Nondestructive testing of railway embankments by measuring multi-modal dispersion of surface waves induced by high-speed trains with linear geophone arrays
DOI:
https://doi.org/10.26443/seismica.v4i1.1150Keywords:
Seismic interferometry, Ambient seismic noise, MASW, Inversion, Passive seismicAbstract
To effectively address engineering challenges and risks, it is crucial to characterize mechanical properties of near-surface environments. The Multichannel Analysis of Surface Waves (MASW) has proven to be a valuable active seismic imaging technique by providing near-surface shear (S)-wave velocities estimations. However, its application to urban areas requires further development. This study leverages well-constrained experimental sites to assess the viability of a passive-MASW technique, utilizing seismic waves induced by high-speed train traffic instead of conventional active sources. We suggest employing short 96-geophone uniform linear arrays to capture surface waves in a broad frequency band (10-200 Hz). Train passages are automatically detected and categorized regarding to the train travel direction. Seismic interferometry and phase-weighted stack techniques are applied to generate virtual shot-gathers that are transformed into high-resolution multi-modal dispersion images. Our results demonstrate a strong coherence between the picked dispersion curves from the passive-MASW approach and those obtained through traditional active MASW with a hammer source. We discuss the validity of higher modes and explore array density limits to ensure reliable results. Our findings highlight that seismic interferometry, coupled with a high phase-weighted stack power, effectively recovers energy at high frequencies, enhancing the characterization of multi-modal surface-wave dispersion associated with thin near-surface layers.
References
Aki, K., & Richards, P. G. (1981). Quantitative Seismology, Theory and Methods. Geological Magazine, 118(2), 208. https://doi.org/10.1017/S0016756800034439
Aki, Keiiti. (1957). Space and Time Spectra of Stationary Stochastic Waves, with Special Reference to Microtremors. Bulletin of the Earthquake Research Institute, 35, 415–456.
Artagan, S. S., Bianchini Ciampoli, L., D’Amico, F., Calvi, A., & Tosti, F. (2020). Non-destructive Assessment and Health Monitoring of Railway Infrastructures. Surveys in Geophysics, 41(3), 447–483. https://doi.org/10.1007/s10712-019-09544-w
Bakulin, A., & Calvert, R. (2006). The virtual source method: Theory and case study. Geophysics, 71(4), SI139–SI150. https://doi.org/10.1190/1.2216190
Bardainne, T., Cai, C., Rebert, T., Tarnus, R., & Allemand, T. (2023). Passive Seismic Monitoring Using Trains as Sources to Characterize Near-Surface and Prevent Sinkholes. 2023(1), 1–5. https://doi.org/10.3997/2214-4609.2023101262
Bardainne, T., & Rondeleux, B. (2018). Method and device for monitoring the subsoil of the earth under a target zone [Patent]. https://patents.google.com/patent/WO2020021177A1/en?inventor=Bardainne&oq=Bardainne
Bardainne, T., Tarnus, R., Vivin, L., Cai, C., Rebert, T., Allemand, T., & Toubiana, H. (2023). Stimulated Noise and Surface Wave Interferometry Processing for Hybrid Seismic Imaging. 2023(1), 1–5. https://doi.org/10.3997/2214-4609.202320206
Bardainne, T., Vivin, L., & Tarnus, R. (2023). Railway Near-Surface Passive Seismic Using Trains as Sources and Fiber Optic Monitoring. 2023(1), 1–5. https://doi.org/10.3997/2214-4609.202320093
Bardainne, Thomas, Tarnus, R., Deladerriere, N., Hallier, A., Boisson-Gaboriau, J., Valentin, J., Cai, C., & Bouhdiche, O. (2022). Permanent passive seismic monitoring of the near-surface ground beneath railways using trains as sources. 1, 14. https://doi.org/doi:10.4203/ccc.1.10.14
Barmin, M. P., Ritzwoller, M. H., & Levshin, A. L. (2001). A Fast and Reliable Method for Surface Wave Tomography. Pure and Applied Geophysics, 158(8), 1351–1375. https://doi.org/10.1007/PL00001225
Barta, J. (2010). A methodology for geophysical investigation of track defects. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 224(4), 237–244. https://doi.org/10.1243/09544097JRRT331
Behm, M., Leahy, G. M., & Snieder, R. (2014). Retrieval of local surface wave velocities from traffic noise - an example from the La Barge basin (Wyoming): Retrieval of local surface wave velocities from traffic noise. Geophysical Prospecting, 62(2), 223–243. https://doi.org/10.1111/1365-2478.12080
Bensen, G. D., Ritzwoller, M. H., Barmin, M. P., Levshin, A. L., Lin, F., Moschetti, M. P., Shapiro, N. M., & Yang, Y. (2007). Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophysical Journal International, 169(3), 1239–1260. https://doi.org/10.1111/j.1365-246X.2007.03374.x
Bensen, G. D., Ritzwoller, M. H., & Shapiro, N. M. (2008). Broadband ambient noise surface wave tomography across the United States. Journal of Geophysical Research: Solid Earth, 113(B5). https://doi.org/10.1029/2007JB005248
Bergamo, P., Boiero, D., & Socco, L. V. (2012). Retrieving 2D structures from surface-wave data by means of space-varying spatial windowing. Geophysics, 77(4), EN39–EN51. https://doi.org/10.1190/geo2012-0031.1
Bergamo, P., Dashwood, B., Uhlemann, S., Swift, R., Chambers, J. E., Gunn, D. A., & Donohue, S. (2016). Time-lapse monitoring of climate effects on earthworks using surface waves. Gephysics, 81(2), EN1–EN15. https://doi.org/10.1190/geo2015-0275.1
Bergamo, P., & Socco, L. V. (2016). P- and S-wave velocity models of shallow dry sand formations from surface wave multimodal inversion. Geophysics, 81(4), R197–R209. https://doi.org/10.1190/geo2015-0542.1
Bodet, L., Abraham, O., & Clorennec, D. (2009). Near-offset effects on Rayleigh-wave dispersion measurements: Physical modeling. Journal of Applied Geophysics, 68(1), 95–103. https://doi.org/https://doi.org/10.1016/j.jappgeo.2009.02.012
Bodet, Ludovic. (2019). Surface waves modelling and analysis in media of increasing degrees of complexity.
Bodet, Ludovic, Dhemaied, A., Martin, R., Mourgues, R., Rejiba, F., & Tournat, V. (2014). Small-scale physical modeling of seismic-wave propagation using unconsolidated granular media. Geophysics, 79(6), T323–T339. https://doi.org/10.1190/geo2014-0129.1
Bodet, Ludovic, Rahmania, I., Kyrkou, K., Wacquier, L., Dangeard, M., Pasquet, S., Vitale, Q., Dhemaied, A., Boisson-Gaboriau, J., & Nebieridze, S. (2017). Estimation in situ des variations de propriétés mécaniques de la plateforme ferroviaire par ondes sismiques de surface. SNCF Réseau - CNRS - UPMC.
Bohlen, T., Kugler, S., Klein, G., & Theilen, F. (2004). 1.5D inversion of lateral variation of Scholte-wave dispersion. Geophysics, 69(22), 330–344. https://doi.org/10.1190/1.1707052
Boiero, D., & Socco, L. V. (2010). Retrieving lateral variations from surface wave dispersion curves. Geophysical Prospecting. https://doi.org/10.1111/j.1365-2478.2010.00877.x
Boiero, D., & Socco, L. V. (2011). The meaning of surface wave dispersion curves in weakly laterally varying structures. Near Surface Geophysics, 9(6), 561–570. https://doi.org/10.3997/1873-0604.2011042
Boiero, D., Wiarda, E., & Vermeer, P. (2013). Surface- and guided-wave inversion for near-surface modeling in land and shallow marine seismic data. The Leading Edge, 32(6), 638–646. https://doi.org/10.1190/tle32060638.1
Boisson-Gaboriau, J., Dhemaied, A., Rahmania, I., Bodet, L., Pasquet, S., Brand, L., Calon, N., Terpereau, J. M., & Kahil, S. (2016). Etude géophysique, géotechnique te historique d’une voie ferrée sur sol tourbeux.
Boué, P., & Paul, A. (2020). Imagerie sismique par corrélation de bruit ambiant : du laboratoire à l’échelle globale. Reflets de la physique, 64, 12–16. https://doi.org/10.1051/refdp/202064012
Brenguier, F., Boué, P., Ben-Zion, Y., Vernon, F., Johnson, C. W., Mordret, A., Coutant, O., Share, P.-E., Beaucé, E., Hollis, D., & Lecocq, T. (2019). Train Traffic as a Powerful Noise Source for Monitoring Active Faults With Seismic Interferometry. Geophysical Research Letters, 46(16), 9529–9536. https://doi.org/10.1029/2019GL083438
Burzawa, A., Bodet, L., Dhemaied, A., Dangeard, M., Pasquet, S., Vitale, Q., Boisson-Gaboriau, J., & Cui, Y. J. (2023). Detecting mechanical property anomalies along railway earthworks by Bayesian appraisal of MASW data. Construction and Building Materials, 404, 133224. https://doi.org/10.1016/j.conbuildmat.2023.133224
Cheng, F., Xia, J., Behm, M., Hu, Y., & Pang, J. (2019). Automated Data Selection in the Tau–p Domain: Application to Passive Surface Wave Imaging. Surveys in Geophysics, 40. https://doi.org/10.1007/s10712-019-09530-2
Cheng, F., Xia, J., Luo, Y., Xu, Z., Wang, L., Shen, C., Liu, R., Pan, Y., Mi, B., & Hu, Y. (2016). Multichannel analysis of passive surface waves based on crosscorrelations. Geophysics, 81(5), EN57–EN66. https://doi.org/10.1190/geo2015-0505.1
Cheng, F., Xia, J., & Xi, C. (2023). Artifacts in High-Frequency Passive Surface Wave Dispersion Imaging: Toward the Linear Receiver Array. Surveys in Geophysics. https://doi.org/10.1007/s10712-023-09772-1
Cheng, F., Xia, J., Xu, Y., Xu, Z., & Pan, Y. (2015). A new passive seismic method based on seismic interferometry and multichannel analysis of surface waves. Journal of Applied Geophysics, 117, 126–135. https://doi.org/10.1016/j.jappgeo.2015.04.005
Cheng, F., Xia, J., Xu, Z., Hu, Y., & Mi, B. (2018). Frequency–Wavenumber (FK)-Based Data Selection in High-Frequency Passive Surface Wave Survey. Surveys in Geophysics, 39(4), 661–682. https://doi.org/10.1007/s10712-018-9473-3
Czarny, R., Zhu, T., & Shen, J. (2023). Spatiotemporal evaluation of Rayleigh surface wave estimated from roadside dark fiber DAS array and traffic noise. Seismica, 2(22). https://doi.org/10.26443/seismica.v2i2.247
Derode, A., Larose, E., Tanter, M., de Rosny, J., Tourin, A., Campillo, M., & Fink, M. (2003). Recovering the Green’s function from field-field correlations in an open scattering medium (L). The Journal of the Acoustical Society of America, 113(6), 2973–2976. https://doi.org/10.1121/1.1570436
Donohue, S., Gavin, K., & Tolooiyan, A. (2011). Geophysical and geotechnical assessment of a railway embankment failure. Near Surface Geophysics, 9(1), 33–44. https://doi.org/10.3997/1873-0604.2010040
Fontul, S., Mínguez, R., Solla, M., & Santos-Assunçao, S. (2016). The Use of Geophysics for the Condition Assessment of Railway Infrastructure. In Non-Destructive Techniques for the Evaluation of Structures and Infrastructure (pp. 195–212). https://doi.org/10.1201/b19024-13
Foti, S., Hollender, F., Garofalo, F., Albarello, D., Asten, M., Bard, P.-Y., Comina, C., Cornou, C., Cox, B., Di Giulio, G., Forbriger, T., Hayashi, K., Lunedei, E., Martin, A., Mercerat, D., Ohrnberger, M., Poggi, V., Renalier, F., Sicilia, D., & Socco, V. (2018). Guidelines for the good practice of surface wave analysis: a product of the InterPACIFIC project. Bulletin of Earthquake Engineering, 16(6), 2367–2420. https://doi.org/10.1007/s10518-017-0206-7
Gabriels, P., Snieder, R., & Nolet, G. (1987). In Situ Measurements of Shear-Wave Velocity in Sediments with Higher-Mode Rayleigh Waves. Geophysical Prospecting, 35(2), 187–196. https://doi.org/10.1111/j.1365-2478.1987.tb00812.x
Haddani, Y., Breul, P., Saussine, G., Navarrete, M. A. B., Ranvier, F., & Gourvès, R. (2016). Trackbed Mechanical and Physical Characterization using PANDA®/Geoendoscopy Coupling. Procedia Engineering, 143, 1201–1209. https://doi.org/10.1016/j.proeng.2016.06.118
Hayashi, K., Craig, M., Kita, T., & Inazaki, T. (2015). CMP spatial autocorrelation analysis of multichannel passive surface-wave data. In SEG Technical Program Expanded Abstracts 2015 (pp. 2200–2204). https://doi.org/10.1190/segam2015-5913708.1
Jongmans, D., & Demanet, D. (1993). The importance of surface waves in vibration study and the use of Rayleigh waves for estimating the dynamic characteristics of soils. Engineering Geology, 34(1), 105–113. https://doi.org/10.1016/0013-7952(93)90046-F
Kanasewich, E. R., Hemmings, C. D., & Alpaslan, T. (1973). Nth‐root stack nonlinear multichannel filter. Geophysics, 38(2), 327–338. https://doi.org/10.1190/1.1440343
Lai, C. G., Rix, G. J., Foti, S., & Roma, V. (2002). Simultaneous measurement and inversion of surface wave dispersion and attenuation curves. Soil Dynamics and Earthquake Engineering, 22(9), 923–930. https://doi.org/10.1016/S0267-7261(02)00116-1
Larose, E., Carrière, S., Voisin, C., Bottelin, P., Baillet, L., Guéguen, P., Walter, F., Jongmans, D., Guillier, B., Garambois, S., Gimbert, F., & Massey, C. (2015). Environmental seismology: What can we learn on earth surface processes with ambient noise? Journal of Applied Geophysics, 116, 62–74. https://doi.org/10.1016/j.jappgeo.2015.02.001
Lavoué, F., Coutant, O., Boué, P., Pinzon‐Rincon, L., Brenguier, F., Brossier, R., Dales, P., Rezaeifar, M., & Bean, C. J. (2020). Understanding Seismic Waves Generated by Train Traffic via Modeling: Implications for Seismic Imaging and Monitoring. Seismological Research Letters, 92(1), 287–300. https://doi.org/10.1785/0220200133
Le Feuvre, M., Joubert, A., Leparoux, D., & Cote, P. (2015). Passive multi-channel analysis of surface waves with cross-correlations and beamforming. Application to a sea dike. Journal of Applied Geophysics, 114, pp.36-51. https://doi.org/10.1016/j.jappgeo.2014.12.014
McFadden, P. L., Drummond, B. J., & Kravis, S. (1986). The Nth‐root stack: Theory, applications, and examples. Geophysics, 51(10), 1879–1892. https://doi.org/10.1190/1.1442045
McMechan, G. A., & Yedlin, M. J. (1981). Analysis of dispersive waves by wave field transformation. Geophysics, 46(6), 869–874. https://doi.org/10.1190/1.1441225
Mi, B., Xia, J., Tian, G., Shi, Z., Xing, H., Chang, X., Xi, C., Liu, Y., Ning, L., Dai, T., Pang, J., Chen, X., Zhou, C., & Zhang, H. (2022). Near-surface imaging from traffic-induced surface waves with dense linear arrays: An application in the urban area of Hangzhou, China. Geophysics, 87(2), B145–B158. https://doi.org/10.1190/geo2021-0184.1
Mi, B., Xia, J., Xu, Y., You, B., & Chen, Y. (2023). Retrieval of surface waves from high-speed-train-induced vibrations using seismic interferometry. Geophysics. https://doi.org/10.1190/geo2022-0603.1
Mokhtar, T. A., Herrmann, R. B., & Russell, D. R. (1988). Seismic velocity and Q model for the shallow structure of the Arabian shield from short‐period Rayleigh waves. Geophysics, 53(11), 1379–1387. https://doi.org/10.1190/1.1442417
Mordret, A., Landès, M., Shapiro, N. M., Singh, S. C., Roux, P., & Barkved, O. I. (2013). Near-surface study at the Valhall oil field from ambient noise surface wave tomography. Geophysical Journal International, 193(3), 1627–1643. https://doi.org/10.1093/gji/ggt061
Narayanan, R. M., Jakub, J. W., Li, D., & Elias, S. E. G. (2004). Railroad track modulus estimation using ground penetrating radar measurements. NDT & E International, 37(2), 141–151. https://doi.org/10.1016/j.ndteint.2003.05.003
Nazarian, S., Stokoe, K., & Hudson, W. (1983). Use of Spectral Analysis of Surface Waves Method for Determination of Moduli and Thicknesses of Pavement Systems. Transportation Research Record.
Nebieridze, S. (2011). L’apport de la géophysique à la géotechnique – L’expérience de la station d’essais géophysiques sur la LGV Nord. Revue Française de Géotechnique, 134–135. https://doi.org/10.1051/geotech/2011134037
Nebieridze, S. (2017). L’apport de la géophysique à la géotechnique – L’expérience de la station d’essais géophysiques sur la LGV Nord. Revue Française de géotechnique, 134–135. https://doi.org/10.1051/geotech/2011134037
Ning, L., Xia, J., Dai, T., Liu, Y., Zhang, H., & Xi, C. (2022). High-Frequency Surface-Wave Imaging from Traffic-Induced Noise by Selecting In-line Sources. Surveys in Geophysics, 43(6), 1873–1899. https://doi.org/10.1007/s10712-022-09723-2
O’Connell, D. R. H., & Turner, J. P. (2011). Interferometric Multichannel Analysis of Surface Waves (IMASW). Bulletin of the Seismological Society of America, 101(5), 2122–2141. https://doi.org/10.1785/0120100230
Okada, K., & Ghataora, G. S. (2002). Use of cyclic penetration test to estimate the stiffness of railway subgrade. NDT & E International, 35(2), 65–74. https://doi.org/10.1016/S0963-8695(01)00036-6
O’Neill, A. (2003). Full-waveform reflectivity for modeling, inversion and appraisal of seismic surface wave dispersion in shallow site investigations [Phdthesis]. University of Western Australia.
O’Neill, A., Dentith, M., & List, R. (2003). Full-waveform P-SV reflectivity inversion of surface waves for shallow engineering applications. Exploration Geophysics, 34. https://doi.org/10.1071/EG03158
Park, C. B., & Miller, R. D. (2008). Roadside Passive Multichannel Analysis of Surface Waves (MASW). Journal of Environmental and Engineering Geophysics, 13(1), 1–11. https://doi.org/10.2113/JEEG13.1.1
Park, C. B., Miller, R. D., & Xia, J. (1998). Imaging dispersion curves of surface waves on multi-channel record. Seg Technical Program Expanded Abstracts, 1377–1380. https://api.semanticscholar.org/CorpusID:7965198
Park, C. B., Miller, R. D., & Xia, J. (1999). Multichannel analysis of surface waves. Geophysics, 64(3), 800–808. https://doi.org/10.1190/1.1444590
Park, C., Miller, R., Laflen, D., Neb, C., Ivanov, J., Bennett, B., & Huggins, R. (2004). Imaging dispersion curves of passive surface waves. In SEG Technical Program Expanded Abstracts 2004 (pp. 1357–1360). https://doi.org/10.1190/1.1851112
Pasquet, S., & Bodet, L. (2017). SWIP: An integrated workflow for surface-wave dispersion inversion and profiling. Geophysics, 82(6), WB47–WB61. https://doi.org/10.1190/geo2016-0625.1
Quiros, D. A., Brown, L. D., & Kim, D. (2016). Seismic interferometry of railroad induced ground motions: body and surface wave imaging. Geophysical Journal International, 205(1), 301–313. https://doi.org/10.1093/gji/ggw033
Rayleigh, Lord. (1885). On Waves Propagated along the Plane Surface of an Elastic Solid. Proceedings of the London Mathematical Society, s1-17(1), 4–11. https://doi.org/10.1112/plms/s1-17.1.4
Rebert, T., Allemand, T., Bardainne, T., Cai, C., & Chauris, H. (2023). Seismic emissions from a passing train: turning ambient noise into a controlled source. EGU General Assembly Conference Abstracts, eGU-7289. https://doi.org/10.5194/egusphere-egu23-7289
Rebert, T., Bardainne, T., Allemand, T., Cai, C., & Chauris, H. (2024a). Characterization of train kinematics and source wavelets from near-field seismic data. Geophysical Journal International, 237(2), 697–715. https://doi.org/10.1093/gji/ggae067
Rebert, Théo., Bardainne, T., Cai, C., Allemand, T., & Chauris, H. (2024b). Matched Field Processing of train vibrations for opportunistic surface wave tomography. EGU General Assembly Conference Abstracts, e18405. https://doi.org/10.5194/egusphere-egu24-18405
Rezaeifar, M., Lavoué, F., Maggio, G., Xu, Y., Bean, C. J., Pinzon-Rincon, L., Lebedev, S., & Brenguier, F. (2023). Imaging shallow structures using interferometry of seismic body waves generated by train traffic. Geophysical Journal International, 233(2), 964–977. https://doi.org/10.1093/gji/ggac507
Rhayma, N., Bressolette, Ph., Breul, P., Fogli, M., & Saussine, G. (2013). Reliability analysis of maintenance operations for railway tracks. Reliability Engineering & System Safety, 114, 12–25. https://doi.org/10.1016/j.ress.2012.12.007
Ritzwoller, M. H., & Levshin, A. L. (1998). Eurasian surface wave tomography: Group velocities. Journal of Geophysical Research: Solid Earth, 103(B3), 4839–4878. https://doi.org/10.1029/97JB02622
Sambridge, M. (1999). Geophysical inversion with a neighbourhood algorithm—I. Searching a parameter space. Geophysical Journal International, 138(2), 479–494. https://doi.org/10.1046/j.1365-246X.1999.00876.x
Schimmel, M., & Paulssen, H. (1997). Noise reduction and detection of weak, coherent signals through phase-weighted stacks. Geophysical Journal International, 130(2), 497–505. https://doi.org/10.1111/j.1365-246X.1997.tb05664.x
Shapiro, N., & Campillo, M. (2004). Emergence of broadband Rayleigh waves from correlations of the ambient noise. Geophysical Research Letters, 8180. https://doi.org/10.1029/2004GL019491
Sheng, Y., Mordret, A., Brenguier, F., Boué, P., Vernon, F., Takeda, T., Aoki, Y., Taira, T., & Ben‐Zion, Y. (2023). Seeking Repeating Anthropogenic Seismic Sources: Implications for Seismic Velocity Monitoring at Fault Zones. Journal of Geophysical Research: Solid Earth, 128. https://doi.org/10.1029/2022JB024725
Snieder, R. (2004). Extracting the Green’s function from the correlation of coda waves: A derivation based on stationary phase. Physical Review E, 69(4), 046610. https://doi.org/10.1103/PhysRevE.69.046610
Socco, L. V., Boiero, D., Foti, S., & Wisén, R. (2009). Laterally constrained inversion of ground roll from seismic reflection records. Geophysics, 74(6), G35–G45. https://doi.org/10.1190/1.3223636
Socco, L. V., Foti, S., & Boiero, D. (2010). Surface-wave analysis for building near-surface velocity models — Established approaches and new perspectives. Geophysics, 75(5), 75A83-75A102. https://doi.org/10.1190/1.3479491
Socco, L. v., & Strobbia, C. (2004). Surface-wave method for near-surface characterization: a tutorial. Near Surface Geophysics, 2(4), 165–185. https://doi.org/10.3997/1873-0604.2004015
Talfumière, V., & Nebieridze, S. (2008). Utilisation du bruit ambiant comme source sismique pour détecter des cavités - Gare de l’Est. Journées Nationales de Géotechnique et de Géologie de l’Ingénieur JNGG’08. https://www.cfmr-roches.org/sites/default/files/jngg/JNGG%202008%20pp%20369-376%20Talfumiere.pdf
Tarnus, R., Bardainne, T., Michel, L., Deladerrière, N., & Cai, C. (2022). A case study for railway underground imaging using trains as seismic signal for sinkhole and subsidence phenomena prevention. 1, 13. https://doi.org/10.4203/ccc.1.10.13
Tarnus, R., Bardainne, T., Michel, L., Deladerriere, N., Cai, C., Hallier, A., & Boisson-Gaboriau, J. (2022). A Case Study for Underground Imaging Using Trains as Seismic Signal to Investigate Subsidence Phenomena. 2022(1), 1–5. https://doi.org/10.3997/2214-4609.202220033
Thurber, C., Zeng, X., Thomas, A., & Audet, P. (2014). Phase-Weighted Stacking Applied to Low-Frequency Earthquakes. Bulletin of the Seismological Society of America, 104, 2567–2572. https://doi.org/10.1785/0120140077
Wapenaar, K. (2004). Retrieving the Elastodynamic Green’s Function of an Arbitrary Inhomogeneous Medium by Cross Correlation. Physical Review Letters, 93(25), 254301. https://doi.org/10.1103/PhysRevLett.93.254301
Wapenaar, K., Draganov, D., Snieder, R., Campman, X., & Verdel, A. (2010). Tutorial on seismic interferometry. Part I: Basic principles and applications. Geophysics, 75, 75A195-75209. https://doi.org/10.1190/1.3457445
Wapenaar, K., Slob, E., Snieder, R., & Curtis, A. (2010). Tutorial on seismic interferometry: Part 2 — Underlying theory and new advances. Geophysics, 75, 75A211-75227. https://doi.org/10.1190/1.3463440
Wathelet, M. (2008). An improved neighborhood algorithm: Parameter conditions and dynamic scaling. Geophysical Research Letters, 35(9). https://doi.org/10.1029/2008GL033256
Weaver, R. L., & Lobkis, O. I. (2004). Diffuse fields in open systems and the emergence of the Green’s function (L). The Journal of the Acoustical Society of America, 116(5), 2731–2734. https://doi.org/10.1121/1.1810232
Xia, J., Miller, R. D., & Park, C. B. (1999). Estimation of near‐surface shear‐wave velocity by inversion of Rayleigh waves. Geophysics, 64(3), 691–700. https://doi.org/10.1190/1.1444578
Xu, Y., Zhang, B., Luo, Y., & Jianghai Xia. (2013). Surface-wave observations after integrating active and passive source data. The Leading Edge, 32(6), 634–637. https://doi.org/10.1190/tle32060634.1
Yang, X., Bryan, J., Okubo, K., Jiang, C., Clements, T., & Denolle, M. A. (2023). Optimal stacking of noise cross-correlation functions. Geophysical Journal International, 232(3), 1600–1618. https://doi.org/10.1093/gji/ggac410
Yao, H., van Der Hilst, R. D., & de Hoop, M. V. (2006). Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis — I. Phase velocity maps. Geophysical Journal International, 166(2), 732–744. https://doi.org/10.1111/j.1365-246X.2006.03028.x
You, B., Mi, B., Guan, B., Zhang, H., & Liu, Y. (2023). High-quality surface wave retrieval from vibrations generated by high-speed trains moving on viaducts. Journal of Applied Geophysics, 212, 105005. https://doi.org/10.1016/j.jappgeo.2023.105005
Zywicki, D. J., & Glenn J. Rix. (2005). Mitigation of Near-Field Effects for Seismic Surface Wave Velocity Estimation with Cylindrical Beamformers. Journal of Geotechnical and Geoenvironmental Engineering, 131(8), 970–977. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:8(970)
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 José Cunha Teixeira, Ludovic Bodet, Marine Dangeard, Alexandrine Gesret, Amélie Hallier, Agnès Rivière, Audrey Burzawa, Julio José Cárdenas Chapellín, Marie Fonda, Ramon Sanchez Gonzalez, Amine Dhemaied, Joséphine Boisson Gaboriau

This work is licensed under a Creative Commons Attribution 4.0 International License.