Unraveling the Evolution of an Unusually Active Earthquake Sequence Near Sheldon, Nevada
DOI:
https://doi.org/10.26443/seismica.v2i2.1051Keywords:
Earthquake swarms, Earthquake sources, Earthquake detectionAbstract
One of most universal statistical properties of earthquakes is the tendency to cluster in space and time. Yet while clustering is pervasive, individual earthquake sequences can vary markedly in duration, spatial extent, and time evolution. In July 2014, a prolific earthquake sequence initiated within the Sheldon Wildlife Refuge in northwest Nevada, USA. The sequence produced 26 M4 earthquakes and several hundred M3s, with no clear mainshock or obvious driving force. Here we combine a suite of seismological analysis techniques to better characterize this unusual earthquake sequence. High-precision relocations reveal a clear, east dipping normal fault as the dominant structure that intersects with a secondary, subvertical cross fault. Seismicity occurs in burst of activity along these two structures before eventually transitioning to shallower structures to the east. Inversion of hundreds of moment tensors constrain the overall normal faulting stress regime. Source spectral analysis suggests that the stress drops and rupture properties of these events are typical for tectonic earthquakes in the western US. While regional station coverage is sparse in this remote study region, the timely installation of a temporary seismometer allows us to detect nearly 70,000 earthquakes over a 40-month time period when the seismic activity is highest. Such immense productivity is difficult to reconcile with current understanding of crustal deformation in the region and may be facilitated by local hydrothermal processes and earthquake triggering at the transitional intersection of subparallel fault systems.
References
Abercrombie, R. E. (2013). Comparison of direct and coda wave stress drop measurements for the Wells, Nevada, earthquake sequence. Journal of Geophysical Research: Solid Earth, 118(4), 1458–1470. https://doi.org/10.1029/2012JB009638 DOI: https://doi.org/10.1029/2012JB009638
Abercrombie, R. E. (2015). Investigating uncertainties in empirical Green’s function analysis of earthquake source parameters. Journal of Geophysical Research: Solid Earth, 120(6), 4263–4277. https://doi.org/10.1002/2015JB011984 DOI: https://doi.org/10.1002/2015JB011984
Abercrombie, R. E. (2021). Resolution and uncertainties in estimates of earthquake stress drop and energy release. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 379(2196), 20200131. https://doi.org/10.1098/rsta.2020.0131 DOI: https://doi.org/10.1098/rsta.2020.0131
Abercrombie, R. E., Bannister, S., Ristau, J., & Doser, D. (2017). Variability of earthquake stress drop in a subduction setting, the Hikurangi Margin, New Zealand. Geophysical Journal International, 208(1), 306–320. https://doi.org/10.1093/gji/ggw393 DOI: https://doi.org/10.1093/gji/ggw393
Aki, K., & Richards, P. G. (2002). Quantitative seismology (2nd ed.). University Science Books.
Anderson, J.G., Tibuleac, I., Anooshehpoor, A., Biasi, G., Smith, K., & Seggern, D. (2009). Exceptional Ground Motions Recorded during the 26 April 2008 Mw 5.0 Earthquake in Mogul, Nevada. Bulletin of the Seismological Society of America, 99(6), 3475–3486. https://doi.org/10.1785/0120080352 DOI: https://doi.org/10.1785/0120080352
Anderson, John G., & Hough, S. E. (1984). A model for the shape of the fourier amplitude spectrum of acceleration at high frequencies. Bulletin of the Seismological Society of America, 74(5), 1969–1993.
Angelier, J., Tarantola, A., Valette, B., & Manoussis, S. (1982). Inversion of field data in fault tectonics to obtain the regional stress — I. Single phase fault populations: a new method of computing the stress tensor. Geophysical Journal International, 69(3), 607–621. https://doi.org/10.1111/j.1365-246X.1982.tb02766.x DOI: https://doi.org/10.1111/j.1365-246X.1982.tb02766.x
Barnhart, W. D., Gold, R. D., & Hollingsworth, J. (2020). Localized fault-zone dilatancy and surface inelasticity of the 2019 Ridgecrest earthquakes. Nature Geoscience, 1–6. https://doi.org/10.1038/s41561-020-0628-8 DOI: https://doi.org/10.1038/s41561-020-0628-8
Becker, T. W., Hashima, A., Freed, A. M., & Sato, H. (2018). Stress change before and after the 2011 M9 Tohoku-oki earthquake. Earth and Planetary Science Letters, 504, 174–184. https://doi.org/10.1016/j.epsl.2018.09.035 DOI: https://doi.org/10.1016/j.epsl.2018.09.035
Bell, J. W., Amelung, F., & Henry, C. D. (2012). InSAR analysis of the 2008 Reno-Mogul earthquake swarm: Evidence for westward migration of Walker Lane style dextral faulting. Geophysical Research Letters, 39(18). https://doi.org/10.1029/2012GL052795 DOI: https://doi.org/10.1029/2012GL052795
Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., & Wassermann, J. (2010). ObsPy: A Python Toolbox for Seismology. Seismological Research Letters, 81(3), 530–533. https://doi.org/10.1785/gssrl.81.3.530 DOI: https://doi.org/10.1785/gssrl.81.3.530
Blewitt, G., Hammond, W., & Kreemer, C. (2018). Harnessing the GPS Data Explosion for Interdisciplinary Science. Eos, 99. https://doi.org/10.1029/2018EO104623 DOI: https://doi.org/10.1029/2018EO104623
Boatwright, J. (1980). A spectral theory for circular seismic sources; simple estimates of source dimension, dynamic stress drop, and radiated seismic energy. Bulletin of the Seismological Society of America, 70(1), 1–27. DOI: https://doi.org/10.1785/BSSA0840010001
Brune, J. N. (1970). Tectonic stress and the spectra of seismic shear waves from earthquakes. Journal of Geophysical Research, 75(26), 4997–5009. https://doi.org/10.1029/JB075i026p04997 DOI: https://doi.org/10.1029/JB075i026p04997
Busby, C. J. (2013). Birth of a plate boundary at ca. 12 Ma in the Ancestral Cascades arc, Walker Lane belt of California and Nevada. Geosphere, 9(5), 1147–1160. https://doi.org/10.1130/GES00928.1 DOI: https://doi.org/10.1130/GES00928.1
Chen, X., & Shearer, P. M. (2011). Comprehensive analysis of earthquake source spectra and swarms in the Salton Trough, California. Journal of Geophysical Research, 116(B9). https://doi.org/10.1029/2011JB008263 DOI: https://doi.org/10.1029/2011JB008263
Chupik, C., Koehler, R., & Keen‐Zebert, A. (2021). Complex Holocene Fault Ruptures on the Warm Springs Valley Fault in the Northern Walker Lane, Nevada–Northern California. Bulletin of the Seismological Society of America, 112(1), 575–596. https://doi.org/10.1785/0120200271 DOI: https://doi.org/10.1785/0120200271
Coble, M. A., & Mahood, G. A. (2016). Geology of the High Rock caldera complex, northwest Nevada, and implications for intense rhyolitic volcanism associated with flood basalt magmatism and the initiation of the Snake River Plain–Yellowstone trend. Geosphere, 12(1), 58–113. https://doi.org/10.1130/GES01162.1 DOI: https://doi.org/10.1130/GES01162.1
Cochran, E. S., Page, M. T., Elst, N. J., Ross, Z. E., & Trugman, D. T. (2023). Fault Roughness at Seismogenic Depths and Links to Earthquake Behavior. The Seismic Record, 3(1), 37–47. https://doi.org/10.1785/0320220043 DOI: https://doi.org/10.1785/0320220043
Cox, S. F. (2016). Injection-Driven Swarm Seismicity and Permeability Enhancement: Implications for the Dynamics of Hydrothermal Ore Systems in High Fluid-Flux, Overpressured Faulting Regimes—An Invited Paper. Economic Geology, 111(3), 559–587. https://doi.org/10.2113/econgeo.111.3.559 DOI: https://doi.org/10.2113/econgeo.111.3.559
Dohrenwend, J. C., & Moring, B. C. (1991). Reconnaissance photogeologic map of young faults in the Vya 1°x2° quadrangle, Nevada-Oregon-California. U.S. Geological Survey. https://doi.org/10.3133/mf2174 DOI: https://doi.org/10.3133/mf2174
Faulds, J. E., & Henry, C. D. (2008). Tectonic influences on the spatial and temporal evolution of the Walker Lane: An incipient transform fault along the evolving Pacific - North American plate boundary. Arizona Geological Society Digest, 22, 437–470.
Faulds, J. E., Henry, C. D., & Hinz, N. H. (2005). Kinematics of the northern Walker Lane: An incipient transform fault along the Pacific–North American plate boundary. Geology, 33(6), 505–508. https://doi.org/10.1130/G21274.1 DOI: https://doi.org/10.1130/G21274.1
Gephart, J. W., & Forsyth, D. W. (1984). An improved method for determining the regional stress tensor using earthquake focal mechanism data: Application to the San Fernando Earthquake Sequence. Journal of Geophysical Research: Solid Earth, 89(B11), 9305–9320. https://doi.org/10.1029/JB089iB11p09305 DOI: https://doi.org/10.1029/JB089iB11p09305
Gold, R. D., Briggs, R. W., Personius, S. F., Crone, A. J., Mahan, S. A., & Angster, S. J. (2014). Latest Quaternary paleoseismology and evidence of distributed dextral shear along the Mohawk Valley fault zone, northern Walker Lane, California. Journal of Geophysical Research: Solid Earth, 119(6), 5014–5032. https://doi.org/10.1002/2014JB010987 DOI: https://doi.org/10.1002/2014JB010987
Gutenberg, B., & Richter, C. F. (1944). Frequency of earthquakes in California. Bulletin of the Seismological Society of America, 34(4), 185–188. DOI: https://doi.org/10.1785/BSSA0340040185
Hainzl, S. (2002). Indications for a successively triggered rupture growth underlying the 2000 earthquake swarm in Vogtland/NW Bohemia. Journal of Geophysical Research, 107(B12). https://doi.org/10.1029/2002JB001865 DOI: https://doi.org/10.1029/2002JB001865
Hainzl, S. (2004). Seismicity patterns of earthquake swarms due to fluid intrusion and stress triggering. Geophysical Journal International, 159(3), 1090–1096. https://doi.org/10.1111/j.1365-246X.2004.02463.x DOI: https://doi.org/10.1111/j.1365-246X.2004.02463.x
Hanks, T. C. (1982). fmax. Bulletin of the Seismological Society of America, 72(6A), 1867–1879. DOI: https://doi.org/10.1785/BSSA07206A1867
Hanks, T. C., & Boore, D. M. (1984). Moment-magnitude relations in theory and practice. Journal of Geophysical Research: Solid Earth, 89(B7), 6229–6235. https://doi.org/10.1029/JB089iB07p06229 DOI: https://doi.org/10.1029/JB089iB07p06229
Hardebeck, J. L., & Michael, A. J. (2006). Damped regional-scale stress inversions: Methodology and examples for southern California and the Coalinga aftershock sequence. Journal of Geophysical Research: Solid Earth, 111(B11). https://doi.org/10.1029/2005JB004144 DOI: https://doi.org/10.1029/2005JB004144
Hatch, R. L., Abercrombie, R. E., Ruhl, C. J., & Smith, K. D. (2018). Earthquake Interaction, Fault Structure, and Source Properties of a Small Sequence in 2017 near Truckee, California. Bulletin of the Seismological Society of America, 108(5A), 2580–2593. https://doi.org/10.1785/0120180089 DOI: https://doi.org/10.1785/0120180089
Hatch‐Ibarra, R. L., Abercrombie, R. E., Ruhl, C. J., Smith, K. D., Hammond, W. C., & Pierce, I. K. (2022). The 2016 Nine Mile Ranch Earthquakes: Hazard and Tectonic Implications of Orthogonal Conjugate Faulting in the Walker Lane. Bulletin of the Seismological Society of America, 112(3), 1727–1741. https://doi.org/10.1785/0120210149 DOI: https://doi.org/10.1785/0120210149
Hauksson, E., Stock, J., Bilham, R., Boese, M., Chen, X., & Fielding, E. J. (2013). Report on the August 2012 Brawley Earthquake Swarm in Imperial Valley, Southern California. Seismological Research Letters, 84(2), 177–189. https://doi.org/10.1785/0220120169 DOI: https://doi.org/10.1785/0220120169
Hauksson, Egill, Olson, B., Grant, A., Andrews, J. R., Chung, A. I., & Hough, S. E. (2020). The Normal‐Faulting 2020 Mw 5.8 Lone Pine, Eastern California, Earthquake Sequence. Seismological Research Letters, 92(2A), 679–698. https://doi.org/10.1785/0220200324 DOI: https://doi.org/10.1785/0220200324
Hauksson, Egill, Ross, Z. E., & Cochran, E. (2019). Slow-Growing and Extended-Duration Seismicity Swarms: Reactivating Joints or Foliations in the Cahuilla Valley Pluton, Central Peninsular Ranges, Southern California. Journal of Geophysical Research: Solid Earth, 124(4), 3933–3949. https://doi.org/10.1029/2019JB017494 DOI: https://doi.org/10.1029/2019JB017494
Hearn, E. H., & Humphreys, E. D. (1998). Kinematics of the southern Walker Lane Belt and motion of the Sierra Nevada block, California. Journal of Geophysical Research: Solid Earth, 103(B11), 27033–27049. https://doi.org/10.1029/98JB01390 DOI: https://doi.org/10.1029/98JB01390
Henry, C. D., Castor, S. B., Starkel, W. A., Ellis, B. S., Wolff, J. A., & Laravie, J. A. (2017). Geology and evolution of the McDermitt caldera, northern Nevada and southeastern Oregon, western USA. Geosphere, 13(4), 1066–1112. https://doi.org/10.1130/GES01454.1 DOI: https://doi.org/10.1130/GES01454.1
Hill, D. P. (1977). A model for earthquake swarms. Journal of Geophysical Research (1896-1977, 82(8), 1347–1352. https://doi.org/10.1029/JB082i008p01347 DOI: https://doi.org/10.1029/JB082i008p01347
Hoffman, M. D., & Gelman, A. (2011). The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo.
Holtkamp, S. G., & Brudzinski, M. R. (2011). Earthquake swarms in circum-Pacific subduction zones. Earth and Planetary Science Letters, 305(1), 215–225. https://doi.org/10.1016/j.epsl.2011.03.004 DOI: https://doi.org/10.1016/j.epsl.2011.03.004
Hough, S. E. (1996). Observational constraints on earthquake source scaling: understanding the limits in resolution. Tectonophysics, 261(1), 83–95. https://doi.org/10.1016/0040-1951(96)00058-3 DOI: https://doi.org/10.1016/0040-1951(96)00058-3
Hough, S. E. (1997). Empirical Green’s function analysis: Taking the next step. Journal of Geophysical Research: Solid Earth, 102(B3), 5369–5384. https://doi.org/10.1029/96JB03488 DOI: https://doi.org/10.1029/96JB03488
Ibs-von Seht, M., Plenefisch, T., & Klinge, K. (2008). Earthquake swarms in continental rifts — A comparison of selected cases in America. Africa and Europe. Tectonophysics, 452(1), 66–77. https://doi.org/10.1016/j.tecto.2008.02.008 DOI: https://doi.org/10.1016/j.tecto.2008.02.008
Ichinose, G. A., Smith, K. D., & Anderson, J. G. (1998). Moment tensor solutions of the 1994 to 1996 Double Spring Flat, Nevada, earthquake sequence and implications for local tectonic models. Bulletin of the Seismological Society of America, 88(6), 1363–1378. DOI: https://doi.org/10.1785/BSSA0880061363
Kaneko, Y., & Shearer, P. M. (2014). Seismic source spectra and estimated stress drop derived from cohesive-zone models of circular subshear rupture. Geophysical Journal International, 197(2), 1002–1015. https://doi.org/10.1093/gji/ggu030 DOI: https://doi.org/10.1093/gji/ggu030
Kariche, J. (2022). The 2020 Monte Cristo (Nevada) Earthquake Sequence: Stress Transfer in the Context of Conjugate Strike-Slip Faults. Tectonics, 41(3), 2020 006506. https://doi.org/10.1029/2020TC006506 DOI: https://doi.org/10.1029/2020TC006506
Koehler, R. D. (2019). Active faulting in the North Valleys region of Reno, Nevada: A distributed zone within the northern Walker Lane. Geomorphology, 326, 38–53. https://doi.org/10.1016/j.geomorph.2018.09.015 DOI: https://doi.org/10.1016/j.geomorph.2018.09.015
Koper, K. D., Pankow, K. L., Pechmann, J. C., Hale, J. M., Burlacu, R., & Yeck, W. L. (2018). Afterslip Enhanced Aftershock Activity During the 2017 Earthquake Sequence Near Sulphur Peak, Idaho. Geophysical Research Letters, 45(11), 5352–5361. https://doi.org/10.1029/2018GL078196 DOI: https://doi.org/10.1029/2018GL078196
Kostrov, V. V. (1974). Seismic moment and energy of earthquakes, and the seismic flow of rock, Izv. Acad. Sci. USSR. Phys. Solid Earth, 1, 23–44.
Krischer, L. (2016). Mtspec Python Wrappers 0.3.2. Zenodo. https://doi.org/10.5281/zenodo.321789
Lerch, D. W., Klemperer, S. L., Egger, A. E., Colgan, J. P., & Miller, E. L. (2010). The northwestern margin of the Basin-and-Range Province, part 1: Reflection profiling of the moderate-angle ( 30°) Surprise Valley Fault. Tectonophysics, 488(1–4), 143–149. https://doi.org/10.1016/j.tecto.2009.05.028 DOI: https://doi.org/10.1016/j.tecto.2009.05.028
Li, B. Q., Smith, J. D., & Ross, Z. E. (2021). Basal nucleation and the prevalence of ascending swarms in Long Valley caldera. Science Advances, 7(35), 8368. https://doi.org/10.1126/sciadv.abi8368 DOI: https://doi.org/10.1126/sciadv.abi8368
Lohman, R. B., & McGuire, J. J. (2007). Earthquake swarms driven by aseismic creep in the Salton Trough, California. Journal of Geophysical Research, 112(B4). https://doi.org/10.1029/2006JB004596 DOI: https://doi.org/10.1029/2006JB004596
Lomax, A., Virieux, J., Volant, P., & Berge-Thierry, C. (2000). Probabilistic Earthquake Location in 3D and Layered Models. In C. H. Thurber & N. Rabinowitz (Eds.), Advances in Seismic Event Location (pp. 101–134). Springer Netherlands. https://doi.org/10.1007/978-94-015-9536-0_5 DOI: https://doi.org/10.1007/978-94-015-9536-0_5
Lomax, A., Zollo, A., Capuano, P., & Virieux, J. (2001). Precise, absolute earthquake location under Somma–Vesuvius volcano using a new three-dimensional velocity model. Geophysical Journal International, 146(2), 313–331. https://doi.org/10.1046/j.0956-540x.2001.01444.x DOI: https://doi.org/10.1046/j.0956-540x.2001.01444.x
Madariaga, R. (1976). Dynamics of an expanding circular fault. Bulletin of the Seismological Society of America, 66(3), 639–666. DOI: https://doi.org/10.1785/BSSA0660030639
Mesimeri, M., Pankow, K. L., Baker, B., & Hale, J. M. (2021). Episodic Earthquake Swarms in the Mineral Mountains, Utah Driven by the Roosevelt Hydrothermal System. Journal of Geophysical Research: Solid Earth, 126(6), 2021 021659. https://doi.org/10.1029/2021JB021659 DOI: https://doi.org/10.1029/2021JB021659
Michael, Andrew J. (1984). Determination of stress from slip data: Faults and folds. Journal of Geophysical Research: Solid Earth, 89(B13), 11517–11526. https://doi.org/10.1029/JB089iB13p11517 DOI: https://doi.org/10.1029/JB089iB13p11517
Michael, Andrew Jay. (1987). Use of focal mechanisms to determine stress: A control study. Journal of Geophysical Research: Solid Earth, 92(B1), 357–368. https://doi.org/10.1029/JB092iB01p00357 DOI: https://doi.org/10.1029/JB092iB01p00357
Mogi, K. (1963). Experimental study on the mechanism of the earthquake occurrences of volcanic origin. Bulletin of Volcanology, 26(1), 197–208. https://doi.org/10.1007/BF02597286 DOI: https://doi.org/10.1007/BF02597286
Mousavi, S. M., Ellsworth, W. L., Zhu, W., Chuang, L. Y., & Beroza, G. C. (2020). Earthquake transformer—an attentive deep-learning model for simultaneous earthquake detection and phase picking. Nature Communications, 11(1), 3952. https://doi.org/10.1038/s41467-020-17591-w DOI: https://doi.org/10.1038/s41467-020-17591-w
Mousavi, S. M., Sheng, Y., Zhu, W., & Beroza, G. C. (2019). STanford EArthquake Dataset (STEAD): A Global Data Set of Seismic Signals for AI. IEEE Access, 7, 179464–179476. https://doi.org/10.1109/ACCESS.2019.2947848 DOI: https://doi.org/10.1109/ACCESS.2019.2947848
Munafo, I., Malagnini, L., & Chiaraluce, L. (2016). On the Relationship between Mw and ML for Small Earthquakes. Bulletin of the Seismological Society of America, 106(5), 2402–2408. https://doi.org/10.1785/0120160130 DOI: https://doi.org/10.1785/0120160130
Omori, F. (1894). Investigation of aftershocks. Rep. Earthquake Inv. Comm, 2, 103–139.
Owens, T. J., Crotwell, H. P., Groves, C., & Oliver-Paul, P. (2004). SOD: Standing Order for Data. Seismological Research Letters, 75(4), 515–520. https://doi.org/10.1785/gssrl.75.4.515-a DOI: https://doi.org/10.1785/gssrl.75.4.515-a
Personius, S. F., Briggs, R. W., Maharrey, J. Z., Angster, S. J., & Mahan, S. A. (2017). A paleoseismic transect across the northwestern Basin and Range Province, northwestern Nevada and northeastern California, USA. Geosphere, 13(3), 782–810. https://doi.org/10.1130/GES01380.1 DOI: https://doi.org/10.1130/GES01380.1
Pierce, K. L., & Morgan, L. A. (1992). Chapter 1: The track of the Yellowstone hot spot: Volcanism, faulting, and uplift. In P. K. Link, M. A. Kuntz, & L. B. Piatt (Eds.), Regional Geology of Eastern Idaho and Western Wyoming (Vol. 179, p. 0). Geological Society of America. https://doi.org/10.1130/MEM179-p1 DOI: https://doi.org/10.1130/MEM179-p1
Pollitz, F. F., Wicks, C. W., & Hammond, W. C. (2022). Kinematic Slip Model of the 2021 M 6.0 Antelope Valley, California, Earthquake. The Seismic Record, 2(1), 20–28. https://doi.org/10.1785/0320210043 DOI: https://doi.org/10.1785/0320210043
Prieto, G. A., Parker, R. L., & Vernon III, F. L. (2009). A Fortran 90 library for multitaper spectrum analysis. Computers & Geosciences, 35(8), 1701–1710. https://doi.org/10.1016/j.cageo.2008.06.007 DOI: https://doi.org/10.1016/j.cageo.2008.06.007
Richter, C. F. (1935). An instrumental earthquake magnitude scale. Bulletin of the Seismological Society of America, 25(1), 1–32. DOI: https://doi.org/10.1785/BSSA0250010001
Ross, Z. E., & Cochran, E. S. (2021). Evidence for Latent Crustal Fluid Injection Transients in Southern California From Long-Duration Earthquake Swarms. Geophysical Research Letters, 48(12), 2021 092465. https://doi.org/10.1029/2021GL092465 DOI: https://doi.org/10.1029/2021GL092465
Ross, Z. E., Cochran, E. S., Trugman, D. T., & Smith, J. D. (2020). 3D fault architecture controls the dynamism of earthquake swarms. Science, 368(6497), 1357–1361. https://doi.org/10.1126/science.abb0779 DOI: https://doi.org/10.1126/science.abb0779
Ross, Z. E., Idini, B., Jia, Z., Stephenson, O. L., Zhong, M., & Wang, X. (2019). Hierarchical interlocked orthogonal faulting in the 2019 Ridgecrest earthquake sequence. Science, 366(6463), 346–351. https://doi.org/10.1126/science.aaz0109 DOI: https://doi.org/10.1126/science.aaz0109
Ross, Z. E., Rollins, C., Cochran, E. S., Hauksson, E., Avouac, J.-P., & Ben-Zion, Y. (2017). Aftershocks driven by afterslip and fluid pressure sweeping through a fault-fracture mesh. Geophysical Research Letters, 44(16), 2017 074634. https://doi.org/10.1002/2017GL074634 DOI: https://doi.org/10.1002/2017GL074634
Ruhl, C. J., Abercrombie, R. E., & Smith, K. D. (2017). Spatiotemporal Variation of Stress Drop During the 2008 Mogul, Nevada, Earthquake Swarm. Journal of Geophysical Research: Solid Earth, 122(10), 2017 014601. https://doi.org/10.1002/2017JB014601 DOI: https://doi.org/10.1002/2017JB014601
Ruhl, C. J., Abercrombie, R. E., Smith, K. D., & Zaliapin, I. (2016). Complex spatiotemporal evolution of the 2008 Mw 4.9 Mogul earthquake swarm (Reno, Nevada): Interplay of fluid and faulting. Journal of Geophysical Research: Solid Earth. https://doi.org/10.1002/2016JB013399 DOI: https://doi.org/10.1002/2016JB013399
Ruhl, C. J., Morton, E. A., Bormann, J. M., Hatch‐Ibarra, R., Ichinose, G., & Smith, K. D. (2021). Complex Fault Geometry of the 2020 Mww 6.5 Monte Cristo Range, Nevada, Earthquake Sequence. Seismological Research Letters, 92(3), 1876–1890. https://doi.org/10.1785/0220200345 DOI: https://doi.org/10.1785/0220200345
Ruhl, C. J., Smith, K., Kent, G., & Seaman, T. (2016). Seismotectonic and Seismic Hazard Implications for the Reno-Tahoe Area of the Walker Lane in Nevada and California. Applied Geology of California.
Sadeghi Chorsi, T., Braunmiller, J., Deng, F., & Dixon, T. H. (2022). Afterslip From the 2020 M 6.5 Monte Cristo Range, Nevada Earthquake. Geophysical Research Letters, 49(17), 2022 099952. https://doi.org/10.1029/2022GL099952 DOI: https://doi.org/10.1029/2022GL099952
Salvatier, J., Wiecki, T. V., & Fonnesbeck, C. (2016). Probabilistic programming in Python using PyMC3. PeerJ Computer Science, 2, 55. https://doi.org/10.7717/peerj-cs.55 DOI: https://doi.org/10.7717/peerj-cs.55
Sato, T., & Hirasawa, T. (1973). Body Wave Spectra from Propagating Shear Cracks. Journal of Physics of the Earth, 21(4), 415–431. https://doi.org/10.4294/jpe1952.21.415 DOI: https://doi.org/10.4294/jpe1952.21.415
Schaff, S. C. (1976). The 1968 Adel [Earthquake swarm (Thesis).]. University of Nevada.
Scholz, C.H. (1968). The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes. Bulletin of the Seismological Society of America, 58(1), 399–415. DOI: https://doi.org/10.1785/BSSA0580010399
Scholz, Christopher H. (2015). On the stress dependence of the earthquake b value. Geophysical Research Letters, 42(5), 1399–1402. https://doi.org/10.1002/2014GL062863 DOI: https://doi.org/10.1002/2014GL062863
Sethanant, I., Nissen, E., Pousse‐Beltran, L., Bergman, E., & Pierce, I. (2023). The 2020 Mw 6.5 Monte Cristo Range, Nevada, Earthquake: Anatomy of a Crossing‐Fault Rupture through a Region of Highly Distributed Deformation. Bulletin of the Seismological Society of America, 113(3), 948–975. https://doi.org/10.1785/0120220166 DOI: https://doi.org/10.1785/0120220166
Shapiro, S. A., Huenges, E., & Borm, G. (1997). Estimating the crust permeability from fluid-injection-induced seismic emission at the KTB site. Geophysical Journal International, 131(2), 15–18. https://doi.org/10.1111/j.1365-246X.1997.tb01215.x DOI: https://doi.org/10.1111/j.1365-246X.1997.tb01215.x
Shearer, P. M., Abercrombie, R. E., & Trugman, D. T. (2022). Improved Stress Drop Estimates for M 1.5 to 4 Earthquakes in Southern California From 1996 to 2019. Journal of Geophysical Research: Solid Earth, 127(7), 2022 024243. https://doi.org/10.1029/2022JB024243 DOI: https://doi.org/10.1029/2022JB024243
Shearer, P. M., Abercrombie, R. E., Trugman, D. T., & Wang, W. (2019). Comparing EGF Methods for Estimating Corner Frequency and Stress Drop From P Wave Spectra. Journal of Geophysical Research: Solid Earth, 124(4), 3966–3986. https://doi.org/10.1029/2018JB016957 DOI: https://doi.org/10.1029/2018JB016957
Shelly, D. R., Ellsworth, W. L., & Hill, D. P. (2016). Fluid-faulting evolution in high definition: Connecting fault structure and frequency-magnitude variations during the 2014 Long Valley Caldera, California, earthquake swarm. Journal of Geophysical Research: Solid Earth, 121(3), 1776–1795. https://doi.org/10.1002/2015JB012719 DOI: https://doi.org/10.1002/2015JB012719
Shelly, D. R., & Hardebeck, J. L. (2019). Illuminating Faulting Complexity of the 2017 Yellowstone Maple Creek Earthquake Swarm. Geophysical Research Letters, 46(5), 2544–2552. https://doi.org/10.1029/2018GL081607 DOI: https://doi.org/10.1029/2018GL081607
Shelly, D. R., Skoumal, R. J., & Hardebeck, J. L. (2023). Fracture-Mesh Faulting in the Swarm-Like 2020 Maacama Sequence Revealed by High-Precision Earthquake Detection, Location, and Focal Mechanisms. Geophysical Research Letters, 50(1), 2022 101233. https://doi.org/10.1029/2022GL101233 DOI: https://doi.org/10.1029/2022GL101233
Sibson, R. H. (1987). Earthquake rupturing as a mineralizing agent in hydrothermal systems. Geology, 15(8), 701–704. https://doi.org/10.1130/0091-7613(1987)15 DOI: https://doi.org/10.1130/0091-7613(1987)15<701:ERAAMA>2.0.CO;2
Sibson, R. H. (1996). Structural permeability of fluid-driven fault-fracture meshes. Journal of Structural Geology, 18(8), 1031–1042. https://doi.org/10.1016/0191-8141(96)00032-6 DOI: https://doi.org/10.1016/0191-8141(96)00032-6
Sykes, L. R. (1970). Earthquake swarms and sea-floor spreading. Journal of Geophysical Research (1896-1977, 75(32), 6598–6611. https://doi.org/10.1029/JB075i032p06598 DOI: https://doi.org/10.1029/JB075i032p06598
Trugman, D. T. (2022). Resolving Differences in the Rupture Properties of M5 Earthquakes in California Using Bayesian Source Spectral Analysis. Journal of Geophysical Research: Solid Earth, 127(4), 2021 023526. https://doi.org/10.1029/2021JB023526 DOI: https://doi.org/10.1029/2021JB023526
Trugman, D. T., Brune, J., Smith, K. D., Louie, J. N., & Kent, G. M. (2023). The Rocks That Did Not Fall: A Multidisciplinary Analysis of Near-Source Ground Motions From an Active Normal Fault. AGU Advances, 4(2), 2023 000885. https://doi.org/10.1029/2023AV000885 DOI: https://doi.org/10.1029/2023AV000885
Trugman, D. T., Chamberlain, C. J., Savvaidis, A., & Lomax, A. (2022). GrowClust3D.jl: A Julia Package for the Relative Relocation of Earthquake Hypocenters Using 3D Velocity Models. Seismological Research Letters, 94(1), 443–456. https://doi.org/10.1785/0220220193 DOI: https://doi.org/10.1785/0220220193
Trugman, D. T., Ross, Z. E., & Johnson, P. A. (2020). Imaging Stress and Faulting Complexity Through Earthquake Waveform Similarity. Geophysical Research Letters, 47(1), 2019 085888. https://doi.org/10.1029/2019GL085888 DOI: https://doi.org/10.1029/2019GL085888
Trugman, D. T., & Shearer, P. M. (2017a). Application of an improved spectral decomposition method to examine earthquake source scaling in southern California. Journal of Geophysical Research: Solid Earth, 122(4), 2017 013971. https://doi.org/10.1002/2017JB013971 DOI: https://doi.org/10.1002/2017JB013971
Trugman, D. T., & Shearer, P. M. (2017b). GrowClust: A Hierarchical Clustering Algorithm for Relative Earthquake Relocation, with Application to the Spanish Springs and Sheldon, Nevada, Earthquake Sequences. Seismological Research Letters, 88(2A), 379–391. https://doi.org/10.1785/0220160188 DOI: https://doi.org/10.1785/0220160188
Uhrhammer, R. A., Loper, S. J., & Romanowicz, B. (1996). Determination of local magnitude using BDSN broadband records. Bulletin of the Seismological Society of America, 86(5), 1314–1330. https://doi.org/10.1785/BSSA0860051314 DOI: https://doi.org/10.1785/BSSA0860051314
U.S.G.S., & C.G.S. (2006). Quaternary Fault and Fold Database for the United States (available at http://earthquake.usgs.gov/hazards/qfaults/). U.S. Geological Survey and California Geological Survey.
van der Elst, N. J. (2021). B-Positive: A Robust Estimator of Aftershock Magnitude Distribution in Transiently Incomplete Catalogs. Journal of Geophysical Research: Solid Earth, 126(2), 2020 021027. https://doi.org/10.1029/2020JB021027 DOI: https://doi.org/10.1029/2020JB021027
Vavryčuk, V. (2014). Iterative joint inversion for stress and fault orientations from focal mechanisms. Geophysical Journal International, 199(1), 69–77. https://doi.org/10.1093/gji/ggu224 DOI: https://doi.org/10.1093/gji/ggu224
Vidale, J. E., & Shearer, P. M. (2006). A survey of 71 earthquake bursts across southern California: Exploring the role of pore fluid pressure fluctuations and aseismic slip as drivers. Journal of Geophysical Research, 111(B5). https://doi.org/10.1029/2005JB004034 DOI: https://doi.org/10.1029/2005JB004034
von Seggern, D. H., Smith, K. D., & Preston, L. A. (2008). Seismic Spatial-Temporal Character and Effects of a Deep (25–30 km) Magma Intrusion below North Lake Tahoe, California–Nevada. Bulletin of the Seismological Society of America, 98(3), 1508–1526. https://doi.org/10.1785/0120060240 DOI: https://doi.org/10.1785/0120060240
Wang, K., Dreger, D. S., Burgmann, R., & Taira, T. (2023). Finite‐Source Model of the. Seismological Research Letters, 94(3), 1352–1366. https://doi.org/10.1785/0220220262 DOI: https://doi.org/10.1785/0220220262
Wesnousky, S. G. (2005). Active faulting in the Walker Lane. Tectonics, 24(3). https://doi.org/10.1029/2004TC001645 DOI: https://doi.org/10.1029/2004TC001645
Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H. F., & Tian, D. (2019). The Generic Mapping Tools Version 6. Geochemistry, Geophysics, Geosystems, 20(11), 5556–5564. https://doi.org/10.1029/2019GC008515 DOI: https://doi.org/10.1029/2019GC008515
Woollam, J., Münchmeyer, J., Tilmann, F., Rietbrock, A., Lange, D., & Bornstein, T. (2022). SeisBench—A Toolbox for Machine Learning in Seismology. Seismological Research Letters, 93(3), 1695–1709. https://doi.org/10.1785/0220210324 DOI: https://doi.org/10.1785/0220210324
Zheng, A., Chen, X., & Xu, W. (2020). Present-Day Deformation Mechanism of the Northeastern Mina Deflection Revealed by the 2020 Mw 6.5 Monte Cristo Range Earthquake. Geophysical Research Letters, 47(22), 2020 090142. https://doi.org/10.1029/2020GL090142 DOI: https://doi.org/10.1029/2020GL090142
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Daniel T. Trugman, William H. Savran, Christine J. Ruhl, Kenneth D. Smith

This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
Division of Earth Sciences
Grant numbers 2231705;2121666 -
U.S. Geological Survey
Grant numbers G20AC00038