Seismoacoustic measurements of the OSIRIS-REx re-entry with an off-grid Raspberry PiShake

Authors

DOI:

https://doi.org/10.26443/seismica.v3i1.1154

Abstract

Hypersonic re-entries of spacecraft are valuable analogues for the identification and tracking of natural meteoroids re-entering the Earth's atmosphere. We report on the detection of seismic and acoustic signals from the OSIRIS-REx landing sequence, acquired near the point of peak capsule heating and recorded using a fully off-grid Raspberry PiShake sensor. This simple setup is able to record all the salient features of both the seismic and acoustic wavefields; including the primary shockwave, later reverberations, and possible locally induced surface waves. Peak overpressures of 0.7 Pa and ground velocities of 2x10-6m/s yield lower bound on the air-to-ground coupling factor between 3 and 44 Hz of 1.4x10-6 m/s/Pa, comparable to results from other re-entries

References

Ajluni, T., Everett, D., Linn, T., Mink, R., Willcockson, W., & Wood, J. (2015). OSIRIS-REx, returning the asteroid sample. 2015 IEEE Aerospace Conference, 1–15. https://doi.org/10.1109/AERO.2015.7118988

Allander, K. K., & Berger, D. L. (2009). Seismic velocities and thicknesses of alluvial deposits along Baker Creek in the Great Basin National Park, East-Central Nevada. Technical Report, U. S. Geological Survey. https://doi.org/https://doi.org/10.3133/ofr20091174

Ben-Menahem, A., & Singh, S. J. (1981). Seismic waves and sources. Springer Science & Business Media. https://doi.org/https://doi.org/10.1007/978-1-4612-5856-8

Bishop, J. W., Fee, D., Modrak, R., Tape, C., & Kim, K. (2022). Spectral element modeling of acoustic to seismic coupling over topography. Journal of Geophysical Research: Solid Earth, 127(1), e2021JB023142. https://doi.org/https://doi.org/10.1029/2021JB023142

Busby, R. W., & Aderhold, K. (2020). The Alaska transportable array: As built. Seismological Research Letters, 91(6), 3017–3027. https://doi.org/https://doi.org/10.1785/0220200154

Ceplecha, Z., Borovička, J., Elford, W. G., ReVelle, D. O., Hawkes, R. L., Porubčan, V., & Šimek, M. (1998). Meteor phenomena and bodies. Space Science Reviews, 84, 327–471. https://doi.org/https://doi.org/10.1023/A:1005069928850

Chen, T., Larmat, C., Blom, P., & Zeiler, C. (2023). Seismoacoustic Analysis of the Large Surface Explosion Coupling Experiment Using a Large-N Seismic Array. Bulletin of the Seismological Society of America, 113(4), 1692–1701. https://doi.org/https://doi.org/10.1785/0120220262

Cook, J., Goforth, T., & Cook, R. (1972). Seismic and underwater responses to sonic boom. The Journal of the Acoustical Society of America, 51(2C), 729–741. https://doi.org/https://doi.org/10.1121/1.1912906

Edwards, W. N., Eaton, D. W., & Brown, P. G. (2008). Seismic observations of meteors: Coupling theory and observations. Reviews of Geophysics, 46(4). https://doi.org/https://doi.org/10.1029/2007RG000253

Edwards, W. N., Eaton, D. W., McCausland, P. J., ReVelle, D. O., & Brown, P. G. (2007). Calibrating infrasonic to seismic coupling using the Stardust sample return capsule shockwave: Implications for seismic observations of meteors [Journal Article]. Journal of Geophysical Research, 112(B10). https://doi.org/10.1029/2006jb004621

Emmanuelli, A., Dragna, D., Ollivier, S., & Blanc-Benon, P. (2021). Characterization of topographic effects on sonic boom reflection by resolution of the Euler equations. The Journal of the Acoustical Society of America, 149(4), 2437–2450. https://doi.org/https://doi.org/10.1121/10.0003816

Fernando, B., Wójcicka, N., Froment, M., Maguire, R., Stähler, S. C., Rolland, L., Collins, G. S., Karatekin, O., Larmat, C., Sansom, E. K., & others. (2021). Listening for the landing: Seismic detections of Perseverance’s arrival at Mars with InSight. Earth and Space Science, 8(4), e2020EA001585. https://doi.org/https://doi.org/10.1029/2020EA001585

Fernando, B., Wójcicka, N., Maguire, R., Stähler, S. C., Stott, A. E., Ceylan, S., Charalambous, C., Clinton, J., Collins, G. S., Dahmen, N., & others. (2022). Seismic constraints from a Mars impact experiment using InSight and Perseverance. Nature Astronomy, 6(1), 59–64. https://doi.org/https://doi.org/10.1038/s41550-021-01502-0

Garcia, R. F., Daubar, I. J., Beucler, É., Posiolova, L. V., Collins, G. S., Lognonné, P., Rolland, L., Xu, Z., Wójcicka, N., Spiga, A., & others. (2022). Newly formed craters on Mars located using seismic and acoustic wave data from InSight. Nature Geoscience, 15(10), 774–780. https://doi.org/https://doi.org/10.1038/s41561-022-01014-0

Garcia, R. F., Kenda, B., Kawamura, T., Spiga, A., Murdoch, N., Lognonné, P. H., Widmer‐Schnidrig, R., Compaire, N., Orhand‐Mainsant, G., Banfield, D., & Banerdt, W. B. (2020). Pressure Effects on the SEIS‐InSight Instrument, Improvement of Seismic Records, and Characterization of Long Period Atmospheric Waves From Ground Displacements [Journal Article]. Journal of Geophysical Research: Planets, 125(7). https://doi.org/10.1029/2019je006278

Kenda, B., Drilleau, M., Garcia, R. F., Kawamura, T., Murdoch, N., Compaire, N., Lognonné, P., Spiga, A., Widmer‐Schnidrig, R., Delage, P., Ansan, V., Vrettos, C., Rodriguez, S., Banerdt, W. B., Banfield, D., Antonangeli, D., Christensen, U., Mimoun, D., Mocquet, A., & Spohn, T. (2020). Subsurface Structure at the InSight Landing Site From Compliance Measurements by Seismic and Meteorological Experiments [Journal Article]. Journal of Geophysical Research: Planets, 125(6). https://doi.org/10.1029/2020je006387

Kong, Q., Allen, R. M., Schreier, L., & Kwon, Y.-W. (2016). MyShake: A smartphone seismic network for earthquake early warning and beyond. Science Advances, 2(2), e1501055. https://doi.org/https://doi.org/10.1126/sciadv.1501055

Langston, C. A. (2004). Seismic ground motions from a bolide shock wave. Journal of Geophysical Research: Solid Earth, 109(B12). https://doi.org/https://doi.org/10.1029/2004JB003167

Lauretta, D., Balram-Knutson, S., Beshore, E., Boynton, W., Drouet d’Aubigny, C., DellaGiustina, D., Enos, H., Golish, D., Hergenrother, C., Howell, E., & others. (2017). OSIRIS-REx: sample return from asteroid (101955) Bennu. Space Science Reviews, 212, 925–984. https://doi.org/https://doi.org/10.1007/s11214-017-0405-1

Lecocq, T., Hicks, S. P., Van Noten, K., Van Wijk, K., Koelemeijer, P., De Plaen, R. S., Massin, F., Hillers, G., Anthony, R. E., Apoloner, M.-T., & others. (2020). Global quieting of high-frequency seismic noise due to COVID-19 pandemic lockdown measures. Science, 369(6509), 1338–1343. https://doi.org/https://doi.org/10.1126/science.abd2438

Manconi, A., Coviello, V., Galletti, M., & Seifert, R. (2018). Monitoring rockfalls with the Raspberry Shake. Earth Surface Dynamics, 6(4), 1219–1227. https://doi.org/https://doi.org/10.5194/esurf-6-1219-2018

Matoza, R. S., & Fee, D. (2014). Infrasonic component of volcano-seismic eruption tremor. Geophysical Research Letters, 41(6), 1964–1970. https://doi.org/https://doi.org/10.1002/2014GL059301

Mikael, S. (2020). Establishment of the Ethiopian Seismic Monitoring Network. Engineering Archive. https://doi.org/https://doi.org/10.31224/osf.io/c6y8p

Novoselov, A., Fuchs, F., & Bokelmann, G. (2020). Acoustic-to-seismic ground coupling: coupling efficiency and inferring near-surface properties. Geophysical Journal International, 223(1), 144–160. https://doi.org/https://doi.org/10.1093/gji/ggaa304

Pierce, A. D., & Maglieri, D. J. (1972a). Effects of atmospheric irregularities on sonic-boom propagation. The Journal of the Acoustical Society of America, 51(2C), 702–721. https://doi.org/https://doi.org/10.1121/1.1912904

Pierce, A. D., & Maglieri, D. J. (1972b). Effects of atmospheric irregularities on sonic-boom propagation. The Journal of the Acoustical Society of America, 51(2C), 702–721. https://doi.org/https://doi.org/10.1121/1.1912904

Plotkin, K. J. (2002). State of the art of sonic boom modeling. The Journal of the Acoustical Society of America, 111(1), 530–536. https://doi.org/https://doi.org/10.1121/1.1379075

ReVelle, D., & Edwards, W. (2007). Stardust—An artificial, low-velocity “meteor” fall and recovery: 15 January 2006. Meteoritics & Planetary Science, 42(2), 271–299. https://doi.org/https://doi.org/10.1111/j.1945-5100.2007.tb00232.x

ReVelle, D., Edwards, W., & Sandoval, T. (2005). Genesis—An artificial, low velocity “meteor” fall and recovery: September 8, 2004. Meteoritics & Planetary Science, 40(6), 895–916. https://doi.org/https://doi.org/10.1111/j.1945-5100.2005.tb00162.x

Sansom, E. K., Devillepoix, H. A., Yamamoto, M., Abe, S., Nozawa, S., Towner, M. C., Cupák, M., Hiramatsu, Y., Kawamura, T., Fujita, K., & others. (2022). The scientific observation campaign of the Hayabusa-2 capsule re-entry. Publications of the Astronomical Society of Japan, 74(1), 50–63. https://doi.org/https://doi.org/10.1093/pasj/psab109

Silber, E. A., Bowman, D. C., & Albert, S. (2023). A Review of Infrasound and Seismic Observations of Sample Return Capsules Since the End of the Apollo Era in Anticipation of the OSIRIS-REx Arrival. Atmosphere, 14(10), 1473. https://doi.org/https://doi.org/10.3390/atmos14101473

Sorrells, G. G. (1971). A Preliminary Investigation into the Relationship between Long-Period Seismic Noise and Local Fluctuations in the Atmospheric Pressure Field [Journal Article]. Geophysical Journal of the Royal Astronomical Society, 26(1–4), 71–82. https://doi.org/10.1111/j.1365-246X.1971.tb03383.x

Wills, G., Nippress, A., Green, D. N., & Spence, P. J. (2022). Site-specific variations in air-to-ground coupled seismic arrivals from the 2012 October 16 explosion at Camp Minden, Louisiana, United States. Geophysical Journal International, 231(1), 243–255. https://doi.org/https://doi.org/10.1093/gji/ggac184

Winter, K., Lombardi, D., Diaz-Moreno, A., & Bainbridge, R. (2021). Monitoring icequakes in East Antarctica with the raspberry shake. Seismological Research Letters, 92(5), 2736–2747. https://doi.org/https://doi.org/10.1785/0220200483

Yamamoto, M., Ishihara, Y., Hiramatsu, Y., Kitamura, K., Ueda, M., Shiba, Y., Furumoto, M., & Fujita, K. (2011). Detection of acoustic/infrasonic/seismic waves generated by hypersonic re-entry of the HAYABUSA capsule and fragmented parts of the spacecraft. Publications of the Astronomical Society of Japan, 63(5), 971–978. https://doi.org/https://doi.org/10.1093/pasj/63.5.971

Additional Files

Published

2024-03-26

How to Cite

Fernando, B., Charalambous, C., Saliby, C., Sansom, E., Larmat, C., Buttsworth, D., Hicks, D., Johnson, R., Lewis, K., McCleary, M., Petricca, G., Schmerr, N., Zander, F., & Inman, J. (2024). Seismoacoustic measurements of the OSIRIS-REx re-entry with an off-grid Raspberry PiShake. Seismica, 3(1). https://doi.org/10.26443/seismica.v3i1.1154

Issue

Section

Reports (excl. Fast Reports)

Funding data