DAS sensitivity to heterogeneity scales much smaller than the minimum wavelength


  • Yann Capdeville Nantes Université, Univ Angers, Le Mans Université, CNRS, Laboratoire de Planétologie et Géosciences, LPG UMR 6112, 44000 Nantes https://orcid.org/0000-0001-9144-1597
  • Anthony Sladen Université Côte d’Azur, CNRS, Observatoire de la Côte d’Azur, IRD, Géoazur, Sophia Antipolis, 06560, Valbonne https://orcid.org/0000-0003-4126-0020




Modeling, Distributed acoustic sensing, Seismology


Distributed Acoustic Sensing (DAS) is a photonic technology allowing toconvert fiber-optics into long (tens of kilometers) and dense (every few meters) arrays of seismo-acoustic sensors which are basically measuring the strain of the cable all along the cable. The potential of such a distributed measurement is very important and has triggered strong attention in the seismology community for a wide range of applications. In this work, we focus on the interaction of such measurements with heterogeneities of scale much smaller than the wavefield minimum wavelength. With a simple 2-D numerical modeling, we first show that the effect of such small-scale heterogeneities, when located in the vicinity of the instruments, is very different depending on whether we measure particle velocity or strain rate: in the case of velocity, this effect is small but becomes very strong in the case of the strain rate. We then provide a physical explanation of these observations based on the homogenization method showing that indeed, the strain sensitivity to nearby heterogeneities is strong, which is not the case for more traditional velocity measurements. This effect appears as a coupling of the strain components to the DAS measurement. Such effects can be seen as a curse or an advantage depending on the applications.


Backus, G. E. (1962). Long-Wave Elastic Anisotropy Produced by Horizontal Layering. J. Geophys. Res., 67(11), 4427–4440. https://doi.org/10.1029/JZ067i011p04427 DOI: https://doi.org/10.1029/JZ067i011p04427

Baker, M. G., & Abbott, R. E. (2022). Rapid Refreezing of a Marginal Ice Zone Across a Seafloor Distributed Acoustic Sensor. Geophysical Research Letters, 49(24), e2022GL099880. https://doi.org/10.1029/2022GL099880 DOI: https://doi.org/10.1029/2022GL099880

Bakku, S. K. (2015). Fracture Characterization from Seismic Measurements in a Borehole [Thesis]. Massachusetts Institute of Technology.

Bensoussan, A., Lions, J.-L., & Papanicolaou, G. (1978). Asymptotic Analysis of Periodic Structures. North Holland.

Berger, J., & Beaumont, C. (1976). An Analysis of Tidal Strain Observations from the United States of America II. The Inhomogeneous Tide. Bulletin of the Seismological Society of America, 66(6), 1821–1846. https://doi.org/10.1785/BSSA0660061821 DOI: https://doi.org/10.1785/BSSA0660061821

Bouffaut, L., Taweesintananon, K., Kriesell, H. J., Rørstadbotnen, R. A., Potter, J. R., Landrø, M., Johansen, S. E., Brenne, J. K., Haukanes, A., Schjelderup, O., & Storvik, F. (2022). Eavesdropping at the Speed of Light: Distributed Acoustic Sensing of Baleen Whales in the Arctic. Frontiers in Marine Science, 9. https://doi.org/10.3389/fmars.2022.901348 Browaeys, J. T., & Chevrot, S. (2004). Decomposition of the elastic tensor and geophysical applications. Geophys. J. Int., 159, 667–678. https://doi.org/10.1111/j.1365-246X.2004.02415.x DOI: https://doi.org/10.1111/j.1365-246X.2004.02415.x

Buisman, M., Martuganova, E., Kiers, T., Draganov, D., & Kirichek, A. (2022). Continuous Monitoring of the Depth of the Water-Mud Interface Using Distributed Acoustic Sensing. Journal of Soils and Sediments, 22(11), 2893–2899. https://doi.org/10.1007/s11368-022-03202-2 DOI: https://doi.org/10.1007/s11368-022-03202-2

Capdeville, Y., Guillot, L., & Marigo, J. J. (2010). 2D nonperiodic homogenization to upscale elastic media for P-SV waves. Geophys. J. Int., 182, 903–922. DOI: https://doi.org/10.1111/j.1365-246X.2010.04636.x

Capdeville, Y., & Marigo, J. J. (2007). Second order homogenization of the elastic wave equation for non-periodic layered media. Geophys. J. Int., 170, 823–838. https://doi.org/10.1111/j.1365-246X.2007.03462.x DOI: https://doi.org/10.1111/j.1365-246X.2007.03462.x

Capdeville, Yann, Cupillard, P., & Singh, S. (2020). Chapter Six - An introduction to the two-scale homogenization method for seismology. In B. Moseley & L. Krischer (Eds.), Machine Learning in Geosciences (Vol. 61, pp. 217–306). Elsevier. https://doi.org/https://doi.org/10.1016/bs.agph.2020.07.001 DOI: https://doi.org/10.1016/bs.agph.2020.07.001

Capdeville, Yann, & Marigo, J.-J. (2013). A non-periodic two scale asymptotic method to take account of rough topographies for 2-D elastic wave propagation. Geophys. J. Int., 192(1), 163–189. https://doi.org/10.1093/gji/ggs001 DOI: https://doi.org/10.1093/gji/ggs001

Capdeville, Yann, & Métivier, L. (2018). Elastic full waveform inversion based on the homogenization method: theoretical framework and 2-D numerical illustrations. Geophysical Journal International, 213(2), 1093–1112. https://doi.org/10.1093/gji/ggy039 DOI: https://doi.org/10.1093/gji/ggy039

Capdeville, Yann, Stutzmann, E., Wang, N., & Montagner, J.-P. (2013). Residual homogenization for seismic forward and inverse problems in layered media. Geophys. J. Int., 194(1), 470–487. DOI: https://doi.org/10.1093/gji/ggt102

Capdeville, Yann, Zhao, M., & Cupillard, P. (2015). Fast Fourier homogenization for elastic wave propagation in complex media. Wave Motion, 54, 170–186. DOI: https://doi.org/10.1016/j.wavemoti.2014.12.006

Chaljub, E., Komatitsch, D., Capdeville, Y., Vilotte, J.-P., Valette, B., & Festa, G. (2007). Spectral Element Analysis in Seismology. In R.-S. Wu & V. Maupin (Eds.), Advances in Wave Propagation in Heterogeneous Media (Vol. 48, pp. 365–419). Elsevier. https://doi.org/10.1016/S0065-2687(06)48007-9 DOI: https://doi.org/10.1016/S0065-2687(06)48007-9

Cheng, F., Chi, B., Lindsey, N. J., Dawe, T. C., & Ajo-Franklin, J. B. (2021). Utilizing Distributed Acoustic Sensing and Ocean Bottom Fiber Optic Cables for Submarine Structural Characterization. Scientific Reports, 11(1), 5613. https://doi.org/10.1038/s41598-021-84845-y DOI: https://doi.org/10.1038/s41598-021-84845-y

Cornou, C., Ampuero, J.-P., Aubert, C., Audin, L., Baize, S., Billant, J., Brenguier, F., Causse, M., Chlieh, M., & Combey, A. (2021). Rapid Response to the M 4.9 Earthquake of November 11, 2019 in Le Teil, Lower Rhône Valley, France. Comptes Rendus. Géoscience, 353(S1), 1–23. https://doi.org/10.5802/crgeos.30 DOI: https://doi.org/10.5802/crgeos.30

Cupillard, P., & Capdeville, Y. (2018). Non-periodic homogenization of 3-D elastic media for the seismic wave equation. Geophysical Journal International, 213(2), 983–1001. DOI: https://doi.org/10.1093/gji/ggy032

Daley, T. M., Freifeld, B. M., Ajo-Franklin, J., Dou, S., Pevzner, R., Shulakova, V., Kashikar, S., Miller, D. E., Goetz, J., Henninges, J., & others. (2013). Field Testing of Fiber-Optic Distributed Acoustic Sensing (DAS) for Subsurface Seismic Monitoring. The Leading Edge, 32(6), 699–706. https://doi.org/10.1190/tle32060699.1 DOI: https://doi.org/10.1190/tle32060699.1

Dean, T., Hartog, A., Cuny, T., & Englich, F. (2016). The Effects of Pulse Width on Fibre-Optic Distributed Vibration Sensing Data. 78th EAGE Conference and Exhibition 2016, 2016, 1–5. https://doi.org/10.3997/2214-4609.201600684 DOI: https://doi.org/10.3997/2214-4609.201600684

Dean, Timothy, Cuny, T., & Hartog, A. H. (2017). The Effect of Gauge Length on Axially Incident P-waves Measured Using Fibre Optic Distributed Vibration Sensing. Geophysical Prospecting, 65(1), 184–193. https://doi.org/10.1111/1365-2478.12419 DOI: https://doi.org/10.1111/1365-2478.12419

Festa, G., & Vilotte, J.-P. (2005). The Newmark scheme as velocity-stress time-staggering: an efficient implementation for spectral element simulations of elastodynamics. Geophys. J. Int., 161, 789–812. https://doi.org/10.1111/j.1365-246X.2005.02601.x DOI: https://doi.org/10.1111/j.1365-246X.2005.02601.x

Geuzaine, C., & Remacle, J.-F. (2009). Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Num. Methods in Engrg., 79, 1309–1331. https://doi.org/10.1002/nme.2579 DOI: https://doi.org/10.1002/nme.2579

Gomberg, J., & Agnew, D. (1996). The Accuracy of Seismic Estimates of Dynamic Strains: An Evaluation Using Strainmeter and Seismometer Data from Piñon Flat Observatory, California. Bulletin of the Seismological Society of America, 86(1A), 212–220. https://doi.org/10.1785/BSSA08601A0212 DOI: https://doi.org/10.1785/BSSA08601A0212

Harrison, J. C. (1976). Cavity and Topographic Effects in Tilt and Strain Measurement. Journal of Geophysical Research, 81(2), 319–328. https://doi.org/10.1029/JB081i002p00319 DOI: https://doi.org/10.1029/JB081i002p00319

Hartog, A. H. (2017). An Introduction to Distributed Optical Fibre Sensors. CRC press. https://doi.org/10.1201/9781315119014 DOI: https://doi.org/10.1201/9781315119014

Hubbard, P. G., Vantassel, J. P., Cox, B. R., Rector, J. W., Yust, M. B. S., & Soga, K. (2022). Quantifying the Surface Strain Field Induced by Active Sources with Distributed Acoustic Sensing: Theory and Practice. Sensors, 22(12), 4589. https://doi.org/10.3390/s22124589 DOI: https://doi.org/10.3390/s22124589

Komatitsch, D., & Vilotte, J. P. (1998). The spectral element method: an effective tool to simulate the seismic response of 2D and 3D geological structures. Bull. Seism. Soc. Am., 88, 368–392. https://doi.org/10.1785/BSSA0880020368 DOI: https://doi.org/10.1785/BSSA0880020368

Kuvshinov, B. N. (2016). Interaction of Helically Wound Fibre-Optic Cables with Plane Seismic Waves: Interaction of Fibre-Optic Cables. Geophysical Prospecting, 64(3), 671–688. https://doi.org/10.1111/1365-2478.12303 DOI: https://doi.org/10.1111/1365-2478.12303

Lindsey, N. J., Dawe, T. C., & Ajo-Franklin, J. B. (2019). Illuminating Seafloor Faults and Ocean Dynamics with Dark Fiber Distributed Acoustic Sensing. Science, 366(6469), 1103–1107. https://doi.org/10.1126/science.aay5881 DOI: https://doi.org/10.1126/science.aay5881

Lior, I., Mercerat, E. D., Rivet, D., Sladen, A., & Ampuero, J.-P. (2022). Imaging an Underwater Basin and Its Resonance Modes Using Optical Fiber Distributed Acoustic Sensing. Seismological Society of America, 93(3), 1573–1584. https://doi.org/10.1785/0220210349 DOI: https://doi.org/10.1785/0220210349

Lomnitz, C. (1997). Frequency Response of a Strainmeter. Bulletin of the Seismological Society of America, 87(4), 1078–1080. https://doi.org/10.1785/BSSA0870041078 DOI: https://doi.org/10.1785/BSSA0870041078

Martin, E. R. (2018). Passive Imaging and Characterization of the Subsurface with Distributed Acoustic Sensing [Phdthesis]. Thesis, Dept. of Geophysics, Stanford University, Stanford, CA, 2018. 443.

Mata Flores, D., Sladen, A., Ampuero, J.-P., Mercerat, E. D., & Rivet, D. (2022). Monitoring Deep Sea Currents with Seafloor Distributed Acoustic Sensing [Preprint]. https://doi.org/10.1002/essoar.10512729.1 DOI: https://doi.org/10.1002/essoar.10512729.1

Mateeva, A., Mestayer, J., Cox, B., Kiyashchenko, D., Wills, P., Lopez, J., Grandi, S., Hornman, K., Lumens, P., Franzen, A., Hill, D., & Roy, J. (2012). Advances in Distributed Acoustic Sensing (DAS) for VSP. In SEG Technical Program Expanded Abstracts 2012 (pp. 1–5). Society of Exploration Geophysicists. https://doi.org/10.1190/segam2012-0739.1 DOI: https://doi.org/10.1190/segam2012-0739.1

Mateeva, Albena, Lopez, J., Potters, H., Mestayer, J., Cox, B., Kiyashchenko, D., Wills, P., Grandi, S., Hornman, K., Kuvshinov, B., Berlang, W., Yang, Z., & Detomo, R. (2014). Distributed Acoustic Sensing for Reservoir Monitoring with Vertical Seismic Profiling: Distributed Acoustic Sensing (DAS) for Reservoir Monitoring with VSP. Geophysical Prospecting, 62(4), 679–692. https://doi.org/10.1111/1365-2478.12116 DOI: https://doi.org/10.1111/1365-2478.12116

Mizuno, K., Cristini, P., Komatitsch, D., & Capdeville, Y. (2020). Numerical and Experimental Study of Wave Propagation in Water-Saturated Granular Media Using Effective Method Theories and a Full-Wave Numerical Simulation. IEEE Journal of Oceanic Engineering, 45(3), 772–785. https://doi.org/10.1109/JOE.2020.2983865 DOI: https://doi.org/10.1109/JOE.2020.2983865

Muir, J. B., & Zhan, Z. (2022). Wavefield-based evaluation of DAS instrument response and array design. Geophysical Journal International, 229(1), 21–34. https://doi.org/10.1093/gji/ggab439 DOI: https://doi.org/10.1093/gji/ggab439

Nakazawa, M. (1983). Rayleigh Backscattering Theory for Single-Mode Optical Fibers. JOSA, 73(9), 1175–1180. https://doi.org/10.1364/JOSA.73.001175 DOI: https://doi.org/10.1364/JOSA.73.001175

Ogden, H. M., Murray, M. J., Murray, J. B., Kirkendall, C., & Redding, B. (2021). Frequency Multiplexed Coherent φ-OTDR. Scientific Reports, 11(1), 17921. https://doi.org/10.1038/s41598-021-97647-z DOI: https://doi.org/10.1038/s41598-021-97647-z

Papp, B., Donno, D., Martin, J. E., & Hartog, A. H. (2016). A Study of the Geophysical Response of Distributed Fibre Optic Acoustic Sensors through Laboratory-Scale Experiments: Geophysical Response of Fibre Optic Sensors. Geophysical Prospecting, 65(5), 1186–1204. https://doi.org/10.1111/1365-2478.12471 DOI: https://doi.org/10.1111/1365-2478.12471

Rivet, D., de Cacqueray, B., Sladen, A., Roques, A., & Calbris, G. (2021). Preliminary Assessment of Ship Detection and Trajectory Evaluation Using Distributed Acoustic Sensing on an Optical Fiber Telecom Cable. The Journal of the Acoustical Society of America, 149(4), 2615–2627. https://doi.org/10.1121/10.0004129 DOI: https://doi.org/10.1121/10.0004129

Sanchez-Palencia, E. (1980). Non homogeneous media and vibration theory. Springer. Singh, S., Capdeville, Y., & Igel, H. (2020). Correcting wavefield gradients for the effects of local small-scale heterogeneities. Geophysical Journal International, 220(2), 996–1011. https://doi.org/10.1093/gji/ggz479 DOI: https://doi.org/10.1093/gji/ggz479

Sladen, A., Rivet, D., Ampuero, J.-P., De Barros, L., Hello, Y., Calbris, G., & Lamare, P. (2019). Distributed Sensing of Earthquakes and Ocean-Solid Earth Interactions on Seafloor Telecom Cables. Nature Communications, 10(1), 1–8. https://doi.org/10.1038/s41467-019-13793-z DOI: https://doi.org/10.1038/s41467-019-13793-z

van den Ende, M., Ferrari, A., Sladen, A., & Richard, C. (2021). Next-Generation Traffic Monitoring with Distributed Acoustic Sensing Arrays and Optimum Array Processing. 2021 55th Asilomar Conference on Signals, Systems, and Computers, 1104–1108. DOI: https://doi.org/10.1109/IEEECONF53345.2021.9723373

van Driel, M., Wassermann, J., Nader, M. F., Schuberth, B. S. A., & Igel, H. (2012). Strain Rotation Coupling and Its Implications on the Measurement of Rotational Ground Motions. Journal of Seismology, 16(4), 657–668. https://doi.org/10.1007/s10950-012-9296-5 DOI: https://doi.org/10.1007/s10950-012-9296-5

Wang, B., Mao, Y., Ashry, I., Al-Fehaid, Y., Al-Shawaf, A., Ng, T. K., Yu, C., & Ooi, B. S. (2021). Towards Detecting Red Palm Weevil Using Machine Learning and Fiber Optic Distributed Acoustic Sensing. Sensors, 21(5), 1592. https://doi.org/10.3390/s21051592 DOI: https://doi.org/10.3390/s21051592

Wang, H. F., Zeng, X., Miller, D. E., Fratta, D., Feigl, K. L., Thurber, C. H., & Mellors, R. J. (2018). Ground Motion Response to an ML 4.3 Earthquake Using Co-Located Distributed Acoustic Sensing and Seismometer Arrays. Geophysical Journal International, 213(3), 2020–2036. https://doi.org/10.1093/gji/ggy102 DOI: https://doi.org/10.1093/gji/ggy102

Williams, E. F., Fernández-Ruiz, M. R., Magalhaes, R., Vanthillo, R., Zhan, Z., González-Herráez, M., & Martins, H. F. (2019). Distributed Sensing of Microseisms and Teleseisms with Submarine Dark Fibers. Nature Communications, 10(1), 5778. https://doi.org/10.1038/s41467-019-13262-7 DOI: https://doi.org/10.1038/s41467-019-13262-7

Additional Files



How to Cite

Capdeville, Y., & Sladen, A. (2024). DAS sensitivity to heterogeneity scales much smaller than the minimum wavelength. Seismica, 3(1). https://doi.org/10.26443/seismica.v3i1.1007




Funding data