Seismic record of a long duration dispersive signal after the 15 January 2022 Hunga-Tonga eruption

Authors

  • Jordi Diaz Geosciences Barcelona (GEO3BCN), CSIC, Barcelona, Spain

DOI:

https://doi.org/10.26443/seismica.v2i2.1033

Keywords:

Hunga-Tonga, Tsunami, seismic data, gravity wave, long duration dispersive signal

Abstract

Data acquired by broadband seismic stations distributed around the world are used to document the exceptionally long duration signal from the tsunami-associated gravity wave that followed the January 2022 Hunga-Tonga eruption. The first arrivals of this wave, with a frequency of around 2 mHz, are recorded at the time the tsunami arrives to each station, but the highest recorded frequencies, which reach 40 mHz, arrive 5 days later at some sites, following the prediction of a gravity wave originating at the Hunga-Tonga region and traveling in deep water. This dispersive signal is detected in most of the stations located in the Pacific Ocean basin and its coasts, but also in the Indian Ocean, Antarctica, and some stations in North America located hundreds of kilometers from the coastline. The signal is compared with the data gathered after earthquakes that have produced large tsunamis, showing that the seismic records from the Hunga-Tonga eruption are very different. Following the hypothesis pointed out by Omira et al 2023, we propose that the origin of this exceptional characteristic is due to the interaction between the tsunami and atmospheric waves that travel a little faster.

References

Albuquerque Seismological Laboratory/USGS. (2014). Global Seismograph Network – GSN-IRIS/USGS. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/IU

Amores, A., Monserrat, S., Marcos, M., Argüeso, D., Villalonga, J., Jordà, G., & Gomis, D. (2022). Numerical Simulation of Atmospheric Lamb Waves Generated by the 2022 Hunga-Tonga Volcanic Eruption. Geophysical Research Letters, 49(6). https://doi.org/10.1029/2022gl098240 DOI: https://doi.org/10.1029/2022GL098240

Astafyeva, E., Maletckii, B., Mikesell, T. D., Munaibari, E., Ravanelli, M., Coisson, P., Manta, F., & Rolland, L. (2022). The 15 January 2022 Hunga Tonga Eruption History as Inferred From Ionospheric Observations. Geophysical Research Letters, 49(10). https://doi.org/10.1029/2022gl098827 DOI: https://doi.org/10.1029/2022GL098827

Aster, R. C., Lipovsky, B. P., Cole, H. M., Bromirski, P. D., Gerstoft, P., Nyblade, A., Wiens, D. A., & Stephen, R. (2021). Swell-Triggered Seismicity at the Near-Front Damage Zone of the Ross Ice Shelf. Seismological Research Letters, 92(5), 2768–2792. https://doi.org/10.1785/0220200478 DOI: https://doi.org/10.1785/0220200478

Carr, J. L., Ákos Horváth, Wu, D. L., & Friberg, M. D. (2022). Stereo Plume Height and Motion Retrievals for the Record-Setting Hunga Tonga-Hunga Ha’apai Eruption of 15 January 2022. Geophysical Research Letters, 49(9). https://doi.org/10.1029/2022gl098131 DOI: https://doi.org/10.1029/2022GL098131

Carvajal, M., Sepúlveda, I., Gubler, A., & Garreaud, R. (2022). Worldwide Signature of the 2022 Tonga Volcanic Tsunami. Geophysical Research Letters, 49(6). https://doi.org/10.1029/2022gl098153 DOI: https://doi.org/10.1029/2022GL098153

Cathles, L. M., Okal, E. A., & MacAyeal, D. R. (2009). Seismic observations of sea swell on the floating Ross Ice Shelf, Antarctica. Journal of Geophysical Research: Earth Surface, 114(F2). https://doi.org/10.1029/2007jf000934 DOI: https://doi.org/10.1029/2007JF000934

Denamiel, C., Vasylkevych, S., Žagar, N., Zemunik, P., & Vilibić, I. (2023). Destructive Potential of Planetary Meteotsunami Waves beyond the Hunga Tonga–Hunga Ha`apai Volcano Eruption. Bulletin of the American Meteorological Society, 104(1), E178–E191. https://doi.org/10.1175/bams-d-22-0164.1 DOI: https://doi.org/10.1175/BAMS-D-22-0164.1

Diaz, J. (2022). Atmosphere-solid earth coupling signals generated by the 15 January 2022 Hunga-Tonga eruption. Communications Earth & Environment, 3(1). https://doi.org/10.1038/s43247-022-00616-1 DOI: https://doi.org/10.1038/s43247-022-00616-1

Garza-Girón, R., Lay, T., Pollitz, F., Kanamori, H., & Rivera, L. (2023). Solid Earth–atmosphere interaction forces during the 15 January 2022 Tonga eruption. Science Advances, 9(2). https://doi.org/10.1126/sciadv.add4931 DOI: https://doi.org/10.1126/sciadv.add4931

GEOFON Data Centre. (1993). GEOFON Seismic Network. GFZ Data Services. https://doi.org/10.14470/TR560404

Goldstein, P., Dodge, D., Firpo, M., & Minner, L. (2003). 85.5 SAC2000: Signal processing and analysis tools for seismologists and engineers. In International Geophysics (pp. 1613–1614). Elsevier. https://doi.org/10.1016/s0074-6142(03)80284-x DOI: https://doi.org/10.1016/S0074-6142(03)80284-X

Harkrider, D., & Press, F. (1967). The Krakatoa Air-Sea Waves: an Example of Pulse Propagation in Coupled Systems. Geophysical Journal International, 13(1–3), 149–159. https://doi.org/10.1111/j.1365-246x.1967.tb02150.x DOI: https://doi.org/10.1111/j.1365-246X.1967.tb02150.x

Hell, M. C., Cornelle, B. D., Gille, S. T., Miller, A. J., & Bromirski, P. D. (2019). Identifying Ocean Swell Generation Events from Ross Ice Shelf Seismic Data. Journal of Atmospheric and Oceanic Technology, 36(11), 2171–2189. https://doi.org/10.1175/jtech-d-19-0093.1 DOI: https://doi.org/10.1175/JTECH-D-19-0093.1

Ho, T.-C., Mori, N., & Yamada, M. (2023). Ocean gravity waves generated by the meteotsunami at the Japan Trench following the 2022 Tonga volcanic eruption. Earth, Planets and Space, 75(1). https://doi.org/10.1186/s40623-023-01775-x DOI: https://doi.org/10.1186/s40623-023-01775-x

IPGP, & EOST. (1982). GEOSCOPE, French global network of broad band seismic stations. Institut de physique du globe de Paris (IPGP), Université de Paris. https://doi.org/10.18715/GEOSCOPE.G

Krischer, L., Megies, T., Barsch, R., Beyreuther, M., Lecocq, T., Caudron, C., & Wassermann, J. (2015). ObsPy: a bridge for seismology into the scientific Python ecosystem. Computational Science & Discovery, 8(1), 14003. https://doi.org/10.1088/1749-4699/8/1/014003 DOI: https://doi.org/10.1088/1749-4699/8/1/014003

Le Bras, R. J., Zampolli, M., Metz, D., Haralabus, G., Bittner, P., Villarroel, M., Matsumoto, H., Graham, G., & Özel, N. M. (2022). The Hunga Tonga–Hunga Ha’apai Eruption of 15 January 2022: Observations on the International Monitoring System (IMS) Hydroacoustic Stations and Synergy with Seismic and Infrasound Sensors. Seismological Research Letters, 94(2A), 578–588. https://doi.org/10.1785/0220220240 DOI: https://doi.org/10.1785/0220220240

Lipovsky, B. P. (2018). Ice Shelf Rift Propagation and the Mechanics of Wave-Induced Fracture. Journal of Geophysical Research: Oceans, 123(6), 4014–4033. https://doi.org/10.1029/2017jc013664 DOI: https://doi.org/10.1029/2017JC013664

Lynett, P., McCann, M., Zhou, Z., Renteria, W., Borrero, J., Greer, D., Fa’anunu, O., Bosserelle, C., Jaffe, B., Selle, S. L., Ritchie, A., Snyder, A., Nasr, B., Bott, J., Graehl, N., Synolakis, C., Ebrahimi, B., & Cinar, G. E. (2022). Diverse tsunamigenesis triggered by the Hunga Tonga-Hunga Ha’apai eruption. Nature, 609(7928), 728–733. https://doi.org/10.1038/s41586-022-05170-6 DOI: https://doi.org/10.1038/s41586-022-05170-6

MacAyeal, D. R., Okal, E. A., Aster, R. C., Bassis, J. N., Brunt, K. M., Cathles, L. Mac., Drucker, R., Fricker, H. A., Kim, Y.-J., Martin, S., Okal, M. H., Sergienko, O. V., Sponsler, M. P., & Thom, J. E. (2006). Transoceanic wave propagation links iceberg calving margins of Antarctica with storms in tropics and Northern Hemisphere. Geophysical Research Letters, 33(17). https://doi.org/10.1029/2006gl027235 DOI: https://doi.org/10.1029/2006GL027235

Matoza, R. S., Fee, D., Assink, J. D., Iezzi, A. M., Green, D. N., Kim, K., Toney, L., Lecocq, T., Krishnamoorthy, S., Lalande, J.-M., Nishida, K., Gee, K. L., Haney, M. M., Ortiz, H. D., Brissaud, Q., Martire, L., Rolland, L., Vergados, P., Nippress, A., … Wilson, D. C. (2022). Atmospheric waves and global seismoacoustic observations of the January 2022 Hunga eruption, Tonga. Science, 377(6601), 95–100. https://doi.org/10.1126/science.abo7063 DOI: https://doi.org/10.1126/science.abo7063

Megies, T., Beyreuther, M., Barsch, R., Krischer, L., & Wassermann, J. (2011). ObsPy - what can it do for data centers and observatories? Annals of Geophysics, 54. https://doi.org/10.4401/ag-4838 DOI: https://doi.org/10.4401/ag-4838

Munk, W. H., & Snodgrass, F. E. (1957). Measurements of southern swell at Guadalupe Island. Deep Sea Research (1953), 4, 272–286. https://doi.org/10.1016/0146-6313(56)90061-2 DOI: https://doi.org/10.1016/0146-6313(56)90061-2

National Geophysical Data Center. (2006). 2-minute Gridded Global Relief Data (ETOPO2) v2.

Okal, E. A. (2007). Seismic Records of the 2004 Sumatra and Other Tsunamis: A Quantitative Study. In Pageoph Topical Volumes (pp. 325–353). Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8364-0_4 DOI: https://doi.org/10.1007/978-3-7643-8364-0_4

Omira, R., Ramalho, R. S., Kim, J., González, P. J., Kadri, U., Miranda, J. M., Carrilho, F., & Baptista, M. A. (2022). Global Tonga tsunami explained by a fast-moving atmospheric source. Nature, 609(7928), 734–740. https://doi.org/10.1038/s41586-022-04926-4 DOI: https://doi.org/10.1038/s41586-022-04926-4

Poplavskiy, A. S., & Le Bras, R. J. (2013). Recordings of Long-Period Fluctuations Associated with the Passage of Three Distinct Tsunamis at Broadband Seismometers Made at the International Monitoring System (IMS) Hydroacoustic T-station H06 (Socorro Island, Mexico). Seismological Research Letters, 84(4), 567–578. https://doi.org/10.1785/0220120116 DOI: https://doi.org/10.1785/0220120116

Ringler, A. T., Anthony, R. E., Aster, R. C., Taira, T., Shiro, B. R., Wilson, D. C., Angelis, S. D., Ebeling, C., Haney, M., Matoza, R. S., & Ortiz, H. D. (2022). The global seismographic network reveals atmospherically coupled normal modes excited by the 2022 Hunga Tonga eruption. Geophysical Journal International, 232(3), 2160–2174. https://doi.org/10.1093/gji/ggac284 DOI: https://doi.org/10.1093/gji/ggac284

Scripps Institution of Oceanography. (1986). Global Seismograph Network – IRIS/IDA. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/II

Vergoz, J., Hupe, P., Listowski, C., Pichon, A. L., Garcés, M. A., Marchetti, E., Labazuy, P., Ceranna, L., Pilger, C., Gaebler, P., Näsholm, S. P., Brissaud, Q., Poli, P., Shapiro, N., Negri, R. D., & Mialle, P. (2022). IMS observations of infrasound and acoustic-gravity waves produced by the January 2022 volcanic eruption of Hunga, Tonga: A global analysis. Earth and Planetary Science Letters, 591, 117639. https://doi.org/10.1016/j.epsl.2022.117639 DOI: https://doi.org/10.1016/j.epsl.2022.117639

Wright, C. J., Hindley, N. P., Alexander, M. J., Barlow, M., Hoffmann, L., Mitchell, C. N., Prata, F., Bouillon, M., Carstens, J., Clerbaux, C., Osprey, S. M., Powell, N., Randall, C. E., & Yue, J. (2022). Surface-to-space atmospheric waves from Hunga Tonga–Hunga Ha’apai eruption. Nature, 609(7928), 741–746. https://doi.org/10.1038/s41586-022-05012-5 DOI: https://doi.org/10.1038/s41586-022-05012-5

Yuan, X., Kind, R., & Pedersen, H. A. (2005). Seismic monitoring of the Indian Ocean tsunami. Geophysical Research Letters, 32(15). https://doi.org/10.1029/2005gl023464 DOI: https://doi.org/10.1029/2005GL023464

Zhou, Y., Niu, X., Liu, H., Zhao, G., & Ye, X. (2023). Tsunami waves induced by the atmospheric pressure disturbance originating from the 2022 volcanic eruption in Tonga. Applied Ocean Research, 130, 103447. https://doi.org/10.1016/j.apor.2022.103447 DOI: https://doi.org/10.1016/j.apor.2022.103447

Published

2023-11-29

How to Cite

Diaz, J. (2023). Seismic record of a long duration dispersive signal after the 15 January 2022 Hunga-Tonga eruption. Seismica, 2(2). https://doi.org/10.26443/seismica.v2i2.1033

Issue

Section

Articles