ScS shear-wave splitting in the lowermost mantle: Practical challenges and new global measurements

Authors

DOI:

https://doi.org/10.26443/seismica.v3i1.1128

Keywords:

Seismic anisotropy, Numerical modelling, Computational seismology, Wave propagation, Lowermost mantle

Abstract

Many regions of the Earth's mantle are seismically anisotropic, including portions of the lowermost mantle, which may indicate deformation due to convective flow. The splitting of ScS phases, which reflect once off the core-mantle boundary (CMB), is commonly measured to identify lowermost mantle anisotropy, although some challenges exist. Here, we use global wavefield simulations to evaluate commonly used approaches to inferring a lowermost mantle contribution to ScS splitting. We show that due to effects of the CMB reflection, only the epicentral distance range between 60° and 70° is appropriate for ScS splitting measurements. For this distance range, splitting is diagnostic of deep mantle anisotropy if no upper mantle anisotropy is present; however, if ScS is also split due to upper mantle anisotropy, the reliable diagnosis of deep mantle anisotropy is challenging. Moreover, even in the case of a homogeneously anisotropic deep mantle region sampled from a single azimuth by multiple ScS waves with different source polarizations (in absence of upper mantle anisotropy), different apparent fast directions are produced. We suggest that ScS splitting should only be measured at "null" stations and conduct such an analysis worldwide. Our results indicate that seismic anisotropy is globally widespread in the deep mantle.

References

Alaska Earthquake Center, Univ. of Alaska Fairbanks. (1987). Alaska Geophysical Network. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/AK

Albuquerque Seismological Laboratory (ASL)/USGS. (1993). Global Telemetered Seismograph Network (USAF/USGS). International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/GT

Albuquerque Seismological Laboratory/USGS. (2014). Global Seismograph Network (GSN - IRIS/USGS). International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/IU

Aragon, J. C., Long, M. D., & Benoit, M. H. (2017). Lateral Variations in SKS Splitting Across the MAGIC Array, Central Appalachians. Geochemistry, Geophysics, Geosystems, 18, 4136–4155. https://doi.org/10.1002/2017GC007169 DOI: https://doi.org/10.1002/2017GC007169

Asplet, J., Wookey, J., & Kendall, M. (2020). A potential post-perovskite province in DD beneath the Eastern Pacific: evidence from new analysis of discrepant SKS–SKKS shear-wave splitting. Geophysical Journal International, 221, 2075–2090. https://doi.org/10.1093/gji/ggaa114 DOI: https://doi.org/10.1093/gji/ggaa114

Asplet, J., Wookey, J., & Kendall, M. (2023). Inversion of shear wave waveforms reveal deformation in the lowermost mantle. Geophysical Journal International, 232, 97–114. https://doi.org/10.1093/gji/ggac328 DOI: https://doi.org/10.1093/gji/ggac328

Barruol, G., & Kern, H. (1996). Seismic anisotropy and shear-wave splitting in lower-crustal and upper-mantle rocks from the Ivrea Zone: experimental and calculated data. Physics of the Earth and Planetary Interiors, 95, 175–194. https://doi.org/10.1016/0031-9201(95)03124-3 DOI: https://doi.org/10.1016/0031-9201(95)03124-3

Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., & Wassermann, J. (2010). ObsPy: A Python Toolbox for Seismology. Seismological Research Letters, 81, 530–533. https://doi.org/10.1111/10.1785/gssrl.81.3.530 DOI: https://doi.org/10.1785/gssrl.81.3.530

Borgeaud, A. F. E., Konishi, K., Kawai, K., & Geller, R. J. (2016). Finite frequency effects on apparent S-wave splitting in the DD layer: comparison between ray theory and full-wave synthetics. Geophysical Journal International, 207, 12–28. https://doi.org/10.1093/gji/ggw254 DOI: https://doi.org/10.1093/gji/ggw254

California Institute of Technology and United States Geological Survey Pasadena. (1926). Southern California Seismic Network. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/CI

Canada), N. R. C. (NRCAN. (1975). Canadian National Seismograph Network. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/CN

Chang, S.-J., & Ferreira, A. M. G. (2019). Inference on Water Content in the Mantle Transition Zone Near Subducted Slabs From Anisotropy Tomography. Geochemistry, Geophysics, Geosystems, 20, 1189–1201. https://doi.org/10.1029/2018GC008090 DOI: https://doi.org/10.1029/2018GC008090

Chang, S.-J., Ferreira, A. M. G., Ritsema, J., van Heijst, H. J., & Woodhouse, J. H. (2015). Joint inversion for global isotropic and radially anisotropic mantle structure including crustal thickness perturbations. Journal of Geophysical Research: Solid Earth, 120(6), 4278–4300. https://doi.org/10.1002/2014JB011824 DOI: https://doi.org/10.1002/2014JB011824

Chapman, C. (2004). Fundamentals of Seismic Wave Propagation. Cambridge University Press. https://doi.org/10.1017/CBO9780511616877 DOI: https://doi.org/10.1017/CBO9780511616877

Chevrot, S. (2000). Multichannel analysis of shear wave splitting. Journal of Geophysical Research: Solid Earth, 105, 21579–21590. https://doi.org/10.1029/2000JB900199 DOI: https://doi.org/10.1029/2000JB900199

Cottaar, S., & Romanowicz, B. (2013). Observations of changing anisotropy across the southern margin of the African LLSVP. Geophysical Journal International, 195, 1184–1195. https://doi.org/10.1093/gji/ggt285 DOI: https://doi.org/10.1093/gji/ggt285

Creasy, N., Long, M. D., & Ford, H. A. (2017). Deformation in the lowermost mantle beneath Australia from observations and models of seismic anisotropy. Journal of Geophysical Research: Solid Earth, 122, 5243–5267. https://doi.org/10.1002/2016JB013901 DOI: https://doi.org/10.1002/2016JB013901

Creasy, N., Miyagi, L., & Long, M. D. (2020). A Library of Elastic Tensors for Lowermost Mantle Seismic Anisotropy Studies and Comparison With Seismic Observations. Geochemistry, Geophysics, Geosystems, 21, e2019GC008883. https://doi.org/10.1029/2019GC008883 DOI: https://doi.org/10.1029/2019GC008883

Creasy, N., Pisconti, A., Long, M. D., & Thomas, C. (2021). Modeling of Seismic Anisotropy Observations Reveals Plausible Lowermost Mantle Flow Directions Beneath Siberia. Geochemistry, Geophysics, Geosystems, 22(10), e2021GC009924. https://doi.org/10.1029/2021GC009924 DOI: https://doi.org/10.1029/2021GC009924

Deng, J., Long, M. D., Creasy, N., Wagner, L., Beck, S., Zandt, G., Tavera, H., & Minaya, E. (2017). Lowermost mantle anisotropy near the eastern edge of the Pacific LLSVP: constraints from SKS-SKKS splitting intensity measurements. Geophysical Journal International, 210, 774–786. https://doi.org/10.1093/gji/ggx190 DOI: https://doi.org/10.1093/gji/ggx190

Dziewonski, A. M., & Anderson, D. L. (1981). Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25, 297–356. https://doi.org/10.1016/0031-9201(81)90046-7 DOI: https://doi.org/10.1016/0031-9201(81)90046-7

Eakin, C., Rychert, C., & Harmon, N. (2018). The Role of Oceanic Transform Faults in Seafloor Spreading: A Global Perspective From Seismic Anisotropy. Journal of Geophysical Research: Solid Earth, 123, 1736–1751. DOI: https://doi.org/10.1002/2017JB015176

Fernando, B., Wolf, J., Leng, K., Nissen-Meyer, T., Eaton, W., Styczinski, M., Walker, A., Craig, T., Muir, J., Nunn, C., & Long, M. (2024). AxiSEM3D - an introduction to using the code and its applications. EarthArXiv. https://doi.org/10.31223/X5TH7P DOI: https://doi.org/10.31223/X5TH7P

Foley, B. J., & Long, M. D. (2011). Upper and mid–mantle anisotropy beneath the Tonga slab. Geophysical Research Letters, 38. https://doi.org/10.1029/2010GL046021 DOI: https://doi.org/10.1029/2010GL046021

Ford, H. A., Long, M. D., He, X., & Lynner, C. (2015). Lowermost mantle flow at the eastern edge of the African Large Low Shear Velocity Province. Earth and Planetary Science Letters, 420, 12–22. https://doi.org/10.1016/j.epsl.2015.03.029 DOI: https://doi.org/10.1016/j.epsl.2015.03.029

Fouch, M. J., Fischer, K. M., & Wysession, M. E. (2001). Lowermost mantle anisotropy beneath the Pacific: Imaging the source of the Hawaiian plume. Earth and Planetary Science Letters, 190(3), 167–180. https://doi.org/10.1016/S0012-821X(01)00380-6 DOI: https://doi.org/10.1016/S0012-821X(01)00380-6

French, S. W., & Romanowicz, B. A. (2014). Whole-mantle radially anisotropic shear velocity structure from spectral-element waveform tomography. Geophysical Journal International, 199(3), 1303–1327. https://doi.org/10.1093/gji/ggu334 DOI: https://doi.org/10.1093/gji/ggu334

Garnero, E. J., & Lay, T. (1997). Lateral variations in lowermost mantle shear wave anisotropy beneath the north Pacific and Alaska. Journal of Geophysical Research: Solid Earth, 102(B4), 8121–8135. https://doi.org/10.1029/96JB03830 DOI: https://doi.org/10.1029/96JB03830

Garnero, E. J., Maupin, V., Lay, T., & Fouch, M. J. (2004). Variable Azimuthal Anisotropy in Earth’s Lowermost Mantle. Science, 306(5694), 259–261. https://doi.org/10.1126/science.1103411 DOI: https://doi.org/10.1126/science.1103411

GEOFON Data Centre. (1993). GEOFON Seismic Network. Deutsches GeoForschungsZentrum GFZ. https://doi.org/10.14470/TR560404

Grund, M., & Ritter, J. R. R. (2018). Widespread seismic anisotropy in Earth’s lowermost mantle beneath the Atlantic and Siberia. Geology, 47, 123–126. https://doi.org/10.1130/G45514.1 DOI: https://doi.org/10.1130/G45514.1

Haws, A. A., Long, M. D., & Luo, Y. (2023). Anisotropic structure of the normally-dipping and flat slab segments of the Alaska subduction zone: Insights from receiver function analysis. Tectonophysics, 868, 230112. https://doi.org/10.1016/j.tecto.2023.230112 DOI: https://doi.org/10.1016/j.tecto.2023.230112

Institut de physique du globe de Paris (IPGP), & École et Observatoire des Sciences de la Terre de Strasbourg (EOST). (1982). GEOSCOPE, French Global Network of broad band seismic stations. Institut de physique du globe de Paris (IPGP), Université de Paris. https://doi.org/10.18715/GEOSCOPE.G

Instituto Português do Mar e da Atmosfera, I.P. (2006). Portuguese National Seismic Network. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/PM

IRIS Transportable Array. (2003). USArray Transportable Array. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/TA

Karato, S. (2008). Deformation of Earth Materials: An Introduction to the Rheology of Solid Earth. Cambridge University Press. https://doi.org/10.1017/CBO9780511804892 DOI: https://doi.org/10.1017/CBO9780511804892

Kendall, J.-M., & Silver, P. (1996). Constraints from seismic anisotropy on the nature of the lower mantle. Nature, 381, 409–412. https://doi.org/10.1038/381409a0 DOI: https://doi.org/10.1038/381409a0

KNMI. (1993). Netherlands Seismic and Acoustic Network. Royal Netherlands Meteorological Institute (KNMI). https://doi.org/10.21944/E970FD34-23B9-3411-B366-E4F72877D2C5

Komatitsch, D., Vinnik, L. P., & Chevrot, S. (2010). SHdiff-SVdiff splitting in an isotropic Earth. Journal of Geophysical Research: Solid Earth, 115(B7). DOI: https://doi.org/10.1029/2009JB006795

Leng, K., Nissen-Meyer, T., & van Driel, M. (2016). Efficient global wave propagation adapted to 3-D structural complexity: a pseudospectral/spectral-element approach. Geophysical Journal International, 207(3), 1700–1721. https://doi.org/10.1093/gji/ggw363 DOI: https://doi.org/10.1093/gji/ggw363

Leng, K., Nissen-Meyer, T., van Driel, M., Hosseini, K., & Al-Attar, D. (2019). AxiSEM3D: broad-band seismic wavefields in 3-D global earth models with undulating discontinuities. Geophysical Journal International, 217(3), 2125–2146. https://doi.org/10.1093/gji/ggz092 DOI: https://doi.org/10.1093/gji/ggz092

Lin, Y.-P., Zhao, L., & Hung, S.-H. (2014). Full-wave effects on shear wave splitting. Geophysical Research Letters, 41, 799–804. https://doi.org/10.1002/2013GL058742 DOI: https://doi.org/10.1002/2013GL058742

Link, F., Reiss, M. C., & Rümpker, G. (2022). An automatized XKS-splitting procedure for large data sets: Extension package for SplitRacer and application to the USArray. Computers & Geosciences, 158, 104961. https://doi.org/10.1016/j.cageo.2021.104961 DOI: https://doi.org/10.1016/j.cageo.2021.104961

Long, M. D. (2009). Complex anisotropy in DD beneath the eastern Pacific from SKS–SKKS splitting discrepancies. Earth and Planetary Science Letters, 283, 181–189. https://doi.org/10.1016/j.epsl.2009.04.019 DOI: https://doi.org/10.1016/j.epsl.2009.04.019

Long, M. D., & Becker, T. (2010). Mantle dynamics and seismic anisotropy. Earth and Planetary Science Letters, 297, 341–354. https://doi.org/10.1016/j.epsl.2010.06.036 DOI: https://doi.org/10.1016/j.epsl.2010.06.036

Lynner, C., & Long, M. D. (2013). Sub-slab seismic anisotropy and mantle flow beneath the Caribbean and Scotia subduction zones: Effects of slab morphology and kinematics. Earth and Planetary Science Letters, 361, 367–378. https://doi.org/10.1016/j.epsl.2012.11.007 DOI: https://doi.org/10.1016/j.epsl.2012.11.007

Lynner, C., & Long, M. D. (2015). Heterogeneous seismic anisotropy in the transition zone and uppermost lower mantle: evidence from South America, Izu-Bonin and Japan. Geophysical Journal International, 201, 1545–1552. https://doi.org/10.1093/gji/ggv099 DOI: https://doi.org/10.1093/gji/ggv099

Maupin, V., Garnero, E. J., Lay, T., & Fouch, M. J. (2005). Azimuthal anisotropy in the DD layer beneath the Caribbean. Journal of Geophysical Research: Solid Earth, 110(B8), B08301. https://doi.org/10.1029/2004JB003506 DOI: https://doi.org/10.1029/2004JB003506

Mohiuddin, A., D. Long, M., & Lynner, C. (2015). Mid-mantle seismic anisotropy beneath Southwestern Pacific subduction systems and implications for mid-mantle deformation. Physics of the Earth and Planetary Interiors, 245. https://doi.org/10.1016/j.pepi.2015.05.003 DOI: https://doi.org/10.1016/j.pepi.2015.05.003

Monteiller, V., & Chevrot, S. (2010). How to make robust splitting measurements for single-station analysis and three-dimensional imaging of seismic anisotropy. Geophysical Journal International, 182, 311–328. https://doi.org/10.1111/j.1365-246X.2010.04608.x DOI: https://doi.org/10.1111/j.1365-246X.2010.04608.x

Nissen-Meyer, T., van Driel, M., Stähler, S. C., Hosseini, K., Hempel, S., Auer, L., Colombi, A., & Fournier, A. (2014). AxiSEM: broadband 3-D seismic wavefields in axisymmetric media. Solid Earth, 5, 425–445. https://doi.org/10.5194/se-5-425-2014 DOI: https://doi.org/10.5194/se-5-425-2014

Niu, F., & Perez, A. M. (2004). Seismic anisotropy in the lower mantle: A comparison of waveform splitting of SKS and SKKS. Geophysical Research Letters, 31. https://doi.org/10.1029/2004GL021196 DOI: https://doi.org/10.1029/2004GL021196

NOAA National Oceanic and Atmospheric Administration (USA). (1967). National Tsunami Warning Center Alaska Seismic Network. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/AT

Nowacki, A., & Cottaar, S. (2021). Toward Imaging Flow at the Base of the Mantle with Seismic, Mineral Physics, and Geodynamic Constraints. In Mantle Convection and Surface Expressions (pp. 329–352). American Geophysical Union (AGU). https://doi.org/10.1002/9781119528609.ch13 DOI: https://doi.org/10.1002/9781119528609.ch13

Nowacki, A., & Wookey, J. (2016). The limits of ray theory when measuring shear wave splitting in the lowermost mantle with ScS waves. Geophysical Journal International, 207, 1573–1583. https://doi.org/10.1093/gji/ggw358 DOI: https://doi.org/10.1093/gji/ggw358

Nowacki, A., Wookey, J., & Kendall, J.-M. (2010). Deformation of the lowermost mantle from seismic anisotropy. Nature, 467, 1091–1094. https://doi.org/10.1038/nature09507 DOI: https://doi.org/10.1038/nature09507

Panning, M., & Romanowicz, B. (2006). A three-dimensional radially anisotropic model of shear velocity in the whole mantle. Geophysical Journal International, 167, 361–379. https://doi.org/10.1111/j.1365-246X.2006.03100.x DOI: https://doi.org/10.1111/j.1365-246X.2006.03100.x

Parisi, L., Ferreira, A. M. G., & Ritsema, J. (2018). Apparent Splitting of S Waves Propagating Through an Isotropic Lowermost Mantle. Journal of Geophysical Research: Solid Earth, 123, 3909–3922. https://doi.org/10.1002/2017JB014394 DOI: https://doi.org/10.1002/2017JB014394

Pisconti, A., Creasy, N., Wookey, J., Long, M. D., & Thomas, C. (2023). Mineralogy, fabric and deformation domains in DD across the southwestern border of the African LLSVP. Geophysical Journal International, 232, 705–724. https://doi.org/10.1093/gji/ggac359 DOI: https://doi.org/10.1093/gji/ggac359

Pulliam, J., & Sen, M. K. (1998). Seismic anisotropy in the core—mantle transition zone. Geophysical Journal International, 135, 113–128. https://doi.org/10.1046/j.1365-246X.1998.00612.x DOI: https://doi.org/10.1046/j.1365-246X.1998.00612.x

Reiss, M. C., Long, M. D., & Creasy, N. (2019). Lowermost Mantle Anisotropy Beneath Africa From Differential SKS-SKKS Shear-Wave Splitting. Journal of Geophysical Research: Solid Earth, 124(8), 8540–8564. https://doi.org/10.1029/2018JB017160 DOI: https://doi.org/10.1029/2018JB017160

Reiss, M., & Rümpker, G. (2017). SplitRacer: MATLAB Code and GUI for Semiautomated Analysis and Interpretation of Teleseismic Shear‐Wave Splitting. Seismological Research Letters, 88, 392-- 409. https://doi.org/10.1785/0220160191 DOI: https://doi.org/10.1785/0220160191

Ritsema, J., Deuss, A., van Heijst, H. J., & Woodhouse, J. H. (2011). S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements. Geophysical Journal International, 184(3), 1223–1236. https://doi.org/10.1111/j.1365-246X.2010.04884.x DOI: https://doi.org/10.1111/j.1365-246X.2010.04884.x

Rokosky, J. M., Lay, T., Garnero, E. J., & Russell, S. A. (2004). High-resolution investigation of shear wave anisotropy in DD beneath the Cocos Plate. Geophysical Research Letters, 31, L07605. https://doi.org/10.1029/2003GL018902 DOI: https://doi.org/10.1029/2003GL018902

Rokosky, Juliana M., Lay, T., & Garnero, E. J. (2006). Small-scale lateral variations in azimuthally anisotropic DD structure beneath the Cocos Plate. Earth and Planetary Science Letters, 248, 411–425. https://doi.org/10.1016/j.epsl.2006.06.005 DOI: https://doi.org/10.1016/j.epsl.2006.06.005

Russo, R., Gallego, A., Comte, D., Mocanu, V., Murdie, R., & VanDecar, J. (2010). Source-side shear wave splitting and upper mantle flow in the Chile Ridge subduction Region. Geology, 38, 707–710. https://doi.org/10.1130/G30920.1 DOI: https://doi.org/10.1130/G30920.1

Savage, M. K. (1999). Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting? Reviews of Geophysics, 37, 65–106. https://doi.org/10.1016/10.1029/98RG02075 DOI: https://doi.org/10.1029/98RG02075

Scripps Institution of Oceanography. (1986). Global Seismograph Network - IRIS/IDA. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/II

Silver, P. G. (1996). Seismic Anisotropy beneath the Continents: Probing the Depths of Geology. Annual Review of Earth and Planetary Sciences, 24(1), 385–432. https://doi.org/10.1146/annurev.earth.24.1.385 DOI: https://doi.org/10.1146/annurev.earth.24.1.385

Silver, P. G., & Chan, W. W. (1991). Shear wave splitting and subcontinental mantle deformation. Journal of Geophysical Research: Solid Earth, 96, 16429–16454. https://doi.org/10.1029/91JB00899 DOI: https://doi.org/10.1029/91JB00899

Silver, P. G., & Long, M. D. (2011). The non-commutivity of shear wave splitting operators at low frequencies and implications for anisotropy tomography. Geophysical Journal International, 184(3), 1415–1427. https://doi.org/10.1111/j.1365-246X.2010.04927.x DOI: https://doi.org/10.1111/j.1365-246X.2010.04927.x

Silver, P. G., & Savage, M. K. (1994). The Interpretation of Shear-Wave Splitting Parameters In the Presence of Two Anisotropic Layers. Geophysical Journal International, 119, 949–963. https://doi.org/10.1111/j.1365-246X.1994.tb04027.x DOI: https://doi.org/10.1111/j.1365-246X.1994.tb04027.x

Suzuki, Y., Kawai, K., & Geller, R. J. (2021). Imaging paleoslabs and inferring the Clapeyron slope in DD beneath the northern Pacific based on high-resolution inversion of seismic waveforms for 3-D transversely isotropic structure. Physics of the Earth and Planetary Interiors, 106751. https://doi.org/10.1016/j.pepi.2021.106751 DOI: https://doi.org/10.1016/j.pepi.2021.106751

Tesoniero, A., Leng, K., Long, M. D., & Nissen-Meyer, T. (2020). Full wave sensitivity of SK(K)S phases to arbitrary anisotropy in the upper and lower mantle. Geophysical Journal International, 222(1), 412–435. https://doi.org/10.1093/gji/ggaa171 DOI: https://doi.org/10.1093/gji/ggaa171

Thomas, Ch., & Kendall, J.-M. (2002). The lowermost mantle beneath northern Asia—II. Evidence for lower-mantle anisotropy. Geophysical Journal International, 151, 296–308. https://doi.org/10.1046/j.1365-246X.2002.01760.x DOI: https://doi.org/10.1046/j.1365-246X.2002.01760.x

Utrecht University (UU Netherlands). (1983). NARS. International Federation of Digital Seismograph Networks. https://doi.org/110.7914/SN/NR

Walker, A., & Wookey, J. (2012). MSAT - a new toolkit for the analysis of elastic and seismic anisotropy. Computers and Geosciences, 49, 81–90. https://doi.org/10.1016/j.cageo.2012.05.031 DOI: https://doi.org/10.1016/j.cageo.2012.05.031

Walpole, J., Wookey, J., Masters, G., & Kendall, J. M. (2014). A uniformly processed data set of SKS shear wave splitting measurements: A global investigation of upper mantle anisotropy beneath seismic stations. Geochemistry, Geophysics, Geosystems, 15, 1991–2010. https://doi.org/10.1002/2014GC005278 DOI: https://doi.org/10.1002/2014GC005278

Walsh, E., Arnold, R., & Savage, M. K. (2013). Silver and Chan revisited. Journal of Geophysical Research: Solid Earth, 118, 5500–5515. https://doi.org/10.1002/jgrb.50386 DOI: https://doi.org/10.1002/jgrb.50386

Wang, Y., & Wen, L. (2004). Mapping the geometry and geographic distribution of a very low velocity province at the base of the Earth’s mantle. Journal of Geophysical Research: Solid Earth, 109. https://doi.org/10.1029/2003JB002674 DOI: https://doi.org/10.1029/2003JB002674

Wessel, P., & Smith, W. H. F. (1998). New, improved version of generic mapping tools released. Eos, Transactions American Geophysical Union, 79, 579–579. https://doi.org/10.1029/98EO00426 DOI: https://doi.org/10.1029/98EO00426

Wolf, J., Creasy, N., Pisconti, A., Long, M. D., & Thomas, C. (2019). An investigation of seismic anisotropy in the lowermost mantle beneath Iceland. Geophysical Journal International, 219(Supplement_1), S152–S166. https://doi.org/10.1093/gji/ggz312 DOI: https://doi.org/10.1093/gji/ggz312

Wolf, J., Frost, D. A., Long, M. D., Garnero, E., Aderoju, A. O., Creasy, N., & Bozdağ, E. (2023). Observations of Mantle Seismic Anisotropy Using Array Techniques: Shear-Wave Splitting of Beamformed SmKS Phases. Journal of Geophysical Research: Solid Earth, 128(1), e2022JB025556. https://doi.org/10.1029/2022JB025556 DOI: https://doi.org/10.1029/2022JB025556

Wolf, J., Li, M., Haws, A. A., & Long, M. D. (2024). Strong seismic anisotropy due to upwelling flow at the root of the Yellowstone mantle plume. Geology. https://doi.org/10.1130/G51919.1 DOI: https://doi.org/10.1130/G51919.1

Wolf, J., & Long, M. D. (2022). Slab-driven flow at the base of the mantle beneath the northeastern Pacific Ocean. Earth and Planetary Science Letters, 594, 117758. https://doi.org/10.1016/j.epsl.2022.117758 DOI: https://doi.org/10.1016/j.epsl.2022.117758

Wolf, J., & Long, M. D. (2023). Lowermost mantle structure beneath the central Pacific Ocean: Ultralow velocity zones and seismic anisotropy. Geochemistry, Geophysics, Geosystems, 24, e2022GC010853. https://doi.org/10.1029/2022GC010853 DOI: https://doi.org/10.1029/2022GC010853

Wolf, J., Long, M. D., Creasy, N., & Garnero, E. (2023). On the measurement of Sdiff splitting caused by lowermost mantle anisotropy. Geophysical Journal International. https://doi.org/10.1093/gji/ggac490 DOI: https://doi.org/10.1002/essoar.10512860.1

Wolf, J., Long, M. D., & Frost, D. A. (2024). Ultralow velocity zone and deep mantle flow beneath the Himalayas linked to subducted slab. Nature Geoscience, 1–7. https://doi.org/10.1038/s41561-024-01386-5 DOI: https://doi.org/10.1038/s41561-024-01386-5

Wolf, J., Long, M. D., Leng, K., & Nissen-Meyer, T. (2022a). Constraining deep mantle anisotropy with shear wave splitting measurements: Challenges and new measurement strategies. Geophysical Journal International, 230, 507–527. https://doi.org/10.1093/gji/ggac055 DOI: https://doi.org/10.1093/gji/ggac055

Wolf, J., Long, M. D., Leng, K., & Nissen-Meyer, T. (2022b). Sensitivity of SK(K)S and ScS phases to heterogeneous anisotropy in the lowermost mantle from global wavefield simulations. Geophysical Journal International, 228, 366–386. https://doi.org/10.1093/gji/ggab347 DOI: https://doi.org/10.1093/gji/ggab347

Wolf, J., Long, M. D., Li, M., & Garnero, E. (2023). Global Compilation of Deep Mantle Anisotropy Observations and Possible Correlation With Low Velocity Provinces. Geochemistry, Geophysics, Geosystems, 24(10), e2023GC011070. https://doi.org/10.1029/2023GC011070 DOI: https://doi.org/10.1029/2023GC011070

Wolfe, C. J., & Silver, P. G. (1998). Seismic anisotropy of oceanic upper mantle: Shear wave splitting methodologies and observations. Journal of Geophysical Research: Solid Earth, 103(B1), 749–771. https://doi.org/10.1029/97JB02023 DOI: https://doi.org/10.1029/97JB02023

Wookey, J., & Kendall, J.-M. (2008). Constraints on lowermost mantle mineralogy and fabric beneath Siberia from seismic anisotropy. Earth and Planetary Science Letters, 275, 32–42. https://doi.org/10.1016/j.epsl.2008.07.049 DOI: https://doi.org/10.1016/j.epsl.2008.07.049

Wookey, J., Kendall, J.-M., & Rümpker, G. (2005). Lowermost mantle anisotropy beneath the north Pacific from differential S-ScS splitting. Geophysical Journal International, 161, 829–838. https://doi.org/10.1111/j.1365-246X.2005.02623.x DOI: https://doi.org/10.1111/j.1365-246X.2005.02623.x

Wookey, J., Stackhouse, S., Kendall, J.-M., Brodholt, J., & Price, G. (2005b). Efficacy of the Post-Perovskite Phase as an Explanation for Lowermost-Mantle Seismic Properties. Nature, 438, 1004–1007. https://doi.org/10.1038/nature04345 DOI: https://doi.org/10.1038/nature04345

Yuan, K., & Beghein, C. (2014). Three-dimensional variations in Love and Rayleigh wave azimuthal anisotropy for the upper 800km of the mantle. Journal of Geophysical Research: Solid Earth, 119, 3232–3255. https://doi.org/10.1002/2013JB010853 DOI: https://doi.org/10.1002/2013JB010853

Zhu, H., Yang, J., & Li, X. (2020). Azimuthal Anisotropy of the North American Upper Mantle Based on Full Waveform Inversion. Journal of Geophysical Research: Solid Earth, 125(2), e2019JB018432. https://doi.org/10.1029/2019JB018432 DOI: https://doi.org/10.1029/2019JB018432

Additional Files

Published

2024-04-25

How to Cite

Wolf, J., & Long, M. D. (2024). ScS shear-wave splitting in the lowermost mantle: Practical challenges and new global measurements. Seismica, 3(1). https://doi.org/10.26443/seismica.v3i1.1128

Issue

Section

Articles

Funding data