Comparison of geodetic slip-deficit and geologic fault slip rates reveals that variability of elastic strain accumulation and release rates on strike-slip faults is controlled by the relative structural complexity of plate-boundary fault systems
DOI:
https://doi.org/10.26443/seismica.v3i1.1119Keywords:
slip rate, elastic strain accumulation, strike-slip faultsAbstract
Comparison of geodetic slip-deficit rates with geologic fault slip rates on major strike-slip faults reveals marked differences in patterns of elastic strain accumulation on tectonically isolated faults relative to faults that are embedded within more complex plate-boundary fault systems. Specifically, we show that faults that extend through tectonically complex systems characterized by multiple, mechanically complementary faults (that is, different faults that are all accommodating the same deformation field), which we refer to as high-Coefficient of Complexity (or high-CoCo) faults, exhibit ratios between geodetic and geologic rates that vary and that depend on the displacement scales over which the geologic slip rates are averaged. This indicates that elastic strain accumulation rates on these faults change significantly through time, which in turn suggests that the rates of ductile shear beneath the seismogenic portion of faults also vary through time. This is consistent with models in which mechanically complementary faults trade off slip in time and space in response to varying mechanical and stress conditions on the different component faults. In marked contrast, structurally isolated (or low-CoCo) faults exhibit geologic slip rates that are similar to geodetic slip-deficit rates, regardless of the displacement and time scales over which the slip rates are averaged. Such faults experience relatively constant geologic fault slip rates as well as constant strain accumulation rate (aside from brief, rapid post-seismic intervals). This suggests that low-CoCo faultsd "keep up" with the rate imposed by the relative plate-boundary condition, since they are the only structures in their respective plate-boundary zone that can effectively accommodate the imposed steady plate motion. We hypothesize that the discrepancies between the small-displacement average geologic slip rates and geodetic slip-deficit rates may provide a means of assessing a switch of modes for some high-CoCo faults, transitioning from a slow mode to a faster mode, or vice versa. If so, the differences between geologic slip rates and geodetic slip-deficit rates on high-CoCo faults may indicate changes in a fault's behavior that could be used to refine next-generation probabilistic seismic hazard assessments.
References
Aktug, B., Ozener, H., Dogru, A., Sabuncu, A., Turgut, B., Halicioglu, K., Yilmaz, O., & Havazli, E. (2016). Slip rates and seismic potential on the East Anatolian Fault System using an improved GPS velocity field. Journal of Geodynamics, 94–95, 1–12. https://doi.org/10.1016/j.jog.2016.01.001 DOI: https://doi.org/10.1016/j.jog.2016.01.001
Barbot, S., Luo, H., Wang, T., Hamiel, Y., Piatibratova, O., Javed, M. T., Braitenberg, C., & Gurbuz, G. (2023). Slip distribution of the February 6, 2023 Mw 7.8 and Mw 7.6, Kahramanmaraş, Turkey earthquake sequence in the East Anatolian Fault Zone. Seismica, 2(3). https://doi.org/10.26443/seismica.v2i3.502 DOI: https://doi.org/10.26443/seismica.v2i3.502
Barka, A. (1992). The North Anatolian fault zone. Annales Tectonicae, suppl. VI, 164–195.
Barka, A., Akyüz, H. S., Altunel, E., Sunal, G., Cakir, Z., Dikbas, B., Aand Yerli, Armijo, R., Meyer, B., de Chabalier, J. B., Rockwell, T., Dolan, J. R., Hartleb, R., Dawson, T., Christofferson, S., Tucker, A., Fumal, T., Langridge, R., Stenner, H., Lettis, W., … Page, W. (2002). The Surface Rupture and Slip Distribution of the 17 August 1999 Izmit Earthquake (M 7.4), North Anatolian Fault. Bulletin of the Seismological Society of America, 92(1), 43–60. https://doi.org/10.1785/0120000841 DOI: https://doi.org/10.1785/0120000841
Barth, N. C., Kulhanek, D. K., Beu, A. G., Murray-Wallace, C. V., Hayward, B. W., Mildenhall, D. C., & Lee, D. E. (2014). New c. 270 kyr strike-slip and uplift rates for the southern Alpine Fault and implications for the New Zealand plate boundary. Journal of Structural Geology, 64, 39–52. https://doi.org/10.1016/j.jsg.2013.08.009 DOI: https://doi.org/10.1016/j.jsg.2013.08.009
Bender, A. M., Lease, R. O., Rittenour, T., & Jones, J. V. (2023). Rapid active thrust faulting at the northern Alaska Range front. Geology, 51(6), 527–531. https://doi.org/10.1130/G51049.1 DOI: https://doi.org/10.1130/G51049.1
Bendick, R., Bilham, R., Freymueller, J., Larson, K., & Yin, G. (2000). Geodetic evidence for a low slip rate in the Altyn Tagh fault system. Nature, 404(6773), 69–72. https://doi.org/10.1038/35003555 DOI: https://doi.org/10.1038/35003555
Benedetti, L., Finkel, R., Papanastassiou, D., King, G., Armijo, R., Ryerson, F., Farber, D., & Flerit, F. (2002). Post‐glacial slip history of the Sparta fault (Greece) determined by 36 Cl cosmogenic dating: Evidence for non‐periodic earthquakes. Geophysical Research Letters, 29(8). https://doi.org/10.1029/2001gl014510 DOI: https://doi.org/10.1029/2001GL014510
Berryman, K. R., Cochran, U. A., Clark, K. J., Biasi, G. P., Langridge, R. M., & Villamor, P. (2012). Major Earthquakes Occur Regularly on an Isolated Plate Boundary Fault. Science, 336(6089), 1690–1693. https://doi.org/10.1126/science.1218959 DOI: https://doi.org/10.1126/science.1218959
Bird, P., & Kreemer, C. (2014). Revised Tectonic Forecast of Global Shallow Seismicity Based on Version 2.1 of the Global Strain Rate Map. Bulletin of the Seismological Society of America, 105(1), 152–166. https://doi.org/10.1785/0120140129 DOI: https://doi.org/10.1785/0120140129
Brothers, D. S., Miller, N. C., Barrie, J. V., Haeussler, P. J., Greene, H. G., Andrews, B. D., Zielke, O., Watt, J., & Dartnell, P. (2020). Plate boundary localization, slip-rates and rupture segmentation of the Queen Charlotte Fault based on submarine tectonic geomorphology. Earth and Planetary Science Letters, 530, 115882. https://doi.org/10.1016/j.epsl.2019.115882 DOI: https://doi.org/10.1016/j.epsl.2019.115882
Bull, J. M., Barnes, P. M., Lamarche, G., Sanderson, D. J., Cowie, P. A., Taylor, S. K., & Dix, J. K. (2006). High-resolution record of displacement accumulation on an active normal fault: implications for models of slip accumulation during repeated earthquakes. Journal of Structural Geology, 28(7), 1146–1166. https://doi.org/10.1016/j.jsg.2006.03.006 DOI: https://doi.org/10.1016/j.jsg.2006.03.006
Carreras, J., Druguet, E., & Griera, A. (2005). Shear zone-related folds. Journal of Structural Geology, 27(7), 1229–1251. https://doi.org/10.1016/j.jsg.2004.08.004 DOI: https://doi.org/10.1016/j.jsg.2004.08.004
Cawood, T. C., & Dolan, J. F. (submitted). Fault strength variations over multiple seismic cycles: The role of fluids, cementation, strain hardening, and shear folding.
Chen, Y., Liu, M., & Luo, G. (2020). Complex Temporal Patterns of Large Earthquakes: Devil’s Staircases. Bulletin of the Seismological Society of America, 110(3), 1064–1076. https://doi.org/10.1785/0120190148 DOI: https://doi.org/10.1785/0120190148
Cowgill, E. (2007). Impact of riser reconstructions on estimation of secular variation in rates of strike–slip faulting: Revisiting the Cherchen River site along the Altyn Tagh Fault, NW China. Earth and Planetary Science Letters, 254(3), 239–255. https://doi.org/10.1016/j.epsl.2006.09.015 DOI: https://doi.org/10.1016/j.epsl.2006.09.015
Cowgill, E., Gold, R. D., Xuanhua, C., Xiao-Feng, W., Arrowsmith, J. R., & Southon, J. (2009). Low Quaternary slip rate reconciles geodetic and geologic rates along the Altyn Tagh fault, northwestern Tibet. Geology, 37(7), 647–650. https://doi.org/10.1130/G25623A.1 DOI: https://doi.org/10.1130/G25623A.1
Cowie, P. A., Roberts, G. P., Bull, J. M., & Visini, F. (2012). Relationships between fault geometry, slip rate variability and earthquake recurrence in extensional settings: Fault geometry control on earthquake rupture. Geophysical Journal International, 189(1), 143–160. https://doi.org/10.1111/j.1365-246x.2012.05378.x DOI: https://doi.org/10.1111/j.1365-246X.2012.05378.x
Daëron, M., Klinger, Y., Tapponnier, P., Elias, A., Jacques, E., & Sursock, A. (2007). 12,000-Year-Long Record of 10 to 13 Paleoearthquakes on the Yammouneh Fault, Levant Fault System, Lebanon. Bulletin of the Seismological Society of America, 97(3), 749–771. https://doi.org/10.1785/0120060106 DOI: https://doi.org/10.1785/0120060106
Daëron, Mathieu, Benedetti, L., Tapponnier, P., Sursock, A., & Finkel, R. C. (2004). Constraints on the post ~25-ka slip rate of the Yammoûneh fault (Lebanon) using in situ cosmogenic 36Cl dating of offset limestone-clast fans. Earth and Planetary Science Letters, 227(1–2), 105–119. https://doi.org/10.1016/j.epsl.2004.07.014 DOI: https://doi.org/10.1016/j.epsl.2004.07.014
Daout, S., Jolivet, R., Lasserre, C., Doin, M.-P., Barbot, S., Tapponnier, P., Peltzer, G., Socquet, A., & Sun, J. (2016). Along-strike variations of the partitioning of convergence across the Haiyuan fault system detected by InSAR. Geophysical Journal International, 205(1), 536–547. https://doi.org/10.1093/gji/ggw028 DOI: https://doi.org/10.1093/gji/ggw028
Dawson, T. E., McGill, S. F., & Rockwell, T. K. (2003). Irregular recurrence of paleoearthquakes along the central Garlock fault near El Paso Peaks, California. Journal of Geophysical Research: Solid Earth, 108(B7). https://doi.org/10.1029/2001jb001744 DOI: https://doi.org/10.1029/2001JB001744
De Pascale, G. P., & Langridge, R. M. (2012). New on-fault evidence for a great earthquake in A.D. 1717, central Alpine fault, New Zealand. Geology, 40(9), 791–794. https://doi.org/10.1130/g33363.1 DOI: https://doi.org/10.1130/G33363.1
DeMets, C., & Dixon, T. H. (1999). New kinematic models for Pacific‐North America motion from 3 Ma to present, I: Evidence for steady motion and biases in the NUVEL‐1A Model. Geophysical Research Letters, 26(13), 1921–1924. https://doi.org/10.1029/1999gl900405 DOI: https://doi.org/10.1029/1999GL900405
DeVries, P. M. R., Krastev, P. G., Dolan, J. F., & Meade, B. J. (2016). Viscoelastic Block Models of the North Anatolian Fault: A Unified Earthquake Cycle Representation of Pre‐ and Postseismic Geodetic Observations. Bulletin of the Seismological Society of America, 107(1), 403–417. https://doi.org/10.1785/0120160059 DOI: https://doi.org/10.1785/0120160059
Dolan, James F., Bowman, D. D., & Sammis, C. G. (2007). Long-range and long-term fault interactions in Southern California. Geology, 35(9), 855. https://doi.org/10.1130/g23789a.1 DOI: https://doi.org/10.1130/G23789A.1
Dolan, James F., McAuliffe, L. J., Rhodes, E. J., McGill, S. F., & Zinke, R. (2016). Extreme multi-millennial slip rate variations on the Garlock fault, California: Strain super-cycles, potentially time-variable fault strength, and implications for system-level earthquake occurrence. Earth and Planetary Science Letters, 446, 123–136. https://doi.org/10.1016/j.epsl.2016.04.011 DOI: https://doi.org/10.1016/j.epsl.2016.04.011
Dolan, James F., & Meade, B. J. (2017). A Comparison of Geodetic and Geologic Rates Prior to Large Strike‐Slip Earthquakes: A Diversity of Earthquake‐Cycle Behaviors? Geochemistry, Geophysics, Geosystems, 18(12), 4426–4436. https://doi.org/10.1002/2017gc007014 DOI: https://doi.org/10.1002/2017GC007014
Dolan, J.F., Van Dissen, R. J., Rhodes, E. J., Zinke, R., Hatem, A. E., McGuire, C., Langridge, R. M., & Grenader, J. R. (2024). One tune, many tempos: Faults trade off slip in time and space to accommodate relative plate motions. Earth and Planetary Science Letters, 625, 118484. https://doi.org/10.1016/j.epsl.2023.118484 DOI: https://doi.org/10.1016/j.epsl.2023.118484
Elliott, J., & Freymueller, J. T. (2020). A Block Model of Present-Day Kinematics of Alaska and Western Canada. Journal of Geophysical Research: Solid Earth, 125(7), e2019JB018378. https://doi.org/10.1029/2019JB018378 DOI: https://doi.org/10.1029/2019JB018378
Ellis, S., & Stöckhert, B. (2004). Elevated stresses and creep rates beneath the brittle‐ductile transition caused by seismic faulting in the upper crust. Journal of Geophysical Research: Solid Earth, 109(B5). https://doi.org/10.1029/2003jb002744 DOI: https://doi.org/10.1029/2003JB002744
Evans, E. L. (2017a). Persistent slip rate discrepancies in the eastern California (USA) shear zone: Reply. Geology, 45(9), e426–e426. https://doi.org/10.1130/g39439y.1 DOI: https://doi.org/10.1130/G39439Y.1
Evans, E. L. (2017b). A Comprehensive Analysis of Geodetic Slip‐Rate Estimates and Uncertainties in California. Bulletin of the Seismological Society of America, 108(1), 1–18. https://doi.org/10.1785/0120170159 DOI: https://doi.org/10.1785/0120170159
Evans, E. L., Thatcher, W. R., Pollitz, F. F., & Murray, J. R. (2016). Persistent slip rate discrepancies in the eastern California (USA) shear zone. Geology, 44(9), 691–694. https://doi.org/10.1130/g37967.1 DOI: https://doi.org/10.1130/G37967.1
Fougere, D. M., Dolan, J. F., Rhodes, E. J., & McGill, S. F. (submitted). Refined Holocene slip rate for the western and central segments of the Garlock fault: Record of Alternating Millenial-Scale Periods of Fast and Slow Fault Slip.
Fougere, D. M., Dolan, J. F., Rhodes, E., McGill, S. F., & Ivester, A. (2023). Deciphering Non-Constant Earthquake Behavior: Insights from the Garlock Fault in Southern California. https://agu.confex.com/agu/fm23/meetingapp.cgi/Paper/1283318
Friedrich, A. M., Wernicke, B. P., Niemi, N. A., Bennett, R. A., & Davis, J. L. (2003). Comparison of geodetic and geologic data from the Wasatch region, Utah, and implications for the spectral character of Earth deformation at periods of 10 to 10 million years. Journal of Geophysical Research: Solid Earth, 108(B4). https://doi.org/10.1029/2001jb000682 DOI: https://doi.org/10.1029/2001JB000682
Ganev, P. N., Dolan, J. F., Blisniuk, K., Oskin, M., & Owen, L. A. (2010). Paleoseismologic evidence for multiple Holocene earthquakes on the Calico fault: Implications for earthquake clustering in the Eastern California shear zone. Lithosphere, 2(4), 287–298. https://doi.org/10.1130/l82.1 DOI: https://doi.org/10.1130/L82.1
Gauriau, J., Barbot, S., & Dolan, J. F. (2023). Islands of chaos in a sea of periodic earthquakes. Earth and Planetary Science Letters, 618, 118274. https://doi.org/10.1016/j.epsl.2023.118274 DOI: https://doi.org/10.1016/j.epsl.2023.118274
Gauriau, J., & Dolan, J. F. (2021). Relative Structural Complexity of Plate‐Boundary Fault Systems Controls Incremental Slip‐Rate Behavior of Major Strike‐Slip Faults. Geochemistry, Geophysics, Geosystems, 22(11). https://doi.org/10.1029/2021gc009938 DOI: https://doi.org/10.1029/2021GC009938
Gomez, F., Meghraoui, M., Darkal, A. N., Hijazi, F., Mouty, M., Suleiman, Y., Sbeinati, R., Darawcheh, R., Al-Ghazzi, R., & Barazangi, M. (2003). Holocene faulting and earthquake recurrence along the Serghaya branch of the Dead Sea fault system in Syria and Lebanon. Geophys J Int, 153(3), 658–674. https://doi.org/10.1046/j.1365-246X.2003.01933.x DOI: https://doi.org/10.1046/j.1365-246X.2003.01933.x
Gomez, F., Nemer, T., Tabet, C., Khawlie, M., Meghraoui, M., & Barazangi, M. (2007). Strain partitioning of active transpression within the Lebanese restraining bend of the Dead Sea Fault (Lebanon and SW Syria). Geological Society, London, Special Publications, 290(1), 285–303. https://doi.org/10.1144/290.10 DOI: https://doi.org/10.1144/290.10
Gomez, Francisco, Cochran, W. J., Yassminh, R., Jaafar, R., Reilinger, R., Floyd, M., King, R. W., & Barazangi, M. (2020). Fragmentation of the Sinai Plate indicated by spatial variation in present-day slip rate along the Dead Sea Fault System. Geophysical Journal International, 221(3), 1913–1940. https://doi.org/10.1093/gji/ggaa095 DOI: https://doi.org/10.1093/gji/ggaa095
Grant Ludwig, L., Akciz, S. O., Arrowsmith, J. R., & Salisbury, J. B. (2019). Reproducibility of San Andreas Fault Slip Rate Measurements at Wallace Creek in the Carrizo Plain, CA. Earth and Space Science, 6(1), 156–165. https://doi.org/10.1029/2017ea000360 DOI: https://doi.org/10.1029/2017EA000360
Güvercin, S. E., Karabulut, H., Konca, A. Ö., Doğan, U., & Ergintav, S. (2022). Active seismotectonics of the East Anatolian Fault. Geophysical Journal International, 230(1), 50–69. https://doi.org/10.1093/gji/ggac045 DOI: https://doi.org/10.1093/gji/ggac045
Haddon, E. K., Amos, C. B., Zielke, O., Jayko, A. S., & Bürgmann, R. (2016). Surface slip during large Owens Valley earthquakes. Geochemistry, Geophysics, Geosystems, 17(6), 2239–2269. https://doi.org/10.1002/2015gc006033 DOI: https://doi.org/10.1002/2015GC006033
Haeussler, P. J. (2004). Surface Rupture and Slip Distribution of the Denali and Totschunda Faults in the 3 November 2002 M 7.9 Earthquake, Alaska. Bulletin of the Seismological Society of America, 94(6B), S23–S52. https://doi.org/10.1785/0120040626 DOI: https://doi.org/10.1785/0120040626
Haibing, L., Van der Woerd, J., Tapponnier, P., Klinger, Y., Xuexiang, Q., Jingsui, Y., & Yintang, Z. (2005). Slip rate on the Kunlun fault at Hongshui Gou, and recurrence time of great events comparable to the 14/11/2001, Mw∼7.9 Kokoxili earthquake. Earth and Planetary Science Letters, 237(1), 285–299. https://doi.org/10.1016/j.epsl.2005.05.041 DOI: https://doi.org/10.1016/j.epsl.2005.05.041
Hamiel, Y., Piatibratova, O., Mizrahi, Y., Nahmias, Y., & Sagy, A. (2018). Crustal Deformation across the Jericho Valley Section of the Dead Sea Fault as Resolved by Detailed Field and Geodetic Observations. Geophysical Research Letters, 45(7), 3043–3050. https://doi.org/10.1002/2018GL077547 DOI: https://doi.org/10.1002/2018GL077547
Hamling, I. J., Hreinsdóttir, S., Clark, K., Elliott, J., Liang, C., Fielding, E., Litchfield, N., Villamor, P., Wallace, L., Wright, T. J., D’Anastasio, E., Bannister, S., Burbidge, D., Denys, P., Gentle, P., Howarth, J., Mueller, C., Palmer, N., Pearson, C., … Stirling, M. (2017). Complex multifault rupture during the 2016 M w 7.8 Kaikōura earthquake, New Zealand. Science, 356(6334). https://doi.org/10.1126/science.aam7194 DOI: https://doi.org/10.1126/science.aam7194
Handy, M. R. (1989). Deformation regimes and the rheological evolution of fault zones in the lithosphere: the effects of pressure, temperature, grainsize and time. Tectonophysics, 163(1–2), 119–152. https://doi.org/10.1016/0040-1951(89)90122-4 DOI: https://doi.org/10.1016/0040-1951(89)90122-4
Handy, M. R., Hirth, G., & Bürgmann, R. (2007). Continental Fault Structure and Rheology from the Frictional-to-Viscous Transition Downward. In Tectonic Faults (pp. 139–182). The MIT Press. https://doi.org/10.7551/mitpress/6703.003.0008 DOI: https://doi.org/10.7551/mitpress/6703.003.0008
Hatem, A.E. (2020). Holocene to latest Pleistocene incremental slip rates from the east-central Hope fault (Conway segment) at Hossack Station, Marlborough fault zone, South Island, New Zealand: Towards a dated path of earthquake slip along a plate boundary fault. DOI: https://doi.org/10.1130/GEOS.S.12904466.v1
Hatem, Alexandra E., & Dolan, J. F. (2018). A Model for the Initiation, Evolution, and Controls on Seismic Behavior of the Garlock Fault, California. Geochemistry, Geophysics, Geosystems, 19(7), 2166–2178. https://doi.org/10.1029/2017gc007349 DOI: https://doi.org/10.1029/2017GC007349
Hatem, Alexandra E., Dolan, J. F., Zinke, R. W., Langridge, R. M., McGuire, C. P., Rhodes, E. J., Brown, N., & Van Dissen, R. J. (2020). Holocene to latest Pleistocene incremental slip rates from the east-central Hope fault (Conway segment) at Hossack Station, Marlborough fault system, South Island, New Zealand: Towards a dated path of earthquake slip along a plate boundary fault. Geosphere, 16(6), 1558–1584. https://doi.org/10.1130/ges02263.1 DOI: https://doi.org/10.1130/GES02263.1
Hatem, Alexandra E., Dolan, J. F., Zinke, R. W., Van Dissen, R. J., McGuire, C. M., & Rhodes, E. J. (2019). A 2000 Yr Paleoearthquake Record along the Conway Segment of the Hope Fault: Implications for Patterns of Earthquake Occurrence in Northern South Island and Southern North Island, New Zealand. Bulletin of the Seismological Society of America, 109(6), 2216–2239. https://doi.org/10.1785/0120180313 DOI: https://doi.org/10.1785/0120180313
He, J., Vernant, P., Chéry, J., Wang, W., Lu, S., Ku, W., Xia, W., & Bilham, R. (2013). Nailing down the slip rate of the Altyn Tagh fault. Geophysical Research Letters, 40(20), 5382–5386. https://doi.org/10.1002/2013GL057497 DOI: https://doi.org/10.1002/2013GL057497
Hearn, E. (2022). “Ghost Transient” Corrections to the Southern California GPS Velocity Field from San Andreas Fault Seismic Cycle Models. Seismological Research Letters, 93(6), 2973–2989. https://doi.org/10.1785/0220220156 DOI: https://doi.org/10.1785/0220220156
Hearn, E. H., Pollitz, F. F., Thatcher, W. R., & Onishi, C. T. (2013). How do “ghost transients” from past earthquakes affect GPS slip rate estimates on southern California faults? Geochemistry, Geophysics, Geosystems, 14(4), 828–838. https://doi.org/10.1002/ggge.20080 DOI: https://doi.org/10.1002/ggge.20080
Hubert-Ferrari, A., Armijo, R., King, G. C., Meyer, B., & Barka, A. (2002). Morphology, displacement, and slip rates along the North Anatolian Fault, Turkey. Journal of Geophysical Research Solid Earth, 107(B10), ETG 9-1-ETG 9-33. https://doi.org/10.1029/2001JB000393 DOI: https://doi.org/10.1029/2001JB000393
Hussain, E., Wright, T. J., Walters, R. J., Bekaert, D. P. S., Lloyd, R., & Hooper, A. (2018). Constant strain accumulation rate between major earthquakes on the North Anatolian Fault. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-03739-2 DOI: https://doi.org/10.1038/s41467-018-03739-2
Johnson, K. M., Wallace, L. M., Maurer, J., Hamling, I. J., Williams, C. A., Rollins, C., Gerstenberger, M. C., & Van Dissen, R. J. (2022). Geodetic deformation model for the 2022 update of the New Zealand National Seismic Hazard Model. https://doi.org/10.21420/P93X-8293
Kirby, E., Anandakrishnan, S., Phillips, F., & Marrero, S. (2008). Late Pleistocene slip rate along the Owens Valley fault, eastern California. Geophysical Research Letters, 35(1). https://doi.org/10.1029/2007GL031970 DOI: https://doi.org/10.1029/2007GL031970
Kirby, E., Harkins, N., Wang, E., Shi, X., Fan, C., & Burbank, D. (2007). Slip rate gradients along the eastern Kunlun fault. Tectonics, 26(2). https://doi.org/10.1029/2006TC002033 DOI: https://doi.org/10.1029/2006TC002033
Klinger, Y., Avouac, J. P., Abou Karaki, N., Dorbath, L., Bourles, D., & Reyss, J. L. (2000). Slip rate on the Dead Sea transform fault in northern Araba valley (Jordan). Geophysical Journal International, 142(3), 755–768. https://doi.org/10.1046/j.1365-246x.2000.00165.x DOI: https://doi.org/10.1046/j.1365-246x.2000.00165.x
Kondo, H., Özaksoy, V., & Yıldirim, C. (2010). Slip history of the 1944 Bolu‐Gerede earthquake rupture along the North Anatolian fault system: Implications for recurrence behavior of multisegment earthquakes. Journal of Geophysical Research: Solid Earth, 115(B4). https://doi.org/10.1029/2009jb006413 DOI: https://doi.org/10.1029/2009JB006413
Kozacı, Ö., Dolan, J. F., & Finkel, R. C. (2009). A late Holocene slip rate for the central North Anatolian fault, at Tahtaköprü, Turkey, from cosmogenic 10Be geochronology: Implications for fault loading and strain release rates. Journal of Geophysical Research: Solid Earth, 114(B1). https://doi.org/10.1029/2008jb005760 DOI: https://doi.org/10.1029/2008JB005760
Kozacı, Ö., Dolan, J. F., Yönlü, Ö., & Hartleb, R. D. (2011). Paleoseismologic evidence for the relatively regular recurrence of infrequent, large-magnitude earthquakes on the eastern North Anatolian fault at Yaylabeli, Turkey. Lithosphere, 3(1), 37–54. https://doi.org/10.1130/l118.1 DOI: https://doi.org/10.1130/L118.1
Kozacı, Ö. K., Dolan, J. F., Finkel, R., & Hartleb, R. D. (2007). Late Holocene slip rate for the North Anatolian fault, Turkey, from cosmogenic 36Cl geochronology: Implications for the constancy of fault loading and strain release rates. Geological Society of America Bulletin, 35(10), 867–870. DOI: https://doi.org/10.1130/G23187A.1
Kurt, H., Sorlien, C. C., Seeber, L., Steckler, M. S., Shillington, D. J., Cifci, G., Cormier, M. ‐H., Dessa, J. ‐X., Atgin, O., Dondurur, D., Demirbag, E., Okay, S., Imren, C., Gurcay, S., & Carton, H. (2013). Steady late quaternary slip rate on the Cinarcik section of the North Anatolian fault near Istanbul, Turkey. Geophysical Research Letters, 40(17), 4555–4559. https://doi.org/10.1002/grl.50882 DOI: https://doi.org/10.1002/grl.50882
Li, C., Zhang, P., Yin, J., & Min, W. (2009). Late Quaternary left-lateral slip rate of the Haiyuan fault, northeastern margin of the Tibetan Plateau. Tectonics, 28(5). https://doi.org/10.1029/2008TC002302 DOI: https://doi.org/10.1029/2008TC002302
Liu JinRui, Ren Z., Zhang H., Li C., Zhang Z., WenJun Z., XueMei L. I., & CaiCai L. I. U. (2018). Late Quaternary slip rate of the Laohushan fault within the Haiyuan fault zone and its tectonic implications. Chinese Journal of Geophysics, 61(4), 1281–1297. https://doi.org/10.6038/cjg2018L0364
Liu, Jinrui, Ren, Z., Zhang, H., Li, C., Zhang, Z., Zheng, W., Li, X., & Liu, C. (2022). Slip Rates Along the Laohushan Fault and Spatial Variation in Slip Rate Along the Haiyuan Fault Zone. Tectonics, 41(2), e2021TC006992. https://doi.org/10.1029/2021TC006992 DOI: https://doi.org/10.1029/2021TC006992
Luo, G., & Liu, M. (2010). Stress evolution and fault interactions before and after the 2008 Great Wenchuan earthquake. Tectonophysics, 491(1–4), 127–140. https://doi.org/10.1016/j.tecto.2009.12.019 DOI: https://doi.org/10.1016/j.tecto.2009.12.019
Mancktelow, N. S., & Pennacchioni, G. (2004). The influence of grain boundary fluids on the microstructure of quartz-feldspar mylonites. Journal of Structural Geology, 26(1), 47–69. https://doi.org/10.1016/s0191-8141(03)00081-6 DOI: https://doi.org/10.1016/S0191-8141(03)00081-6
Masson, F., Hamiel, Y., Agnon, A., Klinger, Y., & Deprez, A. (2015). Variable behavior of the Dead Sea Fault along the southern Arava segment from GPS measurements. Comptes Rendus Geoscience, 347(4), 161–169. https://doi.org/10.1016/j.crte.2014.11.001 DOI: https://doi.org/10.1016/j.crte.2014.11.001
Matmon, A., Schwartz, D. P., Haeussler, P. J., Finkel, R., Lienkaemper, J. J., Stenner, H. D., & Dawson, TE. (2006). Denali fault slip rates and Holocene–late Pleistocene kinematics of central Alaska. Geology, 34(8), 645–648. https://doi.org/10.1130/G22361.1 DOI: https://doi.org/10.1130/G22361.1
McGill, S., & Sieh, K. (1993). Holocene slip rate of the Central Garlock Fault in southeastern Searles Valley, California. Journal of Geophysical Research: Solid Earth, 98(B8), 14217–14231. https://doi.org/10.1029/93JB00442 DOI: https://doi.org/10.1029/93JB00442
Meade, B. J., Klinger, Y., & Hetland, E. A. (2013). Inference of Multiple Earthquake-Cycle Relaxation Timescales from Irregular Geodetic Sampling of Interseismic Deformation. Bulletin of the Seismological Society of America, 103(5), 2824–2835. https://doi.org/10.1785/0120130006 DOI: https://doi.org/10.1785/0120130006
Meghraoui, M., Aksoy, M. E., Akyüz, H. S., Ferry, M., Dikbaş, A., & Altunel, E. (2012). Paleoseismology of the North Anatolian Fault at Güzelköy (Ganos segment, Turkey): Size and recurrence time of earthquake ruptures west of the Sea of Marmara. Geochemistry, Geophysics, Geosystems, 13(4). https://doi.org/10.1029/2011gc003960 DOI: https://doi.org/10.1029/2011GC003960
Melosh, B. L., Rowe, C. D., Gerbi, C., Smit, L., & Macey, P. (2018). Seismic cycle feedbacks in a mid-crustal shear zone. Journal of Structural Geology, 112, 95–111. https://doi.org/10.1016/j.jsg.2018.04.004 DOI: https://doi.org/10.1016/j.jsg.2018.04.004
Mencin, D., Bendick, R., Upreti, B. N., Adhikari, D. P., Gajurel, A. P., Bhattarai, R. R., Shrestha, H. R., Bhattarai, T. N., Manandhar, N., Galetzka, J., Knappe, E., Pratt-Sitaula, B., Aoudia, A., & Bilham, R. (2016). Himalayan strain reservoir inferred from limited afterslip following the Gorkha earthquake. Nature Geoscience, 9(7), 533–537. https://doi.org/10.1038/ngeo2734 DOI: https://doi.org/10.1038/ngeo2734
Mildon, Z. K., Roberts, G. P., Faure Walker, J. P., Beck, J., Papanikolaou, I., Michetti, A. M., Toda, S., Iezzi, F., Campbell, L., McCaffrey, K. J. W., Shanks, R., Sgambato, C., Robertson, J., Meschis, M., & Vittori, E. (2022). Surface faulting earthquake clustering controlled by fault and shear-zone interactions. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-34821-5 DOI: https://doi.org/10.1038/s41467-022-34821-5
Nicol, A., & Dissen, R. V. (2018). A 6000-year record of surface-rupturing paleoearthquakes on the Wairau Fault, New Zealand. New Zealand Journal of Geology and Geophysics, 61(3), 341–358. https://doi.org/10.1080/00288306.2018.1498360 DOI: https://doi.org/10.1080/00288306.2018.1498360
Nicol, A., Howell, A., Litchfield, N., Wilson, T., Bannister, S., & Massey, C. (2023). Introduction to the Kaikōura earthquake special issue. New Zealand Journal of Geology and Geophysics, 66(2), 137–146. https://doi.org/10.1080/00288306.2023.2197240 DOI: https://doi.org/10.1080/00288306.2023.2197240
Niemi, T. M., Zhang, H., Atallah, M., & Harrison, J. B. J. (2001). Late Pleistocene and Holocene slip rate of the Northern Wadi Araba fault, Dead Sea Transform, Jordan. Journal of Seismology, 5(3), 449–474. https://doi.org/10.1023/A:1011487912054 DOI: https://doi.org/10.1023/A:1011487912054
Noriega, G. R., Arrowsmith, J. R., Grant, L. B., & Young, J. J. (2006). Stream Channel Offset and Late Holocene Slip Rate of the San Andreas Fault at the Van Matre Ranch Site, Carrizo Plain, California. Bulletin of the Seismological Society of America, 96(1), 33–47. https://doi.org/10.1785/0120050094 DOI: https://doi.org/10.1785/0120050094
Okazaki, K., Burdette, E., & Hirth, G. (2021). Rheology of the Fluid Oversaturated Fault Zones at the Brittle‐Plastic Transition. Journal of Geophysical Research: Solid Earth, 126(2). https://doi.org/10.1029/2020jb020804 DOI: https://doi.org/10.1029/2020JB020804
Okudaira, T., Shigematsu, N., Harigane, Y., & Yoshida, K. (2017). Grain size reduction due to fracturing and subsequent grain-size-sensitive creep in a lower crustal shear zone in the presence of a CO2-bearing fluid. Journal of Structural Geology, 95, 171–187. https://doi.org/10.1016/j.jsg.2016.11.001 DOI: https://doi.org/10.1016/j.jsg.2016.11.001
Onderdonk, N. W., McGill, S. F., & Rockwell, T. K. (2015). Short-term variations in slip rate and size of prehistoric earthquakes during the past 2000 years on the northern San Jacinto fault zone, a major plate-boundary structure in southern California. Lithosphere, 7(3), 211–234. https://doi.org/10.1130/l393.1 DOI: https://doi.org/10.1130/L393.1
Oskin, M., Perg, L., Blumentritt, D., Mukhopadhyay, S., & Iriondo, A. (2004). Slip rate of the Calico fault: Implications for anomalous geodetic strain accumulation across the Eastern California shear zone. 2004, G11A-0776. https://ui.adsabs.harvard.edu/abs/2004AGUFM.G11A0776O
Oskin, Michael, Perg, L., Blumentritt, D., Mukhopadhyay, S., & Iriondo, A. (2007). Slip rate of the Calico fault: Implications for geologic versus geodetic rate discrepancy in the Eastern California Shear Zone. Journal of Geophysical Research: Solid Earth, 112(B3). https://doi.org/10.1029/2006jb004451 DOI: https://doi.org/10.1029/2006JB004451
Oskin, Michael, Perg, L., Shelef, E., Strane, M., Gurney, E., Singer, B., & Zhang, X. (2008). Elevated shear zone loading rate during an earthquake cluster in eastern California. Geology, 36(6), 507. https://doi.org/10.1130/g24814a.1 DOI: https://doi.org/10.1130/G24814A.1
Page, C. J., Denys, P. H., & Pearson, C. F. (2018). A geodetic study of the Alpine Fault through South Westland: using campaign GPS data to model slip rates on the Alpine Fault. New Zealand Journal of Geology and Geophysics, 61(3), 359–366. https://doi.org/10.1080/00288306.2018.1494006 DOI: https://doi.org/10.1080/00288306.2018.1494006
Peltzer, G., Crampé, F., Hensley, S., & Rosen, P. (2001). Transient strain accumulation and fault interaction in the Eastern California shear zone. Geology, 29(11), 975. https://doi.org/10.1130/0091-7613(2001)029<0975:tsaafi>2.0.co;2 DOI: https://doi.org/10.1130/0091-7613(2001)029<0975:TSAAFI>2.0.CO;2
Reid, H. (1910). The California Earthquake of April 18, 1906, Report of the State Earthquake Investigation Commission. Carnegie Institution of Washington. DOI: https://doi.org/10.1086/621732
Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., & Ozener, H. (2006). GPS constraints on continental deformation in the Africa-Arabia- Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research, 111(B5). https://doi.org/10.10292005JB004051 DOI: https://doi.org/10.1029/2005JB004051
Rockwell, T. K., Lindvall, S., Herzberg, M., Murbach, D., Dawson, T., & Berger, G. (2000). Paleoseismology of the Johnson Valley, Kickapoo, and Homestead Valley Faults: Clustering of Earthquakes in the Eastern California Shear Zone. Bulletin of the Seismological Society of America, 90(5), 1200–1236. https://doi.org/10.1785/0119990023 DOI: https://doi.org/10.1785/0119990023
Salisbury, J. B., Arrowsmith, J. R., Brown, N., Rockwell, T., Akciz, S., & Ludwig, L. G. (2018). The Age and Origin of Small Offsets at Van Matre Ranch along the San Andreas Fault in the Carrizo Plain, California. Bulletin of the Seismological Society of America, 108(2), 639–653. https://doi.org/10.1785/0120170162 DOI: https://doi.org/10.1785/0120170162
Scharer, K., Weldon, R., Biasi, G., Streig, A., & Fumal, T. (2017). Ground‐rupturing earthquakes on the northern Big Bend of the San Andreas Fault, California, 800 A.D. to Present. Journal of Geophysical Research: Solid Earth, 122(3), 2193–2218. https://doi.org/10.1002/2016jb013606 DOI: https://doi.org/10.1002/2016JB013606
Shao, Y., Liu-Zeng, J., Van der Woerd, J., Klinger, Y., Oskin, M. E., Zhang, J., Wang, P., Wang, P., Wang, W., & Yao, W. (2020). Late Pleistocene slip rate of the central Haiyuan fault constrained from optically stimulated luminescence, 14C, and cosmogenic isotope dating and high-resolution topography. GSA Bulletin, 133(7–8), 1347–1369. https://doi.org/10.1130/B35571.1 DOI: https://doi.org/10.1130/B35571.1
Shen, Z.-K., Wang, M., Li, Y., Jackson, D. D., Yin, A., Dong, D., & Fang, P. (2001). Crustal deformation along the Altyn Tagh fault system, western China, from GPS. Journal of Geophysical Research: Solid Earth, 106(B12), 30607–30621. https://doi.org/10.1029/2001JB000349 DOI: https://doi.org/10.1029/2001JB000349
Shimazaki, K., & Nakata, T. (1980). Time‐predictable recurrence model for large earthquakes. Geophysical Research Letters, 7(4), 279–282. https://doi.org/10.1029/gl007i004p00279 DOI: https://doi.org/10.1029/GL007i004p00279
Sieh, K. E., & Jahns, R. H. (1984). Holocene activity of the San Andreas fault at Wallace Creek, California. Geological Society of America Bulletin, 95, 883–896. https://doi.org/10.1130/0016-7606(1984)95<883:HAOTSA>2.0.CO;2 DOI: https://doi.org/10.1130/0016-7606(1984)95<883:HAOTSA>2.0.CO;2
Sutherland, R., Berryman, K., & Norris, R. (2006). Quaternary slip rate and geomorphology of the Alpine fault: Implications for kinematics and seismic hazard in southwest New Zealand. Geological Society of America Bulletin, 118(3–4), 464–474. https://doi.org/10.1130/b25627.1 DOI: https://doi.org/10.1130/B25627.1
Tong, X., Smith‐Konter, B., & Sandwell, D. T. (2014). Is there a discrepancy between geological and geodetic slip rates along the San Andreas Fault System? Journal of Geophysical Research: Solid Earth, 119(3), 2518–2538. https://doi.org/10.1002/2013jb010765 DOI: https://doi.org/10.1002/2013JB010765
Ulrich, T., Gabriel, A.-A., Ampuero, J.-P., & Xu, W. (2019). Dynamic viability of the 2016 Mw 7.8 Kaikōura earthquake cascade on weak crustal faults. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-09125-w DOI: https://doi.org/10.1038/s41467-019-09125-w
Van Der Woerd, J., Tapponnier, P., J. Ryerson, F., Meriaux, A.-S., Meyer, B., Gaudemer, Y., Finkel, R. C., Caffee, M. W., Guoguan, Z., & Zhiqin, X. (2002). Uniform postglacial slip-rate along the central 600 km of the Kunlun Fault (Tibet), from 26Al, 10Be, and 14C dating of riser offsets, and climatic origin of the regional morphology. Geophysical Journal International, 148(3), 356–388. https://doi.org/10.1046/j.1365-246x.2002.01556.x DOI: https://doi.org/10.1046/j.1365-246x.2002.01556.x
van Dissen, R. (2020). Slip rate variations on major strike-slip faults in central New Zealand and potential impacts on hazard estimation. https://repo.nzsee.org.nz/handle/nzsee/1691
Wallace, L. M., Barnes, P., Beavan, J., Dissen, R. V., Litchfield, N., Mountjoy, J., Langridge, R., Lamarche, G., & Pondard, N. (2012). The kinematics of a transition from subduction to strike-slip: An example from the central New Zealand plate boundary. Journal of Geophysical Research: Solid Earth, 117(B2). https://doi.org/https://doi.org/10.1029/2011JB008640 DOI: https://doi.org/10.1029/2011JB008640
Wechsler, N., Rockwell, T. K., & Klinger, Y. (2018). Variable slip-rate and slip-per-event on a plate boundary fault: The Dead Sea fault in northern Israel. Tectonophysics, 722, 210–226. https://doi.org/10.1016/j.tecto.2017.10.017 DOI: https://doi.org/10.1016/j.tecto.2017.10.017
Weldon, R. J., & Sieh, K. E. (1985). Holocene rate of slip and tentative recurrence interval for large earthquakes on the San Andreas fault, Cajon Pass, southern California. Geological Society of America Bulletin, 96(6), 793. https://doi.org/10.1130/0016-7606(1985)96<793:hrosat>2.0.co;2 DOI: https://doi.org/10.1130/0016-7606(1985)96<793:HROSAT>2.0.CO;2
Weldon, R., Scharer, K., Fumal, T., & Biasi, G. (2004). Wrightwood and the earthquake cycle: What a long recurrence record tells us about how faults work. GSA Today, 14(9), 4. https://doi.org/10.1130/1052-5173(2004)014<4:watecw>2.0.co;2 DOI: https://doi.org/10.1130/1052-5173(2004)014<4:WATECW>2.0.CO;2
Yönlü, Ö., & Karabacak, V. (2023). Surface rupture history and 18 kyr long slip rate along the Pazarcık segment of the East Anatolian Fault. Journal of the Geological Society, 181(1). https://doi.org/10.1144/jgs2023-056 DOI: https://doi.org/10.1144/jgs2023-056
Zhang, P.-Z., Molnar, P., & Xu, X. (2007). Late Quaternary and present-day rates of slip along the Altyn Tagh Fault, northern margin of the Tibetan Plateau. Tectonics, 26(5). https://doi.org/10.1029/2006TC002014 DOI: https://doi.org/10.1029/2006TC002014
Zhao, D., Qu, C., Bürgmann, R., Gong, W., Shan, X., Qiao, X., Zhao, L., Chen, H., & Liu, L. (2022). Large-Scale Crustal Deformation, Slip-Rate Variation, and Strain Distribution Along the Kunlun Fault (Tibet) From Sentinel-1 InSAR Observations (2015–2020). Journal of Geophysical Research: Solid Earth, 127(1), e2021JB022892. https://doi.org/10.1029/2021JB022892 DOI: https://doi.org/10.1029/2021JB022892
Zinke, R., Dolan, J. F., Rhodes, E. J., Van Dissen, R. J., Hatem, A. E., McGuire, C. P., Brown, N. D., & Grenader, J. R. (2021). Latest Pleistocene–Holocene Incremental Slip Rates of the Wairau Fault: Implications for Long‐Distance and Long‐Term Coordination of Faulting Between North and South Island, New Zealand. Geochemistry, Geophysics, Geosystems, 22(9). https://doi.org/10.1029/2021gc009656 DOI: https://doi.org/10.1029/2021GC009656
Zinke, Robert, Dolan, J. F., Rhodes, E. J., Van Dissen, R., & McGuire, C. P. (2017). Highly Variable Latest Pleistocene‐Holocene Incremental Slip Rates on the Awatere Fault at Saxton River, South Island, New Zealand, Revealed by Lidar Mapping and Luminescence Dating. Geophysical Research Letters, 44(22). https://doi.org/10.1002/2017gl075048 DOI: https://doi.org/10.1002/2017GL075048
Zinke, Robert, Dolan, J. F., Rhodes, E. J., Van Dissen, R., McGuire, C. P., Hatem, A. E., Brown, N. D., & Langridge, R. M. (2019). Multimillennial Incremental Slip Rate Variability of the Clarence Fault at the Tophouse Road Site, Marlborough Fault System, New Zealand. Geophysical Research Letters, 46(2), 717–725. https://doi.org/10.1029/2018gl080688 DOI: https://doi.org/10.1029/2018GL080688
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Judith Gauriau, James Dolan
This work is licensed under a Creative Commons Attribution 4.0 International License.