The sharp turn: Backward rupture branching during the 2023 Mw 7.8 Kahramanmaraş (Türkiye) earthquake

Authors

DOI:

https://doi.org/10.26443/seismica.v2i3.1083

Keywords:

2023 Mw 7.8 Turkey earthquake, backward rupture branching, earthquake triggering, earthquake nucleation, subshear rupture, supershear rupture

Abstract

Multiple lines of evidence indicate that the 2023 Mw 7.8 Kahramanmaraş (Türkiye) earthquake started on a splay fault, then branched bilaterally onto the nearby East Anatolian Fault (EAF). This rupture pattern includes one feature previously deemed implausible, called backward rupture branching: rupture propagating from the splay fault onto the SW EAF segment through a sharp corner (with an acute angle between the two faults). To understand this feature, we perform 2.5-D dynamic rupture simulations considering a large set of possible scenarios. We find that both subshear and supershear ruptures on the splay fault can trigger bilateral ruptures on the EAF, which themselves can be either subshear, supershear, or a mixture of the two. In most cases, rupture on the SW segment of the EAF starts after rupture onset on its NE segment: the SW rupture is triggered by the NE rupture. Only when the EAF has initial stresses very close to failure can its SW segment be directly triggered by the initial splay-fault rupture, earlier than the activation of the NE segment. These results advance our understanding of the mechanisms of multi-segment rupture and the complexity of rupture processes, paving the way for a more accurate assessment of earthquake hazards.

References

Abdelmeguid, M., Zhao, C., Yalcinkaya, E., Gazetas, G., Elbanna, A., & Rosakis, A. (2023). Revealing The Dynamics of the Feb 6th 2023 M7.8 Kahramanmaraş/Pazarcik Earthquake: near-field records and dynamic rupture modeling. https://doi.org/10.31223/x5066r DOI: https://doi.org/10.31223/X5066R

Aben, F. M., Doan, M.-L., Mitchell, T. M., Toussaint, R., Reuschlé, T., Fondriest, M., Gratier, J.-P., & Renard, F. (2016). Dynamic fracturing by successive coseismic loadings leads to pulverization in active fault zones. Journal of Geophysical Research: Solid Earth, 121(4), 2338–2360. https://doi.org/10.1002/2015jb012542 DOI: https://doi.org/10.1002/2015JB012542

AFAD. (1973). Turkish National Strong Motion Network (TK). International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/TK

AFAD. (2023a). AFAD Earthquake Catalog webpage. https://deprem.afad.gov.tr/event-catalog

AFAD. (2023b). Event page for the 6 February 2023 Kahramanmaraş Earthquake. https://deprem.afad.gov.tr/event-detail/408491

Alaska Earthquake Center. (1987). Alaska Geophysical Network (AK). International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/AK

Alaska Volcano Observatory/USGS. (1988). Alaska Volcano Observatory Network (AVO). International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/AV

Albertini, G., Karrer, S., Grigoriu, M. D., & Kammer, D. S. (2021). Stochastic properties of static friction. Journal of the Mechanics and Physics of Solids, 147, 104242. https://doi.org/10.1016/j.jmps.2020.104242 DOI: https://doi.org/10.1016/j.jmps.2020.104242

Albuquerque Seismological Laboratory/USGS. (1990). United States National Seismic Network (US). International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/US

Albuquerque Seismological Laboratory/USGS. (2014). Global Seismograph Network – GSN-IRIS/USGS. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/IU

Ambraseys, N. N. (1989). Temporary seismic quiescence: SE Turkey. Geophysical Journal International, 96(2), 311–331. https://doi.org/10.1111/j.1365-246x.1989.tb04453.x DOI: https://doi.org/10.1111/j.1365-246X.1989.tb04453.x

Ampuero, J. P. (2012). SEM2DPACK—a spectral element method tool for 2D wave propagation and earthquake source dynamics. https://github.com/jpampuero/sem2dpack

Ampuero, J. P. (2023). https://twitter.com/DocTerremoto/status/1623293294380830722

Andrews, D. J. (1976). Rupture velocity of plane strain shear cracks. Journal of Geophysical Research, 81(32), 5679–5687. https://doi.org/10.1029/jb081i032p05679 DOI: https://doi.org/10.1029/JB081i032p05679

Andrews, D. J. (1985). Dynamic plane-strain shear rupture with a slip-weakening friction law calculated by a boundary integral method. Bulletin of the Seismological Society of America, 75(1), 1–21. https://doi.org/10.1785/bssa0750010001 DOI: https://doi.org/10.1785/BSSA0750010001

Andrews, D. J. (1989). Mechanics of fault junctions. Journal of Geophysical Research: Solid Earth, 94(B7), 9389–9397. https://doi.org/10.1029/jb094ib07p09389 DOI: https://doi.org/10.1029/JB094iB07p09389

Andrews, D. J., & Ben-Zion, Y. (1997). Wrinkle-like slip pulse on a fault between different materials. Journal of Geophysical Research: Solid Earth, 102(B1), 553–571. https://doi.org/10.1029/96jb02856 DOI: https://doi.org/10.1029/96JB02856

Barbot, S., Luo, H., Wang, T., Hamiel, Y., Piatibratova, O., Javed, M. T., Braitenberg, C., & Gurbuz, G. (2023). Slip distribution of the February 6, 2023 Mw 7.8 and Mw 7.6, Kahramanmaraş, Turkey earthquake sequence in the East Anatolian Fault Zone. Seismica, 2(3). https://doi.org/10.26443/seismica.v2i3.502 DOI: https://doi.org/10.26443/seismica.v2i3.502

Bhat, H. S., Olives, M., Dmowska, R., & Rice, J. R. (2007). Role of fault branches in earthquake rupture dynamics. Journal of Geophysical Research: Solid Earth, 112(B11). https://doi.org/10.1029/2007jb005027 DOI: https://doi.org/10.1029/2007JB005027

Biasi, G. P., & Wesnousky, S. G. (2021). Rupture Passing Probabilities at Fault Bends and Steps, with Application to Rupture Length Probabilities for Earthquake Early Warning. Bulletin of the Seismological Society of America, 111(4), 2235–2247. https://doi.org/10.1785/0120200370 DOI: https://doi.org/10.1785/0120200370

Bizzarri, A. (2010). How to Promote Earthquake Ruptures: Different Nucleation Strategies in a Dynamic Model with Slip-Weakening Friction. Bulletin of the Seismological Society of America, 100(3), 923–940. https://doi.org/10.1785/0120090179 DOI: https://doi.org/10.1785/0120090179

Bohnhoff, M., Martı́nez-Garzón, P., Bulut, F., Stierle, E., & Ben-Zion, Y. (2016). Maximum earthquake magnitudes along different sections of the North Anatolian fault zone. Tectonophysics, 674, 147–165. https://doi.org/10.1016/j.tecto.2016.02.028 DOI: https://doi.org/10.1016/j.tecto.2016.02.028

Cattania, C., & Segall, P. (2021). Precursory Slow Slip and Foreshocks on Rough Faults. Journal of Geophysical Research: Solid Earth, 126(4). https://doi.org/10.1029/2020jb020430 DOI: https://doi.org/10.1029/2020JB020430

Chen, W., Rao, G., Kang, D., Wan, Z., & Wang, D. (2023). Early Report of the Source Characteristics, Ground Motions, and Casualty Estimates of the 2023 Mw 7.8 and 7.5 Turkey Earthquakes. Journal of Earth Science, 34(2), 297–303. https://doi.org/10.1007/s12583-023-1316-6 DOI: https://doi.org/10.1007/s12583-023-1316-6

Cochard, A., & Madariaga, R. (1996). Complexity of seismicity due to highly rate-dependent friction. Journal of Geophysical Research: Solid Earth, 101(B11), 25321–25336. https://doi.org/10.1029/96jb02095 DOI: https://doi.org/10.1029/96JB02095

Cruz-Atienza, V. M., Olsen, K. B., & Dalguer, L. A. (2009). Estimation of the Breakdown Slip from Strong-Motion Seismograms: Insights from Numerical Experiments. Bulletin of the Seismological Society of America, 99(6), 3454–3469. https://doi.org/10.1785/0120080330 DOI: https://doi.org/10.1785/0120080330

Cruz-Atienza, Vı́ctor M., Villafuerte, C., & Bhat, H. S. (2018). Rapid tremor migration and pore-pressure waves in subduction zones. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-05150-3 DOI: https://doi.org/10.1038/s41467-018-05150-3

Cubas, N., Avouac, J. P., Leroy, Y. M., & Pons, A. (2013). Low friction along the high slip patch of the 2011 Mw 9.0 Tohoku-Oki earthquake required from the wedge structure and extensional splay faults. Geophysical Research Letters, 40(16), 4231–4237. https://doi.org/10.1002/grl.50682 DOI: https://doi.org/10.1002/grl.50682

Dal Zilio, L., & Ampuero, J.-P. (2023). Earthquake doublet in Turkey and Syria. Communications Earth & Environment, 4(1). https://doi.org/10.1038/s43247-023-00747-z DOI: https://doi.org/10.1038/s43247-023-00747-z

Das, S., & Aki, K. (1977). A numerical study of two-dimensional spontaneous rupture propagation. Geophysical Journal International, 50(3), 643–668. https://doi.org/10.1111/j.1365-246x.1977.tb01339.x DOI: https://doi.org/10.1111/j.1365-246X.1977.tb01339.x

Day, S.M. (1982). Three-dimensional finite difference simulation of fault dynamics: rectangular faults with fixed rupture velocity. Bulletin of the Seismological Society of America, 72(3), 705–727. https://doi.org/10.1785/BSSA0720030705

Day, Steven M., Dalguer, L. A., Lapusta, N., & Liu, Y. (2005). Comparison of finite difference and boundary integral solutions to three-dimensional spontaneous rupture. Journal of Geophysical Research: Solid Earth, 110(B12). https://doi.org/10.1029/2005jb003813 DOI: https://doi.org/10.1029/2005JB003813

DeDontney, N., Rice, J. R., & Dmowska, R. (2012). Finite Element Modeling of Branched Ruptures Including Off-Fault Plasticity. Bulletin of the Seismological Society of America, 102(2), 541–562. https://doi.org/10.1785/0120110134 DOI: https://doi.org/10.1785/0120110134

Delouis, B., van den Ende, M., & Ampuero, J.-P. (2023). Kinematic rupture model of the February 6th 2023 Mw7.8 Turkey earthquake from a large set of near-source strong motion records combined by GNSS offsets reveals intermittent supershear rupture. https://doi.org/10.22541/essoar.168286647.71550161/v1 DOI: https://doi.org/10.22541/essoar.168286647.71550161/v1

Delph, J. R., Biryol, C. B., Beck, S. L., Zandt, G., & Ward, K. M. (2015). Shear wave velocity structure of the Anatolian Plate: anomalously slow crust in southwestern Turkey. Geophysical Journal International, 202(1), 261–276. https://doi.org/10.1093/gji/ggv141 DOI: https://doi.org/10.1093/gji/ggv141

Di Toro, G., Nielsen, S., & Pennacchioni, G. (2005). Earthquake rupture dynamics frozen in exhumed ancient faults. Nature, 436(7053), 1009–1012. https://doi.org/10.1038/nature03910 DOI: https://doi.org/10.1038/nature03910

Doan, M.-L., & d’Hour, V. (2012). Effect of initial damage on rock pulverization along faults. Journal of Structural Geology, 45, 113–124. https://doi.org/10.1016/j.jsg.2012.05.006 DOI: https://doi.org/10.1016/j.jsg.2012.05.006

Dor, O., Ben-Zion, Y., Rockwell, T. K., & Brune, J. (2006). Pulverized rocks in the Mojave section of the San Andreas Fault Zone. Earth and Planetary Science Letters, 245(3–4), 642–654. https://doi.org/10.1016/j.epsl.2006.03.034 DOI: https://doi.org/10.1016/j.epsl.2006.03.034

Duan, B., & Oglesby, D. D. (2007). Nonuniform prestress from prior earthquakes and the effect on dynamics of branched fault systems. Journal of Geophysical Research: Solid Earth, 112(B5). https://doi.org/10.1029/2006jb004443 DOI: https://doi.org/10.1029/2006JB004443

Emre, Ö., Duman, T. Y., Özalp, S., Elmacı, H., Olgun, Ş., & Şaroğlu, Ş. (2013). Active fault map of Turkey with explanatory text. Ankara: General Directorate of Mineral Research and Exploration.

Emre, Ö., Duman, T. Y., Özalp, S., Şaroğlu, F., Olgun, Ş., Elmacı, H., & Çan, T. (2016). Active fault database of Turkey. Bulletin of Earthquake Engineering, 16(8), 3229–3275. https://doi.org/10.1007/s10518-016-0041-2 DOI: https://doi.org/10.1007/s10518-016-0041-2

Faulkner, D. R., Lewis, A. C., & Rutter, E. H. (2003). On the internal structure and mechanics of large strike-slip fault zones: field observations of the Carboneras fault in southeastern Spain. Tectonophysics, 367(3–4), 235–251. https://doi.org/10.1016/s0040-1951(03)00134-3 DOI: https://doi.org/10.1016/S0040-1951(03)00134-3

Fletcher, J. M., Oskin, M. E., & Teran, O. J. (2016). The role of a keystone fault in triggering the complex El Mayor–Cucapah earthquake rupture. Nature Geoscience, 9(4), 303–307. https://doi.org/10.1038/ngeo2660 DOI: https://doi.org/10.1038/ngeo2660

Fliss, S., Bhat, H. S., Dmowska, R., & Rice, J. R. (2005). Fault branching and rupture directivity. Journal of Geophysical Research: Solid Earth, 110(B6). https://doi.org/10.1029/2004jb003368 DOI: https://doi.org/10.1029/2004JB003368

Freed, A. M. (2005). Earthquake triggering by static, dynamic, and postseismic stress transfer. Annual Review of Earth and Planetary Sciences, 33(1), 335–367. https://doi.org/10.1146/annurev.earth.33.092203.122505 DOI: https://doi.org/10.1146/annurev.earth.33.092203.122505

Freund, L. B. (1990). Dynamic Fracture Mechanics. Cambridge University Press. https://doi.org/10.1017/cbo9780511546761 DOI: https://doi.org/10.1017/CBO9780511546761

Fukuyama, E., & Mikumo, T. (2007). Slip-weakening distance estimated at near-fault stations. Geophysical Research Letters, 34(9). https://doi.org/10.1029/2006gl029203 DOI: https://doi.org/10.1029/2006GL029203

Goldberg, D. E., Taymaz, T., Reitman, N. G., Hatem, A. E., Yolsal-Çevikbilen, S., Barnhart, W. D., Irmak, T. S., Wald, D. J., Öcalan, T., Yeck, W. L., Özkan, B., Jobe, J. A. T., Shelly, D. R., Thompson, E. M., DuRoss, C. B., Earle, P. S., Briggs, R. W., Benz, H., Erman, C., … Altuntaş, C. (2023). Rapid Characterization of the February 2023 Kahramanmaraş, Türkiye, Earthquake Sequence. The Seismic Record, 3(2), 156–167. https://doi.org/10.1785/0320230009 DOI: https://doi.org/10.1785/0320230009

Gomberg, J., Beeler, N. M., Blanpied, M. L., & Bodin, P. (1998). Earthquake triggering by transient and static deformations. Journal of Geophysical Research: Solid Earth, 103(B10), 24411–24426. https://doi.org/10.1029/98jb01125 DOI: https://doi.org/10.1029/98JB01125

Guérin-Marthe, S., Nielsen, S., Bird, R., Giani, S., & Di Toro, G. (2019). Earthquake Nucleation Size: Evidence of Loading Rate Dependence in Laboratory Faults. Journal of Geophysical Research: Solid Earth, 124(1), 689–708. https://doi.org/10.1029/2018jb016803 DOI: https://doi.org/10.1029/2018JB016803

Güvercin, S. E., Karabulut, H., Konca, A. Ö., Doğan, U., & Ergintav, S. (2022). Active seismotectonics of the East Anatolian Fault. Geophysical Journal International, 230(1), 50–69. https://doi.org/10.1093/gji/ggac045 DOI: https://doi.org/10.1093/gji/ggac045

Gvirtzman, S., & Fineberg, J. (2021). Nucleation fronts ignite the interface rupture that initiates frictional motion. Nature Physics, 17(9), 1037–1042. https://doi.org/10.1038/s41567-021-01299-9 DOI: https://doi.org/10.1038/s41567-021-01299-9

Hamling, I. J., Hreinsdóttir, S., Clark, K., Elliott, J., Liang, C., Fielding, E., Litchfield, N., Villamor, P., Wallace, L., Wright, T. J., D’Anastasio, E., Bannister, S., Burbidge, D., Denys, P., Gentle, P., Howarth, J., Mueller, C., Palmer, N., Pearson, C., … Stirling, M. (2017). Complex multifault rupture during the 2016 Mw 7.8 Kaikōura earthquake. Science, 356(6334). https://doi.org/10.1126/science.aam7194 DOI: https://doi.org/10.1126/science.aam7194

Harris, R. A., & Day, S. M. (1993). Dynamics of fault interaction: parallel strike-slip faults. Journal of Geophysical Research: Solid Earth, 98(B3), 4461–4472. https://doi.org/10.1029/92jb02272 DOI: https://doi.org/10.1029/92JB02272

Hatakeyama, N., Uchida, N., Matsuzawa, T., & Nakamura, W. (2017). Emergence and disappearance of interplate repeating earthquakes following the 2011 M9.0 Tohoku-oki earthquake: Slip behavior transition between seismic and aseismic depending on the loading rate. Journal of Geophysical Research: Solid Earth, 122(7), 5160–5180. https://doi.org/10.1002/2016jb013914 DOI: https://doi.org/10.1002/2016JB013914

Hicks, S. P., Okuwaki, R., Steinberg, A., Rychert, C. A., Harmon, N., Abercrombie, R. E., Bogiatzis, P., Schlaphorst, D., Zahradnik, J., Kendall, J.-M., Yagi, Y., Shimizu, K., & Sudhaus, H. (2020). Back-propagating supershear rupture in the 2016 Mw 7.1 Romanche transform fault earthquake. Nature Geoscience, 13(9), 647–653. https://doi.org/10.1038/s41561-020-0619-9 DOI: https://doi.org/10.1038/s41561-020-0619-9

Houston, H., Delbridge, B. G., Wech, A. G., & Creager, K. C. (2011). Rapid tremor reversals in Cascadia generated by a weakened plate interface. Nature Geoscience, 4(6), 404–409. https://doi.org/10.1038/ngeo1157 DOI: https://doi.org/10.1038/ngeo1157

Hussain, E., Kalaycıoğlu, S., Milliner, C. W. D., & Çakir, Z. (2023). Preconditioning the 2023 Kahramanmaraş (Türkiye) earthquake disaster. Nature Reviews Earth & Environment, 4(5), 287–289. https://doi.org/10.1038/s43017-023-00411-2 DOI: https://doi.org/10.1038/s43017-023-00411-2

Ide, S., Baltay, A., & Beroza, G. C. (2011). Shallow Dynamic Overshoot and Energetic Deep Rupture in the 2011 Mw 9.0 Tohoku-Oki Earthquake. Science, 332(6036), 1426–1429. https://doi.org/10.1126/science.1207020 DOI: https://doi.org/10.1126/science.1207020

Idini, B., & Ampuero, J.-P. (2020). Fault-Zone Damage Promotes Pulse-Like Rupture and Back-Propagating Fronts via Quasi-Static Effects. Geophysical Research Letters, 47(23). https://doi.org/10.1029/2020gl090736 DOI: https://doi.org/10.1029/2020GL090736

Jia, Z., Jin, Z., Marchandon, M., Ulrich, T., Gabriel, A.-A., Fan, W., Shearer, P., Zou, X., Rekoske, J., Bulut, F., Garagon, A., & Fialko, Y. (2023). The complex dynamics of the 2023 Kahramanmaraş, Turkey, Mw 7.8-7.7 earthquake doublet. Science, 381(6661), 985–990. https://doi.org/10.1126/science.adi0685 DOI: https://doi.org/10.1126/science.adi0685

Kame, N., Rice, J. R., & Dmowska, R. (2003). Effects of prestress state and rupture velocity on dynamic fault branching. Journal of Geophysical Research: Solid Earth, 108(B5). https://doi.org/10.1029/2002jb002189 DOI: https://doi.org/10.1029/2002JB002189

Karabulut, H., Güvercin, S. E., Hollingsworth, J., & Konca, A. Ö. (2023). Long silence on the East Anatolian Fault Zone (Southern Turkey) ends with devastating double earthquakes (6 February 2023) over a seismic gap: implications for the seismic potential in the Eastern Mediterranean region. Journal of the Geological Society, 180(3). https://doi.org/10.1144/jgs2023-021 DOI: https://doi.org/10.1144/jgs2023-021

Kato, N., Yamamoto, K., Yamamoto, H., & Hirasawa, T. (1992). Strain-rate effect on frictional strength and the slip nucleation process. Tectonophysics, 211(1–4), 269–282. https://doi.org/10.1016/0040-1951(92)90064-d DOI: https://doi.org/10.1016/0040-1951(92)90064-D

Kennett, B. L. N., & Engdahl, E. R. (1991). Traveltimes for global earthquake location and phase identification. Geophysical Journal International, 105(2), 429–465. https://doi.org/10.1111/j.1365-246x.1991.tb06724.x DOI: https://doi.org/10.1111/j.1365-246X.1991.tb06724.x

Kitajima, H., Gomila, R., Tesei, T., Favero, M., Di Toro, G., & Kondo, H. (2023). Frictional behaviors of the serpentine-rich East Anatolian Fault Rocks collected from the 2014 Kartal trench site.

Kwiatek, G., Martı́nez-Garzón, P., Becker, D., Dresen, G., Cotton, F., Beroza, G., Acarel, D., Ergintav, S., & Bohnhoff, M. (2023). Months-long preparation of the 2023 Mw 7.8 Kahramanmaraş earthquake. https://doi.org/10.21203/rs.3.rs-2657873/v1 DOI: https://doi.org/10.21203/rs.3.rs-2657873/v1

Lebihain, M., Roch, T., Violay, M., & Molinari, J.-F. (2021). Earthquake Nucleation Along Faults With Heterogeneous Weakening Rate. Geophysical Research Letters, 48(21). https://doi.org/10.1029/2021gl094901 DOI: https://doi.org/10.1029/2021GL094901

Li, B., Wu, B., Bao, H., Oglesby, D. D., Ghosh, A., Gabriel, A.-A., Meng, L., & Chu, R. (2022). Rupture Heterogeneity and Directivity Effects in Back-Projection Analysis. Journal of Geophysical Research: Solid Earth, 127(3). https://doi.org/10.1029/2021jb022663 DOI: https://doi.org/10.1029/2021JB022663

Li, X., Xu, W., Jónsson, S., Klinger, Y., & Zhang, G. (2020). Source Model of the 2014 Mw 6.9 Yutian Earthquake at the Southwestern End of the Altyn Tagh Fault in Tibet Estimated from Satellite Images. Seismological Research Letters, 91(6), 3161–3170. https://doi.org/10.1785/0220190361 DOI: https://doi.org/10.1785/0220190361

Liu, Chao, Bizzarri, A., & Das, S. (2014). Progression of spontaneous in-plane shear faults from sub-Rayleigh to compressional wave rupture speeds. Journal of Geophysical Research: Solid Earth, 119(11), 8331–8345. https://doi.org/10.1002/2014jb011187 DOI: https://doi.org/10.1002/2014JB011187

Liu, Chengli, Lay, T., Wang, R., Taymaz, T., Xie, Z., Xiong, X., Irmak, T. S., Kahraman, M., & Erman, C. (2023). Complex multi-fault rupture and triggering during the 2023 earthquake doublet in southeastern Türkiye. Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-41404-5 DOI: https://doi.org/10.1038/s41467-023-41404-5

Lozos, J. C. (2016). A case for historic joint rupture of the San Andreas and San Jacinto faults. Science Advances, 2(3). https://doi.org/10.1126/sciadv.1500621 DOI: https://doi.org/10.1126/sciadv.1500621

Luo, Y., & Ampuero, J.-P. (2017). Tremor migration patterns and the collective behavior of deep asperities mediated by creep. https://doi.org/10.31223/osf.io/mbcav DOI: https://doi.org/10.31223/OSF.IO/MBCAV

Luo, Y., Ampuero, J.-P., Miyakoshi, K., & Irikura, K. (2017). Surface Rupture Effects on Earthquake Moment-Area Scaling Relations. Pure and Applied Geophysics, 174(9), 3331–3342. https://doi.org/10.1007/s00024-017-1467-4 DOI: https://doi.org/10.1007/s00024-017-1467-4

Madariaga, R. (1979). On the relation between seismic moment and stress drop in the presence of stress and strength heterogeneity. Journal of Geophysical Research: Solid Earth, 84(B5), 2243–2250. https://doi.org/10.1029/jb084ib05p02243 DOI: https://doi.org/10.1029/JB084iB05p02243

Mai, P. M., Aspiotis, T., Aquib, T. A., Cano, E. V., Castro-Cruz, D., Espindola-Carmona, A., Li, B., Li, X., Liu, J., Matrau, R., Nobile, A., Palgunadi, K. H., Ribot, M., Parisi, L., Suhendi, C., Tang, Y., Yalcin, B., Avşar, U., Klinger, Y., & Jónsson, S. (2023). The Destructive Earthquake Doublet of 6 February 2023 in South-Central Türkiye and Northwestern Syria: Initial Observations and Analyses. The Seismic Record, 3(2), 105–115. https://doi.org/10.1785/0320230007 DOI: https://doi.org/10.1785/0320230007

McLaskey, G. C. (2019). Earthquake Initiation From Laboratory Observations and Implications for Foreshocks. Journal of Geophysical Research: Solid Earth, 124(12), 12882–12904. https://doi.org/10.1029/2019jb018363 DOI: https://doi.org/10.1029/2019JB018363

McLaskey, G. C., & Yamashita, F. (2017). Slow and fast ruptures on a laboratory fault controlled by loading characteristics. Journal of Geophysical Research: Solid Earth, 122(5), 3719–3738. https://doi.org/10.1002/2016jb013681 DOI: https://doi.org/10.1002/2016JB013681

Melgar, D., Taymaz, T., Ganas, A., Crowell, B., Öcalan, T., Kahraman, M., Tsironi, V., Yolsal-Çevikbil, S., Valkaniotis, S., Irmak, T. S., Eken, T., Erman, C., Özkan, B., Dogan, A. H., & Altuntaş, C. (2023). Sub- and super-shear ruptures during the 2023 Mw 7.8 and Mw 7.6 earthquake doublet in SE Türkiye. Seismica, 2(3). https://doi.org/10.26443/seismica.v2i3.387 DOI: https://doi.org/10.26443/seismica.v2i3.387

Melnick, D., Moreno, M., Motagh, M., Cisternas, M., & Wesson, R. L. (2012). Splay fault slip during the Mw 8.8 2010 Maule Chile earthquake. Geology, 40(3), 251–254. https://doi.org/10.1130/g32712.1 DOI: https://doi.org/10.1130/G32712.1

Meng, L., Ampuero, J. P., Page, M. T., & Hudnut, K. W. (2011). Seismological evidence and dynamic model of reverse rupture propagation during the 2010 M7.2 El Mayor Cucapah earthquake. AGU 2011 Fall Meeting Abstract S52B-04.

Meng, L., Ampuero, J.-P., Stock, J., Duputel, Z., Luo, Y., & Tsai, V. C. (2012). Earthquake in a maze: Compressional rupture branching during the 2012 Mw 8.6 Sumatra earthquake. Science, 337(6095), 724–726. https://doi.org/10.1126/science.1224030 DOI: https://doi.org/10.1126/science.1224030

Meng, Lingsen, Inbal, A., & Ampuero, J.-P. (2011). A window into the complexity of the dynamic rupture of the 2011 Mw 9 Tohoku‐Oki earthquake. Geophysical Research Letters, 38(7). https://doi.org/10.1029/2011gl048118 DOI: https://doi.org/10.1029/2011GL048118

Mignan, A., Danciu, L., & Giardini, D. (2015). Reassessment of the Maximum Fault Rupture Length of Strike-Slip Earthquakes and Inference on Mmax in the Anatolian Peninsula, Turkey. Seismological Research Letters, 86(3), 890–900. https://doi.org/10.1785/0220140252 DOI: https://doi.org/10.1785/0220140252

Natural Resources Canada. (1975). Canadian National Seismograph Network (CN). International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/CN

NOAA. (1967). National Tsunami Warning Center Alaska Seismic Network (AT). International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/AT

Obara, K., Matsuzawa, T., Tanaka, S., & Maeda, T. (2012). Depth-dependent mode of tremor migration beneath Kii Peninsula, Nankai subduction zone. Geophysical Research Letters, 39(10). https://doi.org/10.1029/2012gl051420 DOI: https://doi.org/10.1029/2012GL051420

Oglesby, David D., Archuleta, R. J., & Nielsen, S. B. (1998). Earthquakes on Dipping Faults: The Effects of Broken Symmetry. Science, 280(5366), 1055–1059. https://doi.org/10.1126/science.280.5366.1055 DOI: https://doi.org/10.1126/science.280.5366.1055

Oglesby, David D., & Mai, P. M. (2012). Fault geometry, rupture dynamics and ground motion from potential earthquakes on the North Anatolian Fault under the Sea of Marmara. Geophysical Journal International, 188(3), 1071–1087. https://doi.org/10.1111/j.1365-246x.2011.05289.x DOI: https://doi.org/10.1111/j.1365-246X.2011.05289.x

Oglesby, D.D., Day, S. M., Li, Y. G., & Vidale, J. E. (2003). The 1999 Hector Mine Earthquake: The Dynamics of a Branched Fault System. Bulletin of the Seismological Society of America, 93(6), 2459–2476. https://doi.org/10.1785/0120030026 DOI: https://doi.org/10.1785/0120030026

Ohnaka, M. (1992). Earthquake source nucleation: A physical model for short-term precursors. Tectonophysics, 211(1–4), 149–178. https://doi.org/10.1016/0040-1951(92)90057-d DOI: https://doi.org/10.1016/0040-1951(92)90057-D

Okuwaki, R., Yagi, Y., Taymaz, T., & Hicks, S. P. (2023). Multi-Scale Rupture Growth With Alternating Directions in a Complex Fault Network During the 2023 South-Eastern Türkiye and Syria Earthquake Doublet. Geophysical Research Letters, 50(12). https://doi.org/10.1029/2023gl103480 DOI: https://doi.org/10.1029/2023GL103480

Palmer, A. C., & Rice, J. R. (1973). The growth of slip surfaces in the progressive failure of over-consolidated clay. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 332(1591), 527–548. https://doi.org/10.1098/rspa.1973.0040 DOI: https://doi.org/10.1098/rspa.1973.0040

Platt, J. P., & Passchier, C. W. (2016). Zipper junctions: A new approach to the intersections of conjugate strike-slip faults. Geology, 44(10), 795–798. https://doi.org/10.1130/g38058.1 DOI: https://doi.org/10.1130/G38058.1

Poliakov, A. N. B., Dmowska, R., & Rice, J. R. (2002). Dynamic shear rupture interactions with fault bends and off-axis secondary faulting. Journal of Geophysical Research: Solid Earth, 107(B11). https://doi.org/10.1029/2001jb000572 DOI: https://doi.org/10.1029/2001JB000572

Reif, C., Masters, G., Shearer, P., & Laske, G. (2002). Cluster analysis of long-period waveforms: Implications for global tomography. Eos, Transactions American Geophysical Union, 83(47), 954.

Reitman, N. G., Briggs, R., Barnhart, W. D., Jobe, J. A., DuRoss, C. B., Hatem, A. E., Gold, R. D., Akciz, S., Koehler, R., Mejstrik, J. D., & Collett, C. M. (2023). Preliminary fault rupture mapping of the 2023 M7.8 and M7.5 Türkiye Earthquakes. U.S. Geological Survey. https://doi.org/10.5066/P985I7U2

Rice, J R, & Ben-Zion, Y. (1996). Slip complexity in earthquake fault models. Proceedings of the National Academy of Sciences, 93(9), 3811–3818. https://doi.org/10.1073/pnas.93.9.3811 DOI: https://doi.org/10.1073/pnas.93.9.3811

Rice, James R. (1993). Spatio-temporal complexity of slip on a fault. Journal of Geophysical Research: Solid Earth, 98(B6), 9885–9907. https://doi.org/10.1029/93jb00191 DOI: https://doi.org/10.1029/93JB00191

Rosakis, A., Abdelmeguid, M., & Elbanna, A. (2023). Evidence of Early Supershear Transition in the Mw 7.8 Kahramanmaraş Earthquake from Near-Field Records. https://doi.org/10.31223/x5w95g DOI: https://doi.org/10.31223/X5W95G

Ross, Z. E., Idini, B., Jia, Z., Stephenson, O. L., Zhong, M., Wang, X., Zhan, Z., Simons, M., Fielding, E. J., Yun, S.-H., Hauksson, E., Moore, A. W., Liu, Z., & Jung, J. (2019). Hierarchical interlocked orthogonal faulting in the 2019 Ridgecrest earthquake sequence. Science, 366(6463), 346–351. https://doi.org/10.1126/science.aaz0109 DOI: https://doi.org/10.1126/science.aaz0109

Rousseau, C.-E., & Rosakis, A. J. (2003). On the influence of fault bends on the growth of sub-Rayleigh and intersonic dynamic shear ruptures. Journal of Geophysical Research: Solid Earth, 108(B9). https://doi.org/10.1029/2002jb002310 DOI: https://doi.org/10.1029/2002JB002310

Rousseau, C.-E., & Rosakis, A. J. (2009). Dynamic path selection along branched faults: Experiments involving sub-Rayleigh and supershear ruptures. Journal of Geophysical Research: Solid Earth, 114(B8). https://doi.org/10.1029/2008jb006173 DOI: https://doi.org/10.1029/2008JB006173

Rowe, C. D., Moore, J. C., Remitti, F., & IODP Expedition Scientists. (2013). The thickness of subduction plate boundary faults from the seafloor into the seismogenic zone. Geology, 41(9), 991–994. https://doi.org/10.1130/g34556.1 DOI: https://doi.org/10.1130/G34556.1

Rowe, C. D., Ross, C., Swanson, M. T., Pollock, S., Backeberg, N. R., Barshi, N. A., Bate, C. E., Carruthers, S., Coulson, S., Dascher-Cousineau, K., Harrichhausen, N., Castro, A. F. P., Nisbet, H., Rakoczy, P., Scibek, J., Smith, H., Tarling, M. S., Timofeev, A., & Young, E. (2018). Geometric Complexity of Earthquake Rupture Surfaces Preserved in Pseudotachylyte Networks. Journal of Geophysical Research: Solid Earth, 123(9), 7998–8015. https://doi.org/10.1029/2018jb016192 DOI: https://doi.org/10.1029/2018JB016192

Rubin, A. M., & Ampuero, J.-P. (2007). Aftershock asymmetry on a bimaterial interface. Journal of Geophysical Research: Solid Earth, 112(B5). https://doi.org/10.1029/2006jb004337 DOI: https://doi.org/10.1029/2006JB004337

Ryan, K. J., & Oglesby, D. D. (2014). Dynamically modeling fault step overs using various friction laws. Journal of Geophysical Research: Solid Earth, 119(7), 5814–5829. https://doi.org/10.1002/2014jb011151 DOI: https://doi.org/10.1002/2014JB011151

Schär, S., Albertini, G., & Kammer, D. S. (2021). Nucleation of frictional sliding by coalescence of microslip. International Journal of Solids and Structures, 225, 111059. https://doi.org/10.1016/j.ijsolstr.2021.111059 DOI: https://doi.org/10.1016/j.ijsolstr.2021.111059

Schmidt, R. (1986). Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation, 34(3), 276–280. https://doi.org/10.1109/tap.1986.1143830 DOI: https://doi.org/10.1109/TAP.1986.1143830

Scholz, C. H., Ando, R., & Shaw, B. E. (2010). The mechanics of first order splay faulting: The strike-slip case. Journal of Structural Geology, 32(1), 118–126. https://doi.org/10.1016/j.jsg.2009.10.007 DOI: https://doi.org/10.1016/j.jsg.2009.10.007

Scripps Institution of Oceanography. (1986). Global Seismograph Network – IRIS/IDA. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/II

Selvadurai, P. A., Galvez, P., Mai, P. M., & Glaser, S. D. (2023). Modeling frictional precursory phenomena using a wear-based rate- and state-dependent friction model in the laboratory. Tectonophysics, 847, 229689. https://doi.org/10.1016/j.tecto.2022.229689 DOI: https://doi.org/10.1016/j.tecto.2022.229689

Şengör, A. M. C., Zabcı, C., & Natal’in, B. A. (2019). Continental Transform Faults: Congruence and Incongruence With Normal Plate Kinematics. In Transform Plate Boundaries and Fracture Zones (pp. 169–247). Elsevier. https://doi.org/10.1016/b978-0-12-812064-4.00009-8 DOI: https://doi.org/10.1016/B978-0-12-812064-4.00009-8

Sieh, K., Jones, L., Hauksson, E., Hudnut, K., Eberhart-Phillips, D., Heaton, T., Hough, S., Hutton, K., Kanamori, H., Lilje, A., Lindvall, S., McGill, S. F., Mori, J., Rubin, C., Spotila, J. A., Stock, J., Thio, H. K., Treiman, J., Wernicke, B., & Zachariasen, J. (1993). Near-Field Investigations of the Landers Earthquake Sequence, April to July 1992. Science, 260(5105), 171–176. https://doi.org/10.1126/science.260.5105.171 DOI: https://doi.org/10.1126/science.260.5105.171

Smith, Z. D., & Griffith, W. A. (2022). Evolution of Pulverized Fault Zone Rocks by Dynamic Tensile Loading During Successive Earthquakes. Geophysical Research Letters, 49(19). https://doi.org/10.1029/2022gl099971 DOI: https://doi.org/10.1029/2022GL099971

Tada, H., Paris, P. C., & Irwin, G. R. (2000). The Stress Analysis of Cracks Handbook. ASME Press. https://doi.org/10.1115/1.801535 DOI: https://doi.org/10.1115/1.801535

Templeton, E. L., Baudet, A., Bhat, H. S., Dmowska, R., Rice, J. R., Rosakis, A. J., & Rousseau, C.-E. (2009). Finite element simulations of dynamic shear rupture experiments and dynamic path selection along kinked and branched faults. Journal of Geophysical Research: Solid Earth, 114(B8). https://doi.org/10.1029/2008jb006174 DOI: https://doi.org/10.1029/2008JB006174

Uenishi, K., & Rice, J. R. (2003). Universal nucleation length for slip-weakening rupture instability under nonuniform fault loading. Journal of Geophysical Research: Solid Earth, 108(B1). https://doi.org/10.1029/2001jb001681 DOI: https://doi.org/10.1029/2001JB001681

Ulrich, T., Gabriel, A.-A., Ampuero, J.-P., & Xu, W. (2019). Dynamic viability of the 2016 Mw 7.8 Kaikōura earthquake cascade on weak crustal faults. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-09125-w DOI: https://doi.org/10.1038/s41467-019-09125-w

USGS. (2023). Event page for the 6 February 2023 Kahramanmaraş Earthquake. https://earthquake.usgs.gov/earthquakes/eventpage/us6000jllz/origin/detail

Vannucchi, P., Sage, F., Morgan, J. P., Remitti, F., & Collot, J.-Y. (2012). Toward a dynamic concept of the subduction channel at erosive convergent margins with implications for interplate material transfer. Geochemistry, Geophysics, Geosystems, 13(2). https://doi.org/10.1029/2011gc003846 DOI: https://doi.org/10.1029/2011GC003846

Various Institutions. (1965). International Miscellaneous Stations (IM). International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/vefq-vh75

Walsh, E., Stahl, T., Howell, A., & Robinson, T. (2022). Two-dimensional empirical rupture simulation: Examples and applications to seismic hazard for the Kaikoura region, New Zealand. Seismological Research Letters, 94(2A), 852–870. https://doi.org/10.1785/0220220231 DOI: https://doi.org/10.1785/0220220231

Wang, T., Wei, S., Shi, X., Qiu, Q., Li, L., Peng, D., Weldon, R. J., & Barbot, S. (2018). The 2016 Kaikōura earthquake: Simultaneous rupture of the subduction interface and overlying faults. Earth and Planetary Science Letters, 482, 44–51. https://doi.org/10.1016/j.epsl.2017.10.056 DOI: https://doi.org/10.1016/j.epsl.2017.10.056

Wang, Z., Zhang, W., Taymaz, T., He, Z., Xu, T., & Zhang, Z. (2023). Dynamic rupture process of the 2023 Mw 7.8 Kahramanmaraş earthquake (SE Türkiye): Variable rupture speed and implications for seismic hazard. Geophysical Research Letters, 50(15). https://doi.org/10.1029/2023gl104787 DOI: https://doi.org/10.1029/2023GL104787

Wei, S., Fielding, E., Leprince, S., Sladen, A., Avouac, J.-P., Helmberger, D., Hauksson, E., Chu, R., Simons, M., Hudnut, K., Herring, T., & Briggs, R. (2011). Superficial simplicity of the 2010 El Mayor–Cucapah earthquake of Baja California in Mexico. Nature Geoscience, 4(9), 615–618. https://doi.org/10.1038/ngeo1213 DOI: https://doi.org/10.1038/ngeo1213

Wendt, J., Oglesby, D. D., & Geist, E. L. (2009). Tsunamis and splay fault dynamics. Geophysical Research Letters, 36(15). https://doi.org/10.1029/2009gl038295 DOI: https://doi.org/10.1029/2009GL038295

Weng, H., & Ampuero, J.-P. (2019). The Dynamics of Elongated Earthquake Ruptures. Journal of Geophysical Research: Solid Earth, 124(8), 8584–8610. https://doi.org/10.1029/2019jb017684 DOI: https://doi.org/10.1029/2019JB017684

Weng, H., & Ampuero, J.-P. (2020). Continuum of earthquake rupture speeds enabled by oblique slip. Nature Geoscience, 13(12), 817–821. https://doi.org/10.1038/s41561-020-00654-4 DOI: https://doi.org/10.1038/s41561-020-00654-4

Wolfson-Schwehr, M., & Boettcher, M. S. (2019). Global Characteristics of Oceanic Transform Fault Structure and Seismicity. In Transform Plate Boundaries and Fracture Zones (pp. 21–59). Elsevier. https://doi.org/10.1016/b978-0-12-812064-4.00002-5 DOI: https://doi.org/10.1016/B978-0-12-812064-4.00002-5

Wollherr, S., Gabriel, A.-A., & Mai, P. M. (2019). Landers 1992 “reloaded”: Integrative dynamic earthquake rupture modeling. Journal of Geophysical Research: Solid Earth, 124(7), 6666–6702. https://doi.org/10.1029/2018jb016355 DOI: https://doi.org/10.1029/2018JB016355

Xu, L., Mohanna, S., Meng, L., Ji, C., Ampuero, J.-P., Yunjun, Z., Hasnain, M., Chu, R., & Liang, C. (2023). The overall-subshear and multi-segment rupture of the 2023 Mw7.8 Kahramanmaraş, Turkey earthquake in millennia supercycle. Communications Earth & Environment, 4(1). https://doi.org/10.1038/s43247-023-01030-x DOI: https://doi.org/10.1038/s43247-023-01030-x

Xu, S., Ding, X., Fukuyama, E., & Yamashita, F. (2021). How to generate an observable phase of backward-propagating rupture? AGU 2021 Fall Meeting Abstract S51C-05.

Xu, Shiqing. (2020). Recognizing fracture pattern signatures contributed by seismic loadings. Interpretation, 8(4), SP95–SP108. https://doi.org/10.1190/int-2020-0033.1 DOI: https://doi.org/10.1190/INT-2020-0033.1

Xu, Shiqing, & Ben-Zion, Y. (2017). Theoretical constraints on dynamic pulverization of fault zone rocks. Geophysical Journal International. https://doi.org/10.1093/gji/ggx033 DOI: https://doi.org/10.1093/gji/ggx033

Xu, Shiqing, Fukuyama, E., Ben-Zion, Y., & Ampuero, J.-P. (2015). Dynamic rupture activation of backthrust fault branching. Tectonophysics, 644–645, 161–183. https://doi.org/10.1016/j.tecto.2015.01.011 DOI: https://doi.org/10.1016/j.tecto.2015.01.011

Xu, Shiqing, Fukuyama, E., Yamashita, F., Kawakata, H., Mizoguchi, K., & Takizawa, S. (2023). Fault strength and rupture process controlled by fault surface topography. Nature Geoscience, 16(1), 94–100. https://doi.org/10.1038/s41561-022-01093-z DOI: https://doi.org/10.1038/s41561-022-01093-z

Xu, Shiqing, Fukuyama, E., Yamashita, F., Mizoguchi, K., Takizawa, S., & Kawakata, H. (2018). Strain rate effect on fault slip and rupture evolution: Insight from meter-scale rock friction experiments. Tectonophysics, 733, 209–231. https://doi.org/10.1016/j.tecto.2017.11.039 DOI: https://doi.org/10.1016/j.tecto.2017.11.039

Yamashita, F., Fukuyama, E., & Xu, S. (2022). Foreshock Activity Promoted by Locally Elevated Loading Rate on a 4-m-Long Laboratory Fault. Journal of Geophysical Research: Solid Earth, 127(3). https://doi.org/10.1029/2021jb023336 DOI: https://doi.org/10.1029/2021JB023336

Yu, C., Pandolfi, A., Ortiz, M., Coker, D., & Rosakis, A. J. (2002). Three-dimensional modeling of intersonic shear-crack growth in asymmetrically loaded unidirectional composite plates. International Journal of Solids and Structures, 39(25), 6135–6157. https://doi.org/10.1016/s0020-7683(02)00466-3 DOI: https://doi.org/10.1016/S0020-7683(02)00466-3

Yue, H., Lay, T., & Koper, K. D. (2012). En échelon and orthogonal fault ruptures of the 11 April 2012 great intraplate earthquakes. Nature, 490(7419), 245–249. https://doi.org/10.1038/nature11492 DOI: https://doi.org/10.1038/nature11492

Zhang, Y., Tang, X., Liu, D., Taymaz, T., Eken, T., Guo, R., Zheng, Y., Wang, J., & Sun, H. (2023). Geometric controls on cascading rupture of the 2023 Kahramanmaraş earthquake doublet. Nature Geoscience. https://doi.org/10.1038/s41561-023-01283-3 DOI: https://doi.org/10.1038/s41561-023-01283-3

Published

2023-11-14

How to Cite

Ding, X., Xu, S., Xie, Y., van den Ende, M., Premus, J., & Ampuero, J.-P. (2023). The sharp turn: Backward rupture branching during the 2023 Mw 7.8 Kahramanmaraş (Türkiye) earthquake. Seismica, 2(3). https://doi.org/10.26443/seismica.v2i3.1083

Funding data