ence (LVV)

Ukraine Email L P

Ukrainian NDC, Main Center of Special Monitoring (MCSM) Ukraine Email L P A

British Geological Survey (BGS) United Kingdom Email L P A

Alaska Regional Network, University of Alaska-Fairbanks (AK) US PDL L P A

Alaska TsunamiWarning Seismic System,West Coast and Alaska
Tsunami Warning Center (AT)

US PDL L P A

Alaska Volcano Observatory, USGS - Anchorage, University of
Alaska, Geophysical Institute (AV)

US PDL L P A

Southern California Seismic Network, California Institute of
Technology / USGS - Pasadena (SCSN)

US PDL L P A

Hawaiian Volcano Observatory Network, Hawaiian Volcano Ob-
servatory (HV)

US PDL L P A

Montana Regional Seismic Network, Montana Bureau of Mines
and Geology (MB)

US PDL L P A

USGS Northern California Regional Network, USGS-Menlo Park,
California (NC)

US PDL L P A

National Earthquake Information Center, U.S. Geological Survey
(NEIC)

US PDL L P A MT

Cooperative New Madrid Seismic Network, St. Louis University
and University of Memphis (NM)

US PDL L P A

Western Great Basin/Eastern Sierra Nevada, University of
Nevada, Reno (NN)

US PDL L P A

Oklahoma Seismic Network, University of Oklahoma (OK) US PDL L P A

Pacific TsunamiWarning Seismic System, Pacific TsunamiWarn-
ing Center, Ewa Beach, Hawaii (PT)

US PDL L P A
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Table 2 (continued)

Southeastern Appalachian Cooperative Seismic Network, Vir-
ginia Tech, University of Memphis, Tennessee Valley Authority,
and University of North Carolina (SE)

US PDL L P A

Bureau of Economic Geology, The University of Texas at Austin
(BEG UTEXAS) (TX)

US PDL L P A

University of Utah Regional Network, University of Utah Seismo-
graph Stations (UU)

US PDL L P A

PacificNorthwest Regional SeismicNetwork, University ofWash-
ington, Seattle (UW)

US PDL L P A

Global Centroid-Moment-Tensor (GCMT) US Email MT

Table 2 List of data contributors in 2022 for both earthquake parametric data andmoment tensors. Contributions are sent
via email or messaging systems (PDL or HMB). In some cases, they come from scrapping institutions’ websites (Web). Para-
metric data contains at least locations andmagnitude (L). They generally contains picks (P) and amplitudes (A).
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Abstract The slow-spreading Red Sea rift has been the focus of geophysical investigations in the recent
past to study the extension of the oceanic crust, the thickness of the sedimentary cover, and the formation
of transform faults. Despite these efforts, local seismology datasets remain scarce, limiting their potential
contribution to understanding the tectonic evolution of the Red Sea. The Zabargad Fracture Zone, situated
in the Northern Red Sea, offsets the rift axis to the East, making it an important tectonic element to better
understand the Red Sea rift’s formation. To fill the gap of missing seismological observations, we deployed
the first passive seismic network in the Red Sea, specifically within the Zabargad Fracture Zone. This network
comprised a total of 14 ocean-bottom seismometers (OBS) and four portable onshore broadband seismic sta-
tions, positioned on islands and along the Saudi Arabian coast. Our noise analyses revealed that short-period
noise (less than 0.2 s) in this region is more pronounced than in many other areas sampled by OBSs, possibly
due to intense ship traffic. Within themicroseismic noise range, we identified strong contributions from local
atmospheric and oceanic sources of noise, which in combination with site effects generated a second peak
around 0.2-1 s. At long periods, waveformsmay be used for regional and global studies of earthquakes larger
than magnitude Mw ≈ 6.7, and potentially smaller events for an OBS sub-dataset. Finally, we detected a
local earthquake with a magnitude Mw ≈ 3.4, which could have a volcanic or hydrothermal origin.

1 Introduction
The Red Sea is a slow to ultra-slow spreading ridge with
an age of less than 14million years (e.g., Augustin et al.,
2021; Delaunay et al., 2023), formed after the break-up
of Arabia from Nubia. While many tectonic models of
theRed Sea have limited the extent of oceanic spreading
to the southern and central Red Sea (e.g., Coleman and
McGuire, 1988; Almalki et al., 2015), increasing amount
of evidence is pointing to mid-ocean spreading along
its entire length (Augustin et al., 2021; Delaunay et al.,
2023). An offset of up to ∼100 km marks the transition
between the northern and central Red Sea. This is usu-
ally referred to as the Zabargad Fracture Zone (ZFZ) and
extends from Zabargad Island in the South to the south-
ern limit Mabahiss Deep in the North (Figure 1). While
there is agreement on the presence of the rift axis in the
Mabahiss Deep and Mabahiss Mons (an active volcano
located north of the deep, see Figure 1, e.g., Augustin
et al., 2021; Delaunay et al., 2023; Fittipaldi et al., 2024),
the limits and geological structures of the ZFZ are un-
clear, mostly because the northern and central Red Sea

∗Corresponding author: laura.parisi@kaust.edu.sa

seafloor is covered by thick sediments (mainly evapor-
ites and Plio-Pleistocene sediments) with the basement
exposed at only a few locations. Determining the struc-
ture of the ZFZ as one or multiple transform faults, or
even as a set of non-transform offsets (NTOs), has im-
portant implications for the maximum earthquake size
in the ZFZ and thus for seismic and tsunami hazard as-
sessments of coastal communities in this part of theRed
Sea.
Accurate earthquake locations are critical for resolv-

ing the structure of the ZFZ. However, the existing
earthquake catalog from the Saudi Geological Survey
exhibits two diffuse clusters of seismicity that are more
than 50 km in diameter (Figure 1), with event locations
far from being sufficient to image the ZFZ fault system
in detail. Moreover, not much is known about large
earthquakes in the ZFZ. Only four earthquakes of mag-
nitude larger than 4.5 were instrumentally recorded in
the area before the Saudi and Egyptian seismic net-
works were established and since then only one addi-
tional earthquake was large enough (Mw 4.9 in 2015)
for focal mechanism determination, showing normal
faulting (Figure 1). Strike-slip tectonic movements are
also expected in the ZFZ and have been suggested from
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Figure 1 Map of the OBS deployment in the northern Red Sea. The earthquake locations are from the Saudi Geological
Survey for 2011-2016, locations of magnitude larger than 4.5 events from IRIS (www.iris.edu, last accessed 5 April 2023), and
the focal mechanism of the 12 January 2015, earthquake from the CMT catalog (www.globalcmt.org, last accessed 5 April
2023). Bathymetric data are from GEBCO (www.gebco.net, last accessed 5 April 2023). ZFZ: Zabargad Fracture Zone. DSF:
Dead Sea Fault. Dashed lines in the inset separate the northern, central, and southern Red Sea.

tectonic mapping on Zabargad island (Marshak et al.,
1992). Furthermore, historical catalogs (El-Isa, 2015;
Rehman et al., 2017), while limited, highlight the seis-
mogenic potential of the ZFZ by including reports on
two earthquakes of magnitude that could have been as
large as Mw 6. Moderate-to-large earthquakes within
the ZFZ would threaten neighboring coastal communi-
ties on both sides of the Red Sea (Figure 1), in particu-
lar on the more populated Saudi coast, e.g., the city of
Yanbu with its large petrochemical facilities, the town
of Umm Lujj, and Red Sea Global, a major tourist des-
tination under development mostly within the Al Wajh
lagoon/platform (Figure 1). The threat may come from
the shaking of the weakly consolidated terrains east of
the Al-Wajh lagoon and from tsunami waves that could
hit the westernmost islands of the same lagoon.

To improve knowledge and understanding of the
structure of the ZFZ, we installed the first network of
Ocean Bottom Seismometers (OBS) in the Red Sea. We
deployed 14 OBSs and four land stations that cover the
latitude range 23.5o-25.5oN (see Figure 1) to establish

the temporary ZAFRAN seismic network surrounding
the ZFZ to collect broadband seismic data for approxi-
mately one year. The primary objective of the deploy-
ment is to detect and locate earthquakes to map active
faults within the ZFZ.We also plan to construct seismic
velocity models of the crust and uppermantle structure
to estimate the extent of the oceanic crust and the thick-
ness of the evaporite cover. We will achieve this by uti-
lizing body waves from local and teleseismic events, as
well as ambient noise cross-correlations. The results
should provide valuable insights into the seismic poten-
tial of the ZFZ and, in the broader context, its role in the
geological evolution of the Red Sea. Furthermore, the
OBS datamay help in identifying and characterizing po-
tential active volcanic and hydrothermal sources.

While OBSs enable the collection of data in previ-
ously unexplored regions, interpreting and removing
seismic noise recorded by OBSs is more challenging
compared to noise recorded inland. This complexity
arises because sensors deployed inland benefit from in-
sulation against temperature variations, air currents,
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and wildlife, due to installations in vaults, direct instru-
ment burial, and other protective measures. In con-
trast, OBSs are often placed directly on the seafloor
without specific protection. The exposure of OBSs to
the marine elements may introduce noise in the same
frequency band as signals used in seismological inves-
tigations (ranging from 40 Hz to 100 s and beyond).

Both OBSs and land seismic stations record the am-
bient seismic noise that occurs in different frequency
bands, corresponding to different noise sources. Seis-
mic noise with wave periods exceeding 1 second gen-
erally results from the intricate interplay between the
atmosphere, the ocean, and the Earth. The microseis-
mic noise range, commonly defined from 2 to 4 seconds
up to 20 seconds (e.g., Stutzmann et al., 2000; Gualtieri
et al., 2013), encompasses the secondary microseismic
peak, often observed around 7 seconds, and sometimes
observed split with an additional peak around 1-2 s
(e.g., Parisi et al., 2020). Long-period ambient noise
(periods exceeding 10-20 seconds), which typically in-
cludes the primary microseismic peak occurring be-
tween 10 and 20 seconds, is generated through the in-
teraction of oceanwaveswith shorelines (e.g., Ardhuin,
2018). Periods exceeding 30 seconds are frequently in-
fluenced by infragravity waves originating in coastal re-
gions, capable of propagating back to the open ocean
(Ardhuin et al., 2014). Detecting and mitigating this
noise from OBS data usually involves analyzing the co-
herence between pressure and vertical seismic signals
(e.g., Janiszewski et al., 2019). Additionally, sea bottom
currents, circulating the OBS elements, can introduce
noise within this period range, predominantly affecting
the horizontal components. In cases of imperfect sen-
sor leveling, this noise may impact the vertical compo-
nent as well (Crawford andWebb, 2000). The detection
and removal of this noise can be achieved by examin-
ing the coherence, if present, between the vertical and
horizontal components (Crawford andWebb, 2000).

The quality of short-period signals (T<1 s), on the
other hand, is less dependent on the sensor perfor-
mance, but it is crucial for the investigation of local
earthquakes and volcanic and hydrothermal activities.
Nevertheless, OBS recordings have frequently reported
additional sources of seismic signals at short periods,
including those generated by ships and marine mam-
mals (e.g., Wilcock, 2012; Trabattoni et al., 2023). More-
over, signals within these short periods may be suscep-
tible to corruption by noise, often generated by sea bot-
tom currents interfering with protruding elements of
the OBSs, such as the antenna, beacon, and flags (e.g.,
Stähler et al., 2018; Essing et al., 2021a).

In this article, we present the deployment of the OBS
network in the ZFZ, show examples of the collected
data, and highlight notable signals recorded. Further-
more, we provide recommendations for utilizing the
dataset, drawing from our data quality assessment and
analysis. Lastly, our contribution extends to enhancing
the comprehension of the splitting of the secondarymi-
croseism peak in the microseismic noise band.

2 The ZAFRAN seismic network
We operated the ZAFRAN seismic network from
September 2021 to January 2023 with most of the
instruments collecting data from November 2021 to
November 2022. The network included 14 broadband
OBSs and four onshore portable seismic stations,
covering the northern Red Sea in the latitude range
24.0o-25.8oN and from longitude of 36.5oE to the
western coast of Saudi Arabia (Figure 1). The OBS inter-
station distances ranged from 17 to 42 km whereas
the onshore stations were more widely spaced (33-110
km), because they were primarily installed to cross-
validate the OBSs waveforms. The station coordinate
information can be found in Suppl. Table 1.

2.1 Offshore deployment
The offshore part of the network consisted of 12 Lobster
OBSs (stations codes fromOBS01 toOBS12) from theDE-
PAS pool (Alfred-Wegener-Institut Helmholtz-Zentrum
für Polar-und Meeresforschung et al., 2017) (Figure 2a
and 3), deployed at water depths between 740 m and
1700 m (depths are listed in Suppl. Table 1) and two
OBSs designed and deployed by Fugro (station codes
NORTH and SOUTH; Figure 2b) at depths of 960 m and
870 m, respectively. The DEPAS OBSs have been used in
manyOBS deployments around theworld (e.g., Geissler
et al., 2010; Stähler et al., 2016; Blanck et al., 2020),
while the Fugro OBS setup is experimental and has not
been tested before. Each DEPAS OBS consisted of a
1.65 x 1.30 m frame equipped with a Güralp CMG-40T-
OBS sensor and a SEND MCS data logger hosted in tita-
nium pressure-resistant tubes. The sensor was placed
between two floating units, mounted to a metallic plate
that sits on an anchor (Figure 3a). To facilitate the
import of the OBSs into Saudi Arabia, our setup did
not include a hydrophone, in contrast to many OBS de-
ployments. Additional equipment to allow and facili-
tate the instrument recovery included a floating unit,
acoustic releaser, flashlight, radio beacon, flag, and
buoy (Alfred-Wegener-Institut Helmholtz-Zentrum für
Polar-und Meeresforschung et al., 2017), which is at-
tached to the OBSwith about 10m long and 18mm thick
polypropylene rope (Figure 3b). Given that the rope
and buoy have been found to be responsible for high-
frequency noise (e.g., Stähler et al., 2018), we deployed
six DEPASOBSs bywrapping the rope and the buoywith
a fabric fixed to the releaser and the other sixwith a free
rope and buoy to study the difference in the noise prop-
erties. The metallic anchor, allowing each OBS to sink
to the seafloor, was locked to the frame through the re-
leaser. TheDEPASOBSswere deployed by free-fall from
the research vessels R/V Thuwal (KAUST, Thuwal) and
R/VAl Azizi (King Abdulaziz University, Jeddah). Due to
the limited deck space on these vessels, the deployment
was conducted during two short trips from the KAUST
harbor in November 2021.
To recover the DEPAS OBSs, an acoustic release com-

mand is sent through the water column to the releaser.
The releaser then unlocks the anchor from the OBS,
which becomes buoyant enough to float to the sea sur-
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Figure 2 Photos of the seismic equipment used in the ZAFRAN network. a) A DEPASOBS on the R/V Thuwal. b) Fugromulti-
sensor lander with seismometer on the sea bottom. c) Installation of the island station BREEM (see Figure 1; setup identical
to onshore stations). The grey box contains the data logger and the batteries. The solar panel and GNSS antenna are placed
on the box. The seismometer is buried (not visible) and connected to the logger by the black cable. d) Example (in KHUF) of
seismometer installation before filling the hole with sorted sand.

Figure 3 Schematic representation of the DEPAS OBS
(Lobster)from a) above and b) from the side. Both sketches
are not in scale. A head buoy is attached to the OBS with a
free rope; half of the DEPAS OBS had the rope free to strum
like in b) and theother half had the rope fixedon the anchor.

face. While 11 of the 12 DEPAS OBSs were successfully
recovered during two trips in November 2022, commu-
nication with one of the OBSs (OBS04) was not success-
ful, such that an additional trip was required in Jan-
uary 2023 when an automatic release had been sched-
uled. On 16 January 2023, the OBS04 was recovered
without showing any damage, so the reason for the ear-
lier unsuccessful recovery remains unknown. Skewval-
ues (difference between the time of the data logger and
the instantaneousGNSS time)weremeasured for all DE-
PAS OBSs, except for OBS04, and are available in Suppl.
Table 1.
Partially overlapping in time with our DEPAS OBS de-

ployment, Fugro conducted an experimental deploy-
ment of two multi-sensor deep landers that include
OBSs (Figure 2b). The Fugro OBSs were deployed in
September 2021 from S/V Kobi Ruegg and visited in
February and July 2022 with OSS Handin Tide. Dur-
ing the visits, the landers were fully recovered and re-
deployed after data collection and instrument mainte-
nance. The OBS setup and deployment protocol for
the Fugro OBSs were different from the DEPAS OBSs.
After the landers reached the seafloor, an ROV was
used to place a Nanometric Trillium Compact OBS 120s
seismometer at the seafloor. It was enclosed on a
light frame with feet to couple with the seafloor sedi-

ments. The seismometer was in an aluminum casing
that weighs 2.9 kg in water. The data-logger Nanomet-
ric Pegasus OBS and batteries were on the lander and
connected to the sensor with a cable.
During the visit in February 2022, the SOUTHdata log-

gerwas found to have aminor leakage, andno datawere
recovered due to a damaged cable. The OBS from the
lander NORTH was recovered and deployed on the lan-
der SOUTH. Data from SOUTH were then finally recov-
ered in July 2022. The skew values are not available.
Skew values for the Lobster OBSs range from 0.01 to

1.3 s, with a median of 0.37 s (Suppl. Table 1). The high-
est skew value was found for OBS08 that, together with
the issues described in section 2.3, may indicate a pos-
sible general malfunction of the instrument. When ex-
cluding OBS08, the median (mean) skew value is 0.33
s (0.34 s). Although the skew values for OBS04 and
NORTH are missing, these can be recovered using am-
bient noise cross-correlations between onshore and off-
shore stations (e.g., Naranjo et al., 2024).
We determined the orientation of the horizon-

tal components of the off-shore seismometers using
two distinct, data-type-based methods implemented
in the open-source Python package (OrientPy; https:
//github.com/nfsi-canada/OrientPy). The first method is
based on minimizing the P- and PP-wave energy on
the transverse component (Braunmiller et al., 2020)
while the second method is based on the arrival angle
of minor- and major-arc intermediate-period surface-
waves of teleseismic earthquakes by using modern
global dispersion maps (Doran and Laske, 2017). For
each station, we select the orientation according to the
method with the smaller uncertainty (Suppl. Table 1).
The method based on the polarization of surface waves
yields smaller uncertainties for almost all the stations,
except for OBS08 and OBS10. For benchmark and com-
pleteness, we also calculate the orientation of the on-
shore stations that resulted to be always lower than 10o.
The final median of uncertainties is 12.2o.

2.2 Onshore deployment
We complemented the OBS network by installing four
onshore stations. Two of them were located on the
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Figure 4 Data availability of the ZAFRAN dataset from September 2021 to January 2023. Green corresponds to waveforms
available in three components. Yellow corresponds to data needing further preprocessing before being used. Red represents
station or component failure. Note that there are three lines for each station, for the vertical (Z) and two horizontal (1 and 2)
components.

small uninhabited reef islands Quman (3 km wide) and
Breem (6 km wide) of the Al Wajh platform (Figure 1
and 2c). We refer to these stations as the “island sta-
tions”. Station QUMAN is located within the AlWajh la-
goon whereas BREEM is located on the edge of the plat-
form,making it more exposed to open sea environmen-
tal conditions.
The other two stationswere installed onshore at a dis-

tance of 15 km (KHUF) and 25 km (LAVA) from the coast
(Figure 1). Selecting locations closer to the coast was
not possible because of coastguard permit limitations
and lack of solid bedrock. We refer to KHUF and LAVA
as the “land stations” and to both the island and land
stations as the “onshore stations”.
The island stations were equipped with Nanometrics

TrilliumCompact Horizon sensors and the two land sta-
tions with Nanometrics Trillium Compact posthole sen-
sors. Both types of sensors have a flat response of up
to 120 s and can be used in direct burial installations.
The sensors were buried within a depth of 50 cm in a
cylindrical hole that was 2 cm larger in diameter than
the sensor (Figure 2d). The bottom of the hole was filled
with a thin layer of sorted fine sand to easily level the
sensor. The little space remaining between the hole and
the sensor was filled with the same sand providing cou-
pling and thermal insulation. The two island sensors
were deployedwithin porous, but hard, coral rocks, and
the two land sensors were installed within the Precam-
brian bedrock.
The onshore stations were equipped with Nanomet-

rics Centaur dataloggers powered by lithium batteries
charged by a 30 x 40 cm solar panel (Figure 2c). Sand
accumulation on solar panels is a well-known issue, es-
pecially in this part of the world, and since a definitive
solution has not been found yet, data recording has suf-

fered a few gaps because of power issues. Stations were
visited for maintenance, and data were collected every
3-6 months.

2.3 The collected dataset

The ZAFRAN dataset includes about 12 months of data
from the DEPAS OBSs, 5 months from the Fugro OBSs,
14months from the island stations, and 10months from
the land stations (Figure 4). More specifically, we col-
lected data for 358 overlapping days with the 12 DEPAS
OBS. OBS04 recorded 57 days more than the other DE-
PAS OBSs. While all the instruments were equipped
with 3-component sensors, the quality of the horizontal
component 1 of OBS01 and both horizontal components
of OBS08 is poor and cannot be used for seismological
investigations.
In addition, the vertical component ofOBS08 canonly

be used for half of the recording days (this issue is dis-
cussed further in section 3.1). Even considering these
data losses, the recovery rate for the DEPASOBSs is over
90%.
The data of OBS NORTH complements the ZAFRAN

dataset with 140 days that overlap for 73 days with the
DEPAS dataset. Data from OBS SOUTH span 144 days
and completely overlaps with the DEPAS dataset. Con-
sidering the initial plan (see section 2.1), the FugroOBSs
had a recovery rate of 50%. Furthermore, the two is-
land stations recorded about 330 days of data, each with
an average recovery rate of 96%, and fully overlapping
with the DEPAS dataset. Finally, the two land stations
provided 270 (KHUF) and 140 days (LAVA) of data at a
recovery rate of 95% (KHUF) and 49% (LAVA).
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Figure 5 Examples of Probabilistic Power Spectral Densities (PPSD). a) PPSD of the Z component of the station OBS10 cal-
culated for all available data. b) Same as for a) but for the island station BREEM. c) As for a) but for the land station KHUF.
Dark gray curves represent the New High Noise Level and the New Low Noise levels (McNamara and Buland, 2004). Black
lines correspond to the 25th, 50th (noise level), 75th and 100th. Light gray vertical lines represent the boundaries separating
ranges of short, medium, and long periods (T).

3 Noise levels
Noise levels serve as valuable indicators for assessing
station performance across different components and
for investigating the sources of ambient seismic noise
recorded at specific stations. While it is not always
straightforward to distinguish the impact of a station’s
low performance from that of a strong noise source, we
discuss the characteristics of noise levels that are pri-
marily associated with instrument type and installation
in Section 3.1, and we conduct a preliminary analysis of
the noise sources (Section 3.2) to distinguish them from
potential issues related to station performances.
To accomplish this, we calculate the Probabilistic

Power Spectral Densities (PPSDMcNamara and Buland,
2004) as implemented in ObsPy (Beyreuther et al., 2010)
for all available data using timewindows as small as 450
s and an overlap of 50 %. Examples of PPSD for an OBS,
an island, and a land station are shown in Figure 5. We
refer to noise level as themedian of the PPSD for a given
time window (see Figure 5). If not specified, we refer to
the entire deployment period of a given instrument.
In our analyses, we divide the overall period range

into three segments: short-period (T < 0.2 s), medium-
period (0.2 ≤ T ≤ 10 s), and long-period (T > 10 s). We
select the boundaries of 0.2 and 10 seconds due to their
alignment with the two predominant notches observed
in the PPSD of the ZAFRAN network (see gray vertical
lines in the plots of Figure 5). All noise levels are shown
in Figure 6 where stations are grouped in classes, de-
pending on the shape of the noise level in the medium-
period range. These classes are further discussed in
Section 3.2.2.

3.1 Station performances
The two onshore stations, KHUF and LAVA, exhibit the
best data quality within the ZAFRAN network, char-
acterized by consistently low noise levels (Figure 6a-
c). Their exceptional performance can be attributed
to their good subsurface coupling, effective insulation,
and remote locations (far from anthropogenic noise

sources). However, LAVA displays elevated long-period
noise across all components compared to KHUF. This
discrepancy may be attributed to thermal insulation
limitations, which are also responsible for sensor fail-
ures due to high temperatures (see Section 2.2).
The performance of the two island stations, BREEM

andQUMAN (Figures 6d-f) is similar to the two land sta-
tions because they share the same instruments and style
of installation. However, QUMAN exhibits an unusual
peak at approximately 4-6 Hz. A visual inspection of
waveforms and spectrograms reveals consistent, high-
amplitude noise between 10 Hz and 0.8 s, most likely
due to construction activities at Red Sea Global. This
aspect needs to be considered when using the data for
local seismicity studies.
All ZAFRAN stations exhibit a noise level notch be-

tween 9 and 11 s (Figure 6). Beyond this period, noise
levels consistently increase for nearly all DEPASOBSs in
all components. In contrast, Fugro OBSs maintain low
long-period noise in the vertical component, compara-
ble to onshore stations. However, the horizontal com-
ponents of Fugro OBSs exhibit high noise levels, simi-
lar to DEPAS OBSs. These results are in agreement with
Stähler et al. (2018) who compared the noise recorded
by seismometers deployed inland and offshore to test
the Lobster OBSs of the DEPAS pool managed by the
Alfred-Wegener Institute. The authors analyzed the
noise recorded by the Güralp CMG-40T seismic sensor
in vault conditions and the Güralp CMG-40T-OBS at sea.
This CMG-40T-OBS is the same sensor but modified to
be included in theOBS. They found that the self-noise of
the CMG-40T-OBS is higher than the noise produced by
the correspondingoriginalmodel atwaveperiods larger
than 10 s. Their tests also demonstrated that the DE-
PAS OBSs perform better at longer periods if a Nano-
metrics Trillium compact seismometer substitutes the
CMG-40T-OBS.
Fugro outperforms DEPAS OBSs in the short-period

range, likely due to the fewer additional elements on the
OBSs that could resonate with marine currents, as dis-
cussed in previous studies (Stähler et al., 2016; Essing
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Figure 6 Noise levels (median of PPSD) for the ZAFRAN dataset grouped by similarity in themedium-period range. a) Noise
levels for the land stations and twoOBS that have unique noise levels for stations of class A and vertical components. b) As in
a) but for 1/N components. c) As in A but for Z/E components. d), e) and f) As in a), b) and c) but for the stations in class A. g),
h) and i) As in a), b) and c) but for the stations in class B. j), k) and l) As in a), b) and c) but for the stations in class C. m), n) and
o) As in a), b) and c) but for the stations in class D. Colored dotted, solid, and dashed lines represent the noise levels of the
Fugro OBSs, DEPAS OBSs, and onshore stations, respectively. Noise levels of LAVA do not include days of sensor failure. Gray
lines represent the New LowNoiseModel and NewHigh NoiseModel, respectively (Peterson, 1993). Black lines represent the
self-noise of the CMG-40T-OBS (dot-dashed, Stähler et al., 2018) and the Trillium compact (dashed, from themanufacturer).
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et al., 2021a; Corela et al., 2022).
However, as already observed by Janiszewski et al.

(2022) and valid in our deployment, it is not trivial to
separate the effects due to the type of seismometers
from the overall OBS setup in the noise level. This also
applies to our deployment of two OBS setups with two
different sensor types.
An overview of signals recorded by the ZAFRAN net-

work, given in terms of spectrograms calculated from
the PPSD (Figure 7), offers further insights into the data
quality. The most prominent signal across all stations
is themicroseisms in themedium-period range (see ex-
ample in the red “MS” box of Figure 7). Additionally,
teleseismic events are visible at several stations in the
mediumand long-period ranges (see an examplewithin
the red box “TL” in March 2022 in Figure 7). Further-
more, local earthquakes are visible in the short-period
range (see an example red box “LOC” on 30 June 2022 in
Figure 7). These distinct and clear signals serve as evi-
dence of the high-quality nature of the ZAFRANdataset.
The analysis of noise levels and 1-year spectrograms

also highlight sensor failures. The noise levels of the
horizontal components 1 of OBS01 and 1 and 2 of OBS08
show that these seismometers’ components most of the
time did not record properly (Figure 6b and 6e-f). The
OBS08 spectrogram (Figure 7) illustrates that the sensor
malfunctioned also in the vertical component for ap-
proximately 40% of the installation duration. Similarly,
the sensor at station LAVA experienced a failure from
mid-April to mid-September (Figure 7), likely due to el-
evated air temperatures (see Section 2.2). Lastly, when
examining spectrograms for onshore stations (LAVA,
KHUF, BREEM, andQUMAN in Figure 7), we observe in-
termittent data gaps, whichwe suspect to be due to sand
accumulation on the solar panels. The overall usability
of the dataset is summarized in Figure 4.

3.2 Environmental and geological noise
sources

Noise levels can also provide insights into environmen-
tal (ocean and atmosphere) and geological (subsurface)
factors. In this section, we present a preliminary analy-
sis of potential noise sources in the short, medium, and
long-period ranges that can be used as a reference for
future studies based on the ZAFRAN dataset.

3.2.1 Short-period ranges
Sources of short-period (≤ 0.2 s or ≥ 0.5 Hz) noise can
be geological (e.g., local earthquakes, volcanic tremors,
etc.) or due to the interaction of sea-bottom currents
with the structural components of theOBS (Corela et al.,
2022). In addition, noise due to passing ships and ma-
rine mammals must be considered.
In general, the short-period noise levels of the

ZAFRAN deployment are overall high when compared
to PPSDs published from previous experiments in the
oceans and lakes (e.g., Stähler et al., 2016, 2018; Hilmo
andWilcock, 2020; Carchedi et al., 2022; Kimet al., 2023;
Zhang et al., 2023). For example, ZAFRAN noise lev-
els from the OBSs on the vertical component are in the
range between -125 and -110 dB (Figure 6). Most of the

noise levels recorded in the Indian Ocean by using the
DEPAS OBS (Stähler et al., 2016) and in the South At-
lantic (Zhang et al., 2023) are about -130 dB in the same
component and frequency. Off the coast of the Pacific
Northwest, the noise is between -160 and -150 dB (Hilmo
and Wilcock, 2020). The same range of values is found
inwestern Pacific (Kim et al., 2023). In theMalawi Lake,
values are about -150 dB (Carchedi et al., 2022). Instead,
our short-period noise levels are similar to the noise
recorded in shallowwater (22m) of the Baltic Sea (Stäh-
ler et al., 2018).
To better understand the origin of the high short-

period noise and to identify potential geographical
noise patterns within the ZFZ, we plot the noise lev-
els averaged within the short-period range for the ver-
tical and the average of the two horizontal components
(Figure 8a and 8e). The geographical noise distribu-
tion in the short-period range defines different domains
and subdomains. The southern and central offshore do-
mains (labeled “SO” and “CO” in Figures 8a and 8e) re-
veal higher short-period noise than the northern off-
shore (“NO”) domain for both vertical and horizontal
components (Figures 8a and 8e). The limit between
these two domains corresponds to the Mabahiss deep
(see Figure 1) and the commonly used limit between the
central and thenorthernRed Sea. Finally, for theCOdo-
main, wenotice an increase in noise from the island sta-
tions offshore for the vertical component. Global maps
depicting ship route density (from marinetraffic.com,
last access Dec 13, 2023) reveal that the Red Sea is
among the most traversed routes, with common ship-
ping routes situated closer to our deployment south of
Mabahiss and graduallymoving farther north. This fact
suggests that ship traffic may contribute to the elevated
noise levels and its variation towards the north and off-
shore.
Another interesting feature of the short-period noise

at almost all OBS is a peak at around 0.1 s (10 Hz, Figure
6). Exceptions are OBS05, OBS08 and OBS12. This could
be due to a poor coupling between the seismometer
and the anchor or between the anchor and the seafloor.
However, the reasons for thepresenceor absenceof this
peak remain unclear.
Next, we analyze the correlation between noise lev-

els and water depth for the vertical components and for
the average of the two horizontal components (ρV

depth

and ρH
depth, respectively; see Figures 8d and 8h). We

group the stations by OBS setup (Fugro and/or DEPAS
and loose/tight rope) and we consider only correlation
coefficients larger than 0.5. For the short-period noise
levels, we find a positive correlation for the horizon-
tal components of the DEPAS OBSs with loose rope
(ρH

depth=0.73) suggesting that the rope may act as a res-
onant noise-generating element, possibly due to sea-
bottom currents. However, given the limited number of
stations, this correlation of noise with water depth may
not be robust.
Regarding temporal variations of short-period noise

levels, all stations exhibit similar patterns across all
components. For most stations, the noise remains sta-
ble or gradually decreases during the deployment, typi-
cally not exceeding a 10 dB change (Figure 9), probably
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Figure 7 Deployment overview in terms of spectrograms, showing the temporal variations of the PPSD for the vertical com-
ponent of each station. The vertical scale of each spectrogram is as in the bottom one. Stations are ordered from South (bot-
tom) toNorth (top).TL: example of teleseismic earthquake. LOC: example of a local earthquake. MS: example ofmicroseismic
noise.
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Figure 8 Spatial variations of noise levels. a) Average noise levels for the vertical components at period T < 2 s. NO:
northern offshore; CO: central offshore; SO: southern offshore: IS: island/lagoon; LA: land. OBS markers are scaled by water
depth. b) and c) as for a) but for periods 0.2 - 10 s and≥10 s, respectively. d) Correlation coefficients between the noise levels
on the vertical components andwater depth. e), f) and g) as for a), b) and c), respectively, but for the horizontal components.
g) As for d) but for the horizontal components.

due to the settling of the instruments on the seafloor be-
coming more stable. One exception is QUMAN, where
short-period noise increases during deployment, likely
due to the anthropogenic noise (see section 3.1). An-
other exception is NORTH, which shows a sharp noise
increase of approximately 10 dB fromDecember 2021 to
January 2022. Given that NORTH is located onMabahiss
Mons, whose volcanic activity is unknown, it is chal-
lenging to determinewhether this increase results from
changes in volcanic activity, instrument issues, or an-
other unknown phenomenon.

3.2.2 Medium-period range

The secondary microseismic peak is visible on all
ZAFRAN stations typically between 1 and 4 s (0.25 - 1
Hz). The island stations and most OBSs also exhibit a
second peak at periods between 0.2 and 1 s (1 and 5
Hz, Figure 6). However, this peak is not visible at the
land stations (see comparison in Figure 5) and at OBS04,
OBS05, and OBS12 (Figure 6m-o). To better understand
these differences, we visually classify stations based on
the shape of their noise level patterns in the medium-
period range, primarily related to the presence or ab-
sence of the second peak and the degree of overlap be-
tween the two peaks.
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Figure 9 Temporal (monthly) variations of noise levels. Noise levels of the vertical component of all ZAFRAN stations are
calculated inmonthly timewindows. Gray lines represent the New LowNoiseModel and NewHigh NoiseModel, respectively
(Peterson, 1993).

Class A includes stations with two well-separated
peaks, such as the island stations QUMAN and BREEM,
the Fugro OBS SOUTH, and DEPAS OBS OBS07 and
OBS08 (Figure 6d-f). Stations with slightly separated
peaks, like OBS03 and OBS09, fall into class B (Figure
6g-i). Class C encompasses stations with noise levels
displaying a single large peak rather than two separate
peaks (Figure 6j-l), including NORTH, OBS02, OBS06,
and OBS10. OBS04, OBS05, and OBS12, which lack a vis-
ible second peak, are classified as class D. OBS01 and
OBS11 did not fit into any of the predefined classes (Fig-
ure 6a-c). Notably, we could not identify any correla-
tions between classes and water depth, geographical lo-
cation, or instrument type/setup.

To investigate potential correlations between the seis-
mic noise and oceanographic and meteorological phe-
nomena, we use two ERA5 datasets from ECMWF (Eu-
ropean Centre for Medium-Range Weather Forecasts,
Hersbach et al., 2023, last access 29 August 2023). These
ERA5 datasets are reanalyses, consisting of hourly time
series and combining models with observational data.
Specifically, we examined the 10-meter vertical wind
component (10v) with a spatial resolution of 0.25o, rep-
resenting northward wind at a height of 10 meters, and
the significantwave height (swh), which combineswind
waves and swell, also at a resolution of 0.25o. We use the
Pearson coefficient to estimate the level of correlation
between the time series of the noise, hourly resampled,
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and the time series of 10v and swh.
In our analysis, we use two weeks of data (1-14 Jan-

uary 2023 or 1-14 April 2023, depending on the avail-
ability) from the DEPAS OBS12, the Fugro OBS NORTH,
the two island stations (BREEM and QUMAN), and the
land station KHUF andwe compare themwith 10-meter
vertical wind component (10v) and the significant wave
height (swh, only used for OBSs data analysis) for the
same time windows. Figure 10a shows an example
of time-series comparisons for the noise levels of the
OBS12 at 0.7 s, 10v and swh at the same location. After
calculating the Pearson coefficients for the two param-
eters (ρ10v and ρswh) for the full period range, we ob-
serve that both curves ρ10v and ρswh exceed 0.75 in the
medium-period range (Figure 10b-c) and are low out-
side the medium-period range. Also, while the max-
imum correlation is higher for swh, both correlation
curves exhibit a double peak. For both OBSs, the cor-
relation with swh peaked at 1 and 3 s, while the correla-
tion with 10v peaked at 0.5 and 2 s. The periods of the
two peaks in the correlation curves align with the peri-
ods of the two peaks of the noise levels in the medium-
period range observed in most of the ZAFRAN stations.
Interestingly, it is worth noting that even though OBS12
belongs to class D (no second peak), ρ10v and ρswh still
exhibit the double peak. For the island stations, ρ10v is
slightly lower than that for the OBS. Although the two
peaks in the correlation curve are less pronounced, the
overall curve shape is similar (Figure 10d-e). For the
land station, ρ10v is less than 0.25 but two peaks and the
overall shape of the curve are preserved (Figure 10f).
Time-series environmental correlations between

noise levels and wind speeds (e.g., Bromirski et al.,
2005; Hilmo and Wilcock, 2020) and significant wave
height (Zhang et al., 2023; Kim et al., 2023) were already
present in literature. Our analysis adds insight on the
atmosphere-ocean-Earth interaction clearly showing
the frequency domain of influence on the medium-
period range noise of these two environmental factors,
that for the Red Sea is between 0.2 and 10 s.
Maps in Figures 8b and 8f show small noise variations

within the medium-period range with some increase of
the noise noticeable going from land stations (LA) to the
inner lagoon (easternmost station in IS) to the external
lagoon (westernmost station in IS) to offshore.
Regarding the correlation between the noise levels

and water depth at the medium-period range, ρdepth

is larger than 0.5 for all groups and components con-
sidered, except for the DEPAS OBSs with a loose rope.
Considering the correlation found between the noise
level and the 10v and swh, it is surprising that the noise
may increase with water depth. As for the short-period
range, these correlations may not be robust enough.
The monthly noise variations at medium-period

range across the components are similar for most of
the stations, with differences of less than 15 dB between
the noisiest and quietest months (Figure 9). During the
summer months of the northern hemisphere, typically
May, June, and July, we observe a decrease in noise lev-
els (Figure 9). OBS01, OBS02, and OBS06 stand out be-
cause noise reduction occurs primarily in July. Interest-
ingly, while the amplitudes vary in time, the presence or

absence of the double peak does not (no change of class
in time).

3.2.3 Long-period range

To understand the contribution of the sea bottom cur-
rents and tilt on the long-period noise, we use the coher-
ence between the vertical and the two horizontal com-
ponents calculated by using a modified version of the
open-source OBS tools code (Janiszewski et al., 2019)
that implements the method of Crawford and Webb
(2000). Specifically, we calculate daily coherence as a
function of the periods for each OBS for the whole du-
ration of the deployment and consider the median co-
herence (analogously to the noise levels) between the
vertical component of each station and the two hor-
izontal components. Finally, we calculate the mean
value for periods > 10 s. We observe a very low co-
herence for both DEPAS OBS (average between stations
and component is 0.07) and Fugro OBSs (average is 0.1).
While the low coherence agrees with the low noise lev-
els in the vertical components of Fugro OBSs, the high
noise in their horizontal components likely results from
sea bottom currents. These instruments can automati-
cally level, regardless of initial tilt, preventing horizon-
tal noise from affecting the vertical component. Con-
versely, the high noise levels in both the vertical and
horizontal components of DEPAS OBSs, coupled with
low coherence, are probably due to the high self-noise.
We observe that one or both horizontal components

of the OBS02 and OBS10 (Figures 6b-c) show a peak be-
tween 20 and 50 s. This is a stable feature for the dura-
tion of the deployment but for which we currently have
no explanation. KHUF, BREEM, and QUMAN are the
only stations with a weak primarymicroseism peak (10-
12 s) visible on the vertical components, probably since
the high self-noise at periods larger than 10 s is higher
than the typical average amplitudes of the primary mi-
croseismic peak at the offshore stations.
The observed long-periodnoise patterns in Figures 8c

and 8g suggest that nearby stations tend to have simi-
lar noise levels on both vertical and horizontal compo-
nents. For instance, OBS06 and OBS02, two closely lo-
cated stations, exhibit the highest noise levels in the ver-
tical component.
Lastly, themost notable feature from themaps in Fig-

ures 8c and 8g is the correlation with the instrument
types discussed above with the Fugro OBS having sys-
tematically lower noise than DEPAS OBS in the horizon-
tal components, andwith the onshore stations perform-
ing systematically better than offshore stations.
In the long-period range, the only strong correlation

between noise and water depth is ρH
depth=-0.56 for the

DEPAS OBSs with the free rope, as already seen for the
short-period range (Figure 10f and 10j). The negative
correlation between noise and water depth aligns with
findings in previous studies (e.g., Janiszewski et al.,
2022).
Long-period noise levels remain relatively stablewith

time for most stations (Figure 9). OBS09 and OBS11
experienced sudden increases of 15-20 dB after the
summer period, while OBS06 and OBS12 gradually de-
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Figure 10 Correlation between environmental data and noise levels. a) Example of comparison of 14-week-long (1-14 Jan-
uary 2022) time series of vertical-component noise levels at the period of 0.7 s for OBS12 against 10-meter vertical wind
component anomaly (10v) and significant height of combined wind waves and swell (swh) at the OBS12 location. b) Varia-
tion of the Pearson coefficient between noise levels at Fugro OBS NORTH and 10v and swhwith the noise level. c) As in b) for
DEPAS OBS12. d) As in a) but for island station BREEM (only 10v data available). e) As for d but for island station QUMAN. f)
As for d) but for land station KHUF.

creased in noise levels during the deployment, possi-
bly due to instrument settling. OBS02, on the other
hand, exhibited a 15-20 dB increase during the summer
months, followed by a return to initial values.

4 Notable signals
In this section, we present and briefly discuss some no-
table seismic signals found in the ZAFRAN dataset that
are partly related to the specific setting of the Red Sea
andpartly due to the deployment and instruments used.

4.1 Long-lasting high-frequency tremor
A notable signal observed within the ZAFRAN network
is a recurring, several-hour-long tremor in the 0.025 -
0.25 s period range (4 - 40 Hz). To show this, we plot sev-
eral one-day spectrograms of the 1/N components for
some OBSs and onshore (island and land) stations (Fig-
ure 11). We highlight this long-lasting high-frequency
tremor by using a dotted-line box on the spectrogram
where it is most visible (OBS12). Nonetheless, this sig-
nal displays strong amplitudes in the majority of sta-
tions, whether offshore or onshore, with the exceptions
being QUMAN (the island station), LAVA (the land sta-
tion), and OBS11. In the spectrograms in Figure 11, this
signal starts at around 3 h and it continues for the rest
of the day. Although systematic detection has not been
conducted as of yet, this type of event is frequently ob-
served in the ZAFRAN datasets, occurring at different
times and enduring for several hours. Since the wave-
forms for these events do not show a sharp onset, their
localization is not trivial and is not performed at this
stage.
Potential sources of these signals are anthropogenic,

such as due to the passage of ships, active seismic sur-
veys, or may originate from various factories (e.g., de-
salination, refining, cement production) situated along

the coast of the study area, particularly in the areas of
AlWajh, UmmLuj, andYanbu (Hamieh et al., 2022) (see
locations in Figure 1). If this is the case, the higher am-
plitudes observed at the offshore stations might be at-
tributed to more efficient energy propagation over wa-
ter, possibly facilitated by T-waves traveling through the
ocean sound channel (Heleno et al., 2006). Nonethe-
less, we cannot rule out the possibility of a natural ori-
gin (e.g., volcanic tremor fromMabahissMons). Heleno
et al. (2006) observed tremors with comparable char-
acteristics (duration, frequency, and propagation effi-
ciency) in the Cape Verde islands and proposed active
seamounts as potential sources.

4.2 Free rope signature
Asdescribed in Section 2.1, half of theDEPASOBSswere
deployed by tightening the rope of the buoy (avoiding
free strumming in thewater column), and the other half
was deployed leaving the rope free to strum on the wa-
ter column above the OBS (see Suppl. Table 1) and a
sketch of the OBSs with free rope in Figure 3b). One-
day-long spectrograms of OBSs with the free rope (Fig-
ure 11, right column) show two types of noise features
that are not visible in the spectrograms of the stations
with the tightened rope.
The first type of noise is visible only on the spectro-

grams of the stations with the free rope is recorded at
frequencies above 5Hz (0.2 s, themost evident example
is highlighted in the dashed-dotted line box on the spec-
trogram of the DEPAS OBS02 in Figure 11). It is charac-
terized by stronger amplitudes at specific frequencies
and energy bursts of short duration repeated in time.
All DEPAS OBSs with the free rope show this type of
noise with some differences in the maximum ampli-
tudes. While this disturbance was investigated by Stäh-
ler et al. (2018); Essing et al. (2021b); Corela et al. (2022)
and identified between 1 and 10 Hz (0.1 and 1 s) here we
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Figure 11 One-day spectrograms with examples of the notable signals detected by the ZAFRAN network. The left column
shows the spectrograms for onshore stations (island stations in the first two rows and land stations in the last two rows).
The central and right columns show the spectrograms for 8 of the DEPAS OBS. The central column contains spectrograms for
OBS with tightened buoy rope. The right column contains spectrograms for OBS with a buoy rope free to strum in the water
column. The dashed-line box on the spectrogram of OBS12 highlights an hours-long high-frequency signal (also evident in
BREEM, KHUF, OBS10, OBS09, OBS03, OBS07). The dot-dashed-line box on the spectrogram of OBS02 highlights the high-
frequency noise generated by the rope free to strum (also evident in all the other OBS with the free rope). The white box
on the spectrogram of OBS02 highlights an example of a local earthquake (also visible in the spectrogram of OBS06). The
dashed-line box on the spectrogram of OBS06 highlights a long-period tide-modulated signal (evident also in the other free
buoy rope OBS). All spectrograms are calculated instrument-corrected acceleration waveforms of the horizontal component
1/N for March 1, 2022.
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find that the free rope affects the dataset at frequencies
higher than 5 Hz (0.2 s).
The second type of noise, visible only on the spectro-

grams of stations with the free rope, is a bi-daily tidal
modulated signal with periods of 2-7 s. OBS06 exhibits
the highest amplitudes of this signal (see the signal en-
closed in the dashed-line box in Figure 11). Schlindwein
et al. (2018) andHannemannet al. (2016) found a similar
signal in less than half of the DEPAS OBSs used in their
deployments and as they could not identify the source,
they assumed it to be of instrumental origin.

4.3 Hybrid local earthquake
Weconduct a preliminary analysis of a local earthquake
visually detected in the spectrograms of Figure 7 (see
red box “LOC”) that occurred on June 30, 2022. A 150s-
long timewindow, containing this earthquake, is shown
in Figure 12a. After manually picking P and S arrivals,
we calculated the epicenter using HypoInverse code
(Klein, 2002). The hypocentral depth is kept fixed at 5
km because it strongly depends on the velocity model,
which still needs to be optimized for the ZFZ. Our pre-
liminary calculations for earthquake location and mag-
nitude suggest that this event occurred in the southern
part of the network (see location indicated by the yel-
low circle in Figure 1) with a magnitude of ML 3.4. This
is likely the strongest local earthquake recorded by the
ZAFRAN network since no stronger signals are seen in
Figure 7 at high frequency. Not having access to the re-
cent Saudi national catalog and being too small to be
detected by the global networks, we cannot benchmark
our location and magnitude estimate.
Qualitative waveform differences between stations

may already reveal important information for future
works. For example, waveforms (highpass filtered at
0.1 Hz) recorded by OBS10, KHUF, and OBS12 (Figure
12a) have smaller amplitudes after the P arrivals com-
pared to waveforms in the other stations, probably due
to weaker scattering effects. One hypothesis is that
these differences are related to the site effects and that
OBSs displaying waveforms with less scattering effects
are located on thinner or no sedimentary cover (evap-
orites and/or loose sediments). Although the actual dis-
tribution and thickness of these sedimentary materials
is not known in the ZFZ, this is consistent with the lo-
cations of OBS10, located in the deepest part of the ZFZ
where the salt coverages seem to be limited, andOBS12,
located on the flanks ofMabahissMons (Fittipaldi et al.,
2024). While these site-effects may limit the ability to
accurately pick the onset of the body waves both for lo-
cation and focal mechanism calculations, they could be
used for retrieving the shallow earth structure.
Waveforms for the same earthquake show a clear

T-Phase at some of the stations (see boxes on wave-
forms of OBS04, OBS07, OBS09 OBS11, BREEM, and
OBS12 in Figure 12a). T-phases are generated by the
seismic-acoustic conversion and travel along the mini-
mumsound velocity layer in the ocean (e.g., Okal, 2008).
In our waveforms, the T-phase starts to be visible at sta-
tions farther than 70 km from the source (for closer sta-
tions, it is probably contaminated by the S coda). How-

ever, some stations at large distances do not show the
T-phase. The ZAFRAN dataset has thus the potential to
provide information on T-phase generation and its rela-
tion with the sea bottom topography and seawater lay-
ering in the Red Sea.
The spectral content of this earthquake is partic-

ularly intriguing because of its low-frequency ampli-
tudes. Figures 12b-e show the spectra and the spec-
trograms for the three closest stations (OBS01, OBS02,
and SOUTH, located between 17 and 28 km from the
epicenter). The low-frequency content is also high-
lighted by waveforms for the three closest stations,
low-pass filtered at 1 Hz (Figure 12f). This local
earthquake is a combination of short-duration high-
frequency and long-duration low-frequency eventswith
the low-frequency being recorded first (Figure 12c-e
and gray boxes in Figure 12c). These features classify it
as a hybrid earthquake and are usually associated with
fluid movements and/or conduit resonance due to vol-
canic or hydrothermal activities (e.g., Chouet, 1996;
Neuberg et al., 2000; Leva et al., 2022). However, hybrid
events are usually characterized by high-frequency on-
sets that generate low-frequency resonance of the rocks
hosting the fluids (Neuberg et al., 2006). Other stud-
ies pointed out that the low-frequency content may be
due to deep source or complex path effects (Harrington
and Brodsky, 2007; Leva et al., 2022). In the case of the
earthquake recorded by the ZAFRAN network, the on-
set of the low-frequencies is earlier than the onset of
thehigh frequencies, not fittingwellwith themodel that
includes the resonance effects after the high-frequency
rupture.
Comparison of spectra of signals recorded by the

DEPAS OBSs (OBS01 and OBS02) and the Fugro OBS
(SOUTH) reveals that the DEPAS OBSs experience res-
onance at 6 and 10.5 Hz following for at least 150 s after
the arrival of the bodywaves (see Figure 12c-e). SOUTH,
instead, does not show these signals. A similar signal at
6 Hz was observed in the DEPAS OBSs by Essing et al.
(2021b) and attributed to the vibrations of the radio an-
tenna.

4.4 Teleseismic waveforms
We conduct a qualitative assessment of waveform qual-
ity in the long-period range using a 2.5-hour-long time
window that displays two Mw 6.7 teleseismic earth-
quakes. These earthquakes are detectable in spectro-
grams shown in Figure 7 (see the red box “TL”) and are
listed in all global earthquake catalogs. They occurred
approximately at the sameepicentral distance of 73o but
had different back-azimuths (Figure 13a). Their origin
times differ by an hour. Band-passed waveforms be-
tween 5 and 100 s are displayed in Figure 13b.
Despite the high self-noise of the CMG-40T-OBS sen-

sors in the DEPAS OBSs, the waveform quality for these
two earthquakes is generally good, particularly on the
vertical components. However, the noise in the hori-
zontal components of some DEPAS OBSs makes it diffi-
cult to recognize the arrivals of different phases (Figure
13b, graywaveforms). This is the case forOBS01, OBS02,
OBS06, and OBS11. Although the overall median noise
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Figure 12 TheML 3.4 local hybrid earthquake. a) Vertical-component velocity seismograms and highpass filtered at 0.1 Hz.
Themaximumamplitude inm/s for eachwaveform is shown below the station’s name. Possible T-phases are enclosed in the
gray boxes. b) Normalized power spectra of the waveforms in stations OBS01, OBS02, and SOUTH (time window and colors
as in a)). c) Normalized spectrograms for the station OBS01. Gray boxes highlight the short-duration high-frequency event
and the long-duration low-frequency event. d) and e) as in c) but for OBS02 and SOUTH, respectively. f) Vertical-component
velocity seismograms and low-pass filtered at 1 Hz. Colors and units as in a). The location of the earthquake is shown in
Figure 1.

level of component 2 ofOBS06 is not significantly higher
than that of most other DEPAS OBSs (Figure 6), Figure 9
shows that inMarch 2022, the noise level on component
2 of OBS06was almost 10 dB higher than the full deploy-
ment median. Instead, the overall median noise levels
for horizontal component 2 ofOBS01, OBS02, andOBS11
are generally higher than in the other stations, so their
low waveform quality for these events is expected. The
horizontal componentwaveforms of OBS03 began to ex-
hibit noise at the end of the second earthquake, suggest-

ing a possible temporary malfunction.

The land stations recorded the events excellently
across all components (Figure 13b). The Fugro OBS
SOUTH recorded the two events in the vertical compo-
nent with a quality comparable to that of the onshore
stations and in the horizontal component with a quality
comparable to the average of the DEPAS OBSs.
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Figure 13 Example of two teleseismic earthquakes. a) Location and focal mechanisms for two Mw 6.7 teleseismic earth-
quakes that occurred on 22 March 2022 (t0 displayed next to the focal mechanism). These events are recorded at approxi-
mately the same epicentral distance of 73o. b) 5-100 s bandpass filtered velocity waveforms for the teleseismic earthquakes
in a). Vertical seismogramsare color-codedas in the legendwith thenameof the stationdisplayedon the left. 2/E component
seismograms are displayed in gray after the corresponding vertical component seismogram. Thick vertical black lines mark
the earthquake origin times and thin black lines mark the P and S wave arrivals based on the IASP91 Earth model (Kennet,
1991). Event information is extracted from the Global CMT Catalog (https://www.globalcmt.org, last accessed 5 April 2023).

5 Discussion and conclusions

In this study, we introduce the first OBS deployment
in the Red Sea, targeting the seismic activity and the
lithospheric structure of the ZFZ. To establish a founda-
tion for seismological investigations incorporating data
from the ZAFRAN network, we perform comprehen-
sive data quality control and emphasize notable signals
recorded in the ZFZ.
For local seismicity studies, it is important to consider

site effects arising from sedimentary and salt coverage
since these factors may impact automated methods for
determining arrival times and onset polarities on wave-

forms of local earthquakes. Moreover, in the short-
period range, the dataset experiences higher noise lev-
els compared to most global locations (e.g., Stähler
et al., 2016, 2018; Hilmo and Wilcock, 2020; Carchedi
et al., 2022; Kim et al., 2023; Zhang et al., 2023); thismay
be attributed to the regular passage of ships, intense
seismic or tremor-like activities related to volcanic or
hydrothermal phenomena, as suggested by the detec-
tion of the hybrid earthquake, or the slowmovements of
salt coverages resembling glacial creep (Podolskiy et al.,
2021). Further disturbances in the short period are due
to the strumming of the rope (frequencies larger than
10Hz) and vibration of otherOBS components (frequen-
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cies between 6 and 10 Hz).
Several recent studies attempted to model the har-

monic noise generated by the head-buoy and rope
strumming in the water columns of the DEPAS OBSs
(Stähler et al., 2018; Essing et al., 2021b; Corela et al.,
2022); however, this was observed at frequencies be-
tween 1 and 10 Hz. For example, Stähler et al. (2018)
modeled the strumming of the rope and head buoy as
it is usually implemented in the Lobsters of the DEPAS
pool, including in our deployment. They found that
the fundamental frequency of the DEPAS setup’s rope
is around 1 Hz, roughly corresponding to the shedding
frequency of vortices generated by currents at approx-
imately 0.1 m/s (calculated using the formula fvort =

10.5 × v Hz, with v representing current velocity). Over-
tones were observed up to 10 Hz. Even considering
the potentially higher salinity and temperature of Red
Sea water compared to the values used by Stähler et al.
(2018), the derivation of the fvort does not change signif-
icantly. Consequently, the higher frequencies observed
in our dataset suggest sea bottom currents of about 100
cm/s. Currents exceeding 100 cm/s have been docu-
mented in selected locations worldwide, such as the
Gulf ofMexico and the Strait of Gibraltar, as reported by
Shanmugam (2021). Unfortunately, specific sea bottom
current data for the Red Sea are unavailable. However,
ROV images of the deep Red Sea show that sea-bottom
currents are usually weak and not able to blow away
light bacterial mats (van der Zwan et al., 2023). These
observations imply that either the signal we observe is
unrelated to the strumming rope (in this case their oc-
currence in the OBS with the free rope is by chance
only and due to specific locations instead) or the phe-
nomenon interacting with the rope is not a sea bottom
current.
In the medium-period range, relevant for example

for ambient noise tomography, our analysis of the cor-
relation with the oceanic and atmospheric parame-
ters indicates that local noise sources from wind and
waves may adversely affect the quality of noise cross-
correlations. Consequently, we recommend utilizing
cross-correlations calculated during days of calm lo-
cal sea states, emphasizing the importance of select-
ing or weighing cross-correlations using datasets like
ERA. The analyses of correlations presented here are
extremely important in defining the period range (0.2
- 10 s) of the influence of wind and waves on ambient
noise.
In addition, our analyses contribute to a better under-

standing of a second peak within the medium-period
range, occurring at shorter periods than the secondary
microseismic peak. The presence of two distinct peaks
within the secondary microseismic band is commonly
interpreted as occurred due to sources at different dis-
tances with the peak at a shorter period generated by
local sea conditions and the peak at a longer period due
to farther oceanic sources (e.g., Bromirski et al., 2005;
Zhang et al., 2023). In our study, the presence of the
shorter period peak in the noise of the OBSs and island
stations and the lack of the peak in the land stations
(see comparison in Figure 5) supports the fact that this
shorter periodpeak is due to local sourceswhose energy

dissipates rapidly inland.
On the other hand, the second peak at a shorter pe-

riod was also observed in stations located far from the
coastline and attributed to and used to retrieve subsur-
face structure (Parisi et al., 2020; Guo et al., 2021). For
example, Kim et al. (2023) also found that the thickness
of sediments below the OBSs attenuates (amplifies) pe-
riods shorter (longer) than 2 s. In this study, we find
that the noise level in the medium-period range corre-
lates well with the sea state, and the correlation func-
tions ρ10v and ρswh have two peaks at frequencies sim-
ilar to ones of the noise levels in the medium-period
range. Therefore, we would expect that all stations with
ρ10v and ρswh with double peaks should have a double
peak noise level, that is, the stations should belong to
class A or B. However, we observe that even stations of
other classes (no second peak or a large peak including
the frequency from the first and second peak), such as
OBS12 belonging to class D, have a ρ10v and ρswh with
double peak (see Figure 10). We believe that the shape
of the noise level of these stations is due to the effects
of the Earth’s structure below the station that amplifies
some frequencies between the two peaks. Also, the fact
that the shape/category of the ZAFRAN stations does not
vary in time (Figure 9) further supports the effect of lo-
cal structure, in addition to the local sources.
The factor significantly affecting the performance of

the DEPAS OBS at long-period is the high self-noise
levels of the Güralp CMG-40T-OBS sensors, limiting
observations in the long-period range (T>10s) in all
components (Figure 6). In contrast, the Fugro OBSs,
equipped with a Nanometrics Trillium compact sensor,
performed as well as the land stations on the vertical
component (Figure 6). Noise levels on the horizontal
components were comparable in the DEPAS and Fugro
OBSs. These findings are consistent with observations
made by Stähler et al. (2018) when comparing the two
types of sensors installed on Lobsters (the DEPAS OBS
configuration). The differences observed in the perfor-
mances of the OBSs at long periods directly reflect on
the quality of waveforms for teleseismic earthquakes.
The example in Figure 13 in fact shows the overall good
quality of the network with some limitations in some
horizontal components of theDEPASOBS.However, the
clear identifications of body and surface waves suggest
that the ZAFRAN dataset can be included in global seis-
mology studies for earthquakes of magnitude at least
Mw6.7, or less if only the Fugro OBSs are used.
The findings presented in this study hold signifi-

cance for forthcoming research relying on the ZAFRAN
dataset. They bear importance for geological and
oceanographic investigations in the Red Sea, as well as
for the seismological communities engaged in refining
their understanding and use of OBSs.
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