Automated shear-wave splitting analysis for single- and multi- layer anisotropic media

Authors

DOI:

https://doi.org/10.26443/seismica.v2i2.1031

Keywords:

Passive Seismology, seismic anisotropy

Abstract

Shear-wave velocity anisotropy is present throughout the earth. The strength and orientation of anisotropy can be observed by shear-wave splitting (birefringence) accumulated between earthquake sources and receivers. Seismic deployments are getting ever larger, increasing the number of earthquakes detected and the number of source-receiver pairs. Here, we present a new Python software package, SWSPy, that fully automates shear-wave splitting analysis, useful for large datasets. The software is written in Python, so it can be easily integrated into existing workflows. Furthermore, seismic anisotropy studies typically make a single-layer approximation, but in this work we describe a new method for measuring anisotropy for multi-layered media, which is also implemented. We demonstrate the performance of SWSPy for a range of geological settings, from glaciers to Earth's mantle. We show how the package facilitates interpretation of an extensive dataset at a volcano, and how the new multi-layer method performs on synthetic and real-world data. The automated nature of SWSPy and the discrimination of multi-layer anisotropy will improve the quantification of seismic anisotropy, especially for tomographic applications. The method is also relevant for removing anisotropic effects, important for applications including full-waveform inversion and moment magnitude analysis.

References

Anandakrishnan, S., Wiens, D., & Nyblade, A. (2000). A Broadband Seismic Investigation of Deep Continental Structure Across the East-West Antarctic Boundary. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/XP_2000

Asplet, J., Wookey, J., & Kendall, M. (2020). A potential post-perovskite province in D″ beneath the Eastern Pacific: Evidence from new analysis of discrepant SKSa-SKKS shear-wave splitting. Geophysical Journal International, 221(3), 2075–2090. https://doi.org/10.1093/GJI/GGAA114

Asplet, J., Wookey, J., & Kendall, M. (2023). Inversion of shear wave waveforms reveal deformation in the lowermost mantle. Geophysical Journal International, 232(1), 97–114. https://doi.org/10.1093/gji/ggac328

Bacon, C. A., Johnson, J., White, R. S., & Rawlinson, N. (2021). On the origin of seismic anisotropy in the shallow crust of the Northern Volcanic Zone , Iceland. JGR Solid Earth. https://doi.org/10.1029/2021JB022655

Baird, A. F., Kendall, J. M., Fisher, Q. J., & Budge, J. (2017). The Role of Texture, Cracks, and Fractures in Highly Anisotropic Shales. Journal of Geophysical Research: Solid Earth, 122(12), 10,341-10,351. https://doi.org/10.1002/2017JB014710

Barruol, G., & Mainprice, D. (1993). A quantitative evaluation of the contribution of crustal rocks to the shear-wave splitting of teleseismic SKS waves. Physics of the Earth and Planetary Interiors, 78(3–4), 281–300. https://doi.org/10.1016/0031-9201(93)90161-2

Becker, T. W., Lebedev, S., & Long, M. D. (2012). On the relationship between azimuthal anisotropy from shear wave splitting and surface wave tomography. Journal of Geophysical Research: Solid Earth, 117(1), 1–17. https://doi.org/10.1029/2011JB008705

Becker, Thorsten W., & Lebedev, S. (2021). Dynamics of the Upper Mantle in Light of Seismic Anisotropy. In Geophysical Monograph Series (pp. 257–282). John Wiley & Sons. https://doi.org/10.1002/9781119528609.ch10

Bowman, J. R., & Ando, M. (1987). Shear-wave splitting in the upper-mantle wedge above the Tonga subduction zone. Geophysical Journal of the Royal Astronomical Society, 88(March), 25–41. https://doi.org/10.1111/j.1365-246X.1987.tb01367.x

British Antarctic Survey (BAS). (2009). Gauging Rutford Ice Stream Transients (GRIST). International Federation of Digital Seismograph Networks. https://www.fdsn.org/networks/detail/YG_2009/

California Institute of Technology and United States Geological Survey Pasadena. (1926). Southern California Seismic Network. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/CI

Chevrot, Sebastian. (2000). Multichannel analysis of shear wave splitting. Journal of Geophysical Research: Solid Earth, 105(B9), 21579–21590. https://doi.org/10.1029/2000jb900199

Chevrot, Sébastien. (2006). Finite-frequency vectorial tomography: A new method for high-resolution imaging of upper mantle anisotropy. Geophysical Journal International, 165(2), 641–657. https://doi.org/10.1111/j.1365-246X.2006.02982.x

Chevrot, Sébastien, Favier, N., & Komatitsch, D. (2004). Shear wave splitting in three-dimensional anisotropic media. Geophysical Journal International, 159(2), 711–720. https://doi.org/10.1111/j.1365-246X.2004.02432.x

Crampin, S. (1981). A review of wave motion in anisotropic and cracked elastic-media. Wave Motion, 3(4), 343–391. https://doi.org/10.1016/0165-2125(81)90026-3

Crampin, S., & Chastin, S. (2003). A review of shear wave splitting in the crack-critical crust. Geophysical Journal International, 155(1), 221–240. https://doi.org/10.1046/j.1365-246X.2003.02037.x

Crampin, S., & Gao, Y. (2006). A review of techniques for measuring shear-wave splitting above small earthquakes. Physics of the Earth and Planetary Interiors, 159(1–2), 1–14. https://doi.org/10.1016/j.pepi.2006.06.002

Creasy, N., Pisconti, A., Long, M. D., & Thomas, C. (2021). Modeling of Seismic Anisotropy Observations Reveals Plausible Lowermost Mantle Flow Directions Beneath Siberia. Geochemistry, Geophysics, Geosystems, 22(10). https://doi.org/10.1029/2021gc009924

Deng, J., Long, M. D., Creasy, N., Wagner, L., Beck, S., Zandt, G., Tavera, H., & Minaya, E. (2017). Lowermost mantle anisotropy near the eastern edge of the Pacific LLSVP : constraints from SKS – SKKS splitting intensity measurements. Geophysical Journal International, 210(June), 774–786. https://doi.org/10.1093/gji/ggx190

Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. (1996). A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In KDD-96 Proceedings (pp. 226–231). Elsevier. https://linkinghub.elsevier.com/retrieve/pii/B9780444527011000673

Fontaine, F. R., Barruol, G., Tommasi, A., & Bokelmann, G. H. R. (2007). Upper-mantle flow beneath French Polynesia from shear wave splitting. Geophysical Journal International, 170(3), 1262–1288. https://doi.org/10.1111/j.1365-246X.2007.03475.x

Fouch, M. J., Fischer, K. M., Parmentier, E. M., Wysession, M. E., & Clarke, T. J. (2000). Shear wave splitting, continental keels, and patterns of mantle flow. Journal of Geophysical Research: Solid Earth, 105(3), 6255–6275. https://doi.org/10.1029/1999jb900372

Gajek, W., Gräff, D., Hellmann, S., Rempel, A. W., & Walter, F. (2021). Diurnal expansion and contraction of englacial fracture networks revealed by seismic shear wave splitting. Communications Earth & Environment, 2(1), 1–8. https://doi.org/10.1038/s43247-021-00279-4

Grund, M. (2017). StackSplit - a plugin for multi-event shear wave splitting analyses in SplitLab. Computers and Geosciences, 105, 43–50. https://doi.org/10.1016/j.cageo.2017.04.015

Hall, C. E., Fischer, K. M., Parmentier, E. M., & Blackman, D. K. (2000). The influence of plate motions on three-dimensional back arc mantle flow and shear wave splitting. Journal of Geophysical Research: Solid Earth, 105(B12), 28009–28033. https://doi.org/10.1029/2000jb900297

Hall, S. A., Kendall, J. M., & van der Baan, M. (2004). Some comments on the effects of lower-mantle anisotropy on SKS and SKKS phases. Physics of the Earth and Planetary Interiors, 146(3–4), 469–481. https://doi.org/10.1016/j.pepi.2004.05.002

Hammond, J. O. S., Kendall, J. M., Wookey, J., Stuart, G. W., Keir, D., & Ayele, A. (2014). Differentiating flow, melt, or fossil seismic anisotropy beneath Ethiopia. Geochemistry, Geophysics, Geosystems, 15(5), 1878–1894. https://doi.org/10.1002/2013GC005185

Harland, S. R., Kendall, J.-M., Stuart, G. W., Lloyd, G. E., Baird, A. F., Smith, A. M., Pritchard, H. D., & Brisbourne, A. M. (2013). Deformation in Rutford Ice Stream, West Antarctica: measuring shear-wave anisotropy from icequakes. Annals of Glaciology, 54(64), 105–114. https://doi.org/10.3189/2013AoG64A033

Hein, G., Kolinsky, P., Bianchi, I., & Bokelmann, G. (2021). Shear wave splitting in the Alpine region. Geophysical Journal International, 227(3), 1996–2015. https://doi.org/10.1093/gji/ggab305

Hudson, T. S., Baird, A. F., Kendall, J. M., Kufner, S. K., Brisbourne, A. M., Smith, A. M., Butcher, A., Chalari, A., & Clarke, A. (2021). Distributed Acoustic Sensing (DAS) for Natural Microseismicity Studies: A Case Study From Antarctica. Journal of Geophysical Research: Solid Earth, 126(7), 1–19. https://doi.org/10.1029/2020jb021493

Hudson, T S, Brisbourne, A. M., Walter, F., Gräff, D., White, R. S., & Smith, A. M. (2020). Icequake Source Mechanisms for Studying Glacial Sliding. Journal of Geophysical Research: Earth Surface, 125(11). https://doi.org/10.1029/2020JF005627

Hudson, T. S., Brisbourne, A. M., White, R. S., Kendall, J. M., Arthern, R., & Smith, A. M. (2020). Breaking the Ice: Identifying Hydraulically Forced Crevassing. Geophysical Research Letters, 47(21). https://doi.org/10.1029/2020GL090597

Hudson, T. S., Kendall, J. M., Blundy, J. D., Pritchard, M. E., MacQueen, P., Wei, S. S., Gottsmann, J. H., & Lapins, S. (2023). Hydrothermal Fluids and Where to Find Them: Using Seismic Attenuation and Anisotropy to Map Fluids Beneath Uturuncu Volcano, Bolivia. Geophysical Research Letters, 50(5), 1–16. https://doi.org/10.1029/2022GL100974

Hudson, Thomas S., Kendall, J. M., Pritchard, M. E., Blundy, J. D., & Gottsmann, J. H. (2022). From slab to surface: Earthquake evidence for fluid migration at Uturuncu volcano, Bolivia. Earth and Planetary Science Letters, 577, 117268. https://doi.org/10.1016/j.epsl.2021.117268

Hudson, Thomas Samuel. (2023). SWSPy release 1.0.3. Zenodo. https://doi.org/10.5281/zenodo.8006598

Johnson, J. H., & Savage, M. K. (2012). Tracking volcanic and geothermal activity in the Tongariro Volcanic Centre, New Zealand, with shear wave splitting tomography. Journal of Volcanology and Geothermal Research, 223–224, 1–10. https://doi.org/10.1016/j.jvolgeores.2012.01.017

Johnson, J. H., Savage, M. K., & Townend, J. (2011). Distinguishing between stress-induced and structural anisotropy at Mount Ruapehu volcano, New Zealand. Journal of Geophysical Research: Solid Earth, 116(12), 1–18. https://doi.org/10.1029/2011JB008308

Jordan, T. M., Martín, C., Brisbourne, A. M., Schroeder, D. M., & Smith, A. M. (2022). Radar Characterization of Ice Crystal Orientation Fabric and Anisotropic Viscosity Within an Antarctic Ice Stream. Journal of Geophysical Research: Earth Surface, 127(6), 1–24. https://doi.org/10.1029/2022JF006673

Kendall, J. M. (2000). Seismic anisotropy in the boundary layers of the mantle. Geophysical Monograph Series, 117, 133–159. https://doi.org/10.1029/GM117p0133

Kendall, J.-M., Stuart, G. W., Ebinger, C. J., Bastow, I. D., & Keir, D. (2005). Magma-assisted rifting in Ethiopia. Nature, 433(7022), 146–148. https://doi.org/10.1038/nature03161

Krischer, L., Megies, T., Barsch, R., Beyreuther, M., Lecocq, T., Caudron, C., & Wassermann, J. (2015). ObsPy: a bridge for seismology into the scientific Python ecosystem. Computational Science & Discovery, 8(1), 14003. https://doi.org/10.1088/1749-4699/8/1/014003

Kufner, S. ‐K., Wookey, J., Brisbourne, A. M., Martín, C., Hudson, T. S., Kendall, J. M., & Smith, A. M. (2023). Strongly Depth‐Dependent Ice Fabric in a Fast‐Flowing Antarctic Ice Stream Revealed With Icequake Observations. Journal of Geophysical Research: Earth Surface, 128(3), 1–25. https://doi.org/10.1029/2022JF006853

Lam, S. K., Pitrou, A., & Seibert, S. (2015). Numba. Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC, 1–6. https://doi.org/10.1145/2833157.2833162

Levin, V., Menke, W., & Park, J. (1999). Shear wave splitting in the Appalachians and the Urals: A case for multilayered anisotropy. Journal of Geophysical Research: Solid Earth, 104(B8), 17975–17993. https://doi.org/10.1029/1999jb900168

Link, F., Reiss, M. C., & Rümpker, G. (2022). An automatized XKS-splitting procedure for large data sets: Extension package for SplitRacer and application to the USArray. Computers and Geosciences, 158(October 2021), 104961. https://doi.org/10.1016/j.cageo.2021.104961

Liptai, N., Gráczer, Z., Szanyi, G., Cloetingh, S. A. P. L., Süle, B., Aradi, L. E., Falus, G., Bokelmann, G., Timkó, M., Timár, G., Szabó, C., & Kovács, I. J. (2022). Seismic anisotropy in the mantle of a tectonically inverted extensional basin: A shear-wave splitting and mantle xenolith study on the western Carpathian-Pannonian region. Tectonophysics, 845(October). https://doi.org/10.1016/j.tecto.2022.229643

Liu, K. H., Gao, S. S., Gao, Y., & Wu, J. (2008). Shear wave splitting and mantle flow associated with the deflected Pacific slab beneath northeast Asia. Journal of Geophysical Research: Solid Earth, 113(1), 1–15. https://doi.org/10.1029/2007JB005178

Long, M. D., Gao, H., Klaus, A., Wagner, L. S., Fouch, M. J., James, D. E., & Humphreys, E. (2009). Shear wave splitting and the pattern of mantle flow beneath eastern Oregon. Earth and Planetary Science Letters, 288(3–4), 359–369. https://doi.org/10.1016/j.epsl.2009.09.039

Long, M. D., & Silver, P. G. (2009). Shear wave splitting and mantle anisotropy: Measurements, interpretations, and new directions. Surveys in Geophysics, 30(4–5), 407–461. https://doi.org/10.1007/s10712-009-9075-1

Mroczek, S., Savage, M. K., Hopp, C., & Sewell, S. M. (2020). Anisotropy as an indicator for reservoir changes: example from the Rotokawa and Ngatamariki geothermal fields, New Zealand. Geophysical Journal International, 220(1), 1–17. https://doi.org/10.1093/gji/ggz400

Nowacki, A., Wilks, M., Kendall, J. M., Biggs, J., & Ayele, A. (2018). Characterising hydrothermal fluid pathways beneath Aluto volcano, Main Ethiopian Rift, using shear wave splitting. Journal of Volcanology and Geothermal Research, 356, 331–341. https://doi.org/10.1016/j.jvolgeores.2018.03.023

Özalaybey, S., & Savage, M. K. (1994). Double‐layer anisotropy resolved from S phases. Geophysical Journal International, 117(3), 653–664. https://doi.org/10.1111/j.1365-246X.1994.tb02460.x

Pritchard, M. (2009). The life cycle of Andean volcanoes:Combining space-based and field studies. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/YS_2009

Pritchard, M. E., de Silva, S. L., Michelfelder, G., Zandt, G., McNutt, S. R., Gottsmann, J., West, M. E., Blundy, J., Christensen, D. H., Finnegan, N. J., Minaya, E., Sparks, R. S. J., Sunagua, M., Unsworth, M. J., Alvizuri, C., Comeau, M. J., del Potro, R., Díaz, D., Diez, M., … Ward, K. M. (2018). Synthesis: PLUTONS: Investigating the relationship between pluton growth and volcanism in the Central Andes. Geosphere, 14(3), 954–982. https://doi.org/10.1130/GES01578.1

Reiss, M C, Long, M. D., & Creasy, N. (2019). Lowermost Mantle Anisotropy Beneath Africa From Differential SKS ‐ SKKS Shear‐Wave Splitting. Journal of Geophysical Research: Solid Earth, 124(8), 8540–8564. https://doi.org/10.1029/2018jb017160

Reiss, Miriam Christina, & Rümpker, G. (2017). SplitRacer: MATLAB code and GUI for semiautomated analysis and interpretation of teleseismic shear-wave splitting. Seismological Research Letters, 88(2), 392–409. https://doi.org/10.1785/0220160191

Rümpker, G., & Silver, P. G. (1998a). Apparent shear-wave splitting parameters in the presence of vertically varying anisotropy. Geophysical Journal International, 135(3), 790–800. https://doi.org/10.1046/j.1365-246X.1998.00660.x

Rümpker, G., & Silver, P. G. (1998b). Apparent shear-wave splitting parameters in the presence of vertically varying anisotropy. Geophysical Journal International, 135(3), 790–800. https://doi.org/10.1046/j.1365-246X.1998.00660.x

Savage, M. K., Wessel, A., Teanby, N. A., & Hurst, A. W. (2010). Automatic measurement of shear wave splitting and applications to time varying anisotropy at Mount Ruapehu volcano, New Zealand. Journal of Geophysical Research: Solid Earth, 115(12), 1–17. https://doi.org/10.1029/2010JB007722

Savage, M. S. (1999). Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting? Reviews of Geophysics, 37(1), 65–106. https://doi.org/10.1029/98RG02075

Schultz, R., Beroza, G. C., & Ellsworth, W. L. (2021). A risk-based approach for managing hydraulic fracturing–induced seismicity. Science, 372(6541), 504–507. https://doi.org/10.1126/science.abg5451

Sicilia, D., Montagner, J. P., Cara, M., Stutzmann, E., Debayle, E., Lépine, J. C., Lévêque, J. J., Beucler, E., Sebai, A., Roult, G., Ayele, A., & Sholan, J. M. (2008). Upper mantle structure of shear-waves velocities and stratification of anisotropy in the Afar Hotspot region. Tectonophysics, 462(1–4), 164–177. https://doi.org/10.1016/j.tecto.2008.02.016

Silver, P. G., & Chan, W. W. (1991). Shear Wave Splitting and Sub continental Mantle Deformation. Journal of Geophysical Research, 96, 429–454. https://doi.org/10.1029/91JB00899

Silver, P. G., & Savage, M. K. (1994). The Interpretation of shear-wave splitting parameters in the presence of two anisotropic layers. Geophysical Journal International, 5(January), 689–691. https://doi.org/10.1111/j.1365-246x.1994.tb04027.x

Smith, E.C., Smith, A. M., White, R. S., Brisbourne, A. M., & Pritchard, H. D. (2015). Mapping the ice-bed interface characteristics of Rutford Ice Stream, West Antarctica, using microseismicity. Journal of Geophysical Research: Earth Surface, 120(9), 1881–1894. https://doi.org/10.1002/2015JF003587

Smith, Emma C., Baird, A. F., Kendall, J. M., Martin, C., White, R. S., Brisbourne, A. M., & Smith, A. M. (2017). Ice fabric in an Antarctic ice stream interpreted from seismic anisotropy. Geophysical Research Letters, 44(8), 3710–3718. https://doi.org/10.1002/2016GL072093

Spingos, I., Kaviris, G., Millas, C., Papadimitriou, P., & Voulgaris, N. (2020). Pytheas: An open-source software solution for local shear-wave splitting studies. Computers and Geosciences, 134(July 2019), 104346. https://doi.org/10.1016/j.cageo.2019.104346

Stork, A. L., Verdon, J. P., & Kendall, J. M. (2014). The robustness of seismic moment and magnitudes estimated using spectral analysis. Geophysical Prospecting, 62(4), 862–878. https://doi.org/10.1111/1365-2478.12134

Teanby, N. A., Kendall, J., & Baan, M. V. D. (2004). Automation of Shear-Wave Splitting Measurements using Cluster Analysis. Bulletin of the Seismological Society of America, 94(2), 453–463. https://doi.org/10.1785/0120030123

Verdon, J. P., & Kendall, J. M. (2011). Detection of multiple fracture sets using observations of shear-wave splitting in microseismic data. Geophysical Prospecting, 59(4), 593–608. https://doi.org/10.1111/j.1365-2478.2010.00943.x

Vinnik, L., Breger, L., & Romanowicz, B. (1998). Anisotropic structures at the base of the Earth’s mantle. Nature, 393(6685), 564–567. https://doi.org/10.1038/31208

Walpole, J., Wookey, J., Masters, G., & Kendall, J. M. (2014). A uniformly processed data set of SKS shear wave splitting measurements: A global investigation of upper mantle anisotropy beneath seismic stations. Geochemistry, Geophysics, Geosystems, 15(5), 1991–2010. https://doi.org/10.1002/2014gc005278

Walsh, E., Arnold, R., & Savage, M. K. (2013). Silver and Chan revisited. Journal of Geophysical Research: Solid Earth, 118(10), 5500–5515. https://doi.org/10.1002/jgrb.50386

Wolf, J., Frost, D. A., Long, M. D., Garnero, E., Aderoju, A. O., Creasy, N., & Bozdağ, E. (2023). Observations of Mantle Seismic Anisotropy Using Array Techniques: Shear‐Wave Splitting of Beamformed SmKS Phases. Journal of Geophysical Research: Solid Earth, 128(1). https://doi.org/10.1029/2022jb025556

Wolf, J., Long, M. D., Leng, K., & Nissen-Meyer, T. (2022). Constraining deep mantle anisotropy with shear wave splitting measurements: challenges and new measurement strategies. Geophysical Journal International, 230(1), 507–527. https://doi.org/10.1093/gji/ggac055

Wolfe, C. J., & Silver, P. G. (1998). Seismic anisotropy of oceanic upper mantle: Shear wave splitting methodologies and observations. Journal of Geophysical Research: Solid Earth, 103(1), 749–771. https://doi.org/10.1029/97jb02023

Wolfe, C. J., & Solomon, S. C. (1998). Shear-wave splitting and implications for mantle flow beneath the MELT region of the East Pacific Rise. Science, 280(5367), 1230–1232. https://doi.org/10.1126/science.280.5367.1230

Wookey, J. (2012). Direct probabilistic inversion of shear wave data for seismic anisotropy. Geophysical Journal International, 189(2), 1025–1037. https://doi.org/10.1111/j.1365-246X.2012.05405.x

Wookey, J., & Kendall, J. M. (2008). Constraints on lowermost mantle mineralogy and fabric beneath Siberia from seismic anisotropy. Earth and Planetary Science Letters, 275(1–2), 32–42. https://doi.org/10.1016/j.epsl.2008.07.049

Wuestefeld, A., Al-Harrasi, O., Verdon, J. P., Wookey, J., & Kendall, J. M. (2010). A strategy for automated analysis of passive microseismic data to image seismic anisotropy and fracture characteristics. Geophysical Prospecting, 58(5), 755–773. https://doi.org/10.1111/j.1365-2478.2010.00891.x

Wüstefeld, A., Bokelmann, G., Zaroli, C., & Barruol, G. (2008). SplitLab: A shear-wave splitting environment in Matlab. Computers and Geosciences, 34(5), 515–528. https://doi.org/10.1016/j.cageo.2007.08.002

Yardley, G. S., & Crampin, S. (1991). Extensive-dilatancy anisotropy: Relative information in VSPs and reflection surveys. Geophysical Prospecting, 39(3), 337–355. https://doi.org/10.1111/j.1365-2478.1991.tb00316.x

Additional Files

Published

2023-10-19

How to Cite

Hudson, T. S., Asplet, J., & Walker, A. M. (2023). Automated shear-wave splitting analysis for single- and multi- layer anisotropic media. Seismica, 2(2). https://doi.org/10.26443/seismica.v2i2.1031

Issue

Section

Reports (excl. Fast Reports)

Funding data