Insights on the dip of fault zones in Southern California from modeling of seismicity with anisotropic point processes
DOI:
https://doi.org/10.26443/seismica.v3i1.1092Abstract
Accurate models of fault zone geometry are important for scientific and hazard applications. While seismicity can provide high-resolution point measurements of fault geometry, extrapolating these measurements to volumes may involve making strong assumptions. This is particularly problematic in distributed fault zones, which are commonly observed in immature faulting regions. In this study, we focus on characterizing the dip of fault zones in Southern California with the goal of improving fault models. We introduce a novel technique from spatial point process theory to quantify the orientation of persistent surficial features in seismicity, even when embedded in wide shear zones. The technique makes relatively mild assumptions about fault geometry and is formulated with the goal of determining the dip of a fault zone at depth. The method is applied to 11 prominent seismicity regions in Southern California. Overall, the results compare favorably with the geometry models provided by the SCEC Community Fault Model and other focused regional studies. More specifically, we find evidence that the Southern San Andreas and San Jacinto fault zones are both northeast dipping at seismogenic depths at the length scales of 1.0–4.0 km. In addition, we find more limited evidence for some depth dependent variations in dip that suggest a listric geometry. The developed technique can provide an independent source of information from seismicity to augment existing fault geometry models.
References
Bangs, N. L., Morgan, J. K., Bell, R. E., Han, S., Arai, R., Kodaira, S., Gase, A. C., Wu, X., Davy, R., Frahm, L., Tilley, H. L., Barker, D. H. N., Edwards, J. H., Tobin, H. J., Reston, T. J., Henrys, S. A., Moore, G. F., Bassett, D., Kellett, R., … Fry, B. (2023). Slow slip along the Hikurangi margin linked to fluid-rich sediments trailing subducting seamounts. Nature Geoscience, 16(6), 505–512. https://doi.org/10.1038/s41561-023-01186-3 DOI: https://doi.org/10.1038/s41561-023-01186-3
Ben-Zion, Y., & Sammis, C. G. (2003). Characterization of Fault Zones. Pure and Applied Geophysics, 160(3), 677–715. https://doi.org/10.1007/PL00012554 DOI: https://doi.org/10.1007/PL00012554
Bird, P. (2003). An updated digital model of plate boundaries. Geochemistry, Geophysics, Geosystems, 4(3). https://doi.org/10.1029/2001GC000252 DOI: https://doi.org/10.1029/2001GC000252
Blisniuk, K., Scharer, K., Sharp, W. D., Burgmann, R., Amos, C., & Rymer, M. (2021). A revised position for the primary strand of the Pleistocene-Holocene San Andreas fault in southern California. Science Advances, 7(13), eaaz5691. https://doi.org/10.1126/sciadv.aaz5691 DOI: https://doi.org/10.1126/sciadv.aaz5691
Brodsky, E. E., & Lajoie, L. J. (2013). Anthropogenic Seismicity Rates and Operational Parameters at the Salton Sea Geothermal Field. Science, 341(6145), 543–546. https://doi.org/10.1126/science.1239213 DOI: https://doi.org/10.1126/science.1239213
Chiaraluce, L., Di Stefano, R., Tinti, E., Scognamiglio, L., Michele, M., Casarotti, E., Cattaneo, M., De Gori, P., Chiarabba, C., Monachesi, G., Lombardi, A., Valoroso, L., Latorre, D., & Marzorati, S. (2017). The 2016 Central Italy Seismic Sequence: A First Look at the Mainshocks, Aftershocks, and Source Models. Seismological Research Letters, 88(3), 757–771. https://doi.org/10.1785/0220160221 DOI: https://doi.org/10.1785/0220160221
Cox, S. F. (2016). Injection-Driven Swarm Seismicity and Permeability Enhancement: Implications for the Dynamics of Hydrothermal Ore Systems in High Fluid-Flux, Overpressured Faulting Regimes—An Invited Paper. Economic Geology, 111(3), 559–587. https://doi.org/10.2113/econgeo.111.3.559 DOI: https://doi.org/10.2113/econgeo.111.3.559
Daley, D. J., & Vere-Jones, D. (2003). An introduction to the theory of point processes: volume I: elementary theory and methods. Springer. https://doi.org/10.1007/b97277 DOI: https://doi.org/10.1007/b97277
Doser, D. I., & Kanamori, H. (1986). Depth of seismicity in the Imperial Valley Region (1977–1983) and its relationship to heat flow, crustal structure and the October 15, 1979, earthquake. Journal of Geophysical Research: Solid Earth, 91(B1), 675–688. https://doi.org/10.1029/JB091iB01p00675 DOI: https://doi.org/10.1029/JB091iB01p00675
Fattaruso, L. A., Cooke, M. L., & Dorsey, R. J. (2014). Sensitivity of uplift patterns to dip of the San Andreas fault in the Coachella Valley, California. Geosphere, 10(6), 1235–1246. https://doi.org/10.1130/GES01050.1 DOI: https://doi.org/10.1130/GES01050.1
Fletcher, J. M., Teran, O. J., Rockwell, T. K., Oskin, M. E., Hudnut, K. W., Mueller, K. J., Spelz, R. M., Akciz, S. O., Masana, E., Faneros, G., Fielding, E. J., Leprince, S., Morelan, A. E., Stock, J., Lynch, D. K., Elliott, A. J., Gold, P., Liu-Zeng, J., González-Ortega, A., … González-García, J. (2014). Assembly of a large earthquake from a complex fault system: Surface rupture kinematics of the 4 April 2010 El Mayor–Cucapah (Mexico) Mw 7.2 earthquake. Geosphere, 10(4), 797–827. https://doi.org/10.1130/GES00933.1 DOI: https://doi.org/10.1130/GES00933.1
Fuis, G. S., Bauer, K., Goldman, M. R., Ryberg, T., Langenheim, V. E., Scheirer, D. S., Rymer, M. J., Stock, J. M., Hole, J. A., Catchings, R. D., Graves, R. W., & Aagaard, B. (2017). Subsurface Geometry of the San Andreas Fault in Southern California: Results from the Salton Seismic Imaging Project (SSIP) and Strong Ground Motion Expectations. Bulletin of the Seismological Society of America, 107(4), 1642–1662. https://doi.org/10.1785/0120160309 DOI: https://doi.org/10.1785/0120160309
Fuis, G. S., Scheirer, D. S., Langenheim, V. E., & Kohler, M. D. (2012). A New Perspective on the Geometry of the San Andreas Fault in Southern California and Its Relationship to Lithospheric Structure. Bulletin of the Seismological Society of America, 102(1), 236–251. https://doi.org/10.1785/0120110041 DOI: https://doi.org/10.1785/0120110041
Gillard, D., Rubin, A. M., & Okubo, P. (1996). Highly concentrated seismicity caused by deformation of Kilauea’s deep magma system. Nature, 384(6607), 343–346. https://doi.org/10.1038/384343a0 DOI: https://doi.org/10.1038/384343a0
Gold, P. O., Behr, W. M., Rood, D., Sharp, W. D., Rockwell, T. K., Kendrick, K., & Salin, A. (2015). Holocene geologic slip rate for the Banning strand of the southern San Andreas Fault, southern California. Journal of Geophysical Research: Solid Earth, 120(8), 5639–5663. https://doi.org/10.1002/2015JB012004 DOI: https://doi.org/10.1002/2015JB012004
Graves, R. W., Aagaard, B. T., & Hudnut, K. W. (2011). The ShakeOut Earthquake Source and Ground Motion Simulations. Earthquake Spectra, 27(2), 273–291. https://doi.org/10.1193/1.3570677 DOI: https://doi.org/10.1193/1.3570677
Graves, R. W., Aagaard, B. T., Hudnut, K. W., Star, L. M., Stewart, J. P., & Jordan, T. H. (2008). Broadband simulations for Mw 7.8 southern San Andreas earthquakes: Ground motion sensitivity to rupture speed. Geophysical Research Letters, 35(22). https://doi.org/10.1029/2008GL035750 DOI: https://doi.org/10.1029/2008GL035750
Hauksson, E., Meier, M., Ross, Z. E., & Jones, L. M. (2017). Evolution of seismicity near the southernmost terminus of the San Andreas Fault: Implications of recent earthquake clusters for earthquake risk in southern California. Geophysical Research Letters, 44(3), 1293–1301. https://doi.org/10.1002/2016GL072026 DOI: https://doi.org/10.1002/2016GL072026
Hauksson, E., Yang, W. Z., & Shearer, P. M. (2012). Waveform Relocated Earthquake Catalog for Southern California (1981 to June 2011). Bulletin of the Seismological Society of America, 102(5), 2239–2244. https://doi.org/10.1785/0120120010 DOI: https://doi.org/10.1785/0120120010
Hauksson, Egill. (1990). Earthquakes, faulting, and stress in the Los Angeles Basin. Journal of Geophysical Research: Solid Earth, 95(B10), 15365–15394. https://doi.org/10.1029/JB095iB10p15365 DOI: https://doi.org/10.1029/JB095iB10p15365
Hauksson, Egill, Felzer, K., Given, D., Giveon, M., Hough, S., Hutton, K., Kanamori, H., Sevilgen, V., Wei, S., & Yong, A. (2008). Preliminary Report on the 29 July 2008 Mw 5.4 Chino Hills, Eastern Los Angeles Basin, California, Earthquake Sequence. Seismological Research Letters, 79(6), 855–866. https://doi.org/10.1785/gssrl.79.6.855 DOI: https://doi.org/10.1785/gssrl.79.6.855
Hauksson, Egill, & Meier, M.-A. (2019). Applying Depth Distribution of Seismicity to Determine Thermo-Mechanical Properties of the Seismogenic Crust in Southern California: Comparing Lithotectonic Blocks. Pure and Applied Geophysics, 176(3), 1061–1081. https://doi.org/10.1007/s00024-018-1981-z DOI: https://doi.org/10.1007/s00024-018-1981-z
Hauksson, Egill, Stock, J., Bilham, R., Boese, M., Chen, X., Fielding, E. J., Galetzka, J., Hudnut, K. W., Hutton, K., Jones, L. M., Kanamori, H., Shearer, P. M., Steidl, J., Treiman, J., Wei, S., & Yang, W. (2013). Report on the August 2012 Brawley Earthquake Swarm in Imperial Valley, Southern California. Seismological Research Letters, 84(2), 177–189. https://doi.org/10.1785/0220120169 DOI: https://doi.org/10.1785/0220120169
Hauksson, Egill, Stock, J. M., & Husker, A. L. (2022). Seismicity in a weak crust: the transtensional tectonics of the Brawley Seismic Zone section of the Pacific–North America Plate Boundary in Southern California, USA. Geophysical Journal International, 231(1), 717–735. https://doi.org/10.1093/gji/ggac205 DOI: https://doi.org/10.1093/gji/ggac205
Hayes, G. P., Moore, G. L., Portner, D. E., Hearne, M., Flamme, H., Furtney, M., & Smoczyk, G. M. (2018). Slab2, a comprehensive subduction zone geometry model. Science, 362(6410), 58–61. https://doi.org/10.1126/science.aat4723 DOI: https://doi.org/10.1126/science.aat4723
Hayes, G. P., Wald, D. J., & Johnson, R. L. (2012). Slab1.0: A three-dimensional model of global subduction zone geometries. Journal of Geophysical Research: Solid Earth, 117(B1). https://doi.org/10.1029/2011JB008524 DOI: https://doi.org/10.1029/2011JB008524
Jones, L. M., Hutton, L. K., Given, D. D., & Allen, C. R. (1986). The North Palm Springs, California, earthquake sequence of July 1986. Bulletin of the Seismological Society of America, 76(6), 1830–1837. https://doi.org/10.1785/BSSA0760061830 DOI: https://doi.org/10.1785/BSSA0760061830
Kagan, Y. Y., & Knopoff, L. (1980). Spatial distribution of earthquakes: the two-point correlation function. Geophysical Journal International, 62(2), 303–320. https://doi.org/10.1111/j.1365-246X.1980.tb04857.x DOI: https://doi.org/10.1111/j.1365-246X.1980.tb04857.x
Kroll, K. A., Cochran, E. S., Richards-Dinger, K. B., & Sumy, D. F. (2013). Aftershocks of the 2010 M-w 7.2 El Mayor-Cucapah earthquake reveal complex faulting in the Yuha Desert, California. Journal of Geophysical Research-Solid Earth, 118(12), 6146–6164. https://doi.org/10.1002/2013jb010529 DOI: https://doi.org/10.1002/2013JB010529
Lay, V., Buske, S., Townend, J., Kellett, R., Savage, M., Schmitt, D. R., Constantinou, A., Eccles, J. D., Gorman, A. R., Bertram, M., Hall, K., Lawton, D., & Kofman, R. (2021). 3D Active Source Seismic Imaging of the Alpine Fault Zone and the Whataroa Glacial Valley in New Zealand. Journal of Geophysical Research: Solid Earth, 126(12), e2021JB023013. https://doi.org/10.1029/2021JB023013 DOI: https://doi.org/10.1029/2021JB023013
Lin, G., Shearer, P. M., & Hauksson, E. (2007). Applying a three-dimensional velocity model, waveform cross correlation, and cluster analysis to locate southern California seismicity from 1981 to 2005. Journal of Geophysical Research: Solid Earth, 112(B12). https://doi.org/10.1029/2007JB004986 DOI: https://doi.org/10.1029/2007JB004986
Lindsey, E. O., & Fialko, Y. (2013). Geodetic slip rates in the southern San Andreas Fault system: Effects of elastic heterogeneity and fault geometry. Journal of Geophysical Research: Solid Earth, 118(2), 689–697. https://doi.org/10.1029/2012JB009358 DOI: https://doi.org/10.1029/2012JB009358
Loh, J. M. (2008). A valid and fast spatial bootstrap for correlation functions. The Astrophysical Journal, 681(1), 726. https://doi.org/10.1086/588631 DOI: https://doi.org/10.1086/588631
Magistrale, H., & Rockwell, T. (1996). The central and southern Elsinore fault zone, southern California. Bulletin of the Seismological Society of America, 86(6), 1793–1803. https://doi.org/10.1785/BSSA0860061793 DOI: https://doi.org/10.1785/BSSA0860061793
Melgar, D., LeVeque, R. J., Dreger, D. S., & Allen, R. M. (2016). Kinematic rupture scenarios and synthetic displacement data: An example application to the Cascadia subduction zone. Journal of Geophysical Research: Solid Earth, 121(9), 6658–6674. https://doi.org/10.1002/2016JB013314 DOI: https://doi.org/10.1002/2016JB013314
Møller, J., Safavimanesh, F., & Rasmussen, J. G. (2016). The cylindrical K-function and Poisson line cluster point processes. Biometrika, 103(4), 937–954. https://doi.org/10.1093/biomet/asw044 DOI: https://doi.org/10.1093/biomet/asw044
Møller, J., & Toftaker, H. (2014). Geometric Anisotropic Spatial Point Pattern Analysis and Cox Processes. Scandinavian Journal of Statistics, 41(2), 414–435. https://doi.org/https://doi.org/10.1111/sjos.12041 DOI: https://doi.org/10.1111/sjos.12041
Mori, J., & Frankel, A. (1990). Source parameters for small events associated with the 1986 North Palm Springs, California, earthquake determined using empirical Green functions. Bulletin of the Seismological Society of America, 80(2), 278–295. https://doi.org/10.1785/BSSA0800020278
Nasirzadeh, F., Shishebor, Z., & Mateu, J. (2021). On new families of anisotropic spatial log-Gaussian Cox processes. Stochastic Environmental Research and Risk Assessment, 35(2), 183–213. https://doi.org/10.1007/s00477-020-01906-w DOI: https://doi.org/10.1007/s00477-020-01906-w
Nicholson, C. (1996). Seismic behavior of the southern San Andreas fault zone in the northern Coachella Valley, California: Comparison of the 1948 and 1986 earthquake sequences. Bulletin of the Seismological Society of America, 86(5), 1331–1349. https://doi.org/10.1785/BSSA0860051331 DOI: https://doi.org/10.1785/BSSA0860051331
Norris, R. J., & Toy, V. G. (2014). Continental transforms: A view from the Alpine Fault. Journal of Structural Geology, 64, 3–31. https://doi.org/10.1016/j.jsg.2014.03.003 DOI: https://doi.org/10.1016/j.jsg.2014.03.003
Plesch, A, Marshall, S., Nicholson, C., Shaw, J., Maechling, P., & Su, M. (2020). The Community Fault Model version 5.3 and new web-based tools. SCEC Annual Meeting, Poster, 184. https://www.scec.org/meetings/2020/am/poster/184
Plesch, A., Shaw, J. H., Benson, C., Bryant, W. A., Carena, S., Cooke, M., Dolan, J., Fuis, G., Gath, E., Grant, L., Hauksson, E., Jordan, T., Kamerling, M., Legg, M., Lindvall, S., Magistrale, H., Nicholson, C., Niemi, N., Oskin, M., … Yeats, R. (2007). Community fault model (CFM) for southern California. Bulletin of the Seismological Society of America, 97(6), 1793–1802. https://doi.org/10.1785/0120050211 DOI: https://doi.org/10.1785/0120050211
Plesch, Andreas, Shaw, J. H., Ross, Z. E., & Hauksson, E. (2020). Detailed 3D Fault Representations for the 2019 Ridgecrest, California, Earthquake Sequence. Bulletin of the Seismological Society of America, 110(4), 1818–1831. https://doi.org/10.1785/0120200053 DOI: https://doi.org/10.1785/0120200053
Qiu, H., Ben-Zion, Y., Ross, Z. E., Share, P.-E., & Vernon, F. L. (2017). Internal structure of the San Jacinto fault zone at Jackass Flat from data recorded by a dense linear array. Geophysical Journal International, 209(3), 1369–1388. https://doi.org/10.1093/gji/ggx096 DOI: https://doi.org/10.1093/gji/ggx096
Richter, C. F., Allen, C. R., & Nordquist, J. M. (1958). The Desert Hot Springs earthquakes and their tectonic environment. Bulletin of the Seismological Society of America, 48(4), 315–337. https://doi.org/10.1785/BSSA0480040315
Ripley, B. D. (1976). The second-order analysis of stationary point processes. Journal of Applied Probability, 13(2), 255–266. https://doi.org/10.2307/3212829 DOI: https://doi.org/10.2307/3212829
Rodgers, A. J., Petersson, N. A., Pitarka, A., McCallen, D. B., Sjogreen, B., & Abrahamson, N. (2019). Broadband (0–5 Hz) Fully Deterministic 3D Ground‐Motion Simulations of a Magnitude 7.0 Hayward Fault Earthquake: Comparison with Empirical Ground‐Motion Models and 3D Path and Site Effects from Source Normalized Intensities. Seismological Research Letters, 90(3), 1268–1284. https://doi.org/10.1785/0220180261 DOI: https://doi.org/10.1785/0220180261
Ross, Z. E., Hauksson, E., & Ben-Zion, Y. (2017). Abundant off-fault seismicity and orthogonal structures in the San Jacinto fault zone. Science Advances, 3(3), 8. https://doi.org/10.1126/sciadv.1601946 DOI: https://doi.org/10.1126/sciadv.1601946
Ross, Z. E., Rollins, C., Cochran, E. S., Hauksson, E., Avouac, J.-P., & Ben-Zion, Y. (2017). Aftershocks driven by afterslip and fluid pressure sweeping through a fault-fracture mesh. Geophysical Research Letters, 2017GL074634. https://doi.org/10.1002/2017GL074634 DOI: https://doi.org/10.1002/2017GL074634
Ross, Zachary E, Ben-Zion, Y., & Zaliapin, I. (2022). Geometrical properties of seismicity in California. Geophysical Journal International, 231(1), 493–504. https://doi.org/10.1093/gji/ggac189 DOI: https://doi.org/10.1093/gji/ggac189
Ross, Zachary E., Cochran, E. S., Trugman, D. T., & Smith, J. D. (2020). 3D fault architecture controls the dynamism of earthquake swarms. Science, 368(6497), 1357–1361. https://doi.org/10.1126/science.abb0779 DOI: https://doi.org/10.1126/science.abb0779
Ross, Zachary E., Trugman, D. T., Hauksson, E., & Shearer, P. M. (2019). Searching for hidden earthquakes in Southern California. Science, 364(6442), 767–771. https://doi.org/10.1126/science.aaw6888 DOI: https://doi.org/10.1126/science.aaw6888
Rubin, A. M., Gillard, D., & Got, J.-L. (1999). Streaks of microearthquakes along creeping faults. Nature, 400(6745), 635–641. https://doi.org/10.1038/23196 DOI: https://doi.org/10.1038/23196
Safavimanesh, F., & Redenbach, C. (2016). A comparison of functional summary statistics to detect anisotropy of three-dimensional point patterns. ArXiv:1604.04211 [Stat]. http://arxiv.org/abs/1604.04211
Sato, H., Hirata, N., Koketsu, K., Okaya, D., Abe, S., Kobayashi, R., Matsubara, M., Iwasaki, T., Ito, T., Ikawa, T., Kawanaka, T., Kasahara, K., & Harder, S. (2005). Earthquake Source Fault Beneath Tokyo. Science, 309(5733), 462–464. https://doi.org/10.1126/science.1110489 DOI: https://doi.org/10.1126/science.1110489
Schulte-Pelkum, V., Ross, Z. E., Mueller, K., & Ben-Zion, Y. (2020). Tectonic Inheritance With Dipping Faults and Deformation Fabric in the Brittle and Ductile Southern California Crust. Journal of Geophysical Research: Solid Earth, 125(8), e2020JB019525. https://doi.org/10.1029/2020JB019525 DOI: https://doi.org/10.1029/2020JB019525
Shao, G., Ji, C., & Hauksson, E. (2012). Rupture process and energy budget of the 29 July 2008 Mw 5.4 Chino Hills, California, earthquake. Journal of Geophysical Research: Solid Earth, 117(B7). https://doi.org/10.1029/2011JB008856 DOI: https://doi.org/10.1029/2011JB008856
Share, P.-E., Ben-Zion, Y., Ross, Z. E., Qiu, H., & Vernon, F. L. (2017). Internal structure of the San Jacinto fault zone at Blackburn Saddle from seismic data of a linear array. Geophysical Journal International, 210(2), 819–832. https://doi.org/10.1093/gji/ggx191 DOI: https://doi.org/10.1093/gji/ggx191
Sharp, R. V. (1967). San Jacinto Fault Zone in the Peninsular Ranges of Southern California. GSA Bulletin, 78(6), 705–730. https://doi.org/10.1130/0016-7606(1967)78[705:SJFZIT]2.0.CO;2
Shaw, B. E., Milner, K. R., Field, E. H., Richards-Dinger, K., Gilchrist, J. J., Dieterich, J. H., & Jordan, T. H. (2018). A physics-based earthquake simulator replicates seismic hazard statistics across California. Science Advances, 4(8), eaau0688. https://doi.org/10.1126/sciadv.aau0688 DOI: https://doi.org/10.1126/sciadv.aau0688
Shaw, J. H., & Shearer, and P. M. (1999). An Elusive Blind-Thrust Fault Beneath Metropolitan Los Angeles. Science, 283(5407), 1516–1518. https://doi.org/10.1126/science.283.5407.1516 DOI: https://doi.org/10.1126/science.283.5407.1516
Shearer, P. M. (2002). Parallel fault strands at 9-km depth resolved on the Imperial Fault, Southern California. Geophysical Research Letters, 29(14), 19-1-19–4. https://doi.org/10.1029/2002GL015302 DOI: https://doi.org/10.1029/2002GL015302
Shelly, D. R., Hardebeck, J. L., Ellsworth, W. L., & Hill, D. P. (2016). A new strategy for earthquake focal mechanisms using waveform-correlation-derived relative polarities and cluster analysis: Application to the 2014 Long Valley Caldera earthquake swarm. Journal of Geophysical Research: Solid Earth, 121(12), 8622–8641. https://doi.org/10.1002/2016JB013437 DOI: https://doi.org/10.1002/2016JB013437
Southern California Seismic Network. (2013). Southern California Earthquake Data Center. Caltech. https://doi.org/10.7909/C3WD3xH1
Thatcher, W., & Hill, D. P. (1991). Fault orientations in extensional and conjugate strike-slip environments and their implications. Geology, 19(11), 1116–1120. https://doi.org/10.1130/0091-7613(1991)019<1116:FOIEAC>2.3.CO;2 DOI: https://doi.org/10.1130/0091-7613(1991)019<1116:FOIEAC>2.3.CO;2
Uieda, L., Tian, D., Leong, W. J., Schlitzer, W., Grund, M., Jones, M., Fröhlich, Y., Toney, L., Yao, J., Magen, Y., Tong, J.-H., Materna, K., Belem, A., Newton, T., Anant, A., Ziebarth, M., Quinn, J., & Wessel, P. (2023). PyGMT: A Python interface for the Generic Mapping Tools (0.9.0) [Computer software]. Zenodo. https://doi.org/10.5281/zenodo.7772533
Yang, W., & Hauksson, E. (2011). Evidence for Vertical Partitioning of Strike-Slip and Compressional Tectonics from Seismicity, Focal Mechanisms, and Stress Drops in the East Los Angeles Basin Area, California. Bulletin of the Seismological Society of America, 101(3), 964–974. https://doi.org/10.1785/0120100216 DOI: https://doi.org/10.1785/0120100216
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Zachary Ross

This work is licensed under a Creative Commons Attribution 4.0 International License.