Discontinuous transtensional rupture during the Mw 7.2 1995 Gulf of Aqaba earthquake
DOI:
https://doi.org/10.26443/seismica.v3i1.1135Keywords:
bayesian inversion, Red Sea, earthquake, backprojectionAbstract
The Gulf of Aqaba earthquake occurred on 22 November 1995 in the Northern Red Sea and is the largest instrumentally recorded earthquake in the region to date. The event was extensively studied during the initial years following its occurrence. However, it remained unclear which of the many faults in the gulf were activated during the earthquake. We present results from multi-array back projection that we use to inform Bayesian kinematic rupture models constrained by geodetic and teleseismic data. Our results indicate that most of the moment release was on the Aragonese fault via left-lateral strike slip and shallow normal faulting that may have been dynamically triggered by an early rupture phase on the Arnona fault. We also identified a predominantly normal fault-segment on the eastern shore of the gulf that was activated in the event. We dismiss the previously proposed hypothesis of a co-seismic sub-event on the western shore of the gulf and confirm that observed deformation can be rather attributed to post-seismic activity. In conclusion, the gulf shows many signs of active tectonic extension. Therefore, more events close to the shorelines are to be expected in the future and should be considered conducting infrastructure projects in the region.
References
Abdel Fattah, A. K., Hussein, H. M., Ibrahim, E. M., & Abu El Atta, A. S. (1997). Fault plane solutions of the 1993 and 1995 Gulf of Aqaba earthquakes and their tectonic implications. In Annali di Geofisica (Vol. 40, pp. 1555–1564). https://doi.org/10.4401/ag-3831
Antonioli, A., Belardinelli, M. E., Bizzarri, A., & Vogfjord, K. S. (2006). Evidence of instantaneous dynamic triggering during the seismic sequence of year 2000 in south Iceland. J. Geophys. Res. Solid Earth, 111(3), 1–14. https://doi.org/10.1029/2005JB003935
ArRajehi, A., McClusky, S., Reilinger, R., Daoud, M., Alchalbi, A., Ergintav, S., Gomez, F., Sholan, J., Bou-Rabee, F., Ogubazghi, G., Haileab, B., Fisseha, S., Asfaw, L., Mahmoud, S., Rayan, A., Bendik, R., & Kogan, L. (2010). Geodetic constraints on present-day motion of the Arabian Plate: Implications for Red Sea and Gulf of Aden rifting. Tectonics, 29, TC3011. https://doi.org/10.1029/2009TC002482
Baer, G., Funning, G. J., Shamir, G., & Wright, T. J. (2008). The 1995 November 22, M w 7.2 Gulf of Elat earthquake cycle revisited. Geophys, J. Int., 175(3), 1040–1054. https://doi.org/10.1111/j.1365-246X.2008.03901.x
Baer, G., Shamir, G., Sandwell, D., & Bock, Y. (2001). Crustal deformation during 6 years spanning the M w = 7.2 1995 Nuweiba earthquake, analyzed by Interferometric Synthetic Aperture Radar. Israel Journal of Earth Sciences, 50(1), 9–22. https://doi.org/10.1560/12MA-85HY-WHXL-0GKA
Ben-Avraham, Z. (1985). Structural framework of the Gulf of Elat (Aqaba), Northern Red Sea. J. Geophys. Res., 90, 703–726. https://doi.org/10.1029/JB090iB01p00703
Castro-Perdomo, N., Viltres, R., Masson, F., Klinger, Y., Liu, S., Dhahry, M., Ulrich, P., Bernard, J.-D., Matrau, R., Alothman, A., Zahran, H., Reilinger, R., Mai, P. M., & Jónsson, S. (2022). Interseismic deformation in the Gulf of Aqaba from GPS measurements. Geophys. J. Int., 228, 477–492. https://doi.org/10.1093/gji/ggab353
Cesca, S., Zhang, Y., Mouslopoulou, V., Wang, R., Saul, J., Savage, M., Heimann, S., Kufner, S. K., Oncken, O., & Dahm, T. (2017). Complex rupture process of the Mw 7.8, 2016, Kaikoura earthquake, New Zealand, and its aftershock sequence. Earth Planet. Sci. Lett., 478, 110–120. https://doi.org/10.1016/j.epsl.2017.08.024
Chen, C. W., & Zebker, H. A. (2001). Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimization. J. Opt. Soc. Am. A, 18, 338–351. https://doi.org/10.1364/JOSAA.18.000338
Cohee, B. P., & Beroza, G. C. (1994). Slip distribution of the 1992 Landers earthquake and its implications for earthquake source mechanics. Bulletin of the Seismological Society of America, 84(3), 692–712. https://doi.org/10.1785/BSSA0840030692
Dahm, T., Heimann, S., Funke, S., Wendt, S., Rappsilber, I., Bindi, D., Plenefisch, T., & Cotton, F. (2018). Seismicity in the block mountains between Halle and Leipzig, Central Germany: centroid moment tensors, ground motion simulation, and felt intensities of two M3 earthquakes in 2015 and 2017. J. Seismol., 22(4), 985–1003. https://doi.org/10.1007/s10950-018-9746-9
Daout, S., Steinberg, A., Isken, M. P., Heimann, S., & Sudhaus, H. (2020). Illuminating the Spatio-Temporal Evolution of the 2008–2009 Qaidam Earthquake Sequence with the Joint Use of Insar Time Series and Teleseismic Data. Remote Sensing, 12(17), 2850. https://doi.org/10.3390/rs12172850
Dutta, R., Jónsson, S., & Vasyura-Bathke, H. (2021). Simultaneous Bayesian Estimation of Non-Planar Fault Geometry and Spatially-Variable Slip. J. Geophys. Res. Solid Earth, 126(7), 1–28. https://doi.org/10.1029/2020JB020441
Fan, W., & Shearer, P. M. (2017). Investigation of backprojection uncertainties with M6 earthquakes. J. Geophys. Res. Solid Earth, 122(10), 7966–7986. https://doi.org/10.1002/2017JB014495
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., & Alsdorf, D. (2007). The shuttle radar topography mission. Rev. Geophys., 45(2005), 1–33. https://doi.org/10.1029/2005RG000183
Goldstein, R. M., & Werner, C. L. (1998). Radar interferogram filtering for geophysical applications. Geophys. Res. Lett., 25(21), 4035–4038. https://doi.org/10.1029/1998GL900033
Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del Río, J. F., Wiebe, M., Peterson, P., … Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362. https://doi.org/10.1038/s41586-020-2649-2
Heimann, S, Vasyura-Bathke, H., Sudhaus, H., Isken, M. P., Kriegerowski, M., Steinberg, A., & Dahm, T. (2019). A Python framework for efficient use of pre-computed Green’s functions in seismological and other physical forward and inverse source problems. Solid Earth, 10(6), 1921–1935. https://doi.org/10.5194/se-10-1921-2019
Heimann, Sebastian;, Kriegerowski, M., Isken, M., Cesca, S., Daout, S., Grigoli, F., Juretzek, C., Megies, T., Nooshiri, N., Steinberg, A., Sudhaus, H., Vasyura-Bathke, H., Willey, T., & Dahm, T. (2017). Pyrocko - An open-source seismology toolbox and library. GFZ Data Services, v. 0.3. https://doi.org/http://doi.org/10.5880/GFZ.2.1.2017.001
Hofstetter, A., Thio, H. K., & Shamir, G. (2003). Source mechanism of the 22 / 11 / 1995 Gulf of Aqaba earthquake and its aftershock sequence. J. Seismolog., 7, 99–114. https://doi.org/10.1023/A:1021206930730
Hunter, J. D. (2007). Matplotlib : A 2D graphics environment. Comput. Sci. Eng., 9(3), 90–95. https://doi.org/10.1109/MCSE.2007.55
Ide, S. (2002). Estimation of radiated energy of finite-source earthquake models. Bull. Seismol. Soc. Am., 92(8), 2994–3005. https://doi.org/10.1785/0120020028
Ishii, M., Shearer, P. M., Houston, H., & Vidale, J. E. (2005). Extent, duration and speed of the 2004 Sumatra-Andaman earthquake imaged by the Hi-Net array. Nature, 435(7044), 933–936. https://doi.org/10.1038/nature03675
Ishii, M., Shearer, P. M., Houston, H., & Vidale, J. E. (2007). Teleseismic P wave imaging of the 26 December 2004 Sumatra-Andaman and 28 March 2005 Sumatra earthquake ruptures using the Hi-net array. J. Geophys. Res. Solid Earth, 112(B11). https://doi.org/10.1029/2006JB004700
Isken, M., Sudhaus, H., Heimann, S., Steinberg, A., Daout, S., & Vasyura-Bathke, H. (2017). Kite - Software for Rapid Earthquake Source Optimisation from InSAR Surface Displacement. GFZ Data Services, v 0.1. https://doi.org/http://doi.org/10.5880/GFZ.2.1.2017.002
Jónsson, S., Zebker, H., Segall, P., & Amelung, F. (2002). Fault slip distribution of the 1999 Mw 7.1 Hector Mine, California, earthquake, estimated from satellite radar and GPS measurments. Bull. Seismol. Soc. Am., 92(4), 1377–1389. https://doi.org/10.1785/0120000922
Kanamori, H., & Brodsky, E. E. (2004). The physics of earthquakes. Rep. Prog. Phys., 67(8), 1429–1496. https://doi.org/10.1088/0034-4885/67/8/R03
Kennett, B., & Engdahl, E. (1991). Traveltimes for global earthquake location and phase identification. Geophys, J. Int., 105(2), 429–465. https://doi.org/10.1111/j.1365-246X.1991.tb06724.x
Khrepy, S. E., Koulakov, I., Al-Arifi, N., & Petrunin, A. G. (2016). Seismic structure beneath the Gulf of Aqaba and adjacent areas based on the tomographic inversion of regional earthquake data. Solid Earth, 7(3), 965–978. https://doi.org/10.5194/se-7-965-2016
Kiser, E., & Ishii, M. (2017). Back-Projection Imaging of Earthquakes. Annu. Rev. Earth Planet. Sci., 45, 271–299. https://doi.org/10.1146/annurev-earth-063016-015801
Klinger, Y., Michel, R., & Avouac, J.-P. (2000). Co-seismic deformation during the Mw 7.3 Aqaba earthquake ( 1995 ) from ERS-SAR interferometry. Geophys. Res. Lett., 27(22), 3651–3654. https://doi.org/10.1029/1999GL008463
Klinger, Y., Rivera, L., Haessler, H., & Maurin, J. (1999). Active Faulting in the Gulf of Aqaba : New Knowledge from the Mw 7 . 3 Earthquake of 22 November 1995. Bull. Seismol. Soc. Am., 89(August), 1025–1036. https://doi.org/10.1785/BSSA0890041025
Krüger, F., & Ohrnberger, M. (2005). Tracking the rupture of the Mw = 9.3 Sumatra earthquake over 1,150 km at teleseismic distance. Nature, 435(7044), 937–939. https://doi.org/10.1038/nature03696
Lay, T., Ammon, C. J., Kanamori, H., Koper, K. D., Sufri, O., & Hutko, A. R. (2010). Teleseismic inversion for rupture process of the 27 February 2010 Chile (Mw 8.8) earthquake. Geophysical Research Letters, 37(13). https://doi.org/10.1029/2010GL043379
Le Béon, M., Klinger, Y., Mériaux, A. S., Al-Qaryouti, M., Finkel, R. C., Mayyas, O., & Tapponnier, P. (2012). Quaternary morphotectonic mapping of the Wadi Araba and implications for the tectonic activity of the southern Dead Sea fault. Tectonics, 31(5), 1–25. https://doi.org/10.1029/2012TC003112
Lefevre, M. (2018). Segmentation des grands décrochements, du cycle seismique à la déformation long terme, exemple de la faille du Levant (p. 122) [PhD Thesis]. Université Paris Diderot.
Lefevre, M., Klinger, Y., Al-Qaryouti, M., Le Béon, M., & Moumani, K. (2018). Slip deficit and temporal clustering along the Dead Sea fault from paleoseismological investigations. Sci. Rep., 8(1), 1–9. https://doi.org/10.1038/s41598-018-22627-9
Li, X., Jónsson, S., & Cao, Y. (2021). Interseismic deformation from Sentinel-1 burst-overlap interferometry: Application to the southern Dead Sea fault. Geophys. Res. Lett., 48, e2021GL093481. https://doi.org/10.1029/2021GL093481
Madariaga, R. (1977). High-frequency radiation from crack (stress drop) models of earthquake faulting. Geophys, J. Int., 51(3), 625–651. https://doi.org/10.1111/j.1365-246X.1977.tb04211.x
Meier, M. A., Ampuero, J. P., & Heaton, T. H. (2017). The hidden simplicity of subduction megathrust earthquakes. Science, 357(6357), 1277–1281. https://doi.org/10.1126/science.aan5643
Meng, L, Ampuero, J.-P., Sladen, A., & Rendon, H. (2012). High-resolution backprojection at regional distance: Application to the Haiti M 7.0 earthquake and comparisons with finite source studies. J. Geophys. Res. Solid Earth, 117(B4), n/a--n/a. https://doi.org/10.1029/2011JB008702
Meng, Lingsen, Zhang, A., & Yagi, Y. (2016). Improving back projection imaging with a novel physics-based aftershock calibration approach: A case study of the 2015 Gorkha earthquake. Geophys. Res. Lett., 43(2), 628–636. https://doi.org/10.1002/2015GL067034
Minson, S. E., Simons, M., & Beck, J. L. (2013). Bayesian inversion for finite fault earthquake source models I-theory and algorithm. Geophys, J. Int., 194(3), 1701–1726. https://doi.org/10.1093/gji/ggt180
Moral, P. D., Doucet, A., & Jasra, A. (2006). Sequential Monte Carlo samplers. J.R. Statist. Soc. B., 68(3), 411–436.
Mustać, M., Hejrani, B., Tkalčić, H., Kim, S., Lee, S. J., & Cho, C. S. (2020). Large isotropic component in the source mechanism of the 2013 democratic people’s Republic of Korea nuclear test revealed via a hierarchical Bayesian inversion. Bull. Seismol. Soc. Am., 110(1), 166–177. https://doi.org/10.1785/0120190062
Okuwaki, R., & Yagi, Y. (2018). Role of geometric barriers in irregular-rupture evolution during the 2008 Wenchuan earthquake. Geophys, J. Int., 212(3), 1657–1664. https://doi.org/10.1093/gji/ggx502
Palo, M., Tilmann, F., Krueger, F., Ehlert, L., & Lange, D. (2014). High-frequency seismic radiation from Maule earthquake (M w 8.8, 2010 February 27) inferred from high-resolution backprojection analysis. Geophys, J. Int., 199(2), 1058–1077. https://doi.org/10.1093/gji/ggu311
Pinar, A., & Türkelli, N. (1997). Source inversion of the 1993 and 1995 Gulf of Aqaba earthquakes. Tectonophysics, 283(1–4), 279–288. https://doi.org/10.1016/S0040-1951(97)00070-X
Ribot, M., Klinger, Y., Jónsson, S., Avsar, U., Pons-Branchu, E., Matrau, R., & Mallon, F. L. (2021). Active Faults’ Geometry in the Gulf of Aqaba, Southern Dead Sea Fault, Illuminated by Multibeam Bathymetric Data. Tectonics, 40(4), 1–13. https://doi.org/10.1029/2020TC006443
Rössler, D., Krueger, F., Ohrnberger, M., & Ehlert, L. (2010). Rapid characterisation of large earthquakes by multiple seismic broadband arrays. Nat. Hazards Earth Syst. Sci., 10(4), 923–932. https://doi.org/10.5194/nhess-10-923-2010
Schimmel, M., & Paulssen, H. (1997). Noise reduction and detection of weak, coherent signals through phase-weighted stacks. Geophys, J. Int., 130(2), 497–505. https://doi.org/10.1111/j.1365-246X.1997.tb05664.x
Schwarz, G. (1978). Estimating the Dimension of a Model. The Annals of Statistics, 6(2), 461–464. https://doi.org/10.1214/aos/1176344136
Shamir, G., Baer, G., & Hofstetter, A. (2003). Three-dimensional elastic earthquake modelling based on integrated seismological and InSAR data: the M w = 7.2 Nuweiba earthquake, gulf of Elat/Aqaba 1995 November. Geophys, J. Int., 154(3), 731–744. https://doi.org/10.1046/j.1365-246X.2003.01978.x
Shi, X., Wang, Y., Liu-Zeng, J., Weldon, R., Wei, S., Wang, T., & Sieh, K. (2017). How complex is the 2016 Mw 7.8 Kaikoura earthquake, South Island, New Zealand? Sci. Bull., 62(5), 309–311. https://doi.org/10.1016/j.scib.2017.01.033
Spudich, P., & Frazer, L. N. (1984). Use of ray theory to calculate high-frequency radiation from earthquake sources having spatially variable rupture velocity and stress drop. Bulletin of the Seismological Society of America, 74(6), 2061–2082. https://doi.org/10.1785/BSSA0740062061
Steinberg, A. (2021). braunfuss/Palantiri: v0.8 (v0.8). Zenodo. 10.5281/zenodo.4465171
Steinberg, A., Sudhaus, H., & Krüger, F. (2022). Using teleseismic backprojection and InSAR to obtain segmentation information for large earthquakes: a case study of the 2016 M w 6.6 Muji earthquake. Geophys, J. Int., 232(3), 1482–1502. https://doi.org/10.1093/gji/ggac392
Steinhaus, H. (1956). Sur la division des corp materiels en parties. Bull. Acad. Polon. Sci, 1(804), 801.
Sudhaus, H., & Jónsson, S. (2009). Improved source modelling through combined use of InSAR and GPS under consideration of correlated data errors: application to the June 2000 Kleifarvatn earthquake, Iceland. Geophys, J. Int., 176(2), 389–404. https://doi.org/10.1111/j.1365-246X.2008.03989.x
Tinti, E., Fukuyama, E., Piatanesi, A., & Cocco, M. (2005). A kinematic source-time function compatible with earthquake dynamics. Bull. Seismol. Soc. Am., 95(4), 1211–1223. https://doi.org/10.1785/0120040177
Vasyura-Bathke, H, Dettmer, J., Dutta, R., Mai, P. M., & Jónsson, S. (2021). Accounting for theory errors with empirical Bayesian noise models in nonlinear centroid moment tensor estimation. Geophys, J. Int. https://doi.org/10.1093/gji/ggab034
Vasyura-Bathke, Hannes, Dettmer, J., Steinberg, A., Heimann, S., Isken, M. P., Zielke, O., Mai, P. M., Sudhaus, H., & Jónsson, S. (2020). The Bayesian Earthquake Analysis Tool. Seismol. Res. Lett., 91(2A), 1003–1018. https://doi.org/10.1785/0220190075
Vasyura-Bathke, Hannes, Dettmer, J., Steinberg, A., Heimann, S., Isken, M., Zielke, O., Mai, P. M., Sudhaus, H., & Jónsson, S. (2019). BEAT - Bayesian Earthquake Analysis Tool. GFZ Data Services, v.1.0.
Vasyura-Bathke, Hannes, Steinberg, A., Krüger, F., Guangcai, F., Mai, P. M., & Jónsson, S. (2024). InSAR derived surface displacement maps of the 1995 Gulf of Aqaba earthquake [Data set]. Zenodo. 10.5281/zenodo.10462416
Viltres, R., Jónsson, S., Alothman, A., Liu, S., Leroy, S., Masson, F., Doubre, C., & Reilinger, R. (2022). Present-day motion of the Arabian Plate. Tectonics, 41, e2021TC00713. https://doi.org/10.1029/2021TC007013
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., … SciPy 1.0 Contributors. (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17, 261–272. https://doi.org/10.1038/s41592-019-0686-2
Wald, D. J., & Allen, T. I. (2007). Topographic slope as a proxy for seismic site conditions and amplification. Bulletin of the Seismological Society of America, 97(5), 1379–1395. https://doi.org/10.1785/0120060267
Wang, D., Kawakatsu, H., Mori, J., Ali, B., Ren, Z., & Shen, X. (2016). Backprojection analyses from four regional arrays for rupture over a curved dipping fault: The Mw 7.7 24 September 2013 Pakistan earthquake. J. Geophys. Res. Solid Earth, 121(3), 1948–1961. https://doi.org/10.1002/2015JB012168
Wang, R. (1999). A simple orthonormalization method for stable and efficient computation of Green’s functions. Bull. Seismol. Soc. Am., 89(3), 733–741. https://doi.org/10.1785/BSSA0890030733
Wang, R., Heimann, S., Zhang, Y., Wang, H., & Dahm, T. (2017). Complete synthetic seismograms based on a spherical self-gravitating Earth model with an atmosphere – ocean – mantle – core structure. Geophys, J. Int., 210, 1739–1764. https://doi.org/10.1093/gji/ggx259
Wang, R., Lorenzo-Martín, F., & Roth, F. (2006). PSGRN / PSCMP — a new code for calculating co- and post-seismic deformation , geoid and gravity changes based on the viscoelastic-gravitational dislocation theory. Comput. Geosci., 32(4), 527–541. https://doi.org/10.1016/j.cageo.2005.08.006
Wegmüller, U. (1998). SAR Processing, Interferometry, Differential Interferometry and Geocoding Software (pp. 145–148). presented at EUSAR’98, 25-27 May.
Wesnousky, S. (2006). Predicting the endpoints of earthquake rupture. Nature, 444(7117), 358--360. https://doi.org/10.1038/nature05275
Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J., & Wobbe, F. (2013). Generic Mapping Tools: Improved Version Released. EOS Trans. AGU, 94(45), 409–410. https://doi.org/10.1002/2013EO450001
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Hannes Vasyura-Bathke, Andreas Steinberg, Frank Krüger, Guangcai Feng, P. Martin Mai, Sigurjón Jónsson
This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
King Abdullah University of Science and Technology
Grant numbers BAS/1/1353-01-01;OSR-CRG2020-4335;BAS/1/1339-01-01 -
Deutsche Forschungsgemeinschaft
Grant numbers 276464525