Seismic site conditions of RESNOM network

Authors

DOI:

https://doi.org/10.26443/seismica.v3i2.1151

Keywords:

HVSR method, RESNOM, Seismic noise, Site-Conditions parameters, Vs30

Abstract

The Northwest Seismic Network of Mexico (RESNOM) is operated by personnel from the Center for Scientific Research and Higher Education of Ensenada, Baja California (CICESE), which supervises station installation, improvement, and maintenance. We employed seismic noise and the Horizontal to Vertical Spectral Ratio (HVSR) method to determine, for each station, the following site condition parameters: the depth of the rock layer (Heng_bed), and the geotechnical parameter VS30, obtained from 1D shear wave velocity models. Other parameters as the fundamental frequency (f0) and the average amplitude at the fundamental frequency (A0) were also estimated. Our results show clear differences between the values obtained for the Mexicali Valley and the Peninsular ranges regions. The VS30obtained for stations of the Mexicali Valley region falls in the range from 173 m/s to 535 m/s, while for the Peninsular Ranges region is between 213 m/s and 958 m/s. Regarding the Heng_bed parameter, the values are similar between both regions, from 23 m to 850 m for the Peninsular and from 42 m to 926 m for the Mexicali Valley. Additionally, from the VS30 values, we propose the site classification according to the U.S. National Earthquake Hazards Reduction Program (NEHRP).

References

Arintalofa, V., Yuliyanto, G., & Harmoko, U. (2020). Subsurface characterization of Diwak-Derekan geothermal field by HVSR analysis method based on microtremor data. AIP Conference Proceedings, 2296, 20057. https://doi.org/10.1063/5.0030356 DOI: https://doi.org/10.1063/5.0030356

Atakan, K., Bard, P.-Y., Kind, F., Moreno, B., Roquette, P., Tento, A., & Team, S. (2004). J-SESAME: a standardized software solution for the h/v spectral ratio technique. 13th World Conference on Earthquake Engineering.

Ávila-Barrientos, L., & Castro, R. R. (2016). Site Response of the NARS-Baja and RESBAN Broad-band Network of the Gulf of California, México. Geofísica Internacional, 55–2, 131–154. DOI: https://doi.org/10.22201/igeof.00167169p.2016.55.2.1717

Ávila-Barrientos, L., Yegres-Herrera, L., Aragón, A., Rodríguez-Corella, & Cruz-Berumén, A. (2023). Caracterización del deslizamiento de ladera de la colonia Vista Alamar. https://doi.org/url{https://geos.cicese.mx/index.php/geos/article/view/69}

Bard, P.-Y. (1999). Microtremor Measurements: A Tool for site effect estimation? In K. Irikura, Okada, & Sasatani (Eds.), The Effects of Surface Geology on Seismic Motion (pp. 1251–1279).

Bard, P.-Y. (2021). Physics-based site-amplification prediction equations: a dream at reach? 6th IASPEI/IAEE International Symposium: Effects of Surface Geology on Seismic Motion.

Bergamo, P., Hammer, C., & Fah, D. (2021). On the relation between empirical amplification and proxies measured at swiss and japanese stations: systematic regression analysis and neural network prediction of amplification. Bulletin of the Seismological Society of America, 111(1), 101–120. https:// DOI: https://doi.org/10.1785/0120200228

Bergamo, P., Perron, V., Hammer, C., Faeh, D., & Panzera, F. (2019). Assessing the Sensitivity of Site Condition Parameters towards seismic local Amplification and their potential Use for Site Response Prediction. 17th Swiss Geoscience Meeting, Fribourg, 2. https://doi.org/10.3929/ETHZ-B-000390366

Bonnefoy-Claudet, S., Cornou, C., Bard, P.-Y., Cotton, F., Moczo, P., Kristek, J., & Fäh, D. (2006). H/V ratio: a tool for site effects evaluation. Results form 1-D noise simulation. Geophysical Journal International, 167, 2, 827–837. https://doi.org/10.1111/j.1365-246X.2006.03154.x DOI: https://doi.org/10.1111/j.1365-246X.2006.03154.x

Bonnefoy-Claudet, S., Cotton, F., & Bard, P.-Y. (2006). The nature of noise wavefield and its applications for site effects studies. Earth Science Reviews, 79, 3–4, 205–227. https://doi.org/10.1016/j.earscirev.2006.07.004 DOI: https://doi.org/10.1016/j.earscirev.2006.07.004

Borcherdt, R. D. (1992). Simplified site classes and empirical amplification factors for site-dependent code provisions. In NCEER, SEAOC, BSSC workshop on site response during earthquakes and seismic code provisions, Univ.

Borcherdt, R. D. (1994). Estimates of site-dependent response spectra for design (methodology and justification. Earthquake Spectra, 10(4), 617–653. DOI: https://doi.org/10.1193/1.1585791

Cadet, H., Bard, P.-Y., Duval, A. M., & Bertrand, E. (2012). Site effect assessment using KiK-net data: Part 2—Site amplification prediction equation based on f 0 and VSZ. Bulletin of Earthquake Engineering, 10, 451–489. DOI: https://doi.org/10.1007/s10518-011-9298-7

Cadet, H., Bard, P.-Y., & Rodriguez-Marek, A. (2012). Site effect assessment using KiK-net data: Part 1— A simple correction procedure for surface/downhole spectral ratios. Bulletin of Earthquake Engineering, 10, 421–448. DOI: https://doi.org/10.1007/s10518-011-9283-1

Castro, R. R., Mendoza, L. H., Inzunza, L., & Group, R. E. S. N. O. M. W. (2001). Microtremor observations from the seismic network RESNOM of Baja California, Mexico. Bolletino Di Geofisica Teorica Ed Applicata, 42, 245–254.

CICESE. (1980). Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE) Ensenada Baja California, México. In Red Sísmica del Noroeste de México. https://doi.org/10.7914/SN/BC

Cornou, C., & Bard, P.-Y. (2019). Seismology and Earthquake Engineering Research Infrastructure Alliance for Europe – SERA, European strong ground motion characterization road map. WP7 Networking databases of site and station characterization. ETH Department of Earth Sciences.

Cultrera, G., Cornou, C., Giulio, G., & Bard, P.-Y. (2021). Indicators for site characterization at seismic station: recommendation from a dedicated survey. Bulletin of Earthquake Engineering, 19, 4171–4195. https://doi.org/10.1007/s10518-021-01136-7 DOI: https://doi.org/10.1007/s10518-021-01136-7

Delgado-Argote, L. A., Hinojosa-Corona, A., Aragón-Arreola, M., & Frías-Camacho, V. M. (1996). Estudio de riesgo reológico en Tijuana, Baja California con base en rasgos estructurales y la respuesta del terreno. GEOS, 16(2), 57–89.

EC8. (2004). Eurocode 8: design of structures for earthquake resistance - Part 1: General rules, seismic actions and rules for buildings, EN 1998‐1, Draft 6, Doc CEN/TC250/SC8/N335, European Committee for Standardization (CEN.

Fäh, D., Wathelet, M., Kristekova, M., Havenith, H., Endrun, B., Stamm, G., Poggi, V., Burjanek, J., & Cornou, C. (2009). Using ellipticity information for site characterisation [Techreport].

Flores, H., Malischewsky, P., & Jentzsch, G. (2013). H/V spectral ratio analysis and Rayleigh modelization in Eastern Thuringia, Germany. Geofísica Internacional, 52–4, 355–364. DOI: https://doi.org/10.1016/S0016-7169(13)71482-X

Flores-Estrella, H. (2001). Métodos alternos para la estimación del efecto de sitio a partir de registros de microtremores. In División de Estudios de Ciencias de la Tierra, Facultad de Ingeniería, UNAM. Bachelor Thesis. In Spanish.

Gastil, G. (1985). Terranes of peninsular California and adjacent Sonora.

Gastil, R. G., Phillips, R. P., & Allison, E. C. (1975). Reconnaissance Geology of the State of Baja California. Geological Society of America. https://doi.org/10.1130/MEM140-p1 DOI: https://doi.org/10.1130/MEM140-p1

Giulio, G., Cultrera, G., Cornou, C., Bard, P.-Y., & Al Tfaily, B. (2021). Quality assessment for site characterization at seismic stations. Bulletin of Earthquake Engineering, 19, 4643–4691. https://doi.org/10.1007/s10518-021-01137-6 DOI: https://doi.org/10.1007/s10518-021-01137-6

Gosselin, J. M., Dosso, S. E., Askan, A., Wathelet, M., Savvaidis, A., & Cassidy, J. F. (2022). A review of inverse methods in seismic site characterization. J Seismol 26 (pp. 781–821). https://doi.org/10.1007/s10950-021-10047-8 DOI: https://doi.org/10.1007/s10950-021-10047-8

Hauksson, E., Helmberger, D., Hutton, K., Kanamori, H., Wei, S., Yang, W., Vidal, A., Munguía, L., Díaz, G., & Farfán, F. (2010). Preliminary seismotectonic synthesis of the 2010 Mw7. In 2 El Mayor-Cucapah earthquake sequence.

Hollender, F., Cornou, C., Dechamo, A., Oghalaei, K., Renalier, F., & Maufroy, E. (2018). Characterization of site conditions (soil class, VS30, velocity profiles) for 33 stations from the French permanent accelerometric network (RAP) using surface wave methods. Bulletin of Earthquake Engineering, 16, 2337–2365. https://doi.org/10.1007/s10518-017-0135-5 DOI: https://doi.org/10.1007/s10518-017-0135-5

I.N.E.G.I. (2023). Instituto%20Nacional%20de%20Estadística%20y%20Geografía. https://www.inegi.org.mx/

Kimbrough, D. L., Smith, D. P., Mahoney, J. B., Moore, T. E., Grove, M., Gastil, R. G., Ortega-Rivera, A., & Fanning, C. M. (2001). Forearc-basin sedimentary response to rapid Late Cretaceous batholith emplacement in the Peninsular Ranges of southern and Baja California. Geological Society of America, 29(6), 491–494. DOI: https://doi.org/10.1130/0091-7613(2001)029<0491:FBSRTR>2.0.CO;2

Knapmeyer-Endrun, B., Golombek, M. P., & Ohrnberger, M. (2017). Rayleigh Wave Ellipticity Modeling and Inversion for Shallow Structure at the Proposed InSight Landing Site in Elysium Planitia. Mars. Space Sci, Rev 211, 339–382. https://doi.org/10.1007/s11214-016-0300-1 DOI: https://doi.org/10.1007/s11214-016-0300-1

Kristekova, M. (2006). Time-frequency analysis of seismic signals [Ph.D. thesis,]. Slovak Academy of Sciences.

Krummenacher, D., Gastil, R. G., Bushee, J., & Doupont, J. (1975). K-Ar Apparent Ages, Peninsular Ranges Batholith, Southern California and Baja California. Geological Society of American Bulletin, V. 86(50605), 760-768,. DOI: https://doi.org/10.1130/0016-7606(1975)86<760:KAAPRB>2.0.CO;2

Lardies, J., & Gouttebroze, S. (2002). Identification of modal parameters using the wavelet transform. Int. J. Mech, Sci. 44, 2263–2283. DOI: https://doi.org/10.1016/S0020-7403(02)00175-3

Lermo, J., & Chávez-García, F. J. (1993). Site effect evaluation using spectral ratios with only station. Bulletin of the Seismological Society of America, 83(5), 1574–1594. DOI: https://doi.org/10.1785/BSSA0830051574

Lermo, J., & Chávez-García, F. J. (1994a). Are Microtremors Useful in Site Response Evaluation? Bulletin of the Seismological Society of America, 84(5), 1350–1364.

Lermo, J., & Chávez-García, F. J. (1994b). Site effect evaluation at Mexico City: dominant period and relative amplification from strong motion and microtremor records. Soil Dynamics and Earthquake Engineering, 13, 413–423. DOI: https://doi.org/10.1016/0267-7261(94)90012-4

Luzi, L., Puglia, R., Pacor, F., Gallipolli, M. R., Bindi, D., & Mucciarelli, M. (2011). Proposal for a soil classification based on parameters alternative or complementary to Vs30. Bulletin of Earthquake Engineering, 9, 1877–1898. https://doi.org/10.1007/s10518-011-9274-2 DOI: https://doi.org/10.1007/s10518-011-9274-2

Malischewsky, P., & Scherbaum, F. (2004). Love’s formula and H/V-ratio (ellipticity) of Rayleigh waves. Wave Motion, 40, 57–67. DOI: https://doi.org/10.1016/j.wavemoti.2003.12.015

Malischewsky, P., Zaslavsky, Y., Gorstein, M., Pinsky, V., Tran, T. T., Scherbaum, F., & Flores-Estrella, H. (2010). Some new theoretical considerations about the ellipticity of Rayleigh waves in the light of site effect studies in Israel and Mexico. Geofísica Internacional, 49, 141–152. DOI: https://doi.org/10.22201/igeof.00167169p.2010.49.3.110

Nakamura, Y. (1989). A Method for Dynamic characteristics Estimation of Subsurface using Microtremors on the Ground Surface. Quarterly Report of Railway Technical Research Institute (RTRI, 30, 1.

Nakamura, Y. (1996). Real-time information systems for hazards mitigation. Proceedings of the 11th World Conference on Earthquake Engineering.

Nakamura, Y. (2000). Clear Identification of fundamental idea of Nakamura’s technique and its applications. 12 World Conference of Earthquake Engineering.

NEHRP. (2020). NEHRP (National Earthquake Hazards Reduction Program) Recommended seismic provisions for new buildings and other structures (FEMA P-2082-1. In Provisions and Part 2 Commentary. Building Seismic Safety Council of The National Institute of Buildings Sciences. Federal Emergency Management Agency (Vols. 1, Part 1).

Nogoshi, M., & Igarashi, T. (1971). On the amplitude characteristics of microtremor (Part 2. Journal Seismological Society Japan, 24, 26–40. DOI: https://doi.org/10.4294/zisin1948.24.1_26

Ramírez, A. G., Flores, H. E., Preciado, A., Bandy, W. L., Lazcano, S., Alcántara, L. N., Aguirre, J. G., & Korn, M. (2020). Subsoil classification and geotechnical zonation for Guadalajara City, México: Vs30, soil fundamental periods, 3D structure and profiles. Near Surface Geophysics, 18, 2, 175–188. https://doi.org/10.1002/nsg.12085 DOI: https://doi.org/10.1002/nsg.12085

Ramírez, E. E., Vidal-Villegas, J. A., Nuñez-Leal, M. A., Ramírez-Hernández, J., A., M.-T., & E, R.-V. (2019). Seismic Noise Levels in Northern Baja California, Mexico. Bulletin of the Seismological Society of America, 109(2), 610–620. https://doi.org/10.1785/0120180155 DOI: https://doi.org/10.1785/0120180155

Sairam, B., Singh, A. P., Patel, V., Chopra, S., & Ravi Kumar, M. (2019). VS30 mapping and site characterization in the seismically active intraplate region of Western India: implications for risk mitigation. Near Surface Geophysics, 17, 533–546. https://doi.org/10.1002/nsg.12066 DOI: https://doi.org/10.1002/nsg.12066

SESAME. (2004). Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations. Measurements, Processing and Interpretation SESAME European Research Project.

SSN. (2023). Universidad Nacional Autónoma de México, Instituto de Geofísica, Servicio Sismológico Nacional, México. https://doi.org/url{http://www.ssn.unam.mx}

Tramelli, A., Galluzzo, D., Del Pezzo, E., & Vito, M. A. (2010). A detailed study of the site effects in the volcanic area of Campi Flegrei using empirical approaches. Geophysical. Journal International, 182(ue 2), 1073–1086, 10 1111 1365-246 2010 04675. DOI: https://doi.org/10.1111/j.1365-246X.2010.04675.x

Tuan, T. T., Scherbaum, F., & Malischewsky, P. G. (2011). On the relationship of peaks and troughs of the ellipticity (H/V) of Rayleigh waves and the transmission response of single layer over half-space models: Relationship of peaks and troughs of H/V-ratio. Geophysical Journal International, 184, 793–800. https://doi.org/10.1111/j.1365-246X.2010.04863.x DOI: https://doi.org/10.1111/j.1365-246X.2010.04863.x

Vantassel, J. P., & Cox, B. R. (2021). SWinvert: a workflow for performing rigorous 1-D surface wave inversions. Geophysical Journal International, 224, 1141–1156. DOI: https://doi.org/10.1093/gji/ggaa426

Vidal-Villegas, J. A., Munguía, L., González-Ortega, J. A., Nuñez-Leal, M. A., Ramírez, E., Mendoza, L., Castro, R. R., & Wong, V. (2018). The Northwest Mexico Seismic Network: Real-Time Seismic Monitoring in Northern Baja California and North-western Sonora, Mexico. Seismological Research Letters, 89, Number 2A. https://doi.org/10.1785/0220170183 DOI: https://doi.org/10.1785/0220170183

Wathelet, M., Chatelain, J.-L., Cornou, C., Giulio, G., Guillier, B., Ohrnberger, M., & Savvaidis, A. (2020). Geopsy: A User-Friendly Open-Source Tool Set for Ambient Vibration Processing. Seismological Research, Letters, 91(3, 1878–1889. https://doi.org/10.1785/0220190360 DOI: https://doi.org/10.1785/0220190360

Wathelet, M., Jongmans, D., & Ohrnberger, M. (2004). Surface‐wave inversion using a direct search algorithm and its application to ambient vibration measurements. Near surface. DOI: https://doi.org/10.3997/1873-0604.2004018

Wathelet, M., Jongmans, D., Ohrnberger, M., & Bonnefoy-Claudet, S. (2008). Array performances for ambient vibrations on a shallow structure and consequences over V s inversion. Journal of Seismology, 12 (pp. 1–19). DOI: https://doi.org/10.1007/s10950-007-9067-x

Xia, J., Miller, R. D., Park, C. B., & Tian, G. (2003). Inversion of high frequency surface waves with fundamental and higher modes. Journal of Applied Geophysics, 52, 45–57. https://doi.org/10.1016/S0926-9851(02)00239-2 DOI: https://doi.org/10.1016/S0926-9851(02)00239-2

Zor, E., Özalaybey, S., Karaaslan, A., Tapırdamaz, M. C., Özalaybey, S. Ç., Tarancıoğlu, A., & B, E. (2010). Shear wave velocity structure of the İzmit Bay area (Turkey) estimated from active–passive array surface wave and single-station microtremor methods. Geophysical Journal International, 182, 1603–1618. https://doi.org/10.1111/j.1365-246X.2010.04710.x DOI: https://doi.org/10.1111/j.1365-246X.2010.04710.x

Zúñiga, F. R., & Castro, R. R. (2005). The RESNOM seismic catalog and its bearing on the seismicity of North-western Mexico. Geofísica Internacional, 44(2), 143–155. https://doi.org/10.22201/igeof.00167169p.2005.44.2.249 DOI: https://doi.org/10.22201/igeof.00167169p.2005.44.2.249

Published

2024-10-22

How to Cite

Ávila-Barrientos, L., Yegres-Herrera, L. A., Flores-Estrella, H., Nuñez-Leal, M. A., & Gonzalez-Huizar, H. (2024). Seismic site conditions of RESNOM network. Seismica, 3(2). https://doi.org/10.26443/seismica.v3i2.1151

Issue

Section

Articles