Performance of synthetic DAS as a function of array geometry
DOI:
https://doi.org/10.26443/seismica.v3i2.1146Abstract
Distributed Acoustic Sensing (DAS) can record acoustic wavefields at high sampling rates and with dense spatial resolution difficult to achieve with seismometers. Using optical scattering induced by cable deformation, DAS can record strain fields with ones of meters spatial resolution. However, many experiments utilizing DAS have relied on unused, dark telecommunication fibers. As a result, the geophysical community has not fully explored DAS survey parameters to characterize the ideal array design. This limits our understanding of guiding principles in array design to deploy DAS effectively and efficiently in the field. A better quantitative understanding of DAS array behavior can help improve the quality of the data recorded by guiding the DAS array design. Here we use array response functions as well as beamforming and back-projection results from forward modelling calculations to assess the performance of varying DAS array geometries to record regional and local sources. A regular heptagon DAS array demonstrated improved capabilities for recording regional sources over segmented linear arrays, with potential improvements in recording and locating local sources. These results reveal DAS array performance as a function of geometry and can guide future DAS deployments.
References
Baird, A. F., Stork, A. L., Horne, S. A., Naldrett, G., Kendall, J.-M., Wookey, J., Verdon, J. P., & Clarke, A. (2020). Characteristics of microseismic data recorded by distributed acoustic sensing systems in anisotropic media. GEOPHYSICS, 85(4), KS139–KS147. https://doi.org/10.1190/geo2019-0776.1 DOI: https://doi.org/10.1190/geo2019-0776.1
Baker, M. G., & Abbott, R. E. (2022). Rapid refreezing of a marginal ice zone across a seafloor distributed acoustic sensor. Geophysical Research Letters, 49(24). https://doi.org/10.1029/2022gl099880 Bakku, S. K. (2015). Fracture characterization from seismic measurements in a borehole [PhD thesis,]. Massachusetts Institute of Technology. DOI: https://doi.org/10.1029/2022GL099880
Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., & Wassermann, J. (2010). ObsPy: A Python toolbox for seismology. Seismological Research Letters, 81(3), 530–533. https://doi.org/10.1785/gssrl.81.3.530 DOI: https://doi.org/10.1785/gssrl.81.3.530
Crotwell, H. P., Owens, T. J., & Ritsema, J. (1999). The TauP toolkit: Flexible seismic travel-time and ray-path utilities. Seismological Research Letters, 70(2), 154–160. https://doi.org/10.1785/gssrl.70.2.154 DOI: https://doi.org/10.1785/gssrl.70.2.154
Dando, B., Iranpour, K., Wuestefeld, A., Näsholm, S. P., Baird, A., & Oye, V. (2022). Designing the next generation of seismic arrays using fibre optic DAS. https://doi.org/10.5194/egusphere-egu22-6408 DOI: https://doi.org/10.5194/egusphere-egu22-6408
Dou, S., Lindsey, N., Wagner, A. M., Daley, T. M., Freifeld, B., Robertson, M., Peterson, J., Ulrich, C., Martin, E. R., & Ajo-Franklin, J. B. (2017). Distributed acoustic sensing for seismic monitoring of the near surface: A traffic-noise interferometry case study. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-11986-4 DOI: https://doi.org/10.1038/s41598-017-11986-4
Dziewonski, A. M., & Anderson, D. L. (1981). Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25(4), 297–356. https://doi.org/10.1016/0031-9201(81)90046-7 Fang, G., Li, Y. E., Zhao, Y., & Martin, E. R. (2020). Urban near-surface seismic monitoring using distributed acoustic sensing. Geophysical Research Letters, 47(6). https://doi.org/10.1029/2019gl086115 DOI: https://doi.org/10.1016/0031-9201(81)90046-7
Fee, D., Toney, L., Kim, K., Sanderson, R. W., Iezzi, A. M., Matoza, R. S., De Angelis, S., Jolly, A. D., Lyons, J. J., & Haney, M. M. (2021). Local explosion detection and infrasound Localization by Reverse Time Migration Using 3-D Finite-Difference Wave Propagation. Frontiers in Earth Science, 9. https://doi.org/10.3389/feart.2021.620813 DOI: https://doi.org/10.3389/feart.2021.620813
Hornman, J. C. (2017). Field trial of seismic recording using distributed acoustic sensing with broadside sensitive fibre‐optic cables. Geophysical Prospecting, 65(1), 35–46. https://doi.org/10.1111/1365-2478.12358 IRIS Data Management Center. (2023). EarthScope data statistics. https://ds.iris.edu/data/distribution/ DOI: https://doi.org/10.1111/1365-2478.12358
Kennett, B. L. N. (2022). The seismic wavefield as seen by distributed acoustic sensing arrays: Local, regional and teleseismic sources. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 478(2258). https://doi.org/10.1098/rspa.2021.0812 DOI: https://doi.org/10.1098/rspa.2021.0812
Koper, K. D., de Foy, B., & Benz, H. (2009). Composition and variation of noise recorded at the Yellowknife Seismic Array, 1991–2007. Journal of Geophysical Research: Solid Earth, 114(B10). https://doi.org/10.1029/2009jb006307 DOI: https://doi.org/10.1029/2009JB006307
Kuvshinov, B. N. (2016). Interaction of helically wound fibre‐optic cables with plane seismic waves. Geophysical Prospecting, 64(3), 671–688. https://doi.org/10.1111/1365-2478.12303 DOI: https://doi.org/10.1111/1365-2478.12303
Lindsey, N. J., Dawe, T. C., & Ajo-Franklin, J. B. (2019). Illuminating seafloor faults and ocean dynamics with dark fiber distributed acoustic sensing. Science, 366(6469), 1103–1107. https://doi.org/10.1126/science.aay5881 DOI: https://doi.org/10.1126/science.aay5881
Lindsey, N. J., & Martin, E. R. (2021). Fiber-optic seismology. Annual Review of Earth and Planetary Sciences, 49(1), 309–336. https://doi.org/10.1146/annurev-earth-072420-065213 DOI: https://doi.org/10.1146/annurev-earth-072420-065213
Lindsey, N. J., Rademacher, H., & Ajo‐Franklin, J. B. (2020). On the broadband instrument response of fiber‐optic DAS arrays. Journal of Geophysical Research: Solid Earth, 125(2). https://doi.org/10.1029/2019jb018145 DOI: https://doi.org/10.1029/2019JB018145
Liner, C. L. (2016). Elements of 3D seismology. Society of Exploration Geophysicists. https://doi.org/10.1190/1.9781560803386 DOI: https://doi.org/10.1190/1.9781560803386
Mateeva, A., Lopez, J., Potters, H., Mestayer, J., Cox, B., Kiyashchenko, D., Wills, P., Grandi, S., Hornman, K., Kuvshinov, B., Berlang, W., Yang, Z., & Detomo, R. (2014). Distributed acoustic sensing for reservoir monitoring with vertical seismic profiling. Geophysical Prospecting, 62(4), 679–692. https://doi.org/10.1111/1365-2478.12116 DOI: https://doi.org/10.1111/1365-2478.12116
Mellors, R. J., Abbott, R., Steedman, D., Podrasky, D., & Pitarka, A. (2021). Modeling subsurface explosions recorded on a distributed fiber optic sensor. Journal of Geophysical Research: Solid Earth, 126(12). https://doi.org/10.1029/2021jb022690 DOI: https://doi.org/10.1029/2021JB022690
Näsholm, S. P., Iranpour, K., Wuestefeld, A., Dando, B. D. E., Baird, A. F., & Oye, V. (2022). Array signal processing on distributed acoustic sensing data: Directivity effects in slowness space. Journal of Geophysical Research: Solid Earth, 127(2). https://doi.org/10.1029/2021jb023587 DOI: https://doi.org/10.1029/2021JB023587
Peterson, J. R. (1993). Observations and modeling of seismic background noise (Open-File Report No. 93–322). US Geological Survey. Porritt, R., & Stanciu, A. (2023). An analysis of published DAS studies for application to SPE Phase III [Techreport]. Office of Scientific. https://doi.org/10.2172/2430480 DOI: https://doi.org/10.2172/2430480
Rost, S., & Thomas, C. (2002). Array seismology: Methods and applications. Reviews of Geophysics, 40(3). https://doi.org/10.1029/2000rg000100 DOI: https://doi.org/10.1029/2000RG000100
Snelson, C., Bradley, C., Walter, W., Antoun, T., Abbott, R., Jones, K., Chipman, V., & Montoya, L. (2022). The Source Physics Experiment (SPE) Science Plan [Techreport]. Office of Scientific. https://doi.org/10.2172/1887003 DOI: https://doi.org/10.2172/1887003
Snelson, C. M., Abbott, R. E., Broome, S. T., Mellors, R. J., Patton, H. J., Sussman, A. J., Townsend, M. J., & Walter, W. R. (2013). Chemical explosion experiments to improve nuclear test monitoring. Eos, Transactions American Geophysical Union, 94(27), 237–239. https://doi.org/10.1002/2013eo270002 DOI: https://doi.org/10.1002/2013EO270002
Tibi, R., Young, C. J., & Porritt, R. W. (2022). Comparative study of the performance of seismic waveform denoising methods using local and near-regional data. Bulletin of the Seismological Society of America, 113(2), 548–561. https://doi.org/10.1785/0120220105 DOI: https://doi.org/10.1785/0120220105
van den Ende, M. P. A., & Ampuero, J.-P. (2021). Evaluating seismic beamforming capabilities of distributed acoustic sensing arrays. Solid Earth, 12(4), 915–934. https://doi.org/10.5194/se-12-915-2021 DOI: https://doi.org/10.5194/se-12-915-2021
Wang, H. F., Zeng, X., Miller, D. E., Fratta, D., Feigl, K. L., Thurber, C. H., & Mellors, R. J. (2018). Ground motion response to an ML 4.3 earthquake using co-located distributed acoustic sensing and seismometer arrays. Geophysical Journal International, 213(3), 2020–2036. https://doi.org/10.1093/gji/ggy102 DOI: https://doi.org/10.1093/gji/ggy102
Wang, X., Williams, E. F., Karrenbach, M., Herráez, M. G., Martins, H. F., & Zhan, Z. (2020). Rose parade seismology: Signatures of floats and bands on optical fiber. Seismological Research Letters, 91(4), 2395–2398. https://doi.org/10.1785/0220200091 DOI: https://doi.org/10.1785/0220200091
Xi, Z., Li, J., Chen, M., & Wei, S. (2021). PyFK: A fast MPI and CUDA accelerated Python package for calculating synthetic seismograms based on the frequency-wavenumber method. AGU Fall Meeting Abstracts.
Yavuz, S., Freifeld, B., Pevzner, R., Dzunic, A., Ziramov, S., Bóna, A., Correa, J., Tertyshnikov, K., Urosevic, M., Robertson, M., & Daley, T. (2019). The initial appraisal of buried DAS system in CO2CRC Otway Project: The comparison of buried standard fibre-optic and helically wound cables using 2D imaging. Exploration Geophysics, 50(1), 12–21. https://doi.org/10.1080/08123985.2018.1561147 DOI: https://doi.org/10.1080/08123985.2018.1561147
Zhu, L., & Rivera, L. A. (2002). A note on the dynamic and static displacements from a point source in multilayered media. Geophysical Journal International, 148(3), 619–627. https://doi.org/10.1046/j.1365-246x.2002.01610.x DOI: https://doi.org/10.1046/j.1365-246X.2002.01610.x
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Thomas Luckie, Robert Porritt
This work is licensed under a Creative Commons Attribution 4.0 International License.