Seismic characteristics of the 2022-2023 unrest episode at Taupō volcano, Aotearoa New Zealand

Authors

  • Oliver Lamb Te Pū Ao | GNS Science, Wairakei Research Centre, Taupō, 3384, New Zealand
  • Stephen Bannister Te Pū Ao | GNS Science, Avalon Campus, Lower Hutt, 5010, New Zealand https://orcid.org/0000-0002-2125-0506
  • John Ristau Te Pū Ao | GNS Science, Avalon Campus, Lower Hutt, 5010, New Zealand
  • Craig Miller Te Pū Ao | GNS Science, Wairakei Research Centre, Taupō, 3384, New Zealand
  • Steve Sherburn Te Pū Ao | GNS Science, Wairakei Research Centre, Taupō, 3384, New Zealand
  • Katie Jacobs Te Pū Ao | GNS Science, Avalon Campus, Lower Hutt, 5010, New Zealand
  • Jonathan Hanson Te Pū Ao | GNS Science, Avalon Campus, Lower Hutt, 5010, New Zealand
  • Elisabetta D'Anastasio Te Pū Ao | GNS Science, Avalon Campus, Lower Hutt, 5010, New Zealand
  • Sigrún Hreinsdóttir Te Pū Ao | GNS Science, Avalon Campus, Lower Hutt, 5010, New Zealand
  • Eveanjelene Snee Te Pū Ao | GNS Science, Avalon Campus, Lower Hutt, 5010, New Zealand
  • Mike Ross Te Pū Ao | GNS Science, Avalon Campus, Lower Hutt, 5010, New Zealand
  • Eleanor Mestel Te Kura Tātai Aro Whenua School of Geography, Environment and Earth Sciences, Te Herenga Waka Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
  • Finnigan Illsley-Kemp Te Kura Tātai Aro Whenua School of Geography, Environment and Earth Sciences, Te Herenga Waka Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand

DOI:

https://doi.org/10.26443/seismica.v3i2.1125

Abstract

Taupō is a large caldera volcano located beneath a lake in the centre of the North Island of New Zealand and most recently erupted ~1800 years ago. The volcano has experienced at least 16 periods of unrest since 1872, each of which were characterised by increased seismic activity. Here we detail seismic activity during the most recent period of unrest from May 2022 to May 2023. The unrest was notable for the highest number of earthquakes detected during instrumented unrest episodes, and for one of the largest magnitude earthquakes detected beneath the lake for at least 50 years (ML 5.7). Relocated earthquakes indicate seismic activity was focused around an area hosting overlapping caldera structures and a hydrothermal system. Moment tensor inversion for the largest earthquake includes a non-negligible inflationary isotropic component. We suggest the seismic unrest was caused by the reactivation of faults due to an intrusion of magma at depth.

References

Acocella, V., Ripepe, M., Rivalta, E., Peltier, A., Galetto, F., & Joseph, E. (2023). Towards scientific forecasting of magmatic eruptions. Nature Reviews Earth & Environment. https://doi.org/10.1038/s43017-023-00492-z DOI: https://doi.org/10.5194/egusphere-egu24-4441

Amelung, F., Jónsson, S., Zebker, H., & Segall, P. (2000). Widespread uplift and ‘trapdoor’ faulting on Galápagos volcanoes observed with radar interferometry. Nature, 407(6807), 993–996. https://doi.org/10.1038/35039604 DOI: https://doi.org/10.1038/35039604

Bannister, S., Johnson, J., Guo, H., Bennington, N., Heise, W., & Zhang, H. (2023). Seismic imaging of the mid-crustal magmatic system beneath Ruapehu and Tongariro stratovolcanoes, Taupo Volcanic Zone. Http://Www.Iavceivolcano.Org/Content/Uploads/2021/03/Iavcei-2023-Book-of-Abstracts.Pdf.

Bannister, Stephen, Sherburn, S., & Bourguignon, S. (2016). Earthquake swarm activity highlights crustal faulting associated with the Waimangu–Rotomahana–Mt Tarawera geothermal field, Taupo Volcanic Zone. Journal of Volcanology and Geothermal Research, 314, 49–56. https://doi.org/10.1016/j.jvolgeores.2015.07.024 DOI: https://doi.org/10.1016/j.jvolgeores.2015.07.024

Barker, S. J., Wilson, C. J. N., Allan, A. S. R., & Schipper, C. I. (2015). Fine-scale temporal recovery, reconstruction and evolution of a post-supereruption magmatic system. Contributions to Mineralogy and Petrology, 170(1), 5. https://doi.org/10.1007/s00410-015-1155-2 DOI: https://doi.org/10.1007/s00410-015-1155-2

Barker, S. J., Wilson, C. J. N., Illsley-Kemp, F., Leonard, G. S., Mestel, E. R. H., Mauriohooho, K., & Charlier, B. L. A. (2021). Taupō: an overview of New Zealand’s youngest supervolcano. New Zealand Journal of Geology and Geophysics, 64(2–3), 320–346. https://doi.org/10.1080/00288306.2020.1792515 DOI: https://doi.org/10.1080/00288306.2020.1792515

Benson, T. W., Illsley-Kemp, F., Elms, H. C., Hamling, I. J., Savage, M. K., Wilson, C. J. N., Mestel, E. R. H., & Barker, S. J. (2021). Earthquake Analysis Suggests Dyke Intrusion in 2019 Near Tarawera Volcano, New Zealand. Frontiers in Earth Science, 8, 606992. https://doi.org/10.3389/feart.2020.606992 DOI: https://doi.org/10.3389/feart.2020.606992

Bibby, H. M., Caldwell, T. G., Davey, F. J., & Webb, T. H. (1995). Geophysical evidence on the structure of the Taupo Volcanic Zone and its hydrothermal circulation. Journal of Volcanology and Geothermal Research, 68(1–3), 29–58. https://doi.org/10.1016/0377-0273(95)00007-H DOI: https://doi.org/10.1016/0377-0273(95)00007-H

Chambers, D. J. A., Boltz, M. S., & Chamberlain, Calum. J. (2021). ObsPlus: A Pandas-centric ObsPy expansion pack. Journal of Open Source Software, 6(60), 2696. https://doi.org/10.21105/joss.02696 DOI: https://doi.org/10.21105/joss.02696

Davy, B. W., & Caldwell, T. G. (1998). Gravity, magnetic and seismic surveys of the caldera complex, Lake Taupo, North Island, New Zealand. Journal of Volcanology and Geothermal Research, 81(1–2), 69–89. https://doi.org/10.1016/S0377-0273(97)00074-7 DOI: https://doi.org/10.1016/S0377-0273(97)00074-7

de Ronde, C. E. J., Stoffers, P., Garbe-Schönberg, D., Christenson, B. W., Jones, B., Manconi, R., Browne, P. R. L., Hissmann, K., Botz, R., Davy, B. W., Schmitt, M., & Battershill, C. N. (2002). Discovery of active hydrothermal venting in Lake Taupo, New Zealand. Journal of Volcanology and Geothermal Research, 115(3–4), 257–275. https://doi.org/10.1016/S0377-0273(01)00332-8 DOI: https://doi.org/10.1016/S0377-0273(01)00332-8

Eberhart-Phillips, D., Reyners, M., Bannister, S., Chadwick, M., & Ellis, S. (2010). Establishing a versatile 3-D seismic velocity model for New Zealand [Journal Article]. Seismological Research Letters, 81(6), 992–1000. https://doi.org/10.1785/gssrl.81.6.992 DOI: https://doi.org/10.1785/gssrl.81.6.992

Ellis, S. M., Bannister, S., Van Dissen, R. J., Eberhart-Phillips, D., Holden, C., Boulton, C., Reyners, M. E., Funnell, R. H., Mortimer, N., & Upton, P. (2021). New Zealand Fault-Rupture Depth Model v1.0: a provisional estimate of the maximum depth of seismic rupture on New Zealand’s active faults. GNS Science Report, 2021/08, 47. https://doi.org/10.21420/4Q75-HZ73

GNS Science. (1970). GeoNet Aotearoa New Zealand Earthquake Catalogue. https://doi.org/10.21420/0S8P-TZ38

GNS Science. (2000). GeoNet Aotearoa New Zealand Continuous GNSS Network - Time Series Dataset. https://doi.org/10.21420/30F4-1A55

GNS Science. (2006). GeoNet Aotearoa New Zealand Earthquake Moment Tensor Solutions. https://doi.org/10.21420/MMJ9-CZ67

GNS Science. (2015). GeoNet Aotearoa New Zealand Felt Rapid Dataset. https://doi.org/10.21420/RS7F-VE53

GNS Science. (2020). GeoNet Aotearoa New Zealand Strong Motion Data Products. https://doi.org/10.21420/X0MD-MV58

GNS Science. (2021). GeoNet Aotearoa New Zealand Seismic Digital Waveform Dataset. https://doi.org/10.21420/G19Y-9D40

GNS Science. (2023). GeoNet Aotearoa New Zealand Shaking Layers Dataset. https://doi.org/10.21420/J856-2J84

Gregg, P. M., Zhan, Y., Amelung, F., Geist, D., Mothes, P., Koric, S., & Yunjun, Z. (2022). Forecasting mechanical failure and the 26 June 2018 eruption of Sierra Negra Volcano, Galápagos, Ecuador. Science Advances, 8(22), eabm4261. https://doi.org/10.1126/sciadv.abm4261 DOI: https://doi.org/10.1126/sciadv.abm4261

Herrmann, R. B. (2013). Computer Programs in Seismology: An Evolving Tool for Instruction and Research. Seismological Research Letters, 84(6), 1081–1088. https://doi.org/10.1785/0220110096 DOI: https://doi.org/10.1785/0220110096

Hogg, A., Lowe, D. J., Palmer, J., Boswijk, G., & Ramsey, C. B. (2012). Revised calendar date for the Taupo eruption derived by 14C wiggle-matching using a New Zealand kauri 14C calibration data set. The Holocene, 22(4), 439–449. https://doi.org/10.1177/0959683611425551 DOI: https://doi.org/10.1177/0959683611425551

Hotovec-Ellis, A. J., Shelly, D. R., Hill, D. P., Pitt, A. M., Dawson, P. B., & Chouet, B. A. (2018). Deep fluid pathways beneath Mammoth Mountain, California, illuminated by migrating earthquake swarms. Science Advances, 4(8), eaat5258. https://doi.org/10.1126/sciadv.aat5258 DOI: https://doi.org/10.1126/sciadv.aat5258

Hunter, J. D. (2007). Matplotlib: A 2D Graphics Environment. Computing in Science and Engineering, 9(3), 90–95. https://doi.org/10.1109/MCSE.2007.55 DOI: https://doi.org/10.1109/MCSE.2007.55

Hurst, A. W., Bibby, H. M., & Robinson, R. R. (2002). Earthquake focal mechanisms in the central Taupo Volcanic Zone and their relation to faulting and deformation. New Zealand Journal of Geology and Geophysics, 45(4), 527–536. https://doi.org/10.1080/00288306.2002.9514989 DOI: https://doi.org/10.1080/00288306.2002.9514989

Hurst, T., Bannister, S., Robinson, R., & Scott, B. (2008). Characteristics of three recent earthquake sequences in the Taupo Volcanic Zone, New Zealand. Tectonophysics, 452(1–4), 17–28. https://doi.org/10.1016/j.tecto.2008.01.017 DOI: https://doi.org/10.1016/j.tecto.2008.01.017

Husen, S., & Hardebeck, J. L. (2010). Theme IV - Understanding Seismicity Catalogs and their Problems : Earthquake Location Accuracy (pp. 1–35) [Case]. https://doi.org/10.5078/corssa-55815573.Available

Illsley‐Kemp, F., Barker, S. J., Wilson, C. J. N., Chamberlain, C. J., Hreinsdóttir, S., Ellis, S., Hamling, I. J., Savage, M. K., Mestel, E. R. H., & Wadsworth, F. B. (2021). Volcanic Unrest at Taupō Volcano in 2019: Causes, Mechanisms and Implications. Geochemistry, Geophysics, Geosystems, 22(6). https://doi.org/10.1029/2021GC009803 DOI: https://doi.org/10.1029/2021GC009803

Illsley-Kemp, F., Herath, P., Chamberlain, C. J., Michailos, K., & Wilson, C. J. N. (2022). A decade of earthquake activity at Taupō Volcano, New Zealand. Volcanica, 5(2), 335–348. https://doi.org/10.30909/vol.05.02.335348 DOI: https://doi.org/10.30909/vol.05.02.335348

Illsley‐Kemp, F., Savage, M. K., Wilson, C. J. N., & Bannister, S. (2019). Mapping Stress and Structure From Subducting Slab to Magmatic Rift: Crustal Seismic Anisotropy of the North Island, New Zealand. Geochemistry, Geophysics, Geosystems, 20(11), 5038–5056. https://doi.org/10.1029/2019GC008529 DOI: https://doi.org/10.1029/2019GC008529

Jónsson, S. (2009). Stress interaction between magma accumulation and trapdoor faulting on Sierra Negra volcano, Galápagos. Tectonophysics, 471(1–2), 36–44. https://doi.org/10.1016/j.tecto.2008.08.005 DOI: https://doi.org/10.1016/j.tecto.2008.08.005

Krischer, L., Megies, T., Barsch, R., Beyreuther, M., Lecocq, T., Caudron, C., & Wassermann, J. (2015). ObsPy: a bridge for seismology into the scientific Python ecosystem. Computational Science and Discovery, 8(1), 1–17. https://doi.org/10.1088/1749-4699/8/1/014003 DOI: https://doi.org/10.1088/1749-4699/8/1/014003

Langridge, R., Ries, W., Litchfield, N., Villamor, P., Van Dissen, R., Barrell, D., Rattenbury, M., Heron, D., Haubrock, S., Townsend, D., Lee, J., Berryman, K., Nicol, A., Cox, S., & Stirling, M. (2016). The New Zealand Active Faults Database. New Zealand Journal of Geology and Geophysics, 59(1), 86–96. https://doi.org/10.1080/00288306.2015.1112818 DOI: https://doi.org/10.1080/00288306.2015.1112818

Lomax, A., Virieux, J., Volant, P., & Berge, C. (2000). Probabilistic earthquake location in 3D and layered models: Introduction of a Metropolis-Gibbs method and comparison with linear locations [Case]. Kluwer. DOI: https://doi.org/10.1007/978-94-015-9536-0_5

MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. Proc. 5th Berkeley Symp. Math. Stat. Probab., Univ. Calif. 1965/66, 1, 281-297 (1967).

McGregor, R. F. D., Illsley‐Kemp, F., & Townend, J. (2022). The 2001 Taupō Fault Belt seismicity as evidence of magma‐tectonic interaction at Taupō volcano. Geochemistry, Geophysics, Geosystems. https://doi.org/10.1029/2022GC010625 DOI: https://doi.org/10.1029/2022GC010625

Miller, C. A., Le Mével, H., Currenti, G., Williams-Jones, G., & Tikoff, B. (2017). Microgravity changes at the Laguna del Maule volcanic field: Magma-induced stress changes facilitate mass addition. Journal of Geophysical Research: Solid Earth, 122(4), 3179–3196. https://doi.org/10.1002/2017JB014048 DOI: https://doi.org/10.1002/2017JB014048

Miller, Craig A., & Jolly, A. D. (2014). A model for developing best practice volcano monitoring: a combined threat assessment, consultation and network effectiveness approach. Natural Hazards, 71(1), 493–522. https://doi.org/10.1007/s11069-013-0928-z DOI: https://doi.org/10.1007/s11069-013-0928-z

Newman, A. V., Dixon, T. H., Ofoegbu, G. I., & Dixon, J. E. (2001). Geodetic and seismic constraints on recent activity at Long Valley Caldera, California: evidence for viscoelastic rheology. Journal of Volcanology and Geothermal Research, 105(3), 183–206. https://doi.org/10.1016/S0377-0273(00)00255-9 DOI: https://doi.org/10.1016/S0377-0273(00)00255-9

Otway, P. M., Illsley-Kemp, F., & Mestel, E. R. H. (2022). Taupō volcano’s restless nature revealed by 42 years of deformation surveys, 1979–2021. New Zealand Journal of Geology and Geophysics, 1–17. https://doi.org/10.1080/00288306.2022.2089170 DOI: https://doi.org/10.1080/00288306.2022.2089170

Panning, M., Dreger, D., & Tkalčić, H. (2001). Near‐source velocity structure and isotropic moment tensors: A case study of the Long Valley Caldera. Geophysical Research Letters, 28(9), 1815–1818. https://doi.org/10.1029/2000GL012389 DOI: https://doi.org/10.1029/2000GL012389

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12, 2825–2830.

Peltier, A., Hurst, T., Scott, B., & Cayol, V. (2009). Structures involved in the vertical deformation at Lake Taupo (New Zealand) between 1979 and 2007: New insights from numerical modelling. Journal of Volcanology and Geothermal Research, 181(3–4), 173–184. https://doi.org/10.1016/j.jvolgeores.2009.01.017 DOI: https://doi.org/10.1016/j.jvolgeores.2009.01.017

Petersen, T., Gledhill, K., Chadwick, M., Gale, N. H., & Ristau, J. (2011). The New Zealand National Seismograph Network. Seismological Research Letters, 82(1), 9–20. https://doi.org/10.1785/gssrl.82.1.9 DOI: https://doi.org/10.1785/gssrl.82.1.9

Potter, S. H., Jolly, G. E., Neall, V. E., Johnston, D. M., & Scott, B. J. (2014). Communicating the status of volcanic activity: revising New Zealand’s volcanic alert level system. Journal of Applied Volcanology, 3(1), 13. https://doi.org/10.1186/s13617-014-0013-7 DOI: https://doi.org/10.1186/s13617-014-0013-7

Potter, S. H., Scott, B. J., Jolly, G. E., Johnston, D. M., & Neall, V. E. (2015). A catalogue of caldera unrest at Taupo Volcanic Centre, New Zealand, using the Volcanic Unrest Index (VUI). Bulletin of Volcanology, 77(9), 78. https://doi.org/10.1007/s00445-015-0956-5 DOI: https://doi.org/10.1007/s00445-015-0956-5

Power, W., Roger, J., Gusman, A., Wang, X., Burbidge, D., Shanks, J., Rosenberg, M., Asher, C., Britten, K., Johnson, R., Moore, M., Moran, C., Brakenrig, T., Coup, L., Macdonald, N., & Krippner, J. (2023). Tsunamis in Lake Taupō, New Zealand on November the 30th 2022: observations, interpretation, and implications.

Ristau, J. (2008). Implementation of Routine Regional Moment Tensor Analysis in New Zealand. Seismological Research Letters, 79(3), 400–415. https://doi.org/10.1785/gssrl.79.3.400 DOI: https://doi.org/10.1785/gssrl.79.3.400

Sandanbata, O., Watada, S., Satake, K., Kanamori, H., & Rivera, L. (2023). Two Volcanic Tsunami Events Caused by Trapdoor Faulting at a Submerged Caldera Near Curtis and Cheeseman Islands in the Kermadec Arc. Geophysical Research Letters, 50(7), e2022GL101086. https://doi.org/10.1029/2022GL101086 DOI: https://doi.org/10.1029/2022GL101086

Sandanbata, O., Watada, S., Satake, K., Kanamori, H., Rivera, L., & Zhan, Z. (2022). Sub‐Decadal Volcanic Tsunamis Due To Submarine Trapdoor Faulting at Sumisu Caldera in the Izu–Bonin Arc. Journal of Geophysical Research: Solid Earth, 127(9). https://doi.org/10.1029/2022JB024213 DOI: https://doi.org/10.1029/2022JB024213

Saunders, S. J. (2001). The shallow plumbing system of Rabaul caldera: a partially intruded ring fault? Bulletin of Volcanology, 63(6), 406–420. https://doi.org/10.1007/s004450100159 DOI: https://doi.org/10.1007/s004450100159

Sherburn, S. (1992). Characteristics of earthquake sequences in the Central Volcanic Region, New Zealand. New Zealand Journal of Geology and Geophysics, 35(1), 57–68. https://doi.org/10.1080/00288306.1992.9514500 DOI: https://doi.org/10.1080/00288306.1992.9514500

Stagpoole, V., Miller, C., Caratori Tontini, F., Brakenrig, T., & Macdonald, N. (2020). A two million-year history of rifting and caldera volcanism imprinted in new gravity anomaly compilation of the Taupō Volcanic Zone, New Zealand. New Zealand Journal of Geology and Geophysics, 64(2–3), 358–371. https://doi.org/10.1080/00288306.2020.1848882 DOI: https://doi.org/10.1080/00288306.2020.1848882

Thorndike, R. L. (1953). Who belongs in the family? Psychometrika, 18(4), 267–276. https://doi.org/10.1007/BF02289263 DOI: https://doi.org/10.1007/BF02289263

Uieda, L., Tian, D., Leong, W. J., Schlitzer, W., Grund, M., Jones, M., Fröhlich, Y., Toney, L., Yao, J., Magen, Y., Tong, J.-H., Materna, K., Belem, A., Newton, T., Anant, A., Ziebarth, M., Quinn, J., & Wessel, P. (2023). PyGMT: A Python interface for the Generic Mapping Tools (0.9.0) [Computer software]. Zenodo. https://doi.org/10.5281/zenodo.7772533

Utsu, T., Ogata, Y., S, R., & Matsu’ura. (1995). The Centenary of the Omori Formula for a Decay Law of Aftershock Activity. Journal of Physics of the Earth, 43(1), 1–33. https://doi.org/10.4294/jpe1952.43.1 DOI: https://doi.org/10.4294/jpe1952.43.1

Vandergoes, M. J., Hogg, A. G., Lowe, D. J., Newnham, R. M., Denton, G. H., Southon, J., Barrell, D. J. A., Wilson, C. J. N., McGlone, M. S., Allan, A. S. R., Almond, P. C., Petchey, F., Dabell, K., Dieffenbacher-Krall, A. C., & Blaauw, M. (2013). A revised age for the Kawakawa/Oruanui tephra, a key marker for the Last Glacial Maximum in New Zealand. Quaternary Science Reviews, 74, 195–201. https://doi.org/10.1016/j.quascirev.2012.11.006 DOI: https://doi.org/10.1016/j.quascirev.2012.11.006

Waite, G. P., & Smith, R. B. (2002). Seismic evidence for fluid migration accompanying subsidence of the Yellowstone caldera. Journal of Geophysical Research: Solid Earth, 107(B9), ESE 1-1-ESE 1-15. https://doi.org/10.1029/2001JB000586 DOI: https://doi.org/10.1029/2001JB000586

Waldhauser, F., & Ellsworth, W. L. (2000). A Double-Difference Earthquake Location Algorithm: Method and Application to the Northern Hayward Fault, California. Bulletin of the Seismological Society of America, 90(6), 1353–1368. https://doi.org/10.1785/0120000006 DOI: https://doi.org/10.1785/0120000006

Wiemer, S., McNutt, S. R., & Wyss, M. (1998). Temporal and three-dimensional spatial analyses of the frequency-magnitude distribution near Long Valley Caldera, California: The frequency-magnitude distribution near Long Valley. Geophysical Journal International, 134(2), 409–421. https://doi.org/10.1046/j.1365-246x.1998.00561.x DOI: https://doi.org/10.1046/j.1365-246x.1998.00561.x

Wiemer, S., & Wyss, M. (2000). Minimum Magnitude of Completeness in Earthquake Catalogs: Examples from Alaska, the Western United States, and Japan. Bulletin of the Seismological Society of America, 90(4), 859–869. https://doi.org/10.1785/0119990114 DOI: https://doi.org/10.1785/0119990114

Wilson, C.J.N. (2001). The 26.5 ka Oruanui eruption, New Zealand: an introduction and overview. Journal of Volcanology and Geothermal Research, 112(1–4), 133–174. https://doi.org/10.1016/S0377-0273(01)00239-6 DOI: https://doi.org/10.1016/S0377-0273(01)00239-6

Wilson, Colin J. N. (1993). Stratigraphy, chronology, styles and dynamics of late Quaternary eruptions from Taupo volcano, New Zealand. Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences, 343(1668), 205–306. https://doi.org/10.1098/rsta.1993.0050 DOI: https://doi.org/10.1098/rsta.1993.0050

Wyss, M., Shimazaki, K., & Wiemer, S. (1997). Mapping active magma chambers by b values beneath the off-Ito volcano, Japan. Journal of Geophysical Research: Solid Earth, 102(B9), 20413–20422. https://doi.org/10.1029/97JB01074 DOI: https://doi.org/10.1029/97JB01074

Zhan, Y., Gregg, P. M., Le Mével, H., Miller, C. A., & Cardona, C. (2019). Integrating Reservoir Dynamics, Crustal Stress, and Geophysical Observations of the Laguna del Maule Magmatic System by FEM Models and Data Assimilation. Journal of Geophysical Research: Solid Earth, 124(12), 13547–13562. https://doi.org/10.1029/2019JB018681 DOI: https://doi.org/10.1029/2019JB018681

Zhang, H., & Thurber, C. (2003). Double-difference tomography: The method and its application to the Hayward Fault, California. Bulletin of the Seismological Society of America, 93(5), 1875–1889. https://doi.org/10.1785/0120020190 DOI: https://doi.org/10.1785/0120020190

Published

2024-07-15

How to Cite

Lamb, O., Bannister, S., Ristau, J., Miller, C., Sherburn, S., Jacobs, K., Hanson, J., D’Anastasio, E., Hreinsdóttir, S., Snee, E., Ross, M., Mestel, E., & Illsley-Kemp, F. (2024). Seismic characteristics of the 2022-2023 unrest episode at Taupō volcano, Aotearoa New Zealand. Seismica, 3(2). https://doi.org/10.26443/seismica.v3i2.1125

Issue

Section

Articles

Funding data