Realtime Selection of Optimal Source Parameters Using Ground Motion Envelopes

Authors

DOI:

https://doi.org/10.26443/seismica.v3i1.1142

Keywords:

earthquake early warning, observatory monitoring

Abstract

It is increasingly common for seismic networks to operate multiple independent automatic algorithms to characterise earthquakes in real-time, such as in earthquake early warning (EEW) or even standard network practice. Commonly used methods to select the best solution at a given time are simple and use ad hoc rules. An absolute measure of how well a solution (event origin and magnitude) matches the observations by the goodness-of-fit between the observed and predicted envelopes is a robust and independent metric to select optimal solutions. We propose such a measure that is calculated as a combination of amplitude and cross-correlation fit. This metric can be used to determine when a preferred solution reaches an appropriate confidence level for alerting, or indeed to compare two (or more) different event characterisations directly. We demonstrate that our approach can also be used to suppress false alarms commonly seen at seismic networks. Tests using the 10 largest earthquakes in Switzerland between 2013 and 2020, and events that caused false alarms demonstrate that our approach can effectively prefer solutions with small errors in location and magnitude, and can clearly identify and discard false origins or incorrect magnitudes, at all time scales, starting with the first event characterisation.

References

Allen, R. M. (2007). The ElarmS earthquake early warning methodology and application across California. Earthquake Early Warning Systems, 21–43. DOI: https://doi.org/10.1007/978-3-540-72241-0_3

Allen, R. M., & Melgar, D. (2019). Earthquake early warning: Advances, scientific challenges, and societal needs. Annual Review of Earth and Planetary Sciences, 47, 361–388. https://doi.org/10.1146/annurev-earth-053018-060457 DOI: https://doi.org/10.1146/annurev-earth-053018-060457

Behr, Y., Clinton, J. F., Cauzzi, C., Hauksson, E., Jónsdóttir, K., Marius, C. G., Pinar, A., Salichon, J., & Sokos, E. (2016). The Virtual Seismologist in SeisComP3: A new implementation strategy for earthquake early warning algorithms. Seismological Research Letters, 87(2A), 363–373. https://doi.org/10.1785/0220150235 DOI: https://doi.org/10.1785/0220150235

Böse, M., Andrews, J., Hartog, R., & Felizardo, C. (2023). Performance and Next‐Generation Development of the Finite‐Fault Rupture Detector (FinDer) within the United States West Coast ShakeAlert Warning System. Bulletin of the Seismological Society of America. https://doi.org/10.1785/0120220183 DOI: https://doi.org/10.1785/0120220183

Böse, M., Felizardo, C., & Heaton, T. H. (2015). Finite-Fault Rupture Detector (FinDer): Going real-time in Californian ShakeAlert warning system. Seismological Research Letters, 86(6), 1692–1704. https://doi.org/10.1785/0220150154 DOI: https://doi.org/10.1785/0220150154

Böse, M., Heaton, T. H., & Hauksson, E. (2012). Real-time Finite Fault Rupture Detector (FinDer) for large earthquakes. Geophysical Journal International, 191(2), 803–812. https://doi.org/10.1111/j.1365-246X.2012.05657.x DOI: https://doi.org/10.1111/j.1365-246X.2012.05657.x

Böse, M., Smith, D. E., Felizardo, C., Meier, M. A., Heaton, T. H., & Clinton, J. F. (2018). FinDer v. 2: Improved real-time ground-motion predictions for M2–M9 with seismic finite-source characterization. Geophysical Journal International, 212(1), 725–742. https://doi.org/10.1785/0120220183 DOI: https://doi.org/10.1093/gji/ggx430

Cauzzi, C., Edwards, B., Fäh, D., Clinton, J., Wiemer, S., Kästli, P., Cua, G., & Giardini, D. (2015). New predictive equations and site amplification estimates for the next-generation Swiss ShakeMaps. Geophysical Journal International, 200(1), 421–438. https://doi.org/10.1093/gji/ggu404 DOI: https://doi.org/10.1093/gji/ggu404

C.E.R.N. (2016). CERN Seismic Network. ETH Zurich. Other/Seismic Network. https://doi.org/10.12686/sed/networks/c4

Clinton, J., Zollo, A., Marmureanu, A., Zulfikar, C., & Parolai, S. (2016). State-of-the art and future of earthquake early warning in the European region. Bulletin of Earthquake Engineering, 14, 2441–2458. https://doi.org/10.1007/s10518-016-9922-7 DOI: https://doi.org/10.1007/s10518-016-9922-7

Colombelli, S., Caruso, A., Zollo, A., Festa, G., & Kanamori, H. (2015). AP wave‐based, on‐site method for earthquake early warning. Geophysical Research Letters, 42(5), 1390–1398. https://doi.org/10.1002/2014GL063002 DOI: https://doi.org/10.1002/2014GL063002

Cremen, G., & Galasso, C. (2020). Earthquake early warning: Recent advances and perspectives. Earth-Science Reviews, 205, 103184. https://doi.org/10.1016/j.earscirev.2020.103184 DOI: https://doi.org/10.1016/j.earscirev.2020.103184

Cua, G. B. (2005). Creating the Virtual Seismologist: developments in ground motion characterization and seismic early warning. California Institute of Technology.

Cua, G., & Heaton, T. (2007). The Virtual Seismologist (VS) method: A Bayesian approach to earthquake early warning. Earthquake Early Warning Systems, 97–132. https://doi.org/10.1007/978-3-540-72241-0_7 DOI: https://doi.org/10.1007/978-3-540-72241-0_7

Diehl, T., Kästli, P., & Heimers, S. (2015). A location quality score - Documentation of the SeisComP3 Implementation for Seattle/Jakarta. In Swiss Seismological Service. https://gitlab.seismo.ethz.ch/sed-sc3/evscore/

Edwards, B., & Fäh, D. (2013). A Stochastic Ground-Motion Model for Switzerland. Bulletin of the Seismological Society of America, 103(1), 78-98,. https://doi.org/10.1785/0120110331 DOI: https://doi.org/10.1785/0120110331

Edwards, B., Kraft, T., Cauzzi, C., Kästli, P., & Wiemer, S. (2015). Seismic monitoring and analysis of deep geothermal projects in St Gallen and Basel, Switzerland. Geophysical Journal International, 201(2), 1022–1039. https://doi.org/10.1093/gji/ggv059 DOI: https://doi.org/10.1093/gji/ggv059

Edwards, B., Michel, C., Poggi, V., & Fäh, D. (2013). Determination of Site Amplification from Regional Seismicity: Application to the Swiss National Seismic Networks. Seismological Research Letters, 84(4), 611–621. https://doi.org/10.1785/0220120176 DOI: https://doi.org/10.1785/0220120176

ETH Zurich, Swiss Seismological Service. (2015). The Site Characterization Database for Seismic Stations in Switzerland. Federal Institute of Technology. https://doi.org/10.12686/sed-stationcharacterizationdb

Eurocode 8. (2005). Design of structures for earthquake resistance-part 1: general rules, seismic actions and rules for buildings. Brussels: European Committee for Standardization.

Hardebeck, J. L., & Shearer, P. M. (2003). Using S/P amplitude ratios to constrain the focal mechanisms of small earthquakes. Bulletin of the Seismological Society of America, 93(6), 2434–2444. https://doi.org/10.1785/0120020236 DOI: https://doi.org/10.1785/0120020236

Hsu, T. Y., Huang, S. K., Chang, Y. W., Kuo, C. H., Lin, C. M., Chang, T. M., Wen, K. L., & Loh, C. H. (2013). Rapid on-site peak ground acceleration estimation based on support vector regression and P-wave features in Taiwan. Soil Dynamics and Earthquake Engineering, 49, 210–217. https://doi.org/10.1016/j.soildyn.2013.03.001 DOI: https://doi.org/10.1016/j.soildyn.2013.03.001

Jozinović, D., Lomax, A., Štajduhar, I., & Michelini, A. (2020). Rapid prediction of earthquake ground shaking intensity using raw waveform data and a convolutional neural network. Geophysical Journal International, 222(2), 1379–1389. https://doi.org/10.1093/gji/ggaa233 DOI: https://doi.org/10.1093/gji/ggaa233

Kodera, Y., Yamada, Y., Hirano, K., Tamaribuchi, K., Adachi, S., Hayashimoto, N., Morimoto, M., Nakamura, M., & Hoshiba, M. (2018). The Propagation of Local Undamped Motion (PLUM) Method: A Simple and Robust Seismic Wavefield Estimation Approach for Earthquake Early WarningThe Propagation of Local Undamped Motion (PLUM) Method. Bulletin of the Seismological Society of America, 108(2), 983–1003. https://doi.org/10.1785/0120170085 DOI: https://doi.org/10.1785/0120170085

Kohler, M. D., Smith, D. E., Andrews, J., Chung, A. I., Hartog, R., Henson, I., Given, D. D., Groot, R., & Guiwits, S. (2020). Earthquake early warning ShakeAlert 2.0: Public rollout. Seismological Research Letters, 91(3), 1763–1775. https://doi.org/10.1785/0220190245 DOI: https://doi.org/10.1785/0220190245

Massin, F., Clinton, J., & Böse, M. (2021). Status of earthquake early warning in Switzerland. Frontiers in Earth Science, 9, 707654. https://doi.org/10.3389/feart.2021.707654 DOI: https://doi.org/10.3389/feart.2021.707654

Minson, S. E., Wu, S., Beck, J. L., & Heaton, T. H. (2017). Combining multiple earthquake models in real time for earthquake early warning. Bulletin of the Seismological Society of America, 107(4), 1868–1882. https://doi.org/10.1785/0120160331 DOI: https://doi.org/10.1785/0120160331

Münchmeyer, J., Bindi, D., Leser, U., & Tilmann, F. (2021). The transformer earthquake alerting model: A new versatile approach to earthquake early warning. Geophysical Journal International, 225(1), 646–656. https://doi.org/10.1093/gji/ggaa609 DOI: https://doi.org/10.1093/gji/ggaa609

Satriano, C., Elia, L., Martino, C., Lancieri, M., Zollo, A., & Iannaccone, G. (2011). PRESTo, the earthquake early warning system for southern Italy: Concepts, capabilities and future perspectives. Soil Dynamics and Earthquake Engineering, 31(2), 137–153. https://doi.org/10.1016/j.soildyn.2010.06.008 DOI: https://doi.org/10.1016/j.soildyn.2010.06.008

Swiss Seismological Service At ETH Zurich. (1983). National Seismic Networks of Switzerland. ETH Zürich. Other/Seismic Network. https://doi.org/10.12686/SED/NETWORKS/CH

Woollam, J., Münchmeyer, J., Tilmann, F., Rietbrock, A., Lange, D., Bornstein, T., Diehl, T., Giunchi, C., Haslinger, F., Jozinović, D., & Michelini, A. (2022). SeisBench—A toolbox for machine learning in seismology. Seismological Society of America, 93(3), 1695–1709. https://doi.org/10.1785/0220210324 DOI: https://doi.org/10.1785/0220210324

Wu, Y. M., & Kanamori, H. (2005). Rapid assessment of damage potential of earthquakes in Taiwan from the beginning of P waves. Bulletin of the Seismological Society of America, 95(3), 1181–1185. https://doi.org/10.1785/0120040193 DOI: https://doi.org/10.1785/0120040193

Yamada, M., & Heaton, T. (2008). Real-time estimation of fault rupture extent using envelopes of acceleration. Bulletin of the Seismological Society of America, 98(2), 607–619. https://doi.org/https://doi.org/10.1785/0120060218 DOI: https://doi.org/10.1785/0120060218

Published

2024-05-09

How to Cite

Jozinović, D., Clinton, J., Massin, F., Böse, M., & Cauzzi, C. (2024). Realtime Selection of Optimal Source Parameters Using Ground Motion Envelopes. Seismica, 3(1). https://doi.org/10.26443/seismica.v3i1.1142

Issue

Section

Articles