PyOcto: A high-throughput seismic phase associator




Seismic phase association is an essential task for characterising seismicity: given a collection of phase picks, identify all seismic events in the data. In recent years, machine learning pickers have lead to a rapid growth in the number of seismic phase picks. Even though new associators have been suggested, these suffer from long runtimes and sensitivity issues when faced with dense seismic sequences. Here we introduce PyOcto, a novel phase associator tackling these issues. PyOcto uses 4D space-time partitioning and can employ homogeneous and 1D velocity models. We benchmark PyOcto against popular state of the art associators on two synthetic scenarios and a real, dense aftershock sequence. PyOcto consistently achieves detection sensitivities on par or above current algorithms. Furthermore, its runtime is consistently at least 10 times lower, with many scenarios reaching speedup factors above 50.On the challenging 2014 Iquique earthquake sequence, PyOcto achieves excellent detection capability while maintaining a speedup factor of at least 70 against the other models. PyOcto is available as an open source tool for Python on Github and through PyPI.


Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., & Wassermann, J. (2010). ObsPy: A Python toolbox for seismology. Seismological Research Letters, 81(3), 530–533. DOI:

Ester, M., Kriegel, H.-P., Sander, J., Xu, X., & others. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. Kdd, 96(34), 226–231.

GFZ German Research Centre For Geosciences, & Institut Des Sciences De L’Univers-Centre National De La Recherche CNRS-INSU. (2006). IPOC Seismic Network. Integrated Plate boundary Observatory Chile - IPOC.

González-Vidal, D., Moreno, M., Sippl, C., Baez, J. C., Ortega-Culaciati, F., Lange, D., Tilmann, F., Socquet, A., Bolte, J., Hormazabal, J., & others. (2023). Relation between oceanic plate structure, patterns of interplate locking and microseismicity in the 1922 Atacama seismic gap. Geophysical Research Letters, 50(15), e2023GL103565. DOI:

Graeber, F. M., & Asch, G. (1999). Three-dimensional models of P wave velocity and P-to-S velocity ratio in the southern central Andes by simultaneous inversion of local earthquake data. Journal of Geophysical Research: Solid Earth, 104(B9), 20237–20256. DOI:

Johnson, C. E., Bittenbinder, A., Bogaert, B., Dietz, L., & Kohler, W. (1995). Earthworm: A flexible approach to seismic network processing. Iris Newsletter, 14(2), 1–4.

Liu, M., Zhang, M., Zhu, W., Ellsworth, W. L., & Li, H. (2020). Rapid characterization of the July 2019 Ridgecrest, California, earthquake sequence from raw seismic data using machine-learning phase picker. Geophysical Research Letters, 47(4), e2019GL086189. DOI:

Lomax, A., Virieux, J., Volant, P., & Berge-Thierry, C. (2000). Probabilistic earthquake location in 3D and layered models: Introduction of a Metropolis-Gibbs method and comparison with linear locations. Advances in Seismic Event Location, 101–134. DOI:

McBrearty, I. W., & Beroza, G. C. (2023). Earthquake phase association with graph neural networks. Bulletin of the Seismological Society of America, 113(2), 524–547. DOI:

Metropolis, N., & Ulam, S. (1949). The Monte Carlo Method. Journal of the American Statistical Association, 44(247), 335–341. DOI:

Michelini, A., Cianetti, S., Gaviano, S., Giunchi, C., Jozinović, D., & Lauciani, V. (2021). INSTANCE–the Italian seismic dataset for machine learning. Earth System Science Data, 13(12), 5509–5544. DOI:

Mousavi, S. M., Ellsworth, W. L., Zhu, W., Chuang, L. Y., & Beroza, G. C. (2020). Earthquake transformer—an attentive deep-learning model for simultaneous earthquake detection and phase picking. Nature Communications, 11(1), 3952. DOI:

Moutote, L., Itoh, Y., Lengliné, O., Duputel, Z., & Socquet, A. (2023). Evidence of a transient aseismic slip driving the 2017 Valparaiso earthquake sequence, from foreshocks to aftershocks. Journal of Geophysical Research: Solid Earth, e2023JB026603. DOI:

Münchmeyer, J., Woollam, J., Rietbrock, A., Tilmann, F., Lange, D., Bornstein, T., Diehl, T., Giunchi, C., Haslinger, F., Jozinović, D., & others. (2022). Which picker fits my data? A quantitative evaluation of deep learning based seismic pickers. Journal of Geophysical Research: Solid Earth, 127(1), e2021JB023499. DOI:

Ross, Z. E., Yue, Y., Meier, M.-A., Hauksson, E., & Heaton, T. H. (2019). PhaseLink: A deep learning approach to seismic phase association. Journal of Geophysical Research: Solid Earth, 124(1), 856–869. DOI:

Ross, Z. E., Zhu, W., & Azizzadenesheli, K. (2023). Neural mixture model association of seismic phases. ArXiv Preprint ArXiv:2301.02597.

Sippl, C., Schurr, B., Asch, G., & Kummerow, J. (2018). Seismicity structure of the northern Chile forearc from> 100,000 double-difference relocated hypocenters. Journal of Geophysical Research: Solid Earth, 123(5), 4063–4087. DOI:

Smith, J. D., Azizzadenesheli, K., & Ross, Z. E. (2020). Eikonet: Solving the eikonal equation with deep neural networks. IEEE Transactions on Geoscience and Remote Sensing, 59(12), 10685–10696. DOI:

Socquet, A., Valdes, J. P., Jara, J., Cotton, F., Walpersdorf, A., Cotte, N., Specht, S., Ortega-Culaciati, F., Carrizo, D., & Norabuena, E. (2017). An 8 month slow slip event triggers progressive nucleation of the 2014 Chile megathrust. Geophysical Research Letters, 44(9), 4046–4053. DOI:

Soto, H., Sippl, C., Schurr, B., Kummerow, J., Asch, G., Tilmann, F., Comte, D., Ruiz, S., & Oncken, O. (2019). Probing the northern Chile megathrust with seismicity: The 2014 M8. 1 Iquique earthquake sequence. Journal of Geophysical Research: Solid Earth, 124(12), 12935–12954. DOI:

Tan, Y. J., Waldhauser, F., Ellsworth, W. L., Zhang, M., Zhu, W., Michele, M., Chiaraluce, L., Beroza, G. C., & Segou, M. (2021). Machine-learning-based high-resolution earthquake catalog reveals how complex fault structures were activated during the 2016–2017 Central Italy sequence. The Seismic Record, 1(1), 11–19. DOI:

Waldhauser, F. (2001). hypoDD–A program to compute double-difference hypocenter locations. DOI:

Wilding, J. D., Zhu, W., Ross, Z. E., & Jackson, J. M. (2023). The magmatic web beneath Hawai ‘i. Science, 379(6631), 462–468. DOI:

Woollam, J., Münchmeyer, J., Tilmann, F., Rietbrock, A., Lange, D., Bornstein, T., Diehl, T., Giunchi, C., Haslinger, F., Jozinović, D., & others. (2022). SeisBench—A toolbox for machine learning in seismology. Seismological Research Letters, 93(3), 1695–1709. DOI:

Woollam, J., Rietbrock, A., Leitloff, J., & Hinz, S. (2020). Hex: Hyperbolic event extractor, a seismic phase associator for highly active seismic regions. Seismological Research Letters, 91(5), 2769–2778. DOI:

Zhang, M., Ellsworth, W. L., & Beroza, G. C. (2019). Rapid earthquake association and location. Seismological Research Letters, 90(6), 2276–2284. DOI:

Zhu, W., & Beroza, G. C. (2019). PhaseNet: A deep-neural-network-based seismic arrival-time picking method. Geophysical Journal International, 216(1), 261–273. DOI:

Zhu, W., McBrearty, I. W., Mousavi, S. M., Ellsworth, W. L., & Beroza, G. C. (2022). Earthquake phase association using a Bayesian Gaussian mixture model. Journal of Geophysical Research: Solid Earth, 127(5), e2021JB023249. DOI:



How to Cite

Münchmeyer, J. (2024). PyOcto: A high-throughput seismic phase associator. Seismica, 3(1).