The sharp turn: Backward rupture branching during the 2023 Mw 7.8 Kahramanmaraş (Türkiye) earthquake




2023 Mw 7.8 Turkey earthquake, backward rupture branching, earthquake triggering, earthquake nucleation, subshear rupture, supershear rupture


Multiple lines of evidence indicate that the 2023 Mw 7.8 Kahramanmaraş (Türkiye) earthquake started on a splay fault, then branched bilaterally onto the nearby East Anatolian Fault (EAF). This rupture pattern includes one feature previously deemed implausible, called backward rupture branching: rupture propagating from the splay fault onto the SW EAF segment through a sharp corner (with an acute angle between the two faults). To understand this feature, we perform 2.5-D dynamic rupture simulations considering a large set of possible scenarios. We find that both subshear and supershear ruptures on the splay fault can trigger bilateral ruptures on the EAF, which themselves can be either subshear, supershear, or a mixture of the two. In most cases, rupture on the SW segment of the EAF starts after rupture onset on its NE segment: the SW rupture is triggered by the NE rupture. Only when the EAF has initial stresses very close to failure can its SW segment be directly triggered by the initial splay-fault rupture, earlier than the activation of the NE segment. These results advance our understanding of the mechanisms of multi-segment rupture and the complexity of rupture processes, paving the way for a more accurate assessment of earthquake hazards.


Abdelmeguid, M., Zhao, C., Yalcinkaya, E., Gazetas, G., Elbanna, A., & Rosakis, A. (2023). Revealing The Dynamics of the Feb 6th 2023 M7.8 Kahramanmaraş/Pazarcik Earthquake: near-field records and dynamic rupture modeling. DOI:

Aben, F. M., Doan, M.-L., Mitchell, T. M., Toussaint, R., Reuschlé, T., Fondriest, M., Gratier, J.-P., & Renard, F. (2016). Dynamic fracturing by successive coseismic loadings leads to pulverization in active fault zones. Journal of Geophysical Research: Solid Earth, 121(4), 2338–2360. DOI:

AFAD. (1973). Turkish National Strong Motion Network (TK). International Federation of Digital Seismograph Networks.

AFAD. (2023a). AFAD Earthquake Catalog webpage.

AFAD. (2023b). Event page for the 6 February 2023 Kahramanmaraş Earthquake.

Alaska Earthquake Center. (1987). Alaska Geophysical Network (AK). International Federation of Digital Seismograph Networks.

Alaska Volcano Observatory/USGS. (1988). Alaska Volcano Observatory Network (AVO). International Federation of Digital Seismograph Networks.

Albertini, G., Karrer, S., Grigoriu, M. D., & Kammer, D. S. (2021). Stochastic properties of static friction. Journal of the Mechanics and Physics of Solids, 147, 104242. DOI:

Albuquerque Seismological Laboratory/USGS. (1990). United States National Seismic Network (US). International Federation of Digital Seismograph Networks.

Albuquerque Seismological Laboratory/USGS. (2014). Global Seismograph Network – GSN-IRIS/USGS. International Federation of Digital Seismograph Networks.

Ambraseys, N. N. (1989). Temporary seismic quiescence: SE Turkey. Geophysical Journal International, 96(2), 311–331. DOI:

Ampuero, J. P. (2012). SEM2DPACK—a spectral element method tool for 2D wave propagation and earthquake source dynamics.

Ampuero, J. P. (2023).

Andrews, D. J. (1976). Rupture velocity of plane strain shear cracks. Journal of Geophysical Research, 81(32), 5679–5687. DOI:

Andrews, D. J. (1985). Dynamic plane-strain shear rupture with a slip-weakening friction law calculated by a boundary integral method. Bulletin of the Seismological Society of America, 75(1), 1–21. DOI:

Andrews, D. J. (1989). Mechanics of fault junctions. Journal of Geophysical Research: Solid Earth, 94(B7), 9389–9397. DOI:

Andrews, D. J., & Ben-Zion, Y. (1997). Wrinkle-like slip pulse on a fault between different materials. Journal of Geophysical Research: Solid Earth, 102(B1), 553–571. DOI:

Barbot, S., Luo, H., Wang, T., Hamiel, Y., Piatibratova, O., Javed, M. T., Braitenberg, C., & Gurbuz, G. (2023). Slip distribution of the February 6, 2023 Mw 7.8 and Mw 7.6, Kahramanmaraş, Turkey earthquake sequence in the East Anatolian Fault Zone. Seismica, 2(3). DOI:

Bhat, H. S., Olives, M., Dmowska, R., & Rice, J. R. (2007). Role of fault branches in earthquake rupture dynamics. Journal of Geophysical Research: Solid Earth, 112(B11). DOI:

Biasi, G. P., & Wesnousky, S. G. (2021). Rupture Passing Probabilities at Fault Bends and Steps, with Application to Rupture Length Probabilities for Earthquake Early Warning. Bulletin of the Seismological Society of America, 111(4), 2235–2247. DOI:

Bizzarri, A. (2010). How to Promote Earthquake Ruptures: Different Nucleation Strategies in a Dynamic Model with Slip-Weakening Friction. Bulletin of the Seismological Society of America, 100(3), 923–940. DOI:

Bohnhoff, M., Martı́nez-Garzón, P., Bulut, F., Stierle, E., & Ben-Zion, Y. (2016). Maximum earthquake magnitudes along different sections of the North Anatolian fault zone. Tectonophysics, 674, 147–165. DOI:

Cattania, C., & Segall, P. (2021). Precursory Slow Slip and Foreshocks on Rough Faults. Journal of Geophysical Research: Solid Earth, 126(4). DOI:

Chen, W., Rao, G., Kang, D., Wan, Z., & Wang, D. (2023). Early Report of the Source Characteristics, Ground Motions, and Casualty Estimates of the 2023 Mw 7.8 and 7.5 Turkey Earthquakes. Journal of Earth Science, 34(2), 297–303. DOI:

Cochard, A., & Madariaga, R. (1996). Complexity of seismicity due to highly rate-dependent friction. Journal of Geophysical Research: Solid Earth, 101(B11), 25321–25336. DOI:

Cruz-Atienza, V. M., Olsen, K. B., & Dalguer, L. A. (2009). Estimation of the Breakdown Slip from Strong-Motion Seismograms: Insights from Numerical Experiments. Bulletin of the Seismological Society of America, 99(6), 3454–3469. DOI:

Cruz-Atienza, Vı́ctor M., Villafuerte, C., & Bhat, H. S. (2018). Rapid tremor migration and pore-pressure waves in subduction zones. Nature Communications, 9(1). DOI:

Cubas, N., Avouac, J. P., Leroy, Y. M., & Pons, A. (2013). Low friction along the high slip patch of the 2011 Mw 9.0 Tohoku-Oki earthquake required from the wedge structure and extensional splay faults. Geophysical Research Letters, 40(16), 4231–4237. DOI:

Dal Zilio, L., & Ampuero, J.-P. (2023). Earthquake doublet in Turkey and Syria. Communications Earth & Environment, 4(1). DOI:

Das, S., & Aki, K. (1977). A numerical study of two-dimensional spontaneous rupture propagation. Geophysical Journal International, 50(3), 643–668. DOI:

Day, S.M. (1982). Three-dimensional finite difference simulation of fault dynamics: rectangular faults with fixed rupture velocity. Bulletin of the Seismological Society of America, 72(3), 705–727.

Day, Steven M., Dalguer, L. A., Lapusta, N., & Liu, Y. (2005). Comparison of finite difference and boundary integral solutions to three-dimensional spontaneous rupture. Journal of Geophysical Research: Solid Earth, 110(B12). DOI:

DeDontney, N., Rice, J. R., & Dmowska, R. (2012). Finite Element Modeling of Branched Ruptures Including Off-Fault Plasticity. Bulletin of the Seismological Society of America, 102(2), 541–562. DOI:

Delouis, B., van den Ende, M., & Ampuero, J.-P. (2023). Kinematic rupture model of the February 6th 2023 Mw7.8 Turkey earthquake from a large set of near-source strong motion records combined by GNSS offsets reveals intermittent supershear rupture. DOI:

Delph, J. R., Biryol, C. B., Beck, S. L., Zandt, G., & Ward, K. M. (2015). Shear wave velocity structure of the Anatolian Plate: anomalously slow crust in southwestern Turkey. Geophysical Journal International, 202(1), 261–276. DOI:

Di Toro, G., Nielsen, S., & Pennacchioni, G. (2005). Earthquake rupture dynamics frozen in exhumed ancient faults. Nature, 436(7053), 1009–1012. DOI:

Doan, M.-L., & d’Hour, V. (2012). Effect of initial damage on rock pulverization along faults. Journal of Structural Geology, 45, 113–124. DOI:

Dor, O., Ben-Zion, Y., Rockwell, T. K., & Brune, J. (2006). Pulverized rocks in the Mojave section of the San Andreas Fault Zone. Earth and Planetary Science Letters, 245(3–4), 642–654. DOI:

Duan, B., & Oglesby, D. D. (2007). Nonuniform prestress from prior earthquakes and the effect on dynamics of branched fault systems. Journal of Geophysical Research: Solid Earth, 112(B5). DOI:

Emre, Ö., Duman, T. Y., Özalp, S., Elmacı, H., Olgun, Ş., & Şaroğlu, Ş. (2013). Active fault map of Turkey with explanatory text. Ankara: General Directorate of Mineral Research and Exploration.

Emre, Ö., Duman, T. Y., Özalp, S., Şaroğlu, F., Olgun, Ş., Elmacı, H., & Çan, T. (2016). Active fault database of Turkey. Bulletin of Earthquake Engineering, 16(8), 3229–3275. DOI:

Faulkner, D. R., Lewis, A. C., & Rutter, E. H. (2003). On the internal structure and mechanics of large strike-slip fault zones: field observations of the Carboneras fault in southeastern Spain. Tectonophysics, 367(3–4), 235–251. DOI:

Fletcher, J. M., Oskin, M. E., & Teran, O. J. (2016). The role of a keystone fault in triggering the complex El Mayor–Cucapah earthquake rupture. Nature Geoscience, 9(4), 303–307. DOI:

Fliss, S., Bhat, H. S., Dmowska, R., & Rice, J. R. (2005). Fault branching and rupture directivity. Journal of Geophysical Research: Solid Earth, 110(B6). DOI:

Freed, A. M. (2005). Earthquake triggering by static, dynamic, and postseismic stress transfer. Annual Review of Earth and Planetary Sciences, 33(1), 335–367. DOI:

Freund, L. B. (1990). Dynamic Fracture Mechanics. Cambridge University Press. DOI:

Fukuyama, E., & Mikumo, T. (2007). Slip-weakening distance estimated at near-fault stations. Geophysical Research Letters, 34(9). DOI:

Goldberg, D. E., Taymaz, T., Reitman, N. G., Hatem, A. E., Yolsal-Çevikbilen, S., Barnhart, W. D., Irmak, T. S., Wald, D. J., Öcalan, T., Yeck, W. L., Özkan, B., Jobe, J. A. T., Shelly, D. R., Thompson, E. M., DuRoss, C. B., Earle, P. S., Briggs, R. W., Benz, H., Erman, C., … Altuntaş, C. (2023). Rapid Characterization of the February 2023 Kahramanmaraş, Türkiye, Earthquake Sequence. The Seismic Record, 3(2), 156–167. DOI:

Gomberg, J., Beeler, N. M., Blanpied, M. L., & Bodin, P. (1998). Earthquake triggering by transient and static deformations. Journal of Geophysical Research: Solid Earth, 103(B10), 24411–24426. DOI:

Guérin-Marthe, S., Nielsen, S., Bird, R., Giani, S., & Di Toro, G. (2019). Earthquake Nucleation Size: Evidence of Loading Rate Dependence in Laboratory Faults. Journal of Geophysical Research: Solid Earth, 124(1), 689–708. DOI:

Güvercin, S. E., Karabulut, H., Konca, A. Ö., Doğan, U., & Ergintav, S. (2022). Active seismotectonics of the East Anatolian Fault. Geophysical Journal International, 230(1), 50–69. DOI:

Gvirtzman, S., & Fineberg, J. (2021). Nucleation fronts ignite the interface rupture that initiates frictional motion. Nature Physics, 17(9), 1037–1042. DOI:

Hamling, I. J., Hreinsdóttir, S., Clark, K., Elliott, J., Liang, C., Fielding, E., Litchfield, N., Villamor, P., Wallace, L., Wright, T. J., D’Anastasio, E., Bannister, S., Burbidge, D., Denys, P., Gentle, P., Howarth, J., Mueller, C., Palmer, N., Pearson, C., … Stirling, M. (2017). Complex multifault rupture during the 2016 Mw 7.8 Kaikōura earthquake. Science, 356(6334). DOI:

Harris, R. A., & Day, S. M. (1993). Dynamics of fault interaction: parallel strike-slip faults. Journal of Geophysical Research: Solid Earth, 98(B3), 4461–4472. DOI:

Hatakeyama, N., Uchida, N., Matsuzawa, T., & Nakamura, W. (2017). Emergence and disappearance of interplate repeating earthquakes following the 2011 M9.0 Tohoku-oki earthquake: Slip behavior transition between seismic and aseismic depending on the loading rate. Journal of Geophysical Research: Solid Earth, 122(7), 5160–5180. DOI:

Hicks, S. P., Okuwaki, R., Steinberg, A., Rychert, C. A., Harmon, N., Abercrombie, R. E., Bogiatzis, P., Schlaphorst, D., Zahradnik, J., Kendall, J.-M., Yagi, Y., Shimizu, K., & Sudhaus, H. (2020). Back-propagating supershear rupture in the 2016 Mw 7.1 Romanche transform fault earthquake. Nature Geoscience, 13(9), 647–653. DOI:

Houston, H., Delbridge, B. G., Wech, A. G., & Creager, K. C. (2011). Rapid tremor reversals in Cascadia generated by a weakened plate interface. Nature Geoscience, 4(6), 404–409. DOI:

Hussain, E., Kalaycıoğlu, S., Milliner, C. W. D., & Çakir, Z. (2023). Preconditioning the 2023 Kahramanmaraş (Türkiye) earthquake disaster. Nature Reviews Earth & Environment, 4(5), 287–289. DOI:

Ide, S., Baltay, A., & Beroza, G. C. (2011). Shallow Dynamic Overshoot and Energetic Deep Rupture in the 2011 Mw 9.0 Tohoku-Oki Earthquake. Science, 332(6036), 1426–1429. DOI:

Idini, B., & Ampuero, J.-P. (2020). Fault-Zone Damage Promotes Pulse-Like Rupture and Back-Propagating Fronts via Quasi-Static Effects. Geophysical Research Letters, 47(23). DOI:

Jia, Z., Jin, Z., Marchandon, M., Ulrich, T., Gabriel, A.-A., Fan, W., Shearer, P., Zou, X., Rekoske, J., Bulut, F., Garagon, A., & Fialko, Y. (2023). The complex dynamics of the 2023 Kahramanmaraş, Turkey, Mw 7.8-7.7 earthquake doublet. Science, 381(6661), 985–990. DOI:

Kame, N., Rice, J. R., & Dmowska, R. (2003). Effects of prestress state and rupture velocity on dynamic fault branching. Journal of Geophysical Research: Solid Earth, 108(B5). DOI:

Karabulut, H., Güvercin, S. E., Hollingsworth, J., & Konca, A. Ö. (2023). Long silence on the East Anatolian Fault Zone (Southern Turkey) ends with devastating double earthquakes (6 February 2023) over a seismic gap: implications for the seismic potential in the Eastern Mediterranean region. Journal of the Geological Society, 180(3). DOI:

Kato, N., Yamamoto, K., Yamamoto, H., & Hirasawa, T. (1992). Strain-rate effect on frictional strength and the slip nucleation process. Tectonophysics, 211(1–4), 269–282. DOI:

Kennett, B. L. N., & Engdahl, E. R. (1991). Traveltimes for global earthquake location and phase identification. Geophysical Journal International, 105(2), 429–465. DOI:

Kitajima, H., Gomila, R., Tesei, T., Favero, M., Di Toro, G., & Kondo, H. (2023). Frictional behaviors of the serpentine-rich East Anatolian Fault Rocks collected from the 2014 Kartal trench site.

Kwiatek, G., Martı́nez-Garzón, P., Becker, D., Dresen, G., Cotton, F., Beroza, G., Acarel, D., Ergintav, S., & Bohnhoff, M. (2023). Months-long preparation of the 2023 Mw 7.8 Kahramanmaraş earthquake. DOI:

Lebihain, M., Roch, T., Violay, M., & Molinari, J.-F. (2021). Earthquake Nucleation Along Faults With Heterogeneous Weakening Rate. Geophysical Research Letters, 48(21). DOI:

Li, B., Wu, B., Bao, H., Oglesby, D. D., Ghosh, A., Gabriel, A.-A., Meng, L., & Chu, R. (2022). Rupture Heterogeneity and Directivity Effects in Back-Projection Analysis. Journal of Geophysical Research: Solid Earth, 127(3). DOI:

Li, X., Xu, W., Jónsson, S., Klinger, Y., & Zhang, G. (2020). Source Model of the 2014 Mw 6.9 Yutian Earthquake at the Southwestern End of the Altyn Tagh Fault in Tibet Estimated from Satellite Images. Seismological Research Letters, 91(6), 3161–3170. DOI:

Liu, Chao, Bizzarri, A., & Das, S. (2014). Progression of spontaneous in-plane shear faults from sub-Rayleigh to compressional wave rupture speeds. Journal of Geophysical Research: Solid Earth, 119(11), 8331–8345. DOI:

Liu, Chengli, Lay, T., Wang, R., Taymaz, T., Xie, Z., Xiong, X., Irmak, T. S., Kahraman, M., & Erman, C. (2023). Complex multi-fault rupture and triggering during the 2023 earthquake doublet in southeastern Türkiye. Nature Communications, 14(1). DOI:

Lozos, J. C. (2016). A case for historic joint rupture of the San Andreas and San Jacinto faults. Science Advances, 2(3). DOI:

Luo, Y., & Ampuero, J.-P. (2017). Tremor migration patterns and the collective behavior of deep asperities mediated by creep. DOI:

Luo, Y., Ampuero, J.-P., Miyakoshi, K., & Irikura, K. (2017). Surface Rupture Effects on Earthquake Moment-Area Scaling Relations. Pure and Applied Geophysics, 174(9), 3331–3342. DOI:

Madariaga, R. (1979). On the relation between seismic moment and stress drop in the presence of stress and strength heterogeneity. Journal of Geophysical Research: Solid Earth, 84(B5), 2243–2250. DOI:

Mai, P. M., Aspiotis, T., Aquib, T. A., Cano, E. V., Castro-Cruz, D., Espindola-Carmona, A., Li, B., Li, X., Liu, J., Matrau, R., Nobile, A., Palgunadi, K. H., Ribot, M., Parisi, L., Suhendi, C., Tang, Y., Yalcin, B., Avşar, U., Klinger, Y., & Jónsson, S. (2023). The Destructive Earthquake Doublet of 6 February 2023 in South-Central Türkiye and Northwestern Syria: Initial Observations and Analyses. The Seismic Record, 3(2), 105–115. DOI:

McLaskey, G. C. (2019). Earthquake Initiation From Laboratory Observations and Implications for Foreshocks. Journal of Geophysical Research: Solid Earth, 124(12), 12882–12904. DOI:

McLaskey, G. C., & Yamashita, F. (2017). Slow and fast ruptures on a laboratory fault controlled by loading characteristics. Journal of Geophysical Research: Solid Earth, 122(5), 3719–3738. DOI:

Melgar, D., Taymaz, T., Ganas, A., Crowell, B., Öcalan, T., Kahraman, M., Tsironi, V., Yolsal-Çevikbil, S., Valkaniotis, S., Irmak, T. S., Eken, T., Erman, C., Özkan, B., Dogan, A. H., & Altuntaş, C. (2023). Sub- and super-shear ruptures during the 2023 Mw 7.8 and Mw 7.6 earthquake doublet in SE Türkiye. Seismica, 2(3). DOI:

Melnick, D., Moreno, M., Motagh, M., Cisternas, M., & Wesson, R. L. (2012). Splay fault slip during the Mw 8.8 2010 Maule Chile earthquake. Geology, 40(3), 251–254. DOI:

Meng, L., Ampuero, J. P., Page, M. T., & Hudnut, K. W. (2011). Seismological evidence and dynamic model of reverse rupture propagation during the 2010 M7.2 El Mayor Cucapah earthquake. AGU 2011 Fall Meeting Abstract S52B-04.

Meng, L., Ampuero, J.-P., Stock, J., Duputel, Z., Luo, Y., & Tsai, V. C. (2012). Earthquake in a maze: Compressional rupture branching during the 2012 Mw 8.6 Sumatra earthquake. Science, 337(6095), 724–726. DOI:

Meng, Lingsen, Inbal, A., & Ampuero, J.-P. (2011). A window into the complexity of the dynamic rupture of the 2011 Mw 9 Tohoku‐Oki earthquake. Geophysical Research Letters, 38(7). DOI:

Mignan, A., Danciu, L., & Giardini, D. (2015). Reassessment of the Maximum Fault Rupture Length of Strike-Slip Earthquakes and Inference on Mmax in the Anatolian Peninsula, Turkey. Seismological Research Letters, 86(3), 890–900. DOI:

Natural Resources Canada. (1975). Canadian National Seismograph Network (CN). International Federation of Digital Seismograph Networks.

NOAA. (1967). National Tsunami Warning Center Alaska Seismic Network (AT). International Federation of Digital Seismograph Networks.

Obara, K., Matsuzawa, T., Tanaka, S., & Maeda, T. (2012). Depth-dependent mode of tremor migration beneath Kii Peninsula, Nankai subduction zone. Geophysical Research Letters, 39(10). DOI:

Oglesby, David D., Archuleta, R. J., & Nielsen, S. B. (1998). Earthquakes on Dipping Faults: The Effects of Broken Symmetry. Science, 280(5366), 1055–1059. DOI:

Oglesby, David D., & Mai, P. M. (2012). Fault geometry, rupture dynamics and ground motion from potential earthquakes on the North Anatolian Fault under the Sea of Marmara. Geophysical Journal International, 188(3), 1071–1087. DOI:

Oglesby, D.D., Day, S. M., Li, Y. G., & Vidale, J. E. (2003). The 1999 Hector Mine Earthquake: The Dynamics of a Branched Fault System. Bulletin of the Seismological Society of America, 93(6), 2459–2476. DOI:

Ohnaka, M. (1992). Earthquake source nucleation: A physical model for short-term precursors. Tectonophysics, 211(1–4), 149–178. DOI:

Okuwaki, R., Yagi, Y., Taymaz, T., & Hicks, S. P. (2023). Multi-Scale Rupture Growth With Alternating Directions in a Complex Fault Network During the 2023 South-Eastern Türkiye and Syria Earthquake Doublet. Geophysical Research Letters, 50(12). DOI:

Palmer, A. C., & Rice, J. R. (1973). The growth of slip surfaces in the progressive failure of over-consolidated clay. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 332(1591), 527–548. DOI:

Platt, J. P., & Passchier, C. W. (2016). Zipper junctions: A new approach to the intersections of conjugate strike-slip faults. Geology, 44(10), 795–798. DOI:

Poliakov, A. N. B., Dmowska, R., & Rice, J. R. (2002). Dynamic shear rupture interactions with fault bends and off-axis secondary faulting. Journal of Geophysical Research: Solid Earth, 107(B11). DOI:

Reif, C., Masters, G., Shearer, P., & Laske, G. (2002). Cluster analysis of long-period waveforms: Implications for global tomography. Eos, Transactions American Geophysical Union, 83(47), 954.

Reitman, N. G., Briggs, R., Barnhart, W. D., Jobe, J. A., DuRoss, C. B., Hatem, A. E., Gold, R. D., Akciz, S., Koehler, R., Mejstrik, J. D., & Collett, C. M. (2023). Preliminary fault rupture mapping of the 2023 M7.8 and M7.5 Türkiye Earthquakes. U.S. Geological Survey.

Rice, J R, & Ben-Zion, Y. (1996). Slip complexity in earthquake fault models. Proceedings of the National Academy of Sciences, 93(9), 3811–3818. DOI:

Rice, James R. (1993). Spatio-temporal complexity of slip on a fault. Journal of Geophysical Research: Solid Earth, 98(B6), 9885–9907. DOI:

Rosakis, A., Abdelmeguid, M., & Elbanna, A. (2023). Evidence of Early Supershear Transition in the Mw 7.8 Kahramanmaraş Earthquake from Near-Field Records. DOI:

Ross, Z. E., Idini, B., Jia, Z., Stephenson, O. L., Zhong, M., Wang, X., Zhan, Z., Simons, M., Fielding, E. J., Yun, S.-H., Hauksson, E., Moore, A. W., Liu, Z., & Jung, J. (2019). Hierarchical interlocked orthogonal faulting in the 2019 Ridgecrest earthquake sequence. Science, 366(6463), 346–351. DOI:

Rousseau, C.-E., & Rosakis, A. J. (2003). On the influence of fault bends on the growth of sub-Rayleigh and intersonic dynamic shear ruptures. Journal of Geophysical Research: Solid Earth, 108(B9). DOI:

Rousseau, C.-E., & Rosakis, A. J. (2009). Dynamic path selection along branched faults: Experiments involving sub-Rayleigh and supershear ruptures. Journal of Geophysical Research: Solid Earth, 114(B8). DOI:

Rowe, C. D., Moore, J. C., Remitti, F., & IODP Expedition Scientists. (2013). The thickness of subduction plate boundary faults from the seafloor into the seismogenic zone. Geology, 41(9), 991–994. DOI:

Rowe, C. D., Ross, C., Swanson, M. T., Pollock, S., Backeberg, N. R., Barshi, N. A., Bate, C. E., Carruthers, S., Coulson, S., Dascher-Cousineau, K., Harrichhausen, N., Castro, A. F. P., Nisbet, H., Rakoczy, P., Scibek, J., Smith, H., Tarling, M. S., Timofeev, A., & Young, E. (2018). Geometric Complexity of Earthquake Rupture Surfaces Preserved in Pseudotachylyte Networks. Journal of Geophysical Research: Solid Earth, 123(9), 7998–8015. DOI:

Rubin, A. M., & Ampuero, J.-P. (2007). Aftershock asymmetry on a bimaterial interface. Journal of Geophysical Research: Solid Earth, 112(B5). DOI:

Ryan, K. J., & Oglesby, D. D. (2014). Dynamically modeling fault step overs using various friction laws. Journal of Geophysical Research: Solid Earth, 119(7), 5814–5829. DOI:

Schär, S., Albertini, G., & Kammer, D. S. (2021). Nucleation of frictional sliding by coalescence of microslip. International Journal of Solids and Structures, 225, 111059. DOI:

Schmidt, R. (1986). Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation, 34(3), 276–280. DOI:

Scholz, C. H., Ando, R., & Shaw, B. E. (2010). The mechanics of first order splay faulting: The strike-slip case. Journal of Structural Geology, 32(1), 118–126. DOI:

Scripps Institution of Oceanography. (1986). Global Seismograph Network – IRIS/IDA. International Federation of Digital Seismograph Networks.

Selvadurai, P. A., Galvez, P., Mai, P. M., & Glaser, S. D. (2023). Modeling frictional precursory phenomena using a wear-based rate- and state-dependent friction model in the laboratory. Tectonophysics, 847, 229689. DOI:

Şengör, A. M. C., Zabcı, C., & Natal’in, B. A. (2019). Continental Transform Faults: Congruence and Incongruence With Normal Plate Kinematics. In Transform Plate Boundaries and Fracture Zones (pp. 169–247). Elsevier. DOI:

Sieh, K., Jones, L., Hauksson, E., Hudnut, K., Eberhart-Phillips, D., Heaton, T., Hough, S., Hutton, K., Kanamori, H., Lilje, A., Lindvall, S., McGill, S. F., Mori, J., Rubin, C., Spotila, J. A., Stock, J., Thio, H. K., Treiman, J., Wernicke, B., & Zachariasen, J. (1993). Near-Field Investigations of the Landers Earthquake Sequence, April to July 1992. Science, 260(5105), 171–176. DOI:

Smith, Z. D., & Griffith, W. A. (2022). Evolution of Pulverized Fault Zone Rocks by Dynamic Tensile Loading During Successive Earthquakes. Geophysical Research Letters, 49(19). DOI:

Tada, H., Paris, P. C., & Irwin, G. R. (2000). The Stress Analysis of Cracks Handbook. ASME Press. DOI:

Templeton, E. L., Baudet, A., Bhat, H. S., Dmowska, R., Rice, J. R., Rosakis, A. J., & Rousseau, C.-E. (2009). Finite element simulations of dynamic shear rupture experiments and dynamic path selection along kinked and branched faults. Journal of Geophysical Research: Solid Earth, 114(B8). DOI:

Uenishi, K., & Rice, J. R. (2003). Universal nucleation length for slip-weakening rupture instability under nonuniform fault loading. Journal of Geophysical Research: Solid Earth, 108(B1). DOI:

Ulrich, T., Gabriel, A.-A., Ampuero, J.-P., & Xu, W. (2019). Dynamic viability of the 2016 Mw 7.8 Kaikōura earthquake cascade on weak crustal faults. Nature Communications, 10(1). DOI:

USGS. (2023). Event page for the 6 February 2023 Kahramanmaraş Earthquake.

Vannucchi, P., Sage, F., Morgan, J. P., Remitti, F., & Collot, J.-Y. (2012). Toward a dynamic concept of the subduction channel at erosive convergent margins with implications for interplate material transfer. Geochemistry, Geophysics, Geosystems, 13(2). DOI:

Various Institutions. (1965). International Miscellaneous Stations (IM). International Federation of Digital Seismograph Networks.

Walsh, E., Stahl, T., Howell, A., & Robinson, T. (2022). Two-dimensional empirical rupture simulation: Examples and applications to seismic hazard for the Kaikoura region, New Zealand. Seismological Research Letters, 94(2A), 852–870. DOI:

Wang, T., Wei, S., Shi, X., Qiu, Q., Li, L., Peng, D., Weldon, R. J., & Barbot, S. (2018). The 2016 Kaikōura earthquake: Simultaneous rupture of the subduction interface and overlying faults. Earth and Planetary Science Letters, 482, 44–51. DOI:

Wang, Z., Zhang, W., Taymaz, T., He, Z., Xu, T., & Zhang, Z. (2023). Dynamic rupture process of the 2023 Mw 7.8 Kahramanmaraş earthquake (SE Türkiye): Variable rupture speed and implications for seismic hazard. Geophysical Research Letters, 50(15). DOI:

Wei, S., Fielding, E., Leprince, S., Sladen, A., Avouac, J.-P., Helmberger, D., Hauksson, E., Chu, R., Simons, M., Hudnut, K., Herring, T., & Briggs, R. (2011). Superficial simplicity of the 2010 El Mayor–Cucapah earthquake of Baja California in Mexico. Nature Geoscience, 4(9), 615–618. DOI:

Wendt, J., Oglesby, D. D., & Geist, E. L. (2009). Tsunamis and splay fault dynamics. Geophysical Research Letters, 36(15). DOI:

Weng, H., & Ampuero, J.-P. (2019). The Dynamics of Elongated Earthquake Ruptures. Journal of Geophysical Research: Solid Earth, 124(8), 8584–8610. DOI:

Weng, H., & Ampuero, J.-P. (2020). Continuum of earthquake rupture speeds enabled by oblique slip. Nature Geoscience, 13(12), 817–821. DOI:

Wolfson-Schwehr, M., & Boettcher, M. S. (2019). Global Characteristics of Oceanic Transform Fault Structure and Seismicity. In Transform Plate Boundaries and Fracture Zones (pp. 21–59). Elsevier. DOI:

Wollherr, S., Gabriel, A.-A., & Mai, P. M. (2019). Landers 1992 “reloaded”: Integrative dynamic earthquake rupture modeling. Journal of Geophysical Research: Solid Earth, 124(7), 6666–6702. DOI:

Xu, L., Mohanna, S., Meng, L., Ji, C., Ampuero, J.-P., Yunjun, Z., Hasnain, M., Chu, R., & Liang, C. (2023). The overall-subshear and multi-segment rupture of the 2023 Mw7.8 Kahramanmaraş, Turkey earthquake in millennia supercycle. Communications Earth & Environment, 4(1). DOI:

Xu, S., Ding, X., Fukuyama, E., & Yamashita, F. (2021). How to generate an observable phase of backward-propagating rupture? AGU 2021 Fall Meeting Abstract S51C-05.

Xu, Shiqing. (2020). Recognizing fracture pattern signatures contributed by seismic loadings. Interpretation, 8(4), SP95–SP108. DOI:

Xu, Shiqing, & Ben-Zion, Y. (2017). Theoretical constraints on dynamic pulverization of fault zone rocks. Geophysical Journal International. DOI:

Xu, Shiqing, Fukuyama, E., Ben-Zion, Y., & Ampuero, J.-P. (2015). Dynamic rupture activation of backthrust fault branching. Tectonophysics, 644–645, 161–183. DOI:

Xu, Shiqing, Fukuyama, E., Yamashita, F., Kawakata, H., Mizoguchi, K., & Takizawa, S. (2023). Fault strength and rupture process controlled by fault surface topography. Nature Geoscience, 16(1), 94–100. DOI:

Xu, Shiqing, Fukuyama, E., Yamashita, F., Mizoguchi, K., Takizawa, S., & Kawakata, H. (2018). Strain rate effect on fault slip and rupture evolution: Insight from meter-scale rock friction experiments. Tectonophysics, 733, 209–231. DOI:

Yamashita, F., Fukuyama, E., & Xu, S. (2022). Foreshock Activity Promoted by Locally Elevated Loading Rate on a 4-m-Long Laboratory Fault. Journal of Geophysical Research: Solid Earth, 127(3). DOI:

Yu, C., Pandolfi, A., Ortiz, M., Coker, D., & Rosakis, A. J. (2002). Three-dimensional modeling of intersonic shear-crack growth in asymmetrically loaded unidirectional composite plates. International Journal of Solids and Structures, 39(25), 6135–6157. DOI:

Yue, H., Lay, T., & Koper, K. D. (2012). En échelon and orthogonal fault ruptures of the 11 April 2012 great intraplate earthquakes. Nature, 490(7419), 245–249. DOI:

Zhang, Y., Tang, X., Liu, D., Taymaz, T., Eken, T., Guo, R., Zheng, Y., Wang, J., & Sun, H. (2023). Geometric controls on cascading rupture of the 2023 Kahramanmaraş earthquake doublet. Nature Geoscience. DOI:



How to Cite

Ding, X., Xu, S., Xie, Y., van den Ende, M., Premus, J., & Ampuero, J.-P. (2023). The sharp turn: Backward rupture branching during the 2023 Mw 7.8 Kahramanmaraş (Türkiye) earthquake. Seismica, 2(3).

Funding data