Seismoacoustic measurements of the OSIRIS-REx re-entry with an off-grid Raspberry PiShake
DOI:
https://doi.org/10.26443/seismica.v3i1.1154Abstract
Hypersonic re-entries of spacecraft are valuable analogues for the identification and tracking of natural meteoroids re-entering the Earth's atmosphere. We report on the detection of seismic and acoustic signals from the OSIRIS-REx landing sequence, acquired near the point of peak capsule heating and recorded using a fully off-grid Raspberry PiShake sensor. This simple setup is able to record all the salient features of both the seismic and acoustic wavefields; including the primary shockwave, later reverberations, and possible locally induced surface waves. Peak overpressures of 0.7 Pa and ground velocities of 2x10-6m/s yield lower bound on the air-to-ground coupling factor between 3 and 44 Hz of 1.4x10-6 m/s/Pa, comparable to results from other re-entries
References
Ajluni, T., Everett, D., Linn, T., Mink, R., Willcockson, W., & Wood, J. (2015). OSIRIS-REx, returning the asteroid sample. 2015 IEEE Aerospace Conference, 1–15. https://doi.org/10.1109/AERO.2015.7118988
Allander, K. K., & Berger, D. L. (2009). Seismic velocities and thicknesses of alluvial deposits along Baker Creek in the Great Basin National Park, East-Central Nevada. Technical Report, U. S. Geological Survey. https://doi.org/https://doi.org/10.3133/ofr20091174
Ben-Menahem, A., & Singh, S. J. (1981). Seismic waves and sources. Springer Science & Business Media. https://doi.org/https://doi.org/10.1007/978-1-4612-5856-8
Bishop, J. W., Fee, D., Modrak, R., Tape, C., & Kim, K. (2022). Spectral element modeling of acoustic to seismic coupling over topography. Journal of Geophysical Research: Solid Earth, 127(1), e2021JB023142. https://doi.org/https://doi.org/10.1029/2021JB023142
Busby, R. W., & Aderhold, K. (2020). The Alaska transportable array: As built. Seismological Research Letters, 91(6), 3017–3027. https://doi.org/https://doi.org/10.1785/0220200154
Ceplecha, Z., Borovička, J., Elford, W. G., ReVelle, D. O., Hawkes, R. L., Porubčan, V., & Šimek, M. (1998). Meteor phenomena and bodies. Space Science Reviews, 84, 327–471. https://doi.org/https://doi.org/10.1023/A:1005069928850
Chen, T., Larmat, C., Blom, P., & Zeiler, C. (2023). Seismoacoustic Analysis of the Large Surface Explosion Coupling Experiment Using a Large-N Seismic Array. Bulletin of the Seismological Society of America, 113(4), 1692–1701. https://doi.org/https://doi.org/10.1785/0120220262
Cook, J., Goforth, T., & Cook, R. (1972). Seismic and underwater responses to sonic boom. The Journal of the Acoustical Society of America, 51(2C), 729–741. https://doi.org/https://doi.org/10.1121/1.1912906
Edwards, W. N., Eaton, D. W., & Brown, P. G. (2008). Seismic observations of meteors: Coupling theory and observations. Reviews of Geophysics, 46(4). https://doi.org/https://doi.org/10.1029/2007RG000253
Edwards, W. N., Eaton, D. W., McCausland, P. J., ReVelle, D. O., & Brown, P. G. (2007). Calibrating infrasonic to seismic coupling using the Stardust sample return capsule shockwave: Implications for seismic observations of meteors [Journal Article]. Journal of Geophysical Research, 112(B10). https://doi.org/10.1029/2006jb004621
Emmanuelli, A., Dragna, D., Ollivier, S., & Blanc-Benon, P. (2021). Characterization of topographic effects on sonic boom reflection by resolution of the Euler equations. The Journal of the Acoustical Society of America, 149(4), 2437–2450. https://doi.org/https://doi.org/10.1121/10.0003816
Fernando, B., Wójcicka, N., Froment, M., Maguire, R., Stähler, S. C., Rolland, L., Collins, G. S., Karatekin, O., Larmat, C., Sansom, E. K., & others. (2021). Listening for the landing: Seismic detections of Perseverance’s arrival at Mars with InSight. Earth and Space Science, 8(4), e2020EA001585. https://doi.org/https://doi.org/10.1029/2020EA001585
Fernando, B., Wójcicka, N., Maguire, R., Stähler, S. C., Stott, A. E., Ceylan, S., Charalambous, C., Clinton, J., Collins, G. S., Dahmen, N., & others. (2022). Seismic constraints from a Mars impact experiment using InSight and Perseverance. Nature Astronomy, 6(1), 59–64. https://doi.org/https://doi.org/10.1038/s41550-021-01502-0
Garcia, R. F., Daubar, I. J., Beucler, É., Posiolova, L. V., Collins, G. S., Lognonné, P., Rolland, L., Xu, Z., Wójcicka, N., Spiga, A., & others. (2022). Newly formed craters on Mars located using seismic and acoustic wave data from InSight. Nature Geoscience, 15(10), 774–780. https://doi.org/https://doi.org/10.1038/s41561-022-01014-0
Garcia, R. F., Kenda, B., Kawamura, T., Spiga, A., Murdoch, N., Lognonné, P. H., Widmer‐Schnidrig, R., Compaire, N., Orhand‐Mainsant, G., Banfield, D., & Banerdt, W. B. (2020). Pressure Effects on the SEIS‐InSight Instrument, Improvement of Seismic Records, and Characterization of Long Period Atmospheric Waves From Ground Displacements [Journal Article]. Journal of Geophysical Research: Planets, 125(7). https://doi.org/10.1029/2019je006278
Kenda, B., Drilleau, M., Garcia, R. F., Kawamura, T., Murdoch, N., Compaire, N., Lognonné, P., Spiga, A., Widmer‐Schnidrig, R., Delage, P., Ansan, V., Vrettos, C., Rodriguez, S., Banerdt, W. B., Banfield, D., Antonangeli, D., Christensen, U., Mimoun, D., Mocquet, A., & Spohn, T. (2020). Subsurface Structure at the InSight Landing Site From Compliance Measurements by Seismic and Meteorological Experiments [Journal Article]. Journal of Geophysical Research: Planets, 125(6). https://doi.org/10.1029/2020je006387
Kong, Q., Allen, R. M., Schreier, L., & Kwon, Y.-W. (2016). MyShake: A smartphone seismic network for earthquake early warning and beyond. Science Advances, 2(2), e1501055. https://doi.org/https://doi.org/10.1126/sciadv.1501055
Langston, C. A. (2004). Seismic ground motions from a bolide shock wave. Journal of Geophysical Research: Solid Earth, 109(B12). https://doi.org/https://doi.org/10.1029/2004JB003167
Lauretta, D., Balram-Knutson, S., Beshore, E., Boynton, W., Drouet d’Aubigny, C., DellaGiustina, D., Enos, H., Golish, D., Hergenrother, C., Howell, E., & others. (2017). OSIRIS-REx: sample return from asteroid (101955) Bennu. Space Science Reviews, 212, 925–984. https://doi.org/https://doi.org/10.1007/s11214-017-0405-1
Lecocq, T., Hicks, S. P., Van Noten, K., Van Wijk, K., Koelemeijer, P., De Plaen, R. S., Massin, F., Hillers, G., Anthony, R. E., Apoloner, M.-T., & others. (2020). Global quieting of high-frequency seismic noise due to COVID-19 pandemic lockdown measures. Science, 369(6509), 1338–1343. https://doi.org/https://doi.org/10.1126/science.abd2438
Manconi, A., Coviello, V., Galletti, M., & Seifert, R. (2018). Monitoring rockfalls with the Raspberry Shake. Earth Surface Dynamics, 6(4), 1219–1227. https://doi.org/https://doi.org/10.5194/esurf-6-1219-2018
Matoza, R. S., & Fee, D. (2014). Infrasonic component of volcano-seismic eruption tremor. Geophysical Research Letters, 41(6), 1964–1970. https://doi.org/https://doi.org/10.1002/2014GL059301
Mikael, S. (2020). Establishment of the Ethiopian Seismic Monitoring Network. Engineering Archive. https://doi.org/https://doi.org/10.31224/osf.io/c6y8p
Novoselov, A., Fuchs, F., & Bokelmann, G. (2020). Acoustic-to-seismic ground coupling: coupling efficiency and inferring near-surface properties. Geophysical Journal International, 223(1), 144–160. https://doi.org/https://doi.org/10.1093/gji/ggaa304
Pierce, A. D., & Maglieri, D. J. (1972a). Effects of atmospheric irregularities on sonic-boom propagation. The Journal of the Acoustical Society of America, 51(2C), 702–721. https://doi.org/https://doi.org/10.1121/1.1912904
Pierce, A. D., & Maglieri, D. J. (1972b). Effects of atmospheric irregularities on sonic-boom propagation. The Journal of the Acoustical Society of America, 51(2C), 702–721. https://doi.org/https://doi.org/10.1121/1.1912904
Plotkin, K. J. (2002). State of the art of sonic boom modeling. The Journal of the Acoustical Society of America, 111(1), 530–536. https://doi.org/https://doi.org/10.1121/1.1379075
ReVelle, D., & Edwards, W. (2007). Stardust—An artificial, low-velocity “meteor” fall and recovery: 15 January 2006. Meteoritics & Planetary Science, 42(2), 271–299. https://doi.org/https://doi.org/10.1111/j.1945-5100.2007.tb00232.x
ReVelle, D., Edwards, W., & Sandoval, T. (2005). Genesis—An artificial, low velocity “meteor” fall and recovery: September 8, 2004. Meteoritics & Planetary Science, 40(6), 895–916. https://doi.org/https://doi.org/10.1111/j.1945-5100.2005.tb00162.x
Sansom, E. K., Devillepoix, H. A., Yamamoto, M., Abe, S., Nozawa, S., Towner, M. C., Cupák, M., Hiramatsu, Y., Kawamura, T., Fujita, K., & others. (2022). The scientific observation campaign of the Hayabusa-2 capsule re-entry. Publications of the Astronomical Society of Japan, 74(1), 50–63. https://doi.org/https://doi.org/10.1093/pasj/psab109
Silber, E. A., Bowman, D. C., & Albert, S. (2023). A Review of Infrasound and Seismic Observations of Sample Return Capsules Since the End of the Apollo Era in Anticipation of the OSIRIS-REx Arrival. Atmosphere, 14(10), 1473. https://doi.org/https://doi.org/10.3390/atmos14101473
Sorrells, G. G. (1971). A Preliminary Investigation into the Relationship between Long-Period Seismic Noise and Local Fluctuations in the Atmospheric Pressure Field [Journal Article]. Geophysical Journal of the Royal Astronomical Society, 26(1–4), 71–82. https://doi.org/10.1111/j.1365-246X.1971.tb03383.x
Wills, G., Nippress, A., Green, D. N., & Spence, P. J. (2022). Site-specific variations in air-to-ground coupled seismic arrivals from the 2012 October 16 explosion at Camp Minden, Louisiana, United States. Geophysical Journal International, 231(1), 243–255. https://doi.org/https://doi.org/10.1093/gji/ggac184
Winter, K., Lombardi, D., Diaz-Moreno, A., & Bainbridge, R. (2021). Monitoring icequakes in East Antarctica with the raspberry shake. Seismological Research Letters, 92(5), 2736–2747. https://doi.org/https://doi.org/10.1785/0220200483
Yamamoto, M., Ishihara, Y., Hiramatsu, Y., Kitamura, K., Ueda, M., Shiba, Y., Furumoto, M., & Fujita, K. (2011). Detection of acoustic/infrasonic/seismic waves generated by hypersonic re-entry of the HAYABUSA capsule and fragmented parts of the spacecraft. Publications of the Astronomical Society of Japan, 63(5), 971–978. https://doi.org/https://doi.org/10.1093/pasj/63.5.971
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Benjamin Fernando, Constantinos Charalambous, Christelle Saliby, Eleanor Sansom, Carene Larmat, David Buttsworth, Daniel Hicks, Roy Johnson, Kevin Lewis, Meaghan McCleary, Giuseppe Petricca, Nick Schmerr, Fabian Zander, Jennifer Inman

This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
Johns Hopkins University
-
Agence Nationale de la Recherche
Grant numbers MAGIS, ANR-19-CE31-0008-08