PyOcto: A high-throughput seismic phase associator
DOI:
https://doi.org/10.26443/seismica.v3i1.1130Abstract
Seismic phase association is an essential task for characterising seismicity: given a collection of phase picks, identify all seismic events in the data. In recent years, machine learning pickers have lead to a rapid growth in the number of seismic phase picks. Even though new associators have been suggested, these suffer from long runtimes and sensitivity issues when faced with dense seismic sequences. Here we introduce PyOcto, a novel phase associator tackling these issues. PyOcto uses 4D space-time partitioning and can employ homogeneous and 1D velocity models. We benchmark PyOcto against popular state of the art associators on two synthetic scenarios and a real, dense aftershock sequence. PyOcto consistently achieves detection sensitivities on par or above current algorithms. Furthermore, its runtime is consistently at least 10 times lower, with many scenarios reaching speedup factors above 50.On the challenging 2014 Iquique earthquake sequence, PyOcto achieves excellent detection capability while maintaining a speedup factor of at least 70 against the other models. PyOcto is available as an open source tool for Python on Github and through PyPI.
References
Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., & Wassermann, J. (2010). ObsPy: A Python toolbox for seismology. Seismological Research Letters, 81(3), 530–533. https://doi.org/10.1785/gssrl.81.3.530 DOI: https://doi.org/10.1785/gssrl.81.3.530
Ester, M., Kriegel, H.-P., Sander, J., Xu, X., & others. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. Kdd, 96(34), 226–231. https://doi.org/10.5555/3001460.3001507
GFZ German Research Centre For Geosciences, & Institut Des Sciences De L’Univers-Centre National De La Recherche CNRS-INSU. (2006). IPOC Seismic Network. Integrated Plate boundary Observatory Chile - IPOC. https://doi.org/10.14470/PK615318
González-Vidal, D., Moreno, M., Sippl, C., Baez, J. C., Ortega-Culaciati, F., Lange, D., Tilmann, F., Socquet, A., Bolte, J., Hormazabal, J., & others. (2023). Relation between oceanic plate structure, patterns of interplate locking and microseismicity in the 1922 Atacama seismic gap. Geophysical Research Letters, 50(15), e2023GL103565. https://doi.org/10.1029/2023GL103565 DOI: https://doi.org/10.1029/2023GL103565
Graeber, F. M., & Asch, G. (1999). Three-dimensional models of P wave velocity and P-to-S velocity ratio in the southern central Andes by simultaneous inversion of local earthquake data. Journal of Geophysical Research: Solid Earth, 104(B9), 20237–20256. https://doi.org/10.1029/1999JB900037 DOI: https://doi.org/10.1029/1999JB900037
Johnson, C. E., Bittenbinder, A., Bogaert, B., Dietz, L., & Kohler, W. (1995). Earthworm: A flexible approach to seismic network processing. Iris Newsletter, 14(2), 1–4.
Liu, M., Zhang, M., Zhu, W., Ellsworth, W. L., & Li, H. (2020). Rapid characterization of the July 2019 Ridgecrest, California, earthquake sequence from raw seismic data using machine-learning phase picker. Geophysical Research Letters, 47(4), e2019GL086189. https://doi.org/10.1029/2019GL086189 DOI: https://doi.org/10.1029/2019GL086189
Lomax, A., Virieux, J., Volant, P., & Berge-Thierry, C. (2000). Probabilistic earthquake location in 3D and layered models: Introduction of a Metropolis-Gibbs method and comparison with linear locations. Advances in Seismic Event Location, 101–134. https://doi.org/10.1007/978-94-015-9536-0_5 DOI: https://doi.org/10.1007/978-94-015-9536-0_5
McBrearty, I. W., & Beroza, G. C. (2023). Earthquake phase association with graph neural networks. Bulletin of the Seismological Society of America, 113(2), 524–547. https://doi.org/10.1785/0120220182 DOI: https://doi.org/10.1785/0120220182
Metropolis, N., & Ulam, S. (1949). The Monte Carlo Method. Journal of the American Statistical Association, 44(247), 335–341. https://doi.org/10.1080/01621459.1949.10483310 DOI: https://doi.org/10.1080/01621459.1949.10483310
Michelini, A., Cianetti, S., Gaviano, S., Giunchi, C., Jozinović, D., & Lauciani, V. (2021). INSTANCE–the Italian seismic dataset for machine learning. Earth System Science Data, 13(12), 5509–5544. https://doi.org/10.5194/essd-13-5509-2021 DOI: https://doi.org/10.5194/essd-13-5509-2021
Mousavi, S. M., Ellsworth, W. L., Zhu, W., Chuang, L. Y., & Beroza, G. C. (2020). Earthquake transformer—an attentive deep-learning model for simultaneous earthquake detection and phase picking. Nature Communications, 11(1), 3952. https://doi.org/10.1038/s41467-020-17591-w DOI: https://doi.org/10.1038/s41467-020-17591-w
Moutote, L., Itoh, Y., Lengliné, O., Duputel, Z., & Socquet, A. (2023). Evidence of a transient aseismic slip driving the 2017 Valparaiso earthquake sequence, from foreshocks to aftershocks. Journal of Geophysical Research: Solid Earth, e2023JB026603. https://doi.org/10.1029/2023JB026603 DOI: https://doi.org/10.22541/essoar.167768109.98540089/v1
Münchmeyer, J., Woollam, J., Rietbrock, A., Tilmann, F., Lange, D., Bornstein, T., Diehl, T., Giunchi, C., Haslinger, F., Jozinović, D., & others. (2022). Which picker fits my data? A quantitative evaluation of deep learning based seismic pickers. Journal of Geophysical Research: Solid Earth, 127(1), e2021JB023499. https://doi.org/10.1029/2021JB023499 DOI: https://doi.org/10.1029/2021JB023499
Ross, Z. E., Yue, Y., Meier, M.-A., Hauksson, E., & Heaton, T. H. (2019). PhaseLink: A deep learning approach to seismic phase association. Journal of Geophysical Research: Solid Earth, 124(1), 856–869. https://doi.org/10.1029/2018JB016674 DOI: https://doi.org/10.1029/2018JB016674
Ross, Z. E., Zhu, W., & Azizzadenesheli, K. (2023). Neural mixture model association of seismic phases. ArXiv Preprint ArXiv:2301.02597. https://doi.org/10.48550/arXiv.2301.02597
Sippl, C., Schurr, B., Asch, G., & Kummerow, J. (2018). Seismicity structure of the northern Chile forearc from> 100,000 double-difference relocated hypocenters. Journal of Geophysical Research: Solid Earth, 123(5), 4063–4087. https://doi.org/10.1002/2017JB015384 DOI: https://doi.org/10.1002/2017JB015384
Smith, J. D., Azizzadenesheli, K., & Ross, Z. E. (2020). Eikonet: Solving the eikonal equation with deep neural networks. IEEE Transactions on Geoscience and Remote Sensing, 59(12), 10685–10696. https://doi.org/10.1109/TGRS.2020.3039165 DOI: https://doi.org/10.1109/TGRS.2020.3039165
Socquet, A., Valdes, J. P., Jara, J., Cotton, F., Walpersdorf, A., Cotte, N., Specht, S., Ortega-Culaciati, F., Carrizo, D., & Norabuena, E. (2017). An 8 month slow slip event triggers progressive nucleation of the 2014 Chile megathrust. Geophysical Research Letters, 44(9), 4046–4053. https://doi.org/10.1002/2017GL073023 DOI: https://doi.org/10.1002/2017GL073023
Soto, H., Sippl, C., Schurr, B., Kummerow, J., Asch, G., Tilmann, F., Comte, D., Ruiz, S., & Oncken, O. (2019). Probing the northern Chile megathrust with seismicity: The 2014 M8. 1 Iquique earthquake sequence. Journal of Geophysical Research: Solid Earth, 124(12), 12935–12954. https://doi.org/10.1029/2019JB017794 DOI: https://doi.org/10.1029/2019JB017794
Tan, Y. J., Waldhauser, F., Ellsworth, W. L., Zhang, M., Zhu, W., Michele, M., Chiaraluce, L., Beroza, G. C., & Segou, M. (2021). Machine-learning-based high-resolution earthquake catalog reveals how complex fault structures were activated during the 2016–2017 Central Italy sequence. The Seismic Record, 1(1), 11–19. https://doi.org/10.1785/0320210001 DOI: https://doi.org/10.1785/0320210001
Waldhauser, F. (2001). hypoDD–A program to compute double-difference hypocenter locations. https://doi.org/10.7916/D8SN072H DOI: https://doi.org/10.3133/ofr01113
Wilding, J. D., Zhu, W., Ross, Z. E., & Jackson, J. M. (2023). The magmatic web beneath Hawai ‘i. Science, 379(6631), 462–468. https://doi.org/10.1126/science.ade5755 DOI: https://doi.org/10.1126/science.ade5755
Woollam, J., Münchmeyer, J., Tilmann, F., Rietbrock, A., Lange, D., Bornstein, T., Diehl, T., Giunchi, C., Haslinger, F., Jozinović, D., & others. (2022). SeisBench—A toolbox for machine learning in seismology. Seismological Research Letters, 93(3), 1695–1709. https://doi.org/10.1785/0220210324 DOI: https://doi.org/10.1785/0220210324
Woollam, J., Rietbrock, A., Leitloff, J., & Hinz, S. (2020). Hex: Hyperbolic event extractor, a seismic phase associator for highly active seismic regions. Seismological Research Letters, 91(5), 2769–2778. https://doi.org/10.1785/0220200037 DOI: https://doi.org/10.1785/0220200037
Zhang, M., Ellsworth, W. L., & Beroza, G. C. (2019). Rapid earthquake association and location. Seismological Research Letters, 90(6), 2276–2284. https://doi.org/10.1785/0220190052 DOI: https://doi.org/10.1785/0220190052
Zhu, W., & Beroza, G. C. (2019). PhaseNet: A deep-neural-network-based seismic arrival-time picking method. Geophysical Journal International, 216(1), 261–273. https://doi.org/10.1093/gji/ggy423 DOI: https://doi.org/10.1093/gji/ggy423
Zhu, W., McBrearty, I. W., Mousavi, S. M., Ellsworth, W. L., & Beroza, G. C. (2022). Earthquake phase association using a Bayesian Gaussian mixture model. Journal of Geophysical Research: Solid Earth, 127(5), e2021JB023249. https://doi.org/10.1029/2021JB023249 DOI: https://doi.org/10.1029/2021JB023249
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Jannes Münchmeyer
This work is licensed under a Creative Commons Attribution 4.0 International License.