Along-strike changes in ETS behavior near the slab edge of Southern Cascadia
DOI:
https://doi.org/10.26443/seismica.v2i4.1097Abstract
Episodic tremor and slip (ETS) is well-documented along the entire length of the Cascadia subduction zone. We explore how the occurrence of ETS varies at the southernmost edge of the subduction zone, where geometric complexity and a slab window likely alter conditions along the plate interface. This work uses tremor and GNSS time series data to identify nineteen of the largest ETS events in southern Cascadia between 2016.5-2022 and document source properties for events approaching the slab edge. Distributed slip models for these events show that cumulative fault slip along the megathrust reaches a maximum near 40.5° N latitude and that large ETS events accommodate up to 85% of plate convergence at this location. However, ETS fault slip and tremor terminate near 40° N latitude, some 50 km before the southern lateral edge of the subducting plate. After considering a range of explanations, we propose that the complex geometry and progressive heating of the subducting plate modifies ETS behavior and does not allow seismic slip to occur along the plate interface in southernmost Cascadia below 35 km depth.
References
Atwater, T. (1970). Implications of Plate Tectonics for the Cenozoic Tectonic Evolution of Western North America. Geological Society of America Bulletin, 81(12), 3513. https://doi.org/10.1130/0016-7606(1970)81[3513:ioptft]2.0.co;2
Audet, P., Bostock, M. G., Christensen, N. I., & Peacock, S. M. (2009). Seismic evidence for overpressured subducted oceanic crust and megathrust fault sealing. Nature, 457(7225), 76–78. https://doi.org/10.1038/nature07650
Audet, P., & Kim, Y. (2016). Teleseismic constraints on the geological environment of deep episodic slow earthquakes in subduction zone forearcs: A review. Tectonophysics, 670, 1–15. https://doi.org/10.1016/j.tecto.2016.01.005
Bartlow, N. M. (2020). A Long‐Term View of Episodic Tremor and Slip in Cascadia. Geophysical Research Letters, 47(3). https://doi.org/10.1029/2019gl085303
Beaudoin, B. C., Hole, J. A., Klemperer, S. L., & Tréhu, A. M. (1998). Location of the southern edge of the Gorda slab and evidence for an adjacent asthenospheric window: Results from seismic profiling and gravity. Journal of Geophysical Research: Solid Earth, 103(B12), 30101–30115. https://doi.org/10.1029/98jb02231
Benz, H. M., Zandt, G., & Oppenheimer, D. H. (1992). Lithospheric structure of northern California from teleseismic images of the upper mantle. Journal of Geophysical Research: Solid Earth, 97(B4), 4791–4807. https://doi.org/10.1029/92jb00067
Bletery, Q., Thomas, A. M., Rempel, A. W., & Hardebeck, J. L. (2017). Imaging Shear Strength Along Subduction Faults. Geophysical Research Letters, 44(22). https://doi.org/10.1002/2017gl075501
Bletery, Q., Thomas, A. M., Rempel, A. W., Karlstrom, L., Sladen, A., & De Barros, L. (2016). Mega-earthquakes rupture flat megathrusts. Science, 354(6315), 1027–1031. https://doi.org/10.1126/science.aag0482
Bodmer, M., Toomey, D. R., Hooft, E. E. E., & Schmandt, B. (2018). Buoyant Asthenosphere Beneath Cascadia Influences Megathrust Segmentation. Geophysical Research Letters, 45(14), 6954–6962. https://doi.org/10.1029/2018gl078700
Boyarko, D. C., & Brudzinski, M. R. (2010). Spatial and temporal patterns of nonvolcanic tremor along the southern Cascadia subduction zone. Journal of Geophysical Research: Solid Earth, 115(B8). https://doi.org/10.1029/2008jb006064
Brudzinski, M. R., & Allen, R. M. (2007). Segmentation in episodic tremor and slip all along Cascadia. Geology, 35(10), 907–910. https://doi.org/10.1130/G23740A.1
Central Washington University. (1996). GPS/GNSS Network and Geodesy Laboratory: Central Washington University, other/seismic network, Int. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/PW
Chaytor, J. D., Goldfinger, C., Dziak, R. P., & Fox, C. G. (2004). Active deformation of the Gorda plate: Constraining deformation models with new geophysical data. Geology, 32(4), 353. https://doi.org/10.1130/g20178.2
Condit, C. B., Guevara, V. E., Delph, J. R., & French, M. E. (2020). Slab dehydration in warm subduction zones at depths of episodic slip and tremor. Earth and Planetary Science Letters, 552, 116601. https://doi.org/10.1016/j.epsl.2020.116601
Delph, J. R., Thomas, A. M., & Levander, A. (2021). Subcretionary tectonics: Linking variability in the expression of subduction along the Cascadia forearc. Earth and Planetary Science Letters, 556, 116724. https://doi.org/10.1016/j.epsl.2020.116724
Dickinson, W. R., & Snyder, W. S. (1979a). Geometry of triple junctions related to San Andreas Transform. Journal of Geophysical Research: Solid Earth, 84(B2), 561–572. https://doi.org/10.1029/jb084ib02p00561
Dickinson, W. R., & Snyder, W. S. (1979b). Geometry of Subducted Slabs Related to San Andreas Transform. The Journal of Geology, 87(6), 609–627. https://doi.org/10.1086/628456
Dong, D., Fang, P., Bock, Y., Webb, F., Prawirodirdjo, L., Kedar, S., & Jamason, P. (2006). Spatiotemporal filtering using principal component analysis and Karhunen‐Loeve expansion approaches for regional GPS network analysis. Journal of Geophysical Research: Solid Earth, 111(B3). https://doi.org/10.1029/2005jb003806
Ducellier, A., & Creager, K. C. (2022). An 8‐Year‐Long Low‐Frequency Earthquake Catalog for Southern Cascadia. Journal of Geophysical Research: Solid Earth, 127(4). https://doi.org/10.1029/2021jb022986
Furlong, K. P., & Schwartz, S. Y. (2004). INFLUENCE OF THE MENDOCINO TRIPLE JUNCTION ON THE TECTONICS OF COASTAL CALIFORNIA. Annual Review of Earth and Planetary Sciences, 32(1), 403–433. https://doi.org/10.1146/annurev.earth.32.101802.120252
Godfrey, N. J., Beaudoin, B. C., Lendl, C., Meltzer, A. S., & Luetgert, J. H. (1995). Data report for the 1993 Mendocino triple junction seismic experiment. In Open-File Report. US Geological Survey. https://doi.org/10.3133/ofr95275
Goes, S., Govers, R., Schwartz, S., & Furlong, K. (1997). Three-dimensional thermal modeling for the Mendocino Triple Junction area. Earth and Planetary Science Letters, 148(1–2), 45–57. https://doi.org/10.1016/s0012-821x(97)00044-7
Gomberg, J. (2010). Slow-slip phenomena in Cascadia from 2007 and beyond: A review. Geological Society of America Bulletin, 122(7–8), 963–978. https://doi.org/10.1130/b30287.1
Groome, W. G., & Thorkelson, D. J. (2009). The three-dimensional thermo-mechanical signature of ridge subduction and slab window migration. Tectonophysics, 464(1–4), 70–83. https://doi.org/10.1016/j.tecto.2008.07.003
Guo, H., McGuire, J. J., & Zhang, H. (2021). Correlation of porosity variations and rheological transitions on the southern Cascadia megathrust. Nature Geoscience, 14(5), 341–348. https://doi.org/10.1038/s41561-021-00740-1
Guzofski, C. A., & Furlong, K. P. (2002). Migration of the Mendocino triple junction and ephemeral crustal deformation: Implications for California Coast range heat flow. Geophysical Research Letters, 29(1). https://doi.org/10.1029/2001gl013614
Hayes, G. (2018). Slab2 - A Comprehensive Subduction Zone Geometry Model. U.S. Geological Survey. https://doi.org/10.5066/F7PV6JNV
Herring, T. A., Melbourne, T. I., Murray, M. H., Floyd, M. A., Szeliga, W. M., King, R. W., Phillips, D. A., Puskas, C. M., Santillan, M., & Wang, L. (2016). Plate Boundary Observatory and related networks: GPS data analysis methods and geodetic products. Reviews of Geophysics, 54(4), 759–808.
Hutchinson, J., Kao, H., Riedel, M., Obana, K., Wang, K., Kodaira, S., Takahashi, T., & Yamamoto, Y. (2020). Significant geometric variation of the subducted plate beneath the northernmost Cascadia subduction zone and its tectonic implications as revealed by the 2014 M 6.4 earthquake sequence. Earth and Planetary Science Letters, 551, 116569. https://doi.org/10.1016/j.epsl.2020.116569
Hyndman, R. D., McCrory, P. A., Wech, A., Kao, H., & Ague, J. (2015). Cascadia subducting plate fluids channelled to fore‐arc mantle corner: ETS and silica deposition. Journal of Geophysical Research: Solid Earth, 120(6), 4344–4358. https://doi.org/10.1002/2015jb011920
Hyndman, R. D., & Wang, K. (1993). Thermal constraints on the zone of major thrust earthquake failure: The Cascadia Subduction Zone. Journal of Geophysical Research: Solid Earth, 98(B2), 2039–2060. https://doi.org/10.1029/92jb02279
Ide, S. (2012). Variety and spatial heterogeneity of tectonic tremor worldwide. Journal of Geophysical Research: Solid Earth, 117(B3). https://doi.org/10.1029/2011jb008840
Ide, S., Shelly, D. R., & Beroza, G. C. (2007). Mechanism of deep low frequency earthquakes: Further evidence that deep non‐volcanic tremor is generated by shear slip on the plate interface. Geophysical Research Letters, 34(3). https://doi.org/10.1029/2006gl028890
Ismat, Z., Putera, H., & Patzkowsky, S. (2022). Internal deformation of the Gorda plate and its tectonic significance within the Cascadia subduction zone. Journal of Structural Geology, 161, 104643. https://doi.org/10.1016/j.jsg.2022.104643
Ito, Y., Obara, K., Shiomi, K., Sekine, S., & Hirose, H. (2007). Slow Earthquakes Coincident with Episodic Tremors and Slow Slip Events. Science, 315(5811), 503–506. https://doi.org/10.1126/science.1134454
Jachens, R. C., & Griscom, A. (1983). Three‐dimensional geometry of the Gorda Plate beneath northern California. Journal of Geophysical Research: Solid Earth, 88(B11), 9375–9392. https://doi.org/10.1029/jb088ib11p09375
Kano, M., & Kato, A. (2020). Detailed Spatial Slip Distribution for Short‐Term Slow Slip Events Along the Nankai Subduction Zone, Southwest Japan. Journal of Geophysical Research: Solid Earth, 125(7). https://doi.org/10.1029/2020jb019613
Kao, H., Shan, S., Dragert, H., & Rogers, G. (2009). Northern Cascadia episodic tremor and slip: A decade of tremor observations from 1997 to 2007. Journal of Geophysical Research: Solid Earth, 114(B11). https://doi.org/10.1029/2008jb006046
Katayama, I., Terada, T., Okazaki, K., & Tanikawa, W. (2012). Episodic tremor and slow slip potentially linked to permeability contrasts at the Moho. Nature Geoscience, 5(10), 731–734. https://doi.org/10.1038/ngeo1559
Kirby, S. H., Wang, K., & Brocher, T. M. (2014). A large mantle water source for the northern San Andreas fault system: a ghost of subduction past. Earth, Planets and Space, 66(1). https://doi.org/10.1186/1880-5981-66-67
Lachenbruch, A. H., & Sass, J. H. (1980). Heat flow and energetics of the San Andreas Fault Zone. Journal of Geophysical Research: Solid Earth, 85(B11), 6185–6222. https://doi.org/10.1029/jb085ib11p06185
Li, D., & Liu, Y. (2016). Spatiotemporal evolution of slow slip events in a nonplanar fault model for northern Cascadia subduction zone. Journal of Geophysical Research: Solid Earth, 121(9), 6828–6845. https://doi.org/10.1002/2016jb012857
Liu, K., Levander, A., Zhai, Y., Porritt, R. W., & Allen, R. M. (2012). Asthenospheric flow and lithospheric evolution near the Mendocino Triple Junction. Earth and Planetary Science Letters, 323–324, 60–71. https://doi.org/10.1016/j.epsl.2012.01.020
Liu, Y., & Rice, J. R. (2007). Spontaneous and triggered aseismic deformation transients in a subduction fault model. Journal of Geophysical Research: Solid Earth, 112(B9). https://doi.org/10.1029/2007jb004930
Liu, Y., & Rice, J. R. (2009). Slow slip predictions based on granite and gabbro friction data compared to GPS measurements in northern Cascadia. Journal of Geophysical Research: Solid Earth, 114(B9). https://doi.org/https://doi.org/10.1029/2008JB006142
McCaffrey, R., Qamar, A. I., King, R. W., Wells, R., Khazaradze, G., Williams, C. A., Stevens, C. W., Vollick, J. J., & Zwick, P. C. (2007). Fault locking, block rotation and crustal deformation in the Pacific Northwest. Geophysical Journal International, 169(3), 1315–1340. https://doi.org/10.1111/j.1365-246x.2007.03371.x
McCrory, P. A., Blair, J. L., Oppenheimer, D. H., & Walter, S. R. (2004). Depth to the Juan de Fuca slab beneath the Cascadia subduction margin– A 3-D model for sorting earthquakes. In Data Series. US Geological Survey. https://doi.org/10.3133/ds91
McCrory, P. A., Blair, J. L., Waldhauser, F., & Oppenheimer, D. H. (2012). Juan de Fuca slab geometry and its relation to Wadati‐Benioff zone seismicity. Journal of Geophysical Research: Solid Earth, 117(B9). https://doi.org/10.1029/2012jb009407
McKenzie, K. A., & Furlong, K. P. (2021). Isolating non-subduction-driven tectonic processes in Cascadia. Geoscience Letters, 8(1). https://doi.org/10.1186/s40562-021-00181-z
McKenzie, K. A., Furlong, K. P., & Herman, M. W. (2020). Bidirectional Loading of the Subduction Interface: Evidence From the Kinematics of Slow Slip Events. Geochemistry, Geophysics, Geosystems, 21(9). https://doi.org/10.1029/2020gc008918
Michel, S., Gualandi, A., & Avouac, J.-P. (2018). Interseismic Coupling and Slow Slip Events on the Cascadia Megathrust. Pure and Applied Geophysics, 176(9), 3867–3891. https://doi.org/10.1007/s00024-018-1991-x
Morishige, M., & van Keken, P. E. (2017). Along‐arc variation in short‐term slow slip events caused by 3‐D fluid migration in subduction zones. Journal of Geophysical Research: Solid Earth, 122(2), 1434–1448. https://doi.org/10.1002/2016jb013091
Mullen, E. K., & Weis, D. (2015). Evidence for trench-parallel mantle flow in the northern Cascade Arc from basalt geochemistry. Earth and Planetary Science Letters, 414, 100–107. https://doi.org/10.1016/j.epsl.2015.01.010
Nishimura, T., Matsuzawa, T., & Obara, K. (2013). Detection of short‐term slow slip events along the Nankai Trough, southwest Japan, using GNSS data. Journal of Geophysical Research: Solid Earth, 118(6), 3112–3125. https://doi.org/10.1002/jgrb.50222
Nuyen, C. P., & Schmidt, D. A. (2021). Filling the Gap in Cascadia: The Emergence of Low‐Amplitude Long‐Term Slow Slip. Geochemistry, Geophysics, Geosystems, 22(3). https://doi.org/10.1029/2020gc009477
Okada, Y. (1992). Internal deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 82(2), 1018–1040. https://doi.org/10.1785/bssa0820021018
Oleskevich, D. A., Hyndman, R. D., & Wang, K. (1999). The updip and downdip limits to great subduction earthquakes: Thermal and structural models of Cascadia, south Alaska, SW Japan, and Chile. Journal of Geophysical Research: Solid Earth, 104(B7), 14965–14991. https://doi.org/10.1029/1999jb900060
Ozawa, S. (2017). Long-term slow slip events along the Nankai trough subduction zone after the 2011 Tohoku earthquake in Japan. Earth, Planets and Space, 69(1). https://doi.org/10.1186/s40623-017-0640-4
Peacock, S. M. (1993). The importance of blueschist → eclogite dehydration reactions in subducting oceanic crust. Geological Society of America Bulletin, 105(5), 684–694. https://doi.org/10.1130/0016-7606(1993)105<0684:tiobed>2.3.co;2
Peacock, S. M. (2009). Thermal and metamorphic environment of subduction zone episodic tremor and slip. Journal of Geophysical Research: Solid Earth, 114(B8). https://doi.org/10.1029/2008jb005978
Peng, Z., & Gomberg, J. (2010). An integrated perspective of the continuum between earthquakes and slow-slip phenomena. Nature Geoscience, 3(9), 599–607. https://doi.org/10.1038/ngeo940
Plescia, S. M., & Hayes, G. P. (2020). Geometric controls on megathrust earthquakes. Geophysical Journal International, 222(2), 1270–1282. https://doi.org/10.1093/gji/ggaa254
Plourde, A. P., Bostock, M. G., Audet, P., & Thomas, A. M. (2015). Low‐frequency earthquakes at the southern Cascadia margin. Geophysical Research Letters, 42(12), 4849–4855. https://doi.org/10.1002/2015gl064363
Popov, A. A., Sobolev, S. V., & Zoback, M. D. (2012). Modeling evolution of the San Andreas Fault system in northern and central California. Geochemistry, Geophysics, Geosystems, 13(8). https://doi.org/10.1029/2012gc004086
Rogers, G., & Dragert, H. (2003). Episodic Tremor and Slip on the Cascadia Subduction Zone: The Chatter of Silent Slip. Science, 300(5627), 1942–1943. https://doi.org/10.1126/science.1084783
Rüpke, L. H., Morgan, J. P., Hort, M., & Connolly, J. A. D. (2004). Serpentine and the subduction zone water cycle. Earth and Planetary Science Letters, 223(1–2), 17–34. https://doi.org/10.1016/j.epsl.2004.04.018
Russo, R. M., VanDecar, J. C., Comte, D., Mocanu, V. I., Gallego, A., & Murdie, R. E. (2010). Subduction of the Chile Ridge: Upper mantle structure and flow. GSA Today, 4–10. https://doi.org/10.1130/gsatg61a.1
Schellart, W. P. (2004). Kinematics of subduction and subduction‐induced flow in the upper mantle. Journal of Geophysical Research: Solid Earth, 109(B7). https://doi.org/10.1029/2004jb002970
Schmalzle, G. M., McCaffrey, R., & Creager, K. C. (2014). Central Cascadia subduction zone creep. Geochemistry, Geophysics, Geosystems, 15(4), 1515–1532. https://doi.org/10.1002/2013gc005172
Schmidt, D. A., & Gao, H. (2010). Source parameters and time‐dependent slip distributions of slow slip events on the Cascadia subduction zone from 1998 to 2008. Journal of Geophysical Research: Solid Earth, 115(B4). https://doi.org/10.1029/2008jb006045
Schwartz, S. Y., & Rokosky, J. M. (2007). Slow slip events and seismic tremor at circum‐Pacific subduction zones. Reviews of Geophysics, 45(3). https://doi.org/10.1029/2006rg000208
Segall, P., Rubin, A. M., Bradley, A. M., & Rice, J. R. (2010). Dilatant strengthening as a mechanism for slow slip events. Journal of Geophysical Research: Solid Earth, 115(B12). https://doi.org/10.1029/2010jb007449
Shelly, D. R., Beroza, G. C., & Ide, S. (2007). Non-volcanic tremor and low-frequency earthquake swarms. Nature, 446(7133), 305–307. https://doi.org/10.1038/nature05666
Stanciu, A. C., & Humphreys, E. D. (2021). Seismic Architecture of the Upper Mantle Underlying California and Nevada. Journal of Geophysical Research: Solid Earth, 126(12). https://doi.org/10.1029/2021jb021880
Sweet, J. R., Creager, K. C., Houston, H., & Chestler, S. R. (2019). Variations in Cascadia Low‐Frequency Earthquake Behavior With Downdip Distance. Geochemistry, Geophysics, Geosystems, 20(2), 1202–1217. https://doi.org/10.1029/2018gc007998
Szeliga, W., Melbourne, T. I., Miller, M. M., & Santillan, V. M. (2004). Southern Cascadia episodic slow earthquakes. Geophysical Research Letters, 31(16). https://doi.org/10.1029/2004gl020824
van Keken, P. E., Hacker, B. R., Syracuse, E. M., & Abers, G. A. (2011). Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. Journal of Geophysical Research, 116(B1). https://doi.org/10.1029/2010jb007922
van Wijk, J. (2001). Three-dimensional thermal modeling of the California upper mantle: a slab window vs. stalled slab. Earth and Planetary Science Letters, 186(2), 175–186. https://doi.org/10.1016/s0012-821x(01)00243-6
Verdonck, D., & Zandt, G. (1994). Three‐dimensional crustal structure of the Mendocino Triple Junction region from local earthquake travel times. Journal of Geophysical Research: Solid Earth, 99(B12), 23843–23858. https://doi.org/10.1029/94jb01238
Wang, K., & Bilek, S. L. (2014). Invited review paper: Fault creep caused by subduction of rough seafloor relief. Tectonophysics, 610, 1–24. https://doi.org/10.1016/j.tecto.2013.11.024
Wech, A. G. (2021). Cataloging Tectonic Tremor Energy Radiation in the Cascadia Subduction Zone. Journal of Geophysical Research: Solid Earth, 126(10). https://doi.org/10.1029/2021jb022523
Wech, A. G., & Creager, K. C. (2011). A continuum of stress, strength and slip in the Cascadia subduction zone. Nature Geoscience, 4(9), 624–628. https://doi.org/10.1038/ngeo1215
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Carolyn Nuyen, David Schmidt
This work is licensed under a Creative Commons Attribution 4.0 International License.