SeisMIC - an Open Source Python Toolset to Compute Velocity Changes from Ambient Seismic Noise

Authors

  • Peter Makus Helmholtz Center, German Research Center for Geosciences GFZ, Potsdam, Germany; Institute for Geological Sciences, Freie Universität Berlin, Berlin, Germany https://orcid.org/0000-0002-6377-5888
  • Christoph Sens-Schönfelder Helmholtz Center, German Research Center for Geosciences GFZ, Potsdam, Germany https://orcid.org/0000-0002-0150-9365

DOI:

https://doi.org/10.26443/seismica.v3i1.1099

Keywords:

seismic interferometry, Ambient seismic noise, environmental seismology, Passive Seismology, seismic velocity change, volcano seismology, cryoseismology, passive image interferometry, noise monitoring, software, open science

Abstract

We present SeisMIC, a fast, versatile, and adaptable open-source software to estimate seismic velocity changes from ambient seismic noise. SeisMIC includes a broad set of tools and functions to facilitate end-to-end processing of ambient noise data, from data retrieval and raw data analysis via spectrogram computation, over waveform coherence analysis, to post-processing of the final velocity change estimates. A particular highlight of the software is its ability to invert velocity change time series onto a spatial grid, making it possible to create maps of velocity changes. To tackle the challenge of processing large continuous datasets, SeisMIC can exploit multithreading at high efficiency with an about five-time improvement in compute time compared to MSNoise, probably the most widespread ambient noise software. In this manuscript, we provide a short tutorial and tips for users on how to employ SeisMIC most effectively. Extensive and up-to-date documentation is available online. Its broad functionality combined with easy adaptability and high efficiency make SeisMIC a well-suited tool for studies across all scales.

References

Arrowsmith, S. J., Trugman, D. T., MacCarthy, J., Bergen, K. J., Lumley, D., & Magnani, M. B. (2022). Big Data Seismology. Reviews of Geophysics, 60(2), e2021RG000769. https://doi.org/10.1029/2021RG000769

Asnar, M., Sens-Schönfelder, C., Bonnelye, A., & Dresen, G. (2023). Non-Classical, Non-Linear Elasticity in Rocks: Experiments in a Triaxial Cell with Pore Pressure Control (Techreport No. EGU23-8050). Copernicus Meetings. https://doi.org/10.5194/egusphere-egu23-8050

Barbe, K., Pintelon, R., & Schoukens, J. (2010). Welch Method Revisited: Nonparametric Power Spectrum Estimation Via Circular Overlap. IEEE Transactions on Signal Processing, 58(2), 553–565. https://doi.org/10.1109/TSP.2009.2031724

Barker, M., Chue Hong, N. P., Katz, D. S., Lamprecht, A.-L., Martinez-Ortiz, C., Psomopoulos, F., Harrow, J., Castro, L. J., Gruenpeter, M., Martinez, P. A., & Honeyman, T. (2022). Introducing the FAIR Principles for Research Software. Scientific Data, 9(1), 622. https://doi.org/10.1038/s41597-022-01710-x

Bensen, G. D., Ritzwoller, M. H., Barmin, M. P., Levshin, A. L., Lin, F., Moschetti, M. P., Shapiro, N. M., & Yang, Y. (2007). Processing Seismic Ambient Noise Data to Obtain Reliable Broad-Band Surface Wave Dispersion Measurements. Geophysical Journal International, 169(3), 1239–1260. https://doi.org/10.1111/j.1365-246X.2007.03374.x

Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., & Wassermann, J. (2010). ObsPy: A Python Toolbox for Seismology. Seismological Research Letters, 81(3), 530–533. https://doi.org/10.1785/gssrl.81.3.530

Bièvre, G., Franz, M., Larose, E., Carrière, S., Jongmans, D., & Jaboyedoff, M. (2018). Influence of Environmental Parameters on the Seismic Velocity Changes in a Clayey Mudflow (Pont-Bourquin Landslide, Switzerland). Engineering Geology, 245, 248–257. https://doi.org/10.1016/j.enggeo.2018.08.013

Brenguier, F., Campillo, M., Hadziioannou, C., Shapiro, N. M., Nadeau, R. M., & Larose, E. (2008). Postseismic Relaxation Along the San Andreas Fault at Parkfield from Continuous Seismological Observations. Science, 321(5895), 1478–1481. https://doi.org/10.1126/science.1160943

Clements, T., & Denolle, M. A. (2018). Tracking Groundwater Levels Using the Ambient Seismic Field. Geophysical Research Letters, 45(13), 6459–6465. https://doi.org/10.1029/2018GL077706

Clements, T., & Denolle, M. A. (2021). SeisNoise.Jl: Ambient Seismic Noise Cross Correlation on the CPU and GPU in Julia. Seismological Research Letters, 92(1), 517–527. https://doi.org/10.1785/0220200192

Clymer, R. W., & McEvilly, T. V. (1981). Travel-Time Monitoring with Vibroseis*. Bulletin of the Seismological Society of America, 71(6), 1903–1927. https://doi.org/10.1785/BSSA0710061903

Collette, A., Kluyver, T., Caswell, T. A., Tocknell, J., Kieffer, J., Scopatz, A., Dale, D., Chen, Jelenak, A., payno, juliagarriga, VINCENT, T., Sciarelli, P., Valls, V., Kofoed Pedersen, U., jakirkham, Raspaud, M., Parsons, A., Abbasi, H., … Hole, L. (2020). H5py/H5py: 3.1.0. Zenodo. https://doi.org/10.5281/zenodo.4250762

Dalcin, L., & Fang, Y.-L. L. (2021). Mpi4py: Status Update After 12 Years of Development. Computing in Science & Engineering, 23(4), 47–54. https://doi.org/10.1109/MCSE.2021.3083216

Donaldson, C., Winder, T., Caudron, C., & White, R. S. (2019). Crustal Seismic Velocity Responds to a Magmatic Intrusion and Seasonal Loading in Iceland’s Northern Volcanic Zone. Science Advances, 5(11), eaax6642. https://doi.org/10.1126/sciadv.aax6642

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del Río, J. F., Wiebe, M., Peterson, P., … Oliphant, T. E. (2020). Array Programming with NumPy. Nature, 585(7825), 357–362. https://doi.org/10.1038/s41586-020-2649-2

Hirose, T., Nakahara, H., & Nishimura, T. (2017). Combined Use of Repeated Active Shots and Ambient Noise to Detect Temporal Changes in Seismic Velocity: Application to Sakurajima Volcano, Japan 4. Seismology. Earth, Planets and Space, 69(1). https://doi.org/10.1186/s40623-017-0613-7

Hong, N. P. C., Katz, D. S., Barker, M., Lamprecht, A.-L., Martinez, C., Psomopoulos, F. E., Harrow, J., Castro, L. J., Gruenpeter, M., Martinez, P. A., Honeyman, T., Struck, A., Lee, A., Loewe, A., van Werkhoven, B., Garijo, D., Plomp, E., Genova, F., Shanahan, H., … Wg, F. (2022). FAIR Principles for Research Software (FAIR4RS Principles). https://doi.org/10.15497/RDA00065

Hunter, J. D. (2007). Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering, 9(3), 90–95. https://doi.org/10.1109/MCSE.2007.55

Ikuta, R., Yamaoka, K., Miyakawa, K., Kunitomo, T., & Kumazawa, M. (2002). Continuous Monitoring of Propagation Velocity of Seismic Wave Using ACROSS. Geophysical Research Letters, 29(13), 5-1-5–5. https://doi.org/10.1029/2001GL013974

Illien, L., Andermann, C., Sens-Schönfelder, C., Cook, K. L., Baidya, K. P., Adhikari, L. B., & Hovius, N. (2021). Subsurface Moisture Regulates Himalayan Groundwater Storage and Discharge. AGU Advances, 2(2). https://doi.org/10.1029/2021av000398

Jiang, C., & Denolle, M. A. (2020). Noisepy: A New High-Performance Python Tool for Ambient-Noise Seismology. Seismological Research Letters, 91(3), 1853–1866. https://doi.org/10.1785/0220190364

Koranne, S. (2011). Hierarchical Data Format 5 : HDF5. In S. Koranne (Ed.), Handbook of Open Source Tools (pp. 191–200). Springer US.

Lecocq, T., Caudron, C., & Brenguier, F. (2014). MSNoise, a Python Package for Monitoring Seismic Velocity Changes Using Ambient Seismic Noise. Seismological Research Letters, 85(3), 715–726. https://doi.org/10.1785/0220130073

Lindner, F., Wassermann, J., & Igel, H. (2021). Seasonal Freeze-Thaw Cycles and Permafrost Degradation on Mt. Zugspitze (German/Austrian Alps) Revealed by Single-Station Seismic Monitoring. Geophysical Research Letters, 48(18), 1–11. https://doi.org/10.1029/2021GL094659

Makus, P., Denolle, M., Sens-Schönfelder, C., Köpfli, M., & Tilmann, F. (2023, February). The Complex Relationship between Seismic Velocity and Volcanic, Tectonic, and Environmental Forcings Illustrated by 23 Years of Data at Mt. St. Helens. EGU23. https://doi.org/10.5194/egusphere-egu23-6757

Makus, P., & Sens-Schönfelder, C. (2022). Seismological Monitoring Using Interferometric Concepts (SeisMIC). GFZ Data Services. https://doi.org/10.5880/GFZ.2.4.2022.002

Makus, P., Sens-Schönfelder, C., Illien, L., Walter, T. R., Yates, A., & Tilmann, F. (2023). Deciphering the Whisper of Volcanoes: Monitoring Velocity Changes at Kamchatka’s Klyuchevskoy Group With Fluctuating Noise Fields. Journal of Geophysical Research: Solid Earth, 128(4), e2022JB025738. https://doi.org/10.1029/2022JB025738

Mao, S., Lecointre, A., van der Hilst, R. D., & Campillo, M. (2022). Space-Time Monitoring of Groundwater Fluctuations with Passive Seismic Interferometry. Nature Communications, 13(1), 4643. https://doi.org/10.1038/s41467-022-32194-3

Mao, S., Mordret, A., Campillo, M., Fang, H., & van der Hilst, R. D. (2020). On the Measurement of Seismic Traveltime Changes in the Time–Frequency Domain with Wavelet Cross-Spectrum Analysis. Geophysical Journal International, 221(1), 550–568. https://doi.org/10.1093/gji/ggz495

Margerin, L., Planès, T., Mayor, J., & Calvet, M. (2016). Sensitivity Kernels for Coda-Wave Interferometry and Scattering Tomography: Theory and Numerical Evaluation in Two-Dimensional Anisotropically Scattering Media. Geophysical Journal International, 204(1), 650–666. https://doi.org/10.1093/gji/ggv470

Mayor, J., Margerin, L., & Calvet, M. (2014). Sensitivity of Coda Waves to Spatial Variations of Absorption and Scattering: Radiative Transfer Theory and 2-D Examples. Geophysical Journal International, 197(2), 1117–1137. https://doi.org/10.1093/gji/ggu046

Minato, S., Tsuji, T., Ohmi, S., & Matsuoka, T. (2012). Monitoring Seismic Velocity Change Caused by the 2011 Tohoku-oki Earthquake Using Ambient Noise Records. Geophysical Research Letters, 39(9). https://doi.org/10.1029/2012GL051405

Mordret, A., Mikesell, T. D., Harig, C., Lipovsky, B. P., & Prieto, G. A. (2016). Monitoring Southwest Greenland’s Ice Sheet Melt with Ambient Seismic Noise. Science Advances, 2(5), e1501538. https://doi.org/10.1126/sciadv.1501538

Nanni, U., Pauze, T., Goulet, L., Köhler, A., Bouchayer, C., & Schuler, T. (2023, July). Study of the Structural and Dynamic Changes of a Surging Glacier Using Seismic Observations. IUGG.

Nishimura, T., Uchida, N., Sato, H., Ohtake, M., Tanaka, S., & Hamaguchi, H. (2000). Temporal Changes of the Crustal Structure Associated with the M6.1 Earthquake on September 3, 1998, and the Volcanic Activity of Mount Iwate, Japan. Geophysical Research Letters, 27(2), 269–272. https://doi.org/10.1029/1999GL005439

Obermann, A., Planès, T., Larose, E., & Campillo, M. (2013). Imaging Preeruptive and Coeruptive Structural and Mechanical Changes of a Volcano with Ambient Seismic Noise. Journal of Geophysical Research: Solid Earth, 118(12), 6285–6294. https://doi.org/10.1002/2013JB010399

Paasschens, J. C. J. (1997). Solution of the Time-Dependent Boltzmann Equation. Physical Review E, 56(1), 1135–1141. https://doi.org/10.1103/PhysRevE.56.1135

Poupinet, G., Ellsworth, W. L., & Frechet, J. (1984). Monitoring Velocity Variations in the Crust Using Earthquake Doublets: An Application to the Calaveras Fault, California. Journal of Geophysical Research: Solid Earth, 89(B7), 5719–5731. https://doi.org/10.1029/JB089iB07p05719

Quinteros, J., Strollo, A., Evans, P. L., Hanka, W., Heinloo, A., Hemmleb, S., Hillmann, L., Jaeckel, K.-H., Kind, R., Saul, J., Zieke, T., & Tilmann, F. (2021). The GEOFON Program in 2020. Seismological Research Letters, 92(3), 1610–1622. https://doi.org/10.1785/0220200415

Sawazaki, K., Kimura, H., Shiomi, K., Uchida, N., Takagi, R., & Snieder, R. (2015). Depth-Dependence of Seismic Velocity Change Associated with the 2011 Tohoku Earthquake, Japan, Revealed from Repeating Earthquake Analysis and Finite-Difference Wave Propagation Simulation. Geophysical Journal International, 201(2), 741–763. https://doi.org/10.1093/gji/ggv014

Sens-Schönfelder, C., & Wegler, U. (2006). Passive Image Interferemetry and Seasonal Variations of Seismic Velocities at Merapi Volcano, Indonesia. Geophysical Research Letters, 33(21), 1–5. https://doi.org/10.1029/2006GL027797

Sens-Schönfelder, Christoph, & Eulenfeld, T. (2019). Probing the in Situ Elastic Nonlinearity of Rocks with Earth Tides and Seismic Noise. Physical Review Letters, 122(13), 138501. https://doi.org/10.1103/PhysRevLett.122.138501

Sens-Schönfelder, Christoph, Flores-Estrella, H., Gassenmeier, M., Korn, M., Köllner, F., Milkereit, C., Niederleithinger, E., Parolai, S., Pilz, M., Pomponi, E., Schuck, A., Thiemann, K., & Völkel, J. (2014). MIIC: Monitoring and Imaging Based on Interferometric Concepts. In M. Weber & U. Münch (Eds.), Tomography of the Earth’s Crust: From Geophysical Sounding to Real-Time Monitoring: GEOTECHNOLOGIEN Science Report No. 21 (pp. 43–61). Springer International Publishing.

Sens-Schönfelder, Christoph, Pomponi, E., & Peltier, A. (2014). Dynamics of Piton de La Fournaise Volcano Observed by Passive Image Interferometry with Multiple References. Journal of Volcanology and Geothermal Research, 276, 32–45. https://doi.org/10.1016/j.jvolgeores.2014.02.012

Sens-Schönfelder, Christoph, & Wegler, U. (2011). Passive Image Interferometry for Monitoring Crustal Changes with Ambient Seismic Noise. Comptes Rendus Geoscience, 343(8), 639–651. https://doi.org/10.1016/j.crte.2011.02.005

Shapiro, N., Sens-Schönfelder, C., Lühr, B., Weber, M., Abkadyrov, I., Gordeev, E., Koulakov, I., Jakovlev, A., Kugaenko, Y., & Saltykov, V. (2017). Understanding Kamchatka’s Extraordinary Volcano Cluster. Eos. https://doi.org/10.1029/2017EO071351

Snieder, R., Grêt, A., Douma, H., & Scales, J. (2002). Coda Wave Interferometry for Estimating Nonlinear Behavior in Seismic Velocity. Science, 295(5563), 2253–2255. https://doi.org/10.1126/science.1070015

Steinmann, R., Hadziioannou, C., & Larose, E. (2021). Effect of Centimetric Freezing of the near Subsurface on Rayleigh and Love Wave Velocity in Ambient Seismic Noise Correlations. Geophysical Journal International, 224(1), 626–636. https://doi.org/10.1093/gji/ggaa406

Steinmann, R., Seydoux, L., Journeau, C., Shapiro, N. M., & Campillo, M. (2023). Machine Learning Analysis of Seismograms Reveals a Continuous Plumbing System Evolution beneath the Klyuchevskoy Volcano in Kamchatka, Russia [Preprint]. Authorea. https://doi.org/10.22541/essoar.168614505.54607219/v1

Strollo, A., Cambaz, D., Clinton, J., Danecek, P., Evangelidis, C. P., Marmureanu, A., Ottemöller, L., Pedersen, H., Sleeman, R., Stammler, K., Armbruster, D., Bienkowski, J., Boukouras, K., Evans, P. L., Fares, M., Neagoe, C., Heimers, S., Heinloo, A., Hoffmann, M., … Triantafyllis, N. (2021). EIDA: The European Integrated Data Archive and Service Infrastructure within ORFEUS. Seismological Research Letters, 92(3), 1788–1795. https://doi.org/10.1785/0220200413

Tarantola, A., & Valette, B. (1982). Generalized Nonlinear Inverse Problems Solved Using the Least Squares Criterion. Reviews of Geophysics, 20(2), 219–232. https://doi.org/10.1029/RG020i002p00219

University of Leipzig. (2001). SXNET Saxon Seismic Network. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/SX

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., … van Mulbregt, P. (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17(3), 261–272. https://doi.org/10.1038/s41592-019-0686-2

Wang, B., Yang, W., Wang, W., Yang, J., Li, X., & Ye, B. (2020). Diurnal and Semidiurnal P- and S-Wave Velocity Changes Measured Using an Airgun Source. Journal of Geophysical Research: Solid Earth, 125(1), e2019JB018218. https://doi.org/10.1029/2019JB018218

Wang, Q. Y., Brenguier, F., Campillo, M., Lecointre, A., Takeda, T., & Aoki, Y. (2017). Seasonal Crustal Seismic Velocity Changes Throughout Japan. Journal of Geophysical Research: Solid Earth, 122(10), 7987–8002. https://doi.org/10.1002/2017JB014307

Wegler, U., Lühr, B. G., Snieder, R., & Ratdomopurbo, A. (2006). Increase of Shear Wave Velocity before the 1998 Eruption of Merapi Volcano (Indonesia). Geophysical Research Letters, 33(9), 4–7. https://doi.org/10.1029/2006GL025928

Wu, C., Tan, X., Li, H., & Sun, G. (2022). An Efficient Ambient Noise Cross-Correlation Algorithm on Heterogeneous CPU-GPU Cluster. 2022 IEEE 13th International Symposium on Parallel Architectures, Algorithms and Programming (PAAP), 1–5. https://doi.org/10.1109/PAAP56126.2022.10010612

Yamamura, K., Sano, O., Utada, H., Takei, Y., Nakao, S., & Fukao, Y. (2003). Long-Term Observation of in Situ Seismic Velocity and Attenuation. Journal of Geophysical Research: Solid Earth, 108(B6). https://doi.org/10.1029/2002JB002005

Yang, W., Wang, B., Yuan, S., & Ge, H. (2018). Temporal Variation of Seismic-Wave Velocity Associated with Groundwater Level Observed by a Downhole Airgun near the Xiaojiang Fault Zone. Seismological Research Letters, 89(3), 1014–1022. https://doi.org/10.1785/0220170282

Zhang, H., Glasgow, M., Schmandt, B., Thelen, W. A., Moran, S. C., & Thomas, A. M. (2022). Revisiting the Depth Distribution of Seismicity before and after the 2004–2008 Eruption of Mount St. Helens. Journal of Volcanology and Geothermal Research, 430, 107629. https://doi.org/10.1016/j.jvolgeores.2022.107629

Downloads

Published

2024-02-04

How to Cite

Makus, P., & Sens-Schönfelder, C. (2024). SeisMIC - an Open Source Python Toolset to Compute Velocity Changes from Ambient Seismic Noise. Seismica, 3(1). https://doi.org/10.26443/seismica.v3i1.1099

Issue

Section

Reports (excl. Fast Reports)

Funding data