Realtime Selection of Optimal Source Parameters Using Ground Motion Envelopes




earthquake early warning, observatory monitoring


It is increasingly common for seismic networks to operate multiple independent automatic algorithms to characterise earthquakes in real-time, such as in earthquake early warning (EEW) or even standard network practice. Commonly used methods to select the best solution at a given time are simple and use ad hoc rules. An absolute measure of how well a solution (event origin and magnitude) matches the observations by the goodness-of-fit between the observed and predicted envelopes is a robust and independent metric to select optimal solutions. We propose such a measure that is calculated as a combination of amplitude and cross-correlation fit. This metric can be used to determine when a preferred solution reaches an appropriate confidence level for alerting, or indeed to compare two (or more) different event characterisations directly. We demonstrate that our approach can also be used to suppress false alarms commonly seen at seismic networks. Tests using the 10 largest earthquakes in Switzerland between 2013 and 2020, and events that caused false alarms demonstrate that our approach can effectively prefer solutions with small errors in location and magnitude, and can clearly identify and discard false origins or incorrect magnitudes, at all time scales, starting with the first event characterisation.


Allen, R. M. (2007). The ElarmS earthquake early warning methodology and application across California. Earthquake Early Warning Systems, 21–43. DOI:

Allen, R. M., & Melgar, D. (2019). Earthquake early warning: Advances, scientific challenges, and societal needs. Annual Review of Earth and Planetary Sciences, 47, 361–388. DOI:

Behr, Y., Clinton, J. F., Cauzzi, C., Hauksson, E., Jónsdóttir, K., Marius, C. G., Pinar, A., Salichon, J., & Sokos, E. (2016). The Virtual Seismologist in SeisComP3: A new implementation strategy for earthquake early warning algorithms. Seismological Research Letters, 87(2A), 363–373. DOI:

Böse, M., Andrews, J., Hartog, R., & Felizardo, C. (2023). Performance and Next‐Generation Development of the Finite‐Fault Rupture Detector (FinDer) within the United States West Coast ShakeAlert Warning System. Bulletin of the Seismological Society of America. DOI:

Böse, M., Felizardo, C., & Heaton, T. H. (2015). Finite-Fault Rupture Detector (FinDer): Going real-time in Californian ShakeAlert warning system. Seismological Research Letters, 86(6), 1692–1704. DOI:

Böse, M., Heaton, T. H., & Hauksson, E. (2012). Real-time Finite Fault Rupture Detector (FinDer) for large earthquakes. Geophysical Journal International, 191(2), 803–812. DOI:

Böse, M., Smith, D. E., Felizardo, C., Meier, M. A., Heaton, T. H., & Clinton, J. F. (2018). FinDer v. 2: Improved real-time ground-motion predictions for M2–M9 with seismic finite-source characterization. Geophysical Journal International, 212(1), 725–742. DOI:

Cauzzi, C., Edwards, B., Fäh, D., Clinton, J., Wiemer, S., Kästli, P., Cua, G., & Giardini, D. (2015). New predictive equations and site amplification estimates for the next-generation Swiss ShakeMaps. Geophysical Journal International, 200(1), 421–438. DOI:

C.E.R.N. (2016). CERN Seismic Network. ETH Zurich. Other/Seismic Network.

Clinton, J., Zollo, A., Marmureanu, A., Zulfikar, C., & Parolai, S. (2016). State-of-the art and future of earthquake early warning in the European region. Bulletin of Earthquake Engineering, 14, 2441–2458. DOI:

Colombelli, S., Caruso, A., Zollo, A., Festa, G., & Kanamori, H. (2015). AP wave‐based, on‐site method for earthquake early warning. Geophysical Research Letters, 42(5), 1390–1398. DOI:

Cremen, G., & Galasso, C. (2020). Earthquake early warning: Recent advances and perspectives. Earth-Science Reviews, 205, 103184. DOI:

Cua, G. B. (2005). Creating the Virtual Seismologist: developments in ground motion characterization and seismic early warning. California Institute of Technology.

Cua, G., & Heaton, T. (2007). The Virtual Seismologist (VS) method: A Bayesian approach to earthquake early warning. Earthquake Early Warning Systems, 97–132. DOI:

Diehl, T., Kästli, P., & Heimers, S. (2015). A location quality score - Documentation of the SeisComP3 Implementation for Seattle/Jakarta. In Swiss Seismological Service.

Edwards, B., & Fäh, D. (2013). A Stochastic Ground-Motion Model for Switzerland. Bulletin of the Seismological Society of America, 103(1), 78-98,. DOI:

Edwards, B., Kraft, T., Cauzzi, C., Kästli, P., & Wiemer, S. (2015). Seismic monitoring and analysis of deep geothermal projects in St Gallen and Basel, Switzerland. Geophysical Journal International, 201(2), 1022–1039. DOI:

Edwards, B., Michel, C., Poggi, V., & Fäh, D. (2013). Determination of Site Amplification from Regional Seismicity: Application to the Swiss National Seismic Networks. Seismological Research Letters, 84(4), 611–621. DOI:

ETH Zurich, Swiss Seismological Service. (2015). The Site Characterization Database for Seismic Stations in Switzerland. Federal Institute of Technology.

Eurocode 8. (2005). Design of structures for earthquake resistance-part 1: general rules, seismic actions and rules for buildings. Brussels: European Committee for Standardization.

Hardebeck, J. L., & Shearer, P. M. (2003). Using S/P amplitude ratios to constrain the focal mechanisms of small earthquakes. Bulletin of the Seismological Society of America, 93(6), 2434–2444. DOI:

Hsu, T. Y., Huang, S. K., Chang, Y. W., Kuo, C. H., Lin, C. M., Chang, T. M., Wen, K. L., & Loh, C. H. (2013). Rapid on-site peak ground acceleration estimation based on support vector regression and P-wave features in Taiwan. Soil Dynamics and Earthquake Engineering, 49, 210–217. DOI:

Jozinović, D., Lomax, A., Štajduhar, I., & Michelini, A. (2020). Rapid prediction of earthquake ground shaking intensity using raw waveform data and a convolutional neural network. Geophysical Journal International, 222(2), 1379–1389. DOI:

Kodera, Y., Yamada, Y., Hirano, K., Tamaribuchi, K., Adachi, S., Hayashimoto, N., Morimoto, M., Nakamura, M., & Hoshiba, M. (2018). The Propagation of Local Undamped Motion (PLUM) Method: A Simple and Robust Seismic Wavefield Estimation Approach for Earthquake Early WarningThe Propagation of Local Undamped Motion (PLUM) Method. Bulletin of the Seismological Society of America, 108(2), 983–1003. DOI:

Kohler, M. D., Smith, D. E., Andrews, J., Chung, A. I., Hartog, R., Henson, I., Given, D. D., Groot, R., & Guiwits, S. (2020). Earthquake early warning ShakeAlert 2.0: Public rollout. Seismological Research Letters, 91(3), 1763–1775. DOI:

Massin, F., Clinton, J., & Böse, M. (2021). Status of earthquake early warning in Switzerland. Frontiers in Earth Science, 9, 707654. DOI:

Minson, S. E., Wu, S., Beck, J. L., & Heaton, T. H. (2017). Combining multiple earthquake models in real time for earthquake early warning. Bulletin of the Seismological Society of America, 107(4), 1868–1882. DOI:

Münchmeyer, J., Bindi, D., Leser, U., & Tilmann, F. (2021). The transformer earthquake alerting model: A new versatile approach to earthquake early warning. Geophysical Journal International, 225(1), 646–656. DOI:

Satriano, C., Elia, L., Martino, C., Lancieri, M., Zollo, A., & Iannaccone, G. (2011). PRESTo, the earthquake early warning system for southern Italy: Concepts, capabilities and future perspectives. Soil Dynamics and Earthquake Engineering, 31(2), 137–153. DOI:

Swiss Seismological Service At ETH Zurich. (1983). National Seismic Networks of Switzerland. ETH Zürich. Other/Seismic Network.

Woollam, J., Münchmeyer, J., Tilmann, F., Rietbrock, A., Lange, D., Bornstein, T., Diehl, T., Giunchi, C., Haslinger, F., Jozinović, D., & Michelini, A. (2022). SeisBench—A toolbox for machine learning in seismology. Seismological Society of America, 93(3), 1695–1709. DOI:

Wu, Y. M., & Kanamori, H. (2005). Rapid assessment of damage potential of earthquakes in Taiwan from the beginning of P waves. Bulletin of the Seismological Society of America, 95(3), 1181–1185. DOI:

Yamada, M., & Heaton, T. (2008). Real-time estimation of fault rupture extent using envelopes of acceleration. Bulletin of the Seismological Society of America, 98(2), 607–619. DOI:



How to Cite

Jozinović, D., Clinton, J., Massin, F., Böse, M., & Cauzzi, C. (2024). Realtime Selection of Optimal Source Parameters Using Ground Motion Envelopes. Seismica, 3(1).