Shear-wave attenuation anisotropy: a new constraint on mantle melt near the Main Ethiopian Rift

Authors

DOI:

https://doi.org/10.26443/seismica.v3i1.1098

Abstract

The behaviour of fluids in preferentially aligned fractures plays an important role in a range of dynamic processes within the Earth. In the near-surface, understanding systems of fluid-filled fractures is crucial for applications such as geothermal energy production, monitoring CO2 storage sites, and exploration for metalliferous sub-volcanic brines. Mantle melting is a key geodynamic process, exerting control over its composition and dynamic processes. Upper mantle melting weakens the lithosphere, facilitating rifting and other surface expressions of tectonic processes.
Aligned fluid-filled fractures are an efficient mechanism for seismic velocity anisotropy, requiring very low volume fractions, but such rock physics models also predict significant shear-wave attenuation anisotropy. In comparison, the attenuation anisotropy expected for crystal preferred orietation mechanisms is negligible or would only operate outside of the seismic frequency band.
Here we demonstrate a new method for measuring shear-wave attenuation anisotropy, apply it to synthetic examples, and make the first measurements of SKS attenuation anisotropy using data recorded at the station FURI, in Ethiopia. At FURI we measure attenuation anisotropy where the fast shear-wave has been more attenuated than the slow shear-wave. This can be explained by the presence of aligned fluids, most probably melts, in the upper mantle using a poroelastic squirt flow model. Modelling of this result suggests that a 1% melt fraction, hosted in aligned fractures dipping ca. 40° that strike perpendicular to the Main Ethiopian Rift, is required to explain the observed attenuation anisotropy. This agrees with previous SKS shear-wave splitting analysis which suggested a 1% melt fraction beneath FURI. The interpreted fracture strike and dip, however, disagrees with previous work in the region which interprets sub-vertical melt inclusions aligned parallel to the Main Ethiopian Rift which only produce attenuation anisotropy where the slow shear-wave is more attenuated. These results show that attenuation anisotropy could be a useful tool for detecting mantle melt, and may offer strong constraints on the extent and orientation of melt inclusions which cannot be achieved from seismic velocity anisotropy alone.

References

Abramson, E. H., Brown, J. M., Slutsky, L. J., & Zaug, J. (1997). The elastic constants of San Carlos olivine to 17 GPa. Journal of Geophysical Research: Solid Earth, 102(B6), 12253–12263. https://doi.org/https://doi.org/10.1029/97JB00682

Aki, K., & Richards, P. G. (1980). Quantitative Seismology — Theory and Methods (A. Cox, Ed.; Vol. 1, pp. 170–182). W.H. Freeman.

Albuquerque Seismological Laboratory/USGS. (2014). Global Seismograph Network (GSN - IRIS/USGS). International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/IU

Al‐Harrasi, O. H., Kendall, J. ‐M., & Chapman, M. (2011). Fracture characterization using frequency‐dependent shear wave anisotropy analysis of microseismic data. Geophysical Journal International, 185(2), 1059–1070. https://doi.org/10.1111/j.1365-246x.2011.04997.x

Asplet, J, Wookey, J., Kendall, M., Chapman, M., & Das, R. (2023). Suppplementary material for Shear-wave attenuation anisotropy: a fluid detection tool. https://doi.org/10.5281/zenodo.8275968

Asplet, Joseph, Wookey, J., & Kendall, M. (2022). Inversion of shear wave waveforms reveal deformation in the lowermost mantle. Geophysical Journal International, 232(1), 97–114. https://doi.org/10.1093/gji/ggac328

Ayele, A., Stuart, G., & Kendall, J. ‐Michael. (2004). Insights into rifting from shear wave splitting and receiver functions: an example from Ethiopia. Geophysical Journal International, 157(1), 354–362. https://doi.org/10.1111/j.1365-246x.2004.02206.x

Backus, G. E. (1962). Long‐wave elastic anisotropy produced by horizontal layering. Journal of Geophysical Research, 67(11), 4427–4440. https://doi.org/10.1029/jz067i011p04427

Bacon, C. A., Johnson, J. H., White, R. S., & Rawlinson, N. (2022). On the Origin of Seismic Anisotropy in the Shallow Crust of the Northern Volcanic Zone, Iceland. Journal of Geophysical Research: Solid Earth, 127(1). https://doi.org/10.1029/2021jb022655

Baird, A. F., Kendall, J.-M., & Angus, D. A. (2013). Frequency-dependent seismic anisotropy due to fractures: Fluid flow versus scatteringFrequency-dependent anisotropy. Geophysics, 78(2), WA111–WA122. https://doi.org/10.1190/geo2012-0288.1

Baird, A. F., Kendall, J.-M., Sparks, R. S. J., & Baptie, B. (2015). Transtensional deformation of Montserrat revealed by shear wave splitting. Earth and Planetary Science Letters, 425, 179–186. https://doi.org/10.1016/j.epsl.2015.06.006

Barnes, A. E. (1993). Instantaneous spectral bandwidth and dominant frequency with applications to seismic reflection data. Geophysics, 58(3), 419–428. https://doi.org/10.1190/1.1443425

Bastow, I. D., Nyblade, A. A., Stuart, G. W., Rooney, T. O., & Benoit, M. H. (2008). Upper mantle seismic structure beneath the Ethiopian hot spot: Rifting at the edge of the African low‐velocity anomaly. Geochemistry, Geophysics, Geosystems, 9(12). https://doi.org/10.1029/2008gc002107

Bastow, I. D., Pilidou, S., Kendall, J.-M., & Stuart, G. W. (n.d.). Melt-induced seismic anisotropy and magma assisted rifting in Ethiopia: Evidence from surface waves. Geochemistry, Geophysics, Geosystems, 11(6).

Best, A. I., Sothcott, J., & McCann, C. (2007). A laboratory study of seismic velocity and attenuation anisotropy in near‐surface sedimentary rocks [Journal Article]. Geophysical Prospecting, 55(5), 609–625. https://doi.org/https://doi.org/10.1111/j.1365-2478.2007.00642.x

Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., & Wassermann, J. (2010). ObsPy: A Python Toolbox for Seismology. Seismological Research Letters, 81(3), 530–533. https://doi.org/10.1785/gssrl.81.3.530

Buck, W. R. (2004). 1. Consequences of Asthenospheric Variability on Continental Rifting. In G. D. Karner, B. Taylor, N. W. Driscoll, & D. L. Kohlstedt (Eds.), Rheology and Deformation of the Lithosphere at Continental Margins (pp. 1–30). Columbia University Press. https://doi.org/doi:10.7312/karn12738-002

Carter, A. J., & Kendall, J. ‐Michael. (2006). Attenuation anisotropy and the relative frequency content of split shear waves. Geophysical Journal International, 165(3), 865–874. https://doi.org/10.1111/j.1365-246x.2006.02929.x

Červenỳ, V., Molotkov, I. A., & Pšenčı́k, I. (1977). Ray method in seismology (pp. 47–50). Universita Karlova.

Chambers, E. L., Harmon, N., Keir, D., & Rychert, C. A. (2019). Using Ambient Noise to Image the Northern East African Rift. Geochemistry, Geophysics, Geosystems, 20(4), 2091–2109. https://doi.org/10.1029/2018gc008129

Chambers, E. L., Harmon, N., Rychert, C. A., Gallacher, R. J., & Keir, D. (2022). Imaging the seismic velocity structure of the crust and upper mantle in the northern East African Rift using Rayleigh wave tomography. Geophysical Journal International, 230(3), ggac156-. https://doi.org/10.1093/gji/ggac156

Chapman, M. (2003). Frequency‐dependent anisotropy due to meso‐scale fractures in the presence of equant porosity. Geophysical Prospecting, 51(5), 369–379. https://doi.org/10.1046/j.1365-2478.2003.00384.x

Chapman, M., Maultzsch, S., & Liu, E. (2003). Some Estimates of the Squirt-flow Frequency. All Days, SEG-2003-1290.

Chevrot, S. (2000). Multichannel analysis of shear wave splitting. Journal of Geophysical Research: Solid Earth, 105(B9), 21579–21590. https://doi.org/10.1029/2000jb900199

Crampin, S. (1981). A review of wave motion in anisotropic and cracked elastic-media. Wave Motion, 3(4), 343–391. https://doi.org/10.1016/0165-2125(81)90026-3

Crampin, S. (1984). Effective anisotropic elastic constants for wave propagation through cracked solids. Geophysical Journal of the Royal Astronomical Society, 76(1), 135–145. https://doi.org/10.1111/j.1365-246x.1984.tb05029.x

Dasios, A., Astin, T. R., & McCann, C. (2001). Compressional‐wave Q estimation from full‐waveform sonic data. Geophysical Prospecting, 49(3), 353–373. https://doi.org/10.1046/j.1365-2478.2001.00259.x

Durand, S., Matas, J., Ford, S., Ricard, Y., Romanowicz, B., & Montagner, J.-P. (2013). Insights from ScS–S measurements on deep mantle attenuation. Earth and Planetary Science Letters, 374, 101–110. https://doi.org/10.1016/j.epsl.2013.05.026

Engelhard, L. (1996). Determination of Seismic‐Wave Attenuation By Complex Trace Analysis. Geophysical Journal International, 125(2), 608–622. https://doi.org/10.1111/j.1365-246x.1996.tb00023.x

Eshelby, J. D. (1957). The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 241(1226), 376–396.

Eshetu, A., Mammo, T., & Tilmann, F. (2021). Imaging the Ethiopian Rift Region Using Transdimensional Hierarchical Seismic Noise Tomography. Pure and Applied Geophysics, 178(11), 4367–4388. https://doi.org/10.1007/s00024-021-02880-2

Ford, H. A., Goldhagen, G., Byrnes, J. S., & Brounce, M. N. (2022). New Insight into the Physical Properties of the East African Mantle from Seismic Attenuation. AGU Fall Meeting Abstracts, 2022, eT43B-03.

Ford, S. R., Garnero, E. J., & Thorne, M. S. (2012). Differential t* measurements via instantaneous frequency matching: observations of lower mantle shear attenuation heterogeneity beneath western Central America. Geophysical Journal International, 189(1), 513–523. https://doi.org/10.1111/j.1365-246x.2011.05348.x

Futterman, W. I. (1962). Dispersive body waves. Journal of Geophysical Research (1896-1977), 67(13), 5279–5291. https://doi.org/10.1029/JZ067i013p05279

Gabor, D. (1946). Theory of Communication. Journal of the Institution of Electrical Engineers, 93(26), 429–441. http://genesis.eecg.toronto.edu/gabor1946.pdf

Galvin, R. J., & Gurevich, B. (2009). Effective properties of a poroelastic medium containing a distribution of aligned cracks. Journal of Geophysical Research: Solid Earth, 114(B7). https://doi.org/10.1029/2008jb006032

Galvin, Robert J., & Gurevich, B. (2015). Frequency‐dependent anisotropy of porous rocks with aligned fractures. Geophysical Prospecting, 63(1), 141–150. https://doi.org/10.1111/1365-2478.12177

Hall, S. A., Kendall, J. M., & Baan, M. van der. (2004). Some comments on the effects of lower-mantle anisotropy on SKS and SKKS phases. Physics of the Earth and Planetary Interiors, 146(3–4), 469–481. https://doi.org/10.1016/j.pepi.2004.05.002

Hammond, J. O. S., Kendall, J. ‐M., Wookey, J., Stuart, G. W., Keir, D., & Ayele, A. (2014). Differentiating flow, melt, or fossil seismic anisotropy beneath Ethiopia. Geochemistry, Geophysics, Geosystems, 15(5), 1878–1894. https://doi.org/10.1002/2013gc005185

Hammond, W. C., & Humphreys, E. D. (2000). Upper mantle seismic wave attenuation: Effects of realistic partial melt distribution. Journal of Geophysical Research: Solid Earth, 105(B5), 10987–10999. https://doi.org/https://doi.org/10.1029/2000JB900042

Holtzman, B. K., & Kendall, J. ‐Michael. (2010). Organized melt, seismic anisotropy, and plate boundary lubrication. Geochemistry, Geophysics, Geosystems, 11(12), n/a-n/a. https://doi.org/10.1029/2010gc003296

Hudson, J. A. (1980). Overall properties of a cracked solid. Mathematical Proceedings of the Cambridge Philosophical Society, 88(2), 371–384. https://doi.org/10.1017/s0305004100057674

Hudson, J. A. (1981). Wave speeds and attenuation of elastic waves in material containing cracks. Geophysical Journal of the Royal Astronomical Society, 64(1), 133–150. https://doi.org/10.1111/j.1365-246x.1981.tb02662.x

Hudson, J. A., Liu, E., & Crampin, S. (1996). The mechanical properties of materials with interconnected cracks and pores. Geophysical Journal International, 124(1), 105–112. https://doi.org/10.1111/j.1365-246x.1996.tb06355.x

Hudson, T. S., Asplet, J., & Walker, A. (2023). Automated shear-wave splitting analysis for single- and multi- layer anisotropic media. Seismica. https://doi.org/10.31223/x5r67z

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 9(3), 90–95. https://doi.org/10.1109/MCSE.2007.55

International Seismological Centre. (2023). ISC Bulletin. https://doi.org/https://doi.org/10.31905/D808B830

Jakobsen, M., Johansen, T. A., & McCann, C. (2003). The acoustic signature of fluid flow in complex porous media. Journal of Applied Geophysics, 54(3–4), 219–246. https://doi.org/10.1016/j.jappgeo.2002.11.004

Jin, Z., Chapman, M., & Papageorgiou, G. (2018). Frequency-dependent anisotropy in a partially saturated fractured rock. Geophysical Journal International, 215(3), 1985–1998. https://doi.org/10.1093/gji/ggy399

Kendall, J.-M., Stuart, G. W., Ebinger, C. J., Bastow, I. D., & Keir, D. (2005). Magma-assisted rifting in Ethiopia. Nature, 433(7022), 146–148. https://doi.org/10.1038/nature03161

Kendall, John-Michael. (2000). Seismic anisotropy in the boundary layers of the mantle. In S. Karato, A. Forte, R. Liebermann, G. Masters, & L. Stixtrude (Eds.), Earth’s Deep Interior: Mineral physics and Tomography From the Atomic to the Global Scale (Vol. 117, pp. 133–159). American Geophysical Union. https://doi.org/10.1029/GM117p0133

Lawrence, J. F., & Wysession, M. E. (2006). QLM9: A new radial quality factor (Qμ) model for the lower mantle. Earth and Planetary Science Letters, 241(3–4), 962–971. https://doi.org/10.1016/j.epsl.2005.10.030

Li, Z., Leng, K., Jenkins, J., & Cottaar, S. (2022). Kilometer-scale structure on the core–mantle boundary near Hawaii. Nature Communications, 13(1), 2787. https://doi.org/10.1038/s41467-022-30502-5

Liu, C., & Grand, S. P. (2018). Seismic attenuation in the African LLSVP estimated from PcS phases. Earth and Planetary Science Letters, 489, 8–16. https://doi.org/10.1016/j.epsl.2018.02.023

Liu, E., Chapman, M., Varela, I., Li, X., Queen, J. H., & Lynn, H. (2007). Velocity and attenuation anisotropy Implication of seismic fracture characterizations. The Leading Edge, 26(9), 1170–1174. https://doi.org/10.1190/1.2780788

Liu, J., Li, J., Hrubiak, R., & Smith, J. S. (2016). Origins of ultralow velocity zones through slab-derived metallic melt. Proceedings of the National Academy of Sciences, 113(20), 5547–5551. https://doi.org/10.1073/pnas.1519540113

Liu, Z., Park, J., & Karato, S. (2016). Seismological detection of low‐velocity anomalies surrounding the mantle transition zone in Japan subduction zone. Geophysical Research Letters, 43(6), 2480–2487. https://doi.org/10.1002/2015gl067097

Mainprice, D. (2015). Seismic anisotropy of the deep Earth from a mineral and rock physics perspective. Treatise of Geophysics, 2. In G. Schubert (Ed.), Treatise of Geophysics (1st ed., Vol. 2, pp. 437–491). Elsevier. https://doi.org/10.1016/B978-044452748- 6.00045-6

Matheney, M. P., & Nowack, R. L. (1995). Seismic attenuation values obtained from instantaneous‐frequency matching and spectral ratios. Geophysical Journal International, 123(1), 1–15. https://doi.org/10.1111/j.1365-246x.1995.tb06658.x

Mavko, G., & Nur, A. (1975). Melt squirt in the asthenosphere. Journal of Geophysical Research (1896-1977), 80(11), 1444–1448. https://doi.org/https://doi.org/10.1029/JB080i011p01444

Muller, G. (1984). Rheological properties and velocity dispersion of a medium with power-law dependence of Q on frequency. Journal of Geophysics, 54(1), 20–29.

Quan, Y., & Harris, J. M. (1997). Seismic attenuation tomography using the frequency shift method. Geophysics, 62(3), 895–905.

Restivo, A., & Helffrich, G. (1999). Teleseismic shear wave splitting measurements in noisyenvironments. Geophysical Journal International, 137(3), 821–830. https://doi.org/10.1046/j.1365-246x.1999.00845.x

Rubino, J. G., & Holliger, K. (2012). Seismic attenuation and velocity dispersion in heterogeneous partially saturated porous rocks. Geophysical Journal International, 188(3), 1088–1102. https://doi.org/10.1111/j.1365-246x.2011.05291.x

Rychert, C. A., Hammond, J. O. S., Harmon, N., Kendall, J. M., Keir, D., Ebinger, C., Bastow, I. D., Ayele, A., Belachew, M., & Stuart, G. (2012). Volcanism in the Afar Rift sustained by decompression melting with minimal plume influence. Nature Geoscience, 5(6), 406–409. https://doi.org/10.1038/ngeo1455

Saha, J. G. (1987). Relationship Between Fourier And Instantaneous Frequency. 1987 SEG Annual Meeting, SEG-1987-0591.

Schlaphorst, D., Silveira, G., Mata, J., Krüger, F., Dahm, T., & Ferreira, A. M. G. (2022). Heterogeneous seismic anisotropy beneath Madeira and Canary archipelagos revealed by local and teleseismic shear wave splitting. Geophysical Journal International, 233(1), 510–528. https://doi.org/10.1093/gji/ggac472

Schmandt, B., Jacobsen, S. D., Becker, T. W., Liu, Z., & Dueker, K. G. (2014). Dehydration melting at the top of the lower mantle. Science, 344(6189), 1265–1268. https://doi.org/10.1126/science.1253358

Shearer, P. M. (2019). Introduction to Seismology. Cambridge University Press.

Silver, P. G., & Chan, W. W. (1988). Implications for continental strucutre and evolution from seismic anisotropy. Nature, 331(6185), 450. https://doi.org/10.1038/335034a0

Silver, P. G., & Chan, W. W. (1991). Shear wave splitting and subcontinental mantle deformation. Journal of Geophysical Research, 96(B10), 16429–16454. https://doi.org/10.1029/91jb00899

Solazzi, S. G., Lissa, S., Rubino, J. G., & Holliger, K. (2021). Squirt flow in partially saturated cracks: a simple analytical model. Geophysical Journal International, 227(1), 680–692. https://doi.org/10.1093/gji/ggab249

Sun, Y., Carcione, J. M., & Gurevich, B. (2020). Squirt-flow seismic dispersion models: a comparison. Geophysical Journal International, 222(3), 2068–2082. https://doi.org/10.1093/gji/ggaa274

Taner, M. T., Koehler, F., & Sheriff, R. E. (1979). Complex seismic trace analysis. Geophysics, 44(6), 1041–1063. https://doi.org/10.1190/1.1440994

Teanby, N. A., Kendall, J., & Baan, M. V. D. (2004). Automation of Shear-Wave Splitting Measurements using Cluster Analysis. Bulletin of the Seismologial Society of America, 94(2), 453–463. https://doi.org/10.1785/0120030123

Thomsen, L. (1995). Elastic anisotropy due to aligned cracks in porous rock. Geophysical Prospecting, 43(6), 805–829. https://doi.org/10.1111/j.1365-2478.1995.tb00282.x

Tod, S. R. (2001). The effects on seismic waves of interconnected nearly aligned cracks. Geophysical Journal International, 146(1), 249–263. https://doi.org/10.1046/j.1365-246x.2001.00451.x

Uieda, L., Tian, D., Leong, W. J., Schlitzer, W., Grund, M., Jones, M., Fröhlich, Y., Toney, L., Yao, J., Magen, Y., Jing-Hui, T., Materna, K., Belem, A., Newton, T., Anant, A., Ziebarth, M., Quinn, J., & Wessel, P. (2023). PyGMT: A Python interface for the Generic Mapping Tools (v0.9.0) [Computer software]. Zenodo. https://doi.org/10.5281/zenodo.7772533

Usher, P. J., Kendall, J. ‐M., Kelly, C. M., & Rietbrock, A. (2017). Measuring changes in fracture properties from temporal variations in anisotropic attenuation of microseismic waveforms. Geophysical Prospecting, 65(S1), 347–362. https://doi.org/10.1111/1365-2478.12551

Verdon, J. P., & Kendall, J.-M. (2011). Detection of multiple fracture sets using observations of shear-wave splitting in microseismic data. Geophysical Prospecting, 59(4), 593–608. https://doi.org/10.1111/j.1365-2478.2010.00943.x

Walker, A. M., & Wookey, J. (2012). MSAT—A new toolkit for the analysis of elastic and seismic anisotropy. Computers & Geosciences, 49, 81–90. https://doi.org/10.1016/j.cageo.2012.05.031

Walsh, E., Arnold, R., & Savage, M. K. (2013). Silver and Chan revisited. Journal of Geophysical Research: Solid Earth, 118(10), 5500–5515. https://doi.org/10.1002/jgrb.50386

Wenzlau, F., Altmann, J. B., & Müller, T. M. (2010). Anisotropic dispersion and attenuation due to wave‐induced fluid flow: Quasi‐static finite element modeling in poroelastic solids. Journal of Geophysical Research: Solid Earth, 115(B7). https://doi.org/10.1029/2009jb006644

Werner, U., & Shapiro, S. A. (1999). Frequency-dependent shear-wave splitting in thinly layered media with intrinsic anisotropy. Geophysics, 64(2), 604–608. https://doi.org/https://doi.org/10.1190/1.1444567

Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H. F., & Tian, D. (2019). The Generic Mapping Tools Version 6. Geochemistry, Geophysics, Geosystems, 20(11), 5556–5564. https://doi.org/https://doi.org/10.1029/2019GC008515

Whaler, K. A., & Hautot, S. (2006). The electrical resistivity structure of the crust beneath the northern Main Ethiopian Rift. Geological Society, London, Special Publications, 259(1), 293–305. https://doi.org/10.1144/GSL.SP.2006.259.01.22

Wuestefeld, A., Al-Harrasi, O., Verdon, J. P., Wookey, J., & Kendall, J. M. (2010). A strategy for automated analysis of passive microseismic data to image seismic anisotropy and fracture characteristics. Geophysical Prospecting, 58(5), 755–773. https://doi.org/10.1111/j.1365-2478.2010.00891.x

Zhubayev, A., Houben, M. E., Smeulders, D. M. J., & Barnhoorn, A. (2016). Ultrasonic velocity and attenuation anisotropy of shales, Whitby, United Kingdom. Geophysics, 81(1), D45–D56. https://doi.org/10.1190/geo2015-0211.1

Additional Files

Published

2024-05-15

How to Cite

Asplet, J., Wookey, J., Kendall, M., Chapman, M., & Das, R. (2024). Shear-wave attenuation anisotropy: a new constraint on mantle melt near the Main Ethiopian Rift. Seismica, 3(1). https://doi.org/10.26443/seismica.v3i1.1098

Issue

Section

Articles

Funding data