Rayleigh wave group velocities in North-West Iran: SOLA Backus-Gilbert vs. Fast Marching tomographic methods
DOI:
https://doi.org/10.26443/seismica.v2i2.1011Keywords:
seismic tomography, Surface waves, Northwest of Iran, SOLA Backus-GilbertAbstract
In this study, we focus on Northwest Iran and exploit a dataset of Rayleigh-wave group-velocity measurements obtained from ambient noise cross-correlations and earthquakes.
We build group-velocity maps using the recently developed SOLA Backus-Gilbert linear tomographic scheme as well as the more traditional Fast-marching Surface-wave Tomography method.
The SOLA approach produces robust, unbiased local averages of group velocities with detailed information on their local resolution and uncertainty; however, it does not as yet allow ray-path updates in the inversion process. The Fast-marching method, on the other hand, does allow ray-path updates, although it does not provide information on the resolution and uncertainties of the resulting models (at least not without great computational cost) and may suffer from bias due to model regularisation.
The core of this work consists in comparing these two tomographic methods, in particular how they perform in the case of strong vs. weak seismic-velocity contrasts and good vs. poor data coverage.
We demonstrate that the only case in which the Fast-marching inversion outperforms the SOLA inversion is for strong anomaly contrasts in regions with good path coverage; in all other configurations, the SOLA inversion produces more coherent anomalies with fewer artefacts.
References
Agard, P., Omrani, J., Jolivet, L., Whitechurch, H., Vrielynck, B., Spakman, W., Monie, P., Meyer, B., & Wortel, R. (2011). Zagros orogeny: a subduction-dominated process. Geological Magazine, 148(5–6), 692–725. https://doi.org/10.1017/S001675681100046X DOI: https://doi.org/10.1017/S001675681100046X
Alavi, M. (1994). Tectonics of the zagros orogenic belt of iran: new data and interpretations. The International Journal of Integrated Solid Earth Sciences-Tectonophysics, 229(3–4), 211–238. https://doi.org/10.1016/0040-1951(94)90030-2 DOI: https://doi.org/10.1016/0040-1951(94)90030-2
Alinaghi, A., Koulakov, I., & Thybo, H. (2007). Siemic tomographic imaging of P- and S-waves velocity perturbations in the upper mantle beneath Iran. Geophysical Journal International, 169(3), 1089–1102. https://doi.org/10.1111/j.1365-246x.2007.03317.x DOI: https://doi.org/10.1111/j.1365-246X.2007.03317.x
Al-Lazki, A., Seber, D., Sandvol, E., Turkelli, N., Randa, M., & Barazangi, Muawia. (2003). Tomographic Pn velocity and anisotropy structure beneath the Anatolian plateau (eastern Turkey) and the surrounding regions. Geophysical Research Letters, 24(30). https://doi.org/10.1029/2003GL017391 DOI: https://doi.org/10.1029/2003GL017391
Allen, M. B., Vincent, S., Alsop, G. I., Ismailzadeh, A., & Flecker, R. (2003). Late Cenozoic deformation in the South Caspian region: effects of a rigid basement block within a collision zone. The International Journal of Integrated Solid Earth Sciences-Tectonophysics, 366(3–4), 223–239. https://doi.org/10.1016/S0040-1951(03)00098-2 DOI: https://doi.org/10.1016/S0040-1951(03)00098-2
Amini, S., Shomali, Z. H., Koyi, H., & Roberts, R. G. (2012). Tomographic upper-mantle velocity structure beneath the Iranian Plateau. Tectonophysics. https://doi.org/10.1016/j.tecto.2012.06.009 DOI: https://doi.org/10.1016/j.tecto.2012.06.009
Aziz Zanjani, A., Ghods, A., Sobouti, F., Bergman, E., Mortezanejad, G., Priestley, K., Madanipour, S., & Rezaeian, M. (2013). Seismicity in the western coast of the South Caspian Basin and the Talesh Mountains. Geophysical Journal International, 195(2), 799–814. https://doi.org/doi.org/10.1093/gji/ggt299 DOI: https://doi.org/10.1093/gji/ggt299
Backus, G. E., & Gilbert, F. (1967). Numerical Applications of a Formalism for Geophysical Inverse Problems. Geophysical Journal International, 13(1–3), 247–276. https://doi.org/10.1111/j.1365-246X.1967.tb02159.x DOI: https://doi.org/10.1111/j.1365-246X.1967.tb02159.x
Backus, G. E., & Gilbert, F. (1968). The Resolving Power of Gross Earth Data. Geophysical Journal International, 16(2), 169–205. https://doi.org/10.1111/j.1365-246X.1968.tb00216.x DOI: https://doi.org/10.1111/j.1365-246X.1968.tb00216.x
Bavali, K., Motaghi, K., Sobouti, F., Ghods, A., Priestley, K., & Mortezanejad, G. (2016). Lithospheric structure beneath NW Iran using regional and teleseismic travel-time tomography. Physics of the Earth and Planetary Interiors, 253, 97–107. https://doi.org/10/1016/j.pepi.2016.02.006 DOI: https://doi.org/10.1016/j.pepi.2016.02.006
Bensen, G. D., Ritzwoller, M. H., Barmin, M. P., Levshin, A. L., Lin, F., Moschetti, M. P., Shapiro, N. M., & Yang, Y. (2007). Processing Seismic Ambient Noise Data to Obtain Reliable Broad-Band Surface Wave Dispersion Measurements. Geophysical Journal International, 169(3), 1239–1260. https://doi.org/10.1111/j.1365-246x.2007.03374.x DOI: https://doi.org/10.1111/j.1365-246X.2007.03374.x
Berberian, M. (1983). The Southern Caspian: A Compressional Depression Floored by a Trapped, Modified Oceanic Crust. Canadian Journal of Earth Sciences, 20, 163–183. https://doi.org/10.1139/e83-015 DOI: https://doi.org/10.1139/e83-015
Bijwaard, H., Spackman, W., & Engdahl, E. R. (1998). Closing the gap between regional and global travel time tomography. Journal of Geophysical Research, 103, 30055–30078. https://doi.org/10.1029/98jb02467 DOI: https://doi.org/10.1029/98JB02467
Bonadio, R., Lebedev, S., Meier, T., Arroucau, P., Schaeffer, A. J., Licciardi, A., Agius, M. R., Horan, C., Collins, L., O’Reilly, B. M., Readman, P. W., & Group, I. A. W. (2021). Optimal resolution tomography with error tracking and the structure of the crust and upper mantle beneath Ireland and Britain. Geophysical Journal International, 226(3), 2158–2188. https://doi.org/10.1093/gji/ggab169 DOI: https://doi.org/10.1093/gji/ggab169
Brunet, M.-F., Korotaev, M. V., Ershov, A. V., & Nikishin, A. M. (2003). The South Caspian basin : a review of its evolution from subsidence modelling. Sedimentary Geology, 156(1–4), 119–148. https://doi.org/10.1016/S0037-0738(02)00285-3 DOI: https://doi.org/10.1016/S0037-0738(02)00285-3
Chou, C. W., & Booker, J. R. (1979). A Backus-Gilbert approach to inversion of travel-time data for three-dimensional velocity structure. Geophysical Journal International, 59(2), 325–344. https://doi.org/10.1111/j.1365-246x.1979.tb06770.x DOI: https://doi.org/10.1111/j.1365-246X.1979.tb06770.x
Curtis, A., & Sieder, R. (1997). Reconditioning inverse problems using the genetic algoritym and revised parameterization. Geophysics, 62(5), 1524–1532. https://doi.org/10.1190/1.1444255 DOI: https://doi.org/10.1190/1.1444255
de Voogd, B., Truffert, C., Chamot-Rooke, N., Huchon, P., Lallemant, S., & Le Pichon, X. (1992). Two-ship deep seismic soundings in the basins of the Eastern Mediterranean Sea. Geophysical Journal International, 109(3), 536–552. https://doi.org/10.1111/j.1365-246X.1992.tb00116.x DOI: https://doi.org/10.1111/j.1365-246X.1992.tb00116.x
Deal, M. M., & Nolet, G. (1996). Comment on “Estimation of resolution and covariance for large matrix inversions” by J. Zhang and G.A. McMechan. Geophysical Journal International, 127, 245–250. https://doi.org/10.1111/j.1365-246x.1996.tb01548.x DOI: https://doi.org/10.1111/j.1365-246X.1996.tb01548.x
Ditmar, P. G., & Yanovskaya, T. B. (1987). Generalization of Backus-Gilbert Method for estimation of lateral variations of surface wave velocities. Physics of the Solid Earth, Izvestia Acad. Sci. USSR, 23, 470–477.
Farrokhi, M., Hamzehloo, H., Rahimi, H., & Allamehzadeh, M. (2015). Estimation of Coda-Wave Attenuation in the Central and Eastern Alborz, Iran. Bulletin of the Seismological Society of America, 105, 1756–1767. https://doi.org/10.1785/0120140149 DOI: https://doi.org/10.1785/0120140149
Forrokhi, M., Hamzehloo, H., Rahimi, H., & Zadeh, M. A. (2016). Separation of intrinsic and scattering attenuation in the crust of central and eastern Alborz region, Iran. Physics of the Earth and Planetary Interiors, 253, 88–96. https://doi.org/10.1016/j.pepi.2016.02.005 DOI: https://doi.org/10.1016/j.pepi.2016.02.005
Gök, R., Sandvol, E., Turkelli, N., Seber, D., & Barazangi, M. (2003). Sn attenuation in the Anatolian and Iranian plateau and surrounding regions. Geophysical Research Letters, 30(3). https://doi.org/10.1029/2003gl018020 DOI: https://doi.org/10.1029/2003GL018020
Hearn, T. M., & Ni, J. F. (1994). Pn Velocities Beneath Continental Collision Zones: the Turkish-Iranian Plateau. Geophysical Journal International, 117, 273–283. https://doi.org/10.1111/j.1365-246x1994.tb03931.x DOI: https://doi.org/10.1111/j.1365-246X.1994.tb03931.x
Hestenes, M. R., & Stiefel, E. (1952). Methods of conjugate gradients for solving linear systems. Journal of Research of the National Bureau of Standards, 49(6), 409–436. DOI: https://doi.org/10.6028/jres.049.044
Irandoust, M. A., Sobouti, F., & Rahimi, H. (2016). Lateral and depth variations of coda Q in the Zagros region of Iran. Journal of Seismology, 20, 197–211. https://doi.org/10.1007/s10950-015-9520-1 DOI: https://doi.org/10.1007/s10950-015-9520-1
Jackson, J., & Fitch, T. (1981). Basement faulting and the focal depths of the larger earthquakes in the Zagros mountains (Iran). Geophysical Journal International, 64(3), 561–586. https://doi.org/10.1111/j.1365-246X.1981.tb02685.x DOI: https://doi.org/10.1111/j.1365-246X.1981.tb02685.x
Kaviani, A., Hatzfeld, D., Paul, A., Tatar, M., & Priestley, K. (2009). Shear-wave splitting, lithospheric anisotropy, and mantle deformation beneath the Arabia-Eurasia collision zone in Iran. Earth and Planetary Science Letters, 286, 371–378. https://doi.org/10.1016/j.epsl.2009.07.003 DOI: https://doi.org/10.1016/j.epsl.2009.07.003
Kennett, B., Sambridge, M., & Williamson, P. R. (1988). Subspace methods for large inverse problems with multiple parameter classes. Geophysical Journal International, 94(2), 237–247. https://doi.org/10.1111/j.1365-246x.1988.tb05898.x DOI: https://doi.org/10.1111/j.1365-246X.1988.tb05898.x
Lanczos, C. (1961). Linear differential operators. In Linear differential operators (pp. 100–162). Society for Industrial.
Laske, G., Masters, G., Ma, Z., & Pasyanos, M. E. (2013). Update on CRUST1. 0—A 1- degree global model of Earth’s crust. Geophysical Research Abstracts, 15, 2658. https://doi.org/10.17611/DP/emccrust10
Latallerie, F., Zaroli, C., Lambotte, S., & Maggi, A. (2022). Analysis of tomographic models using resolution and uncertainties: a surface wave example from the Pacific. Geophysical Journal International, 230(2), 893–907. https://doi.org/10.1093/gji/ggac095 DOI: https://doi.org/10.1093/gji/ggac095
Lin, F.-C., Moschetti, M. P., & Ritzwoller, M. H. (2008). Surface Wave Tomography of the Western United States from Ambient Seismic Noise: Rayleigh and Love Wave Phase Velocity Maps. Geophysical Journal International, 173(1), 281–298. https://doi.org/10.1111/j.1365-246x.2008.03720.x DOI: https://doi.org/10.1111/j.1365-246X.2008.03720.x
Lü, Y., & Chen, L. (2017). Upper crustal P-wave velocity structure beneath two volcanic areas in northern Iran. Science China Earth Sciences, 60, 786–795. https://doi.org/10.1007/s11430-016-9005-7 DOI: https://doi.org/10.1007/s11430-016-9005-7
Maggi, A., & Priestley, K. (2005). Surface Waveform Tomography of Turkish-Iranian Plateau. Geophysical Journal International, 160(3), 1068–1080. https://doi.org/10.1111/j.1365-246X.2005.02505 DOI: https://doi.org/10.1111/j.1365-246X.2005.02505.x
Maheri-Peyrov, M., Ghods, A., Abbasi, M., Bergman, E., & Sobouti, F. (2016). ML shear wave velocity tomography for the Iranian Plateau. Geophysical Journal International, 205(1), 179–191. https://doi.org/10.1093/gji/ggv504 DOI: https://doi.org/10.1093/gji/ggv504
Manaman, N. S., Shomali, H., & Koyi, H. (2010). New constraints on upper-mantle S-velocity structure and crustal thickness of the Iranian plateau using partitioned waveform inversion. Geophysical Journal International, 184, 247–267. https://doi.org/10.1111/j.1365-246x.2010.04822.x DOI: https://doi.org/10.1111/j.1365-246X.2010.04822.x
Mangino, S., & Priestley, K. (1998). The crustal structure of the southern Caspian region. Geophysical Journal International, 133(3), 630–648. https://doi.org/10.1046/j.1365-246X.1998.00520.x DOI: https://doi.org/10.1046/j.1365-246X.1998.00520.x
Menke, W. (2015). Review of the generalized least squares method. Surveys in Geophysics, 36, 1–25. https://doi.org/10.1007/s10712-014-9303-1 DOI: https://doi.org/10.1007/s10712-014-9303-1
Moradi, A., Hatzfeld, D., & Tatar, M. (2011). Microseismicity and seismotectonics of the North Tabriz fault (Iran). The International Journal of Integrated Solid Earth Sciences-Tectonophysics, 506(1–4), 22–30. https://doi.org/10.1016/j.tecto.2011.04.008 DOI: https://doi.org/10.1016/j.tecto.2011.04.008
Mortezanejad, G., Aziz Zanjani, A., Ghods, A., & Sobouti, F. (2013). Insights into the crustal structure and the seismotectonics of the Talesh region using the local and teleseismic data. Geosciences, 88(2), 38–47.
Mortezanejad, G., Rahimi, H., Romanelli, F., & Panza, G. (2019). Lateral variation of crust and upper mantle structures in NW Iran derived from surface wave analysis. Journal of Seismology, 23(1), 77–108. https://doi.org/10.1007/s10950-018-9794-1 DOI: https://doi.org/10.1007/s10950-018-9794-1
Mottaghi, A., Rezapour, M., & Korn, M. (2013). Ambient noise surface wave tomography of the Iranian Plateau. Geophysical Journal International, 193(1), 452–462. https://doi.org/10.1093/gji/ggs134 DOI: https://doi.org/10.1093/gji/ggs134
Mouthereau, F. (2011). Timing of uplift in the Zagros belt/Iranian plateau and accommodation of late Cenozoic Arabia–Eurasia convergence. Geological Magazine, 148(5), 726–738. https://doi.org/10.1017/s0016756811000306 DOI: https://doi.org/10.1017/S0016756811000306
Movaghari, R., Doloei, G. J., Yang, Y., Tatar, M., & Sadidkhouy, A. (2021). Crustal Radial Anisotropy of the Iranian Plateau Inferred from Ambient Noise Tomography. Journal of Geophysical Research: Solid Earth, 126. https://doi.org/10.1029/2020jb020236 DOI: https://doi.org/10.1029/2020JB020236
Movaghari, Ramin, & Doloei, G. J. (2019). 3-D crustal structure of the Iran plateau using phase velocity ambient noise tomography. Geophysical Journal International, 220, 1555–1568. https://doi.org/10.1093/gji/ggz537 DOI: https://doi.org/10.1093/gji/ggz537
Naghavi, M., Shomali, Z. H., & Zare, M. (2012). Lg Coda Variations in North-Central Iran. International Journal of Geophysics. https://doi.org/10.1155/2012/673506 DOI: https://doi.org/10.1155/2012/673506
Nolet, G. (1990). Partitioned waveform inversion and two-dimensional structure under the network of autonomously recording seismographs. Journal of Geophysical Research, 95, 8499–8512. https://doi.org/10.1029/jb095ib06p08499 DOI: https://doi.org/10.1029/JB095iB06p08499
Nolet, Guust. (2008). A breviary of seismic tomography: imaging the interior of the Earth and sun. Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511984709
Okay, A., Sengor, C., & Görur , N. (1994). Kinematic history of the opening of the Black Sea and its effect on the surrounding regions. Geology, 22(3), 267–270. https://doi.org/10.1130/0091-7613(1994)022<0267:KHOTOO>2.3.CO;2 DOI: https://doi.org/10.1130/0091-7613(1994)022<0267:KHOTOO>2.3.CO;2
Ouattara, Y., Zigone, D., & Maggi, A. (2019). Rayleigh Wave Group Velocity Dispersion Tomography of West Africa Using Regional Earthquakes and Ambient Seismic Noise. Journal of Seismology, 23(6), 1201–1221. https://doi.org/10.1007/s10950-019-09860-z DOI: https://doi.org/10.1007/s10950-019-09860-z
Paige, C., & Saunders, M. (1982). LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares. ACM Transactions on Mathematical Software, 8(1), 43–71. https://doi.org/10.1145/355984.355989 DOI: https://doi.org/10.1145/355984.355989
Pang, K.-N., Chung, S.-L., Zarrinkoub, M. H., Khati, M. M., Mohammadi, S. S., Chiu, H.-Y., Chu, C.-H., Lee, H.-Y., & Lo, C.-H. (2013). Eocene–Oligocene post-collisional magmatism in the Lut-Sistan region, eastern Iran: Magma genesis and tectonic implications. International Journal of Petrology, Mineralogy and Geochemistry-Lithos, 180–181, 234–251. https://doi.org/10.1016/j.lithos.2013.05.009 DOI: https://doi.org/10.1016/j.lithos.2013.05.009
Parker, R. L. (1994). Geophysical Inverse Theory. Princeton University Press. DOI: https://doi.org/10.1515/9780691206837
Paul, A., Hatzfeld, D., Kaviani, A., Tatar, M., & Péquegnat, C. (2010). Seismic imaging of the lithospheric structure of the Zagros mountain belt (Iran). Geological Society, London, Special Publications, 330(1), 5–18. https://doi.org/10.1144/SP330 DOI: https://doi.org/10.1144/SP330.2
Pedersen, H. A., Mars, J. I., & Amblard, P. O. (2003). Improving Surface-Wave Group Velocity Measurements by Energy Reassignment. GEOPHYSICS, 68(2), 677–684. https://doi.org/10.1190/1.1567238 DOI: https://doi.org/10.1190/1.1567238
Penrose, R. (1955). A generalized inverse for matrices. Mathematical Proceedings of the Cambridge Philosophical Society, 51(3), 406–413. https://doi.org/10.1017/s0305004100030401 DOI: https://doi.org/10.1017/S0305004100030401
Pijpers, Frank. P., & Thompson, M. J. (1992). Faster formulations of the optimally localized averages method for helioseismic inversions. Astronomy and Astrophysics, 262(1), 33–36.
Pijpers, Frank. P., & Thompson, M. J. (1993). The SOLA method for helioseismic inversion. Astronomy and Astrophysics, 281(1), 231–240.
Poli, P., Campillo, M., Pedersen, H., & Group, L. W. (2012). Body-Wave Imaging of Earth’s Mantle Discontinuities from Ambient Seismic Noise. Science, 338(6110), 1063–1065. https://doi.org/10.1126/science.1228194 DOI: https://doi.org/10.1126/science.1228194
Rahimi, H., Hamzehloo, H., Vaccari, F., & Panza, G. F. (2014). Shear-Wave Velocity Tomography of the Lithosphere-Asthenosphere System beneath the Iranian Plateau. Bulletin of the Seismological Society of America, 104, 2782–2798. https://doi.org/10.1785/0120130319 DOI: https://doi.org/10.1785/0120130319
Rahimi, H., Motaghi, K., Mukhopadhyay, S., & Hamzehloo, H. (2010a). Estimation of coda and shear wave attenuation in the volcanic area in SE Sabalan Mountain, NW Iran. Acta Geophysica, 58, 244–268. https://doi.org/10.2478/s11600-009-0023-8 DOI: https://doi.org/10.2478/s11600-009-0023-8
Rahimi, H., Motaghi, K., Mukhopadhyay, S., & Hamzehloo, H. (2010b). Variation of coda wave attenuation in the Alborz region and central Iran. Geophysical Journal International, 181, 1643–1654. https://doi.org/10.1111/j.1365-246x.2010.04574.x DOI: https://doi.org/10.1111/j.1365-246X.2010.04574.x
Rawlinson, Nicholas, Fichtner, A., Sambridge, M., & Young, M. (2014). Seismic tomography and the assessment of uncertainty . Advances in Geophysics, 55, 1–76. https://doi.org/10.1016/bs.agph.2014.08.001 DOI: https://doi.org/10.1016/bs.agph.2014.08.001
Rawlinson, Nick, & Sambridge, M. (2005). The fast marching method: an effective tool for tomographic imaging and tracking multiple phases in complex layered media. Exploration Geophysics, 36(4), 341–351. https://doi.org/10.1071/eg05341 DOI: https://doi.org/10.1071/EG05341
Rawlinson, Nick., & Spakman, W. (2016). On the use of sensitivity tests in seismic tomography. Geophysical Journal International, 205(2), 1221–1243. https://doi.org/10.1093/gji/ggw084 DOI: https://doi.org/10.1093/gji/ggw084
Rezaeifar, M., & Kissling, E. (2020). Regional 3-D lithosphere structure of the northern half of Iran by local earthquake tomography. Geophysical Journal International, 223(3), 1956–1972. https://doi.org/10.1093/gji/ggaa431 DOI: https://doi.org/10.1093/gji/ggaa431
Rezaeifar, Meysam., Kissling, E., & Shomali, M., Hossein. Shahpasandzadeh. (2016). 3D crustal structure of the northwest Alborz region (Iran) from local earthquake tomography. Swiss Journal of Geosciences, 109(1), 389–400. https://doi.org/10.1007/s00015-016-0219-2 DOI: https://doi.org/10.1007/s00015-016-0219-2
Sambridge, M., & Gudmundsson, O. (1998). Tomographic systems of equations with irregular cells. Journal of Geophysical Research: Solid Earth, 103, 773–781. https://doi.org/10.1029/97JB02602 DOI: https://doi.org/10.1029/97JB02602
Sandvol, E., Al-Damegh, K., Calvert, A., Seber, D., Barazangi, M., Homamad, R., Gök, R., & others. (2001). Tomographic Imaging of Lg and Sn Propagation in the Middle East. Pure and Applied Geophysics, 158, 1121–1163. https://doi.org/10.1007/PL00001218 DOI: https://doi.org/10.1007/PL00001218
Scales, J. A., & Snieder, R. (1997). To Bayes or not to Bayes? Geophysics, 62(4), 1045–1046. https://doi.org/10.1190/1.6241045.1 DOI: https://doi.org/10.1190/1.6241045.1
Sengor, A.M.C., & Kidd, W. S. F. (1979). Post-collisional tectonics of the Turkish-Iranian plateau and a comparison with Tibet. Tectonophysics, 55(3–4), 361–376. https://doi.org/10.1016/0040-1951(79)90184-7 DOI: https://doi.org/10.1016/0040-1951(79)90184-7
Sengor, A.M.Celal. (1990). A new model for the late Palaeozoic—Mesozoic tectonic evolution of Iran and implications for Oman. Geol. Soc. Spec. Publ., 49(1), 797–831. https://doi.org/10.1144/GSL.SP.1992.049.01.49 DOI: https://doi.org/10.1144/GSL.SP.1992.049.01.49
Shakiba, S., Amiri Fard, R., & Rahimi, H. (2020). 2D Local Earthquake Tomography of Rayleigh Waves in Northwest of Iran. Proceedings of the Iranian Geophysical Conference, 19, 801–804.
Stocklin, G. (1968). Structural history and tectonics of Iran: A review. American Association of Petroleum Geologists Bulletin, 52(7), 1229–1258. https://doi.org/10.1306/5D25C4A5-16C1-11D7-8645000102C1865D DOI: https://doi.org/10.1306/5D25C4A5-16C1-11D7-8645000102C1865D
Talebian, M., & Jackson, J. (2002). Offset on the Main Recent Fault of NW Iran and implications for the late Cenozoic tectonics of the Arabia–Eurasia collision zone. Geophysical Journal International, 150(2), 422–439. https://doi.org/10.1046/j.1365-246X.2002.01711.x DOI: https://doi.org/10.1046/j.1365-246X.2002.01711.x
Tarantola, A., & Valette, B. (1982). Inverse Problems: Quest for information. Journal of Geophysics, 50, 159–170.
Trampert, J. (1998). Global seismic tomography: the inverse problem and beyond. Inverse Problems, 14, 371–385. https://doi.org/10.1088/0266-5611/14/3/002 DOI: https://doi.org/10.1088/0266-5611/14/3/002
Trampert, J., & van Heijst, H. J. (2002). Global Azimuthal Anistotropy in the Transition Zone. Science, 296(5571), 1297–1299. https://doi.org/10.1126/science.1070264 DOI: https://doi.org/10.1126/science.1070264
van der Lee, S., & Nolet, G. (1997). Upper mantle S velocity structure of North America. Journal of Geophysical Research: Solid Earth, 102, 22815–22838. https://doi.org/10.1029/97JB01168 DOI: https://doi.org/10.1029/97JB01168
Yanovskaya, Tatiana B., Kizima, E. S., & Antonova, L. M. (1998). Structure of the crust in the Black Sea and adjoining regions from surface wave data. Journal of Seismology, 2(4), 303–316. https://doi.org/10.1023/A:1009716017960 DOI: https://doi.org/10.1023/A:1009716017960
Yanovskaya, T.B., & Ditmar, P. G. (1990). Smoothness criteria in surface wave tomography. Geophysical Journal International, 102, 63–72. https://doi.org/10.111/j.1365-246X.1990.tb00530.x DOI: https://doi.org/10.1111/j.1365-246X.1990.tb00530.x
Zandi, H., & Rahimi, H. (2020). 2-D Surface Wave Tomography in the Northwest Part of the Iranian Plateau. Journal of the Earth and Space Physics, 45(4), 133–142. https://doi.org/10.22059/jesphys.2019.275722.1007087
Zaroli, C. (2016). Global seismic tomography using Backus–Gilbert inversion. Geophysical Journal International, 207(2), 876–888. https://doi.org/10.1093/gji/ggw315 DOI: https://doi.org/10.1093/gji/ggw315
Zaroli, C. (2019). Seismic tomography using parameter-free Backus–Gilbert inversion. Geophysical Journal International, 218(1), 619–630. https://doi.org/10.1093/gji/ggz175 DOI: https://doi.org/10.1093/gji/ggz175
Zaroli, C., Koelemeijer, P., & Lambotte, S. (2017). Toward Seeing the Earth’s Interior Through Unbiased Tomographic Lenses. Geophysical Research Letters, 13(1173), 11399–11408. https://doi.org/10.1002/2017gl074996 DOI: https://doi.org/10.1002/2017GL074996
Zigone, D., Ben-Zion, Y., Campillo, M., & Roux, P. (2015–5). Seismic Tomography of the Southern California Plate Boundary Region from Noise-Based Rayleigh and Love Waves. Pure and Applied Geophysics, 172(5), 1007–1032. https://doi.org/10.1007/s00024-014-0872-1 DOI: https://doi.org/10.1007/s00024-014-0872-1
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Saman Amiri, Alessia Maggi, Mohammad Tatar, Dimitri Zigone, Christophe Zaroli
This work is licensed under a Creative Commons Attribution 4.0 International License.