Migration of Seismicity from the Mantle to the Upper Crust Beneath Harrat Lunayyir Volcanic Field, Saudi Arabia
DOI:
https://doi.org/10.26443/seismica.v4i1.1148Keywords:
Mantle earthquakes, volcano seismology, Magma volume, Dike FreezingAbstract
Harrat Lunayyir is a volcanic field in Saudi Arabia that experienced a Mw~5.4 earthquake driven by an upper-crustal dike intrusion in May 2009. This volcanic field has exhibited numerous forms of volcanic seismicity both prior to and since the 2009 dike intrusion. Significantly, earthquakes within the lithospheric mantle and, rarely, the lower crust are present in the two-decade long seismicity catalog of Harrat Lunayyir. Here we analyze 24 years of volcanic seismicity at Harrat Lunayyir from 1998 to 2022. We find that: 1) precursory seismicity began at least eight years prior to the 2009 event, with a particularly notable seismic episode one year prior; 2) lithospheric mantle seismicity is highly localized in space and in time, largely occurring in discrete sequences lasting on the order of a few hours to a few days; 3) one seismic sequence clearly migrates upward from the lithospheric mantle to the upper crust, including seismicity within the nominally ductile lower crust; 4) crustal seismicity has been slowly declining over time; and 5) lithospheric-mantle seismicity does not show any apparent decline with time. From these observations we infer that the seismicity is driven by magmatic fluids or volatiles, and seismic monitoring of this volcanic field should continue into the future.
References
Ágústsdóttir, T., Woods, J., Greenfield, T., Green, R. G., White, R. S., Winder, T., Brandsdóttir, B., Steinthórsson, S., & Soosalu, H. (2016). Strike-slip faulting during the 2014 Bárðarbunga-Holuhraun dike intrusion, central Iceland. Geophysical Research Letters, 43(4), 1495–1503. https://doi.org/10.1002/2015GL067423 DOI: https://doi.org/10.1002/2015GL067423
Aki, K., & Richards, P. G. (2002). Quantitative seismology. https://www.ldeo.columbia.edu/~richards/Aki_Richards.html
Baer, G., & Hamiel, Y. (2010). Form and growth of an embryonic continental rift: InSAR observations and modelling of the 2009 western Arabia rifting episode. Geophysical Journal International, 182(1), 155–167. https://doi.org/10.1111/j.1365-246X.2010.04627.x DOI: https://doi.org/10.1111/j.1365-246X.2010.04627.x
Blanchette, Alexander R, Klemperer, S. L., & Mooney, W. D. (2023a). Analysis and modeling codes - Decadal seismicity and dike freezing - Harrat Lunayyir, Saudi Arabia (v1.0) [Computer software]. Zenodo. https://doi.org/10.5281/zenodo.10119526
Blanchette, Alexander R, Klemperer, S. L., & Mooney, W. D. (2023b). Crustal thickness and the Vp/Vs ratio within the Arabia Plate from P-wave receiver functions at 154 broadband seismic stations. US Geological Survey. https://doi.org/10.3133/ofr20231042 DOI: https://doi.org/10.3133/ofr20231042
Blanchette, Alexander R, Klemperer, S. L., Mooney, W. D., & Zahran, H. M. (2018). Two-stage Red Sea rifting inferred from mantle earthquakes in Neoproterozoic lithosphere. Earth and Planetary Science Letters, 497, 92–101. https://doi.org/10.1016/j.epsl.2018.05.048 DOI: https://doi.org/10.1016/j.epsl.2018.05.048
Blanchette, Alexander R, Klemperer, S. L., Mooney, W. D., & Zahran, H. M. (2023). Thickness of the Saudi Arabian Crust. In T. W. Sisson, A. T. Calvert, & W. D. Mooney (Eds.), Active volcanism on the Arabian Shield-Geology, volcanology, and geophysics of northern Harrat Rahat and vicinity, Kingdom of Saudi Arabia: U.S. Geological Survey Professional Paper 1862. https://doi.org/10.3133/pp1862M DOI: https://doi.org/10.3133/pp1862M
Blanchette, Alexander Robert. (2022). Structural Seismology of the Arabian Plate and Volcano Seismology Near the Red Sea Rift Margin [Phdthesis, Stanford University]. https://purl.stanford.edu/cf318hv6989
Chen, W.-P., & Molnar, P. (1983). Focal depths of intracontinental and intraplate earthquakes and their implications for the thermal and mechanical properties of the lithosphere. Journal of Geophysical Research: Solid Earth, 88(B5), 4183–4214. https://doi.org/10.1029/JB088iB05p04183 DOI: https://doi.org/10.1029/JB088iB05p04183
Chouet, B. A. (2003). Volcano seismology. Pure and Applied Geophysics, 160, 739–788. https://doi.org/10.1007/PL00012556 DOI: https://doi.org/10.1007/PL00012556
Chouet, B. A., & Matoza, R. S. (2013). A multi-decadal view of seismic methods for detecting precursors of magma movement and eruption. Journal of Volcanology and Geothermal Research, 252, 108–175. https://doi.org/10.1016/j.jvolgeores.2012.11.013 DOI: https://doi.org/10.1016/j.jvolgeores.2012.11.013
Deichmann, N. (2006). Local magnitude, a moment revisited. Bulletin of the Seismological Society of America, 96(4A), 1267–1277. https://doi.org/10.1785/0120050115 DOI: https://doi.org/10.1785/0120050115
Gahlan, H. A., Azer, M. K., Asimow, P. D., & Al-Kahtany, K. M. (2020). Genesis and geodynamic evolution of serpentinized ultramafics and associated magnesite deposits in the Al-Wask ophiolite, Arabian Shield, Saudi Arabia. American Journal of Science, 320(3), 236–279. https://doi.org/10.2475/03.2020.02 DOI: https://doi.org/10.2475/03.2020.02
Gudmundsson, A. (1990). Emplacement of dikes, sills and crustal magma chambers at divergent plate boundaries. Tectonophysics, 176(3–4), 257–275. https://doi.org/10.1016/0040-1951(90)90073-H DOI: https://doi.org/10.1016/0040-1951(90)90073-H
Hanks, T. C., & Kanamori, H. (1979). A moment magnitude scale. Journal of Geophysical Research: Solid Earth, 84(B5), 2348–2350. https://doi.org/10.1029/JB084iB05p02348 DOI: https://doi.org/10.1029/JB084iB05p02348
Hill, D. P. (1977). A model for earthquake swarms. Journal of Geophysical Research, 82(8), 1347–1352. https://doi.org/10.1029/JB082i008p01347 DOI: https://doi.org/10.1029/JB082i008p01347
Hotovec-Ellis, A. J., Shelly, D. R., Hill, D. P., Pitt, A. M., Dawson, P. B., & Chouet, B. A. (2018). Deep fluid pathways beneath Mammoth Mountain, California, illuminated by migrating earthquake swarms. Science Advances, 4(8), eaat5258. https://doi.org/10.1126/sciadv.aat5258 DOI: https://doi.org/10.1126/sciadv.aat5258
Johnson, P. R., Halverson, G. P., Kusky, T. M., Stern, R. J., & Pease, V. (2013). Volcanosedimentary basins in the Arabian-Nubian Shield: Markers of repeated exhumation and denudation in a Neoproterozoic accretionary orogen. Geosciences, 3(3), 389–445. https://doi.org/10.3390/geosciences3030389 DOI: https://doi.org/10.3390/geosciences3030389
Klein, F. W. (2002). User’s guide to HYPOINVERSE-2000, a Fortran program to solve for earthquake locations and magnitudes. US Geological Survey. https://doi.org/10.3133/ofr02171 DOI: https://doi.org/10.3133/ofr02171
Koulakov, I, El Khrepy, S., Al-Arifi, N., Sychev, I., & Kuznetsov, P. (2014). Evidence of magma activation beneath the Harrat Lunayyir basaltic field (Saudi Arabia) from attenuation tomography. Solid Earth, 5(2), 873–882. https://doi.org/10.5194/se-5-873-2014 DOI: https://doi.org/10.5194/se-5-873-2014
Koulakov, Ivan, El Khrepy, S., Al-Arifi, N., Kuznetsov, P., & Kasatkina, E. (2015). Structural cause of a missed eruption in the Harrat Lunayyir basaltic field (Saudi Arabia) in 2009. Geology, 43(5), 395–398. https://doi.org/10.1130/G36271.1 DOI: https://doi.org/10.1130/G36271.1
Molnar, P. (2020). The brittle-plastic transition, earthquakes, temperatures, and strain rates. Journal of Geophysical Research: Solid Earth, 125(7), e2019JB019335. https://doi.org/10.1029/2019JB019335 DOI: https://doi.org/10.1029/2019JB019335
Monsalve, G., McGovern, P., & Sheehan, A. (2009). Mantle fault zones beneath the Himalayan collision: Flexure of the continental lithosphere. Tectonophysics, 477(1–2), 66–76. https://doi.org/10.1016/j.tecto.2008.12.014 DOI: https://doi.org/10.1016/j.tecto.2008.12.014
Ōmori, F. (1894). On the after-shocks of earthquakes. Journal of the College of Science, Imperial University, Japan, 7(2).
Pallister, J. S., McCausland, W. A., Jónsson, S., Lu, Z., Zahran, H. M., Hadidy, S. E., Aburukbah, A., Stewart, I. C., Lundgren, P. R., White, R. A., & others. (2010). Broad accommodation of rift-related extension recorded by dyke intrusion in Saudi Arabia. Nature Geoscience, 3(10), 705–712. https://doi.org/10.1038/ngeo966 DOI: https://doi.org/10.1038/ngeo966
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., & others. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830. https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
Prieto, G. A., Froment, B., Yu, C., Poli, P., & Abercrombie, R. (2017). Earthquake rupture below the brittle-ductile transition in continental lithospheric mantle. Science Advances, 3(3), e1602642. https://doi.org/10.1126/sciadv.1602642 DOI: https://doi.org/10.1126/sciadv.1602642
Roberts, S. J., Husmeier, D., Rezek, I., & Penny, W. (1998). Bayesian approaches to Gaussian mixture modeling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(11), 1133–1142. https://doi.org/10.1109/34.730550 DOI: https://doi.org/10.1109/34.730550
Ross, Z. E., Ben-Zion, Y., White, M. C., & Vernon, F. L. (2016). Analysis of earthquake body wave spectra for potency and magnitude values: Implications for magnitude scaling relations. Geophysical Supplements to the Monthly Notices of the Royal Astronomical Society, 207(2), 1158–1164. https://doi.org/10.1093/gji/ggw327 DOI: https://doi.org/10.1093/gji/ggw327
Schulte-Pelkum, V., Monsalve, G., Sheehan, A. F., Shearer, P., Wu, F., & Rajaure, S. (2019). Mantle earthquakes in the Himalayan collision zone. Geology, 47(9), 815–819. https://doi.org/10.1016/j.epsl.2014.01.050 DOI: https://doi.org/10.1130/G46378.1
Song, X., & Klemperer, S. L. (2024). Numerous Tibetan lower-crustal and upper-mantle earthquakes, detected by Sn/Lg ratios, suggest crustal delamination or drip tectonics. Earth and Planetary Science Letters, 626, 118555. https://doi.org/10.1016/j.epsl.2023.118555 DOI: https://doi.org/10.1016/j.epsl.2023.118555
Stern, R. J., & Johnson, P. (2010). Continental lithosphere of the Arabian Plate: a geologic, petrologic, and geophysical synthesis. Earth-Science Reviews, 101(1–2), 29–67. https://doi.org/10.1016/j.earscirev.2010.01.002 DOI: https://doi.org/10.1016/j.earscirev.2010.01.002
Tang, Z., Julià, J., Zahran, H., & Mai, P. M. (2016). The lithospheric shear-wave velocity structure of Saudi Arabia: young volcanism in an old shield. Tectonophysics, 680, 8–27. https://doi.org/10.1016/j.tecto.2016.05.004 DOI: https://doi.org/10.1016/j.tecto.2016.05.004
Utsu, T. (1961). A statistical study on the occurrence of aftershocks. Geophys. Mag., 30, 521–605. https://cir.nii.ac.jp/crid/1572261550806321280
Wang, S., & Klemperer, S. L. (2021). Love-wave normal modes discriminate between upper-mantle and crustal earthquakes: Simulation and demonstration in Tibet. Earth and Planetary Science Letters, 571, 117089. https://doi.org/10.1016/j.epsl.2021.117089 DOI: https://doi.org/10.1016/j.epsl.2021.117089
White, R. A., & McCausland, W. A. (2019). A process-based model of pre-eruption seismicity patterns and its use for eruption forecasting at dormant stratovolcanoes. Journal of Volcanology and Geothermal Research, 382, 267–297. https://doi.org/10.1016/j.jvolgeores.2019.03.004 DOI: https://doi.org/10.1016/j.jvolgeores.2019.03.004
Wiemer, S., & McNutt, S. R. (1997). Variations in the frequency-magnitude distribution with depth in two volcanic areas: Mount St. Helens, Washington, and Mt. Spurr, Alaska. Geophysical Research Letters, 24(2), 189–192. https://doi.org/10.1029/96GL03779 DOI: https://doi.org/10.1029/96GL03779
Woods, J., Winder, T., White, R. S., & Brandsdóttir, B. (2019). Evolution of a lateral dike intrusion revealed by relatively-relocated dike-induced earthquakes: The 2014–15 Bárðarbunga–Holuhraun rifting event, Iceland. Earth and Planetary Science Letters, 506, 53–63. https://doi.org/10.1016/j.epsl.2018.10.032 DOI: https://doi.org/10.1016/j.epsl.2018.10.032
Xu, W., Jónsson, S., Corbi, F., & Rivalta, E. (2016). Graben formation and dike arrest during the 2009 Harrat Lunayyir dike intrusion in Saudi Arabia: Insights from InSAR, stress calculations and analog experiments. Journal of Geophysical Research: Solid Earth, 121(4), 2837–2851. https://doi.org/10.1002/2015JB012505 DOI: https://doi.org/10.1002/2015JB012505
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Alexander Blanchette, Simon Klemperer, Walter Mooney, Turki Sehli

This work is licensed under a Creative Commons Attribution 4.0 International License.