Late Quaternary Surface Displacements on Accretionary Wedge Splay Faults in the Cascadia Subduction Zone: Implications for Megathrust Rupture

Authors

  • Anna Ledeczi Department of Earh & Space Sciences, University of Washington https://orcid.org/0000-0002-0743-9409
  • Madeleine Lucas Department of Earh & Space Sciences, University of Washington
  • Harold Tobin Department of Earh & Space Sciences, University of Washington https://orcid.org/0000-0002-1447-6873
  • Janet Watt Pacific Coastal and Marine Science Center, United States Geological Survey, Santa Cruz, CA
  • Nathan Miller Woods Hole Coastal and Marine Science Center, United States Geological Survey, Woods Hole, MA

DOI:

https://doi.org/10.26443/seismica.v2i4.1158

Keywords:

Cascadia Subduction Zone, splay fault, tsunami

Abstract

Because splay faults branch at a steep dip angle from the plate-boundary décollement in an accretionary wedge, their coseismic displacement can potentially result in larger tsunamis with distinct characteristics compared to megathrust-only fault ruptures, posing an enhanced hazard to coastal communities. Elsewhere, there is evidence of coseismic slip on splay faults during many of the largest subduction zone earthquakes, but our understanding of potentially active splay faults and their hazards at the Cascadia subduction zone remains limited. To identify the most recently active splay faults at Cascadia, we conduct stratigraphic and structural interpretations of near-surface deformation in the outer accretionary wedge for the ~400 km along-strike length of the landward vergence zone. We analyze recently acquired high-frequency sparker seismic data and crustal-scale multi-channel seismic data to examine the record of deformation in shallow slope basins and the upper ~1 km of the surrounding accreted sediments and to investigate linkages to deeper décollement structure. We present a new fault map for widest, most completely locked portion of Cascadia from 45 to 48°N latitude, which documents the distribution of faults that show clear evidence of recent late Quaternary activity. We find widespread evidence for active splay faulting up to 30 km landward of the deformation front, in what we define as the active domain, and diminished fault activity landward outside of this zone. The abundance of surface-deforming splay faults in the active outer wedge domain suggests Cascadia megathrust events may commonly host distributed shallow rupture on multiple splay faults located within 30 km of the deformation front.

References

Adam, J., Klaeschen, D., Kukowski, N., & Flueh, E. (2004). Upward delamination of Cascadia Basin sediment infill with landward frontal accretion thrusting caused by rapid glacial age material flux. Tectonics, 23(3). https://doi.org/10.1029/2002tc001475 DOI: https://doi.org/10.1029/2002TC001475

Appelgate, B., Goldfinger, C., MacKay, M. E., Kulm, L. D., Fox, C. G., Embley, R. W., & Meis, P. J. (1992). A left‐lateral strike‐slip fault seaward of the Oregon Convergent Margin. Tectonics, 11(3), 465–477. https://doi.org/10.1029/91tc02906 DOI: https://doi.org/10.1029/91TC02906

Aslam, K. S., Thomas, A. M., & Melgar, D. (2021). The Effect of Fore‐Arc Deformation on Shallow Earthquake Rupture Behavior in the Cascadia Subduction Zone. Geophysical Research Letters, 48(20). https://doi.org/10.1029/2021gl093941 DOI: https://doi.org/10.1029/2021GL093941

Balster-Gee, A. F., Miller, N. C., Watt, J. T., Roland, E. C., Kluesner, J. W., Heller, S. J., Hart, P. E., Sliter, R. W., Myers, E. K., Wyland, R. M., Marcuson, R. K., Johnson, C., Nichols, A. R., Pszczola, K., & Williams, C. (2023). High-resolution multichannel sparker seismic-reflection and chirp sub-bottom data acquired along the Cascadia margin during USGS field activity 2019-024-FA. U.S. Geological Survey. https://doi.org/10.5066/P96ZBXK8

Barnard, W. D. (1978). The Washington continental slope: Quaternary tectonics and sedimentation. Marine Geology, 27(1–2), 79–114. https://doi.org/10.1016/0025-3227(78)90075-0 DOI: https://doi.org/10.1016/0025-3227(78)90075-0

Beeson, J. W., Goldfinger, C., & Fortin, W. F. (2017). Large-scale modification of submarine geomorphic features on the Cascadia accretionary wedge caused by catastrophic flooding events. Geosphere, 13(5), 1713–1728. https://doi.org/10.1130/ges01388.1 DOI: https://doi.org/10.1130/GES01388.1

Bilotti, F., & Shaw, J. H. (2005). Deep-water Niger Delta fold and thrust belt modeled as a critical-taper wedge: The influence of elevated basal fluid pressure on structural styles. AAPG Bulletin, 89(11), 1475–1491. https://doi.org/10.1306/06130505002 DOI: https://doi.org/10.1306/06130505002

Booth, D. B., Troost, K. G., Clague, J. J., & Waitt, R. B. (2003). The Cordilleran Ice Sheet. In Developments in Quaternary Sciences (pp. 17–43). Elsevier. https://doi.org/10.1016/s1571-0866(03)01002-9 DOI: https://doi.org/10.1016/S1571-0866(03)01002-9

Booth‐Rea, G., Klaeschen, D., Grevemeyer, I., & Reston, T. (2008). Heterogeneous deformation in the Cascadia convergent margin and its relation to thermal gradient. Tectonics, 27(4). https://doi.org/10.1029/2007tc002209 DOI: https://doi.org/10.1029/2007TC002209

Brooks, B. A., Goldberg, D., DeSanto, J., Ericksen, T. L., Webb, S. C., Nooner, S. L., Chadwell, C. D., Foster, J., Minson, S., Witter, R., Haeussler, P., Freymueller, J., Barnhart, W., & Nevitt, J. (2023). Rapid shallow megathrust afterslip from the 2021 M8.2 Chignik, Alaska earthquake revealed by seafloor geodesy. Science Advances, 9(17). https://doi.org/10.1126/sciadv.adf9299 DOI: https://doi.org/10.1126/sciadv.adf9299

Byrne, D. E., Davis, D. M., & Sykes, L. R. (1988). Loci and maximum size of thrust earthquakes and the mechanics of the shallow region of subduction zones. Tectonics, 7(4), 833–857. https://doi.org/10.1029/tc007i004p00833 DOI: https://doi.org/10.1029/TC007i004p00833

Carbotte, S., Han, S., Boston, B., & Canales, J. (2023). Processed pre-stack depth-migrated seismic reflection data from the 2021 CASIE21 multi-channel seismic survey (MGL2104). Interdisciplinary Earth Data Alliance (IEDA). https://doi.org/10.26022/IEDA/331274

Caulet, J. P. (1995). Proceedings of the Ocean Drilling Program, 146 Part 1 Scientific Results. In Proceedings of the Ocean Drilling Program. Ocean Drilling Program. https://doi.org/10.2973/odp.proc.sr.146-1.1995 DOI: https://doi.org/10.2973/odp.proc.sr.146-1.1995

Chiama, K., Chauvin, B., Plesch, A., Moss, R., & Shaw, J. H. (2023). Geomechanical Modeling of Ground Surface Deformation Associated with Thrust and Reverse-Fault Earthquakes: A Distinct Element Approach. Bulletin of the Seismological Society of America, 113(4), 1702–1723. https://doi.org/10.1785/0120220264 DOI: https://doi.org/10.1785/0120220264

Davis, D., Suppe, J., & Dahlen, F. A. (1983). Mechanics of fold‐and‐thrust belts and accretionary wedges. Journal of Geophysical Research: Solid Earth, 88(B2), 1153–1172. https://doi.org/10.1029/jb088ib02p01153 DOI: https://doi.org/10.1029/JB088iB02p01153

DeMets, C., Gordon, R. G., & Argus, D. F. (2010). Geologically current plate motions. Geophysical Journal International, 181(1), 1–80. https://doi.org/10.1111/j.1365-246x.2009.04491.x DOI: https://doi.org/10.1111/j.1365-246X.2009.04491.x

Ding, X., Xu, S., Xie, Y., Van den Ende, M., Premus, J., & Ampuero, J.-P. (2023). The sharp turn: Backward rupture branching during the 2023 Mw 7.8 Kahramanmaraş (Türkiye) earthquake. Seismica, 2(3). https://doi.org/10.26443/seismica.v2i3.1083 DOI: https://doi.org/10.26443/seismica.v2i3.1083

Fisher, M. A., Flueh, E. R., Scholl, D. W., Parsons, T., Wells, R. E., Trehu, A., Brink, U. ten, & Weaver, C. S. (1999). Geologic processes of accretion in the Cascadiasubduction zone west of Washington State. Journal of Geodynamics, 27(3), 277–288. https://doi.org/10.1016/s0264-3707(98)00001-5 DOI: https://doi.org/10.1016/S0264-3707(98)00001-5

Flueh, E. R., Fisher, M. A., Bialas, J., Childs, J. R., Klaeschen, D., Kukowski, N., Parsons, T., Scholl, D. W., ten Brink, U., Tréhu, A. M., & Vidal, N. (1998). New seismic images of the Cascadia subduction zone from cruise SO108 — ORWELL. Tectonophysics, 293(1–2), 69–84. https://doi.org/10.1016/s0040-1951(98)00091-2 DOI: https://doi.org/10.1016/S0040-1951(98)00091-2

Frederik, M. C. G., Gulick, S. P. S., Austin, J. A., Bangs, N. L. B., & Udrekh. (2015). What 2‐D multichannel seismic and multibeam bathymetric data tell us about the North Sumatra wedge structure and coseismic response. Tectonics, 34(9), 1910–1926. https://doi.org/10.1002/2014tc003614 DOI: https://doi.org/10.1002/2014TC003614

Fujiwara, T., Kodaira, S., No, T., Kaiho, Y., Takahashi, N., & Kaneda, Y. (2011). The 2011 Tohoku-Oki Earthquake: Displacement Reaching the Trench Axis. Science, 334(6060), 1240–1240. https://doi.org/10.1126/science.1211554 DOI: https://doi.org/10.1126/science.1211554

Fuller, C. W., Willett, S. D., & Brandon, M. T. (2006). Formation of forearc basins and their influence on subduction zone earthquakes. Geology, 34(2), 65. https://doi.org/10.1130/g21828.1 DOI: https://doi.org/10.1130/G21828.1

Gao, D., Wang, K., Insua, T. L., Sypus, M., Riedel, M., & Sun, T. (2018). Defining megathrust tsunami source scenarios for northernmost Cascadia. Natural Hazards, 94(1), 445–469. https://doi.org/10.1007/s11069-018-3397-6 DOI: https://doi.org/10.1007/s11069-018-3397-6

Goldfinger, C., Beeson, J., Romsos, C., & Patton, J. R. (2023). Neotectonic Map of the Cascadia Margin [(Open-File Report O-23-05).]. Oregon Department of Geology.

Goldfinger, Chris, Kulm, L. D., Yeats, R. S., Appelgate, B., MacKay, M. E., & Moore, G. F. (1992). Transverse structural trends along the Oregon convergent margin: Implications for Cascadia earthquake potential and crustal rotations. Geology, 20(2), 141. https://doi.org/10.1130/0091-7613(1992)020<0141:tstato>2.3.co;2 DOI: https://doi.org/10.1130/0091-7613(1992)020<0141:TSTATO>2.3.CO;2

Goldfinger, Chris, Kulm, L. D., Yeats, R. S., Hummon, C., Huftile, G. J., Niem, A. R., & McNeill, L. C. (1996). Oblique Strike-Slip Faulting of the Cascadia Submarine Forearc: The Daisy Bank Fault Zone off Central Oregon. In Geophysical Monograph Series (pp. 65–74). American Geophysical Union. https://doi.org/10.1029/gm096p0065 DOI: https://doi.org/10.1029/GM096p0065

Goldfinger, Chris, Kulm, L. D., Yeats, R. S., McNeill, L., & Hummon, C. (1997). Oblique strike‐slip faulting of the central Cascadia submarine forearc. Journal of Geophysical Research: Solid Earth, 102(B4), 8217–8243. https://doi.org/10.1029/96jb02655 DOI: https://doi.org/10.1029/96JB02655

Gulick, S. P. S., Austin, J. A., McNeill, L. C., Bangs, N. L. B., Martin, K. M., Henstock, T. J., Bull, J. M., Dean, S., Djajadihardja, Y. S., & Permana, H. (2011). Updip rupture of the 2004 Sumatra earthquake extended by thick indurated sediments. Nature Geoscience, 4(7), 453–456. https://doi.org/10.1038/ngeo1176 DOI: https://doi.org/10.1038/ngeo1176

Gulick, S. P. S., Bangs, N. L. B., Moore, G. F., Ashi, J., Martin, K. M., Sawyer, D. S., Tobin, H. J., Kuramoto, S., & Taira, A. (2010). Rapid forearc basin uplift and megasplay fault development from 3D seismic images of Nankai Margin off Kii Peninsula, Japan. Earth and Planetary Science Letters, 300(1–2), 55–62. https://doi.org/10.1016/j.epsl.2010.09.034 DOI: https://doi.org/10.1016/j.epsl.2010.09.034

Gutscher, M.-A., Klaeschen, D., Flueh, E., & Malavieille, J. (2001). Non-Coulomb wedges, wrong-way thrusting, and natural hazards in Cascadia. Geology, 29(5), 379. https://doi.org/10.1130/0091-7613(2001)029<0379:ncwwwt>2.0.co;2 DOI: https://doi.org/10.1130/0091-7613(2001)029<0379:NCWWWT>2.0.CO;2

Haeussler, P. J., Armstrong, P. A., Liberty, L. M., Ferguson, K. M., Finn, S. P., Arkle, J. C., & Pratt, T. L. (2015). Focused exhumation along megathrust splay faults in Prince William Sound, Alaska. Quaternary Science Reviews, 113, 8–22. https://doi.org/10.1016/j.quascirev.2014.10.013 DOI: https://doi.org/10.1016/j.quascirev.2014.10.013

Han, S., Carbotte, S. M., Canales, J. P., Nedimović, M. R., & Carton, H. (2018). Along‐Trench Structural Variations of the Subducting Juan de Fuca Plate From Multichannel Seismic Reflection Imaging. Journal of Geophysical Research: Solid Earth, 123(4), 3122–3146. https://doi.org/10.1002/2017jb015059 DOI: https://doi.org/10.1002/2017JB015059

Henstock, T. J., McNeill, L. C., & Tappin, D. R. (2006). Seafloor morphology of the Sumatran subduction zone: Surface rupture during megathrust earthquakes? Geology, 34(6), 485. https://doi.org/10.1130/22426.1 DOI: https://doi.org/10.1130/22426.1

Hill, J. C., Brothers, D. S., Craig, B. K., ten Brink, U. S., Chaytor, J. D., & Flores, C. H. (2017). Geologic controls on submarine slope failure along the central U.S. Atlantic margin: Insights from the Currituck Slide Complex. Marine Geology, 385, 114–130. https://doi.org/10.1016/j.margeo.2016.10.007 DOI: https://doi.org/10.1016/j.margeo.2016.10.007

Hill, J. C., Watt, J. T., & Brothers, D. S. (2022). Mass wasting along the Cascadia subduction zone: Implications for abyssal turbidite sources and the earthquake record. Earth and Planetary Science Letters, 597, 117797. https://doi.org/10.1016/j.epsl.2022.117797 DOI: https://doi.org/10.1016/j.epsl.2022.117797

Hubbard, J., & Shaw, J. H. (2009). Uplift of the Longmen Shan and Tibetan plateau, and the 2008 Wenchuan (M = 7.9) earthquake. Nature, 458(7235), 194–197. https://doi.org/10.1038/nature07837 DOI: https://doi.org/10.1038/nature07837

Hüpers, A., Torres, M. E., Owari, S., McNeill, L. C., Dugan, B., Henstock, T. J., Milliken, K. L., Petronotis, K. E., Backman, J., Bourlange, S., Chemale, F., Chen, W., Colson, T. A., Frederik, M. C. G., Guèrin, G., Hamahashi, M., House, B. M., Jeppson, T. N., Kachovich, S., … Zhao, X. (2017). Release of mineral-bound water prior to subduction tied to shallow seismogenic slip off Sumatra. Science, 356(6340), 841–844. https://doi.org/10.1126/science.aal3429 DOI: https://doi.org/10.1126/science.aal3429

Hyndman, R. D., & Wang, K. (1993). Thermal constraints on the zone of major thrust earthquake failure: The Cascadia Subduction Zone. Journal of Geophysical Research: Solid Earth, 98(B2), 2039–2060. https://doi.org/10.1029/92jb02279 DOI: https://doi.org/10.1029/92JB02279

Ide, S., Baltay, A., & Beroza, G. C. (2011). Shallow Dynamic Overshoot and Energetic Deep Rupture in the 2011 Mw 9.0 Tohoku-Oki Earthquake. Science, 332(6036), 1426–1429. https://doi.org/10.1126/science.1207020 DOI: https://doi.org/10.1126/science.1207020

Ishii, M., Shearer, P. M., Houston, H., & Vidale, J. E. (2005). Extent, duration and speed of the 2004 Sumatra–Andaman earthquake imaged by the Hi-Net array. Nature, 435(7044), 933–936. https://doi.org/10.1038/nature03675 DOI: https://doi.org/10.1038/nature03675

Ito, Y., Tsuji, T., Osada, Y., Kido, M., Inazu, D., Hayashi, Y., Tsushima, H., Hino, R., & Fujimoto, H. (2011). Frontal wedge deformation near the source region of the 2011 Tohoku-Oki earthquake. Geophysical Research Letters, 38(7). https://doi.org/10.1029/2011gl048355 DOI: https://doi.org/10.1029/2011GL048355

Kaiser, A., Balfour, N., Fry, B., Holden, C., Litchfield, N., Gerstenberger, M., D’Anastasio, E., Horspool, N., McVerry, G., Ristau, J., Bannister, S., Christophersen, A., Clark, K., Power, W., Rhoades, D., Massey, C., Hamling, I., Wallace, L., Mountjoy, J., … Gledhill, K. (2017). The 2016 Kaikōura, New Zealand, Earthquake: Preliminary Seismological Report. Seismological Research Letters, 88(3), 727–739. https://doi.org/10.1785/0220170018 DOI: https://doi.org/10.1785/0220170018

Kluesner, J., Brothers, D., Hart, P., Miller, N., & Hatcher, G. (2018). Practical approaches to maximizing the resolution of sparker seismic reflection data. Marine Geophysical Research, 40(3), 279–301. https://doi.org/10.1007/s11001-018-9367-2 DOI: https://doi.org/10.1007/s11001-018-9367-2

Kodaira, S., Fujiwara, T., Fujie, G., Nakamura, Y., & Kanamatsu, T. (2020). Large Coseismic Slip to the Trench During the 2011 Tohoku-Oki Earthquake. Annual Review of Earth and Planetary Sciences, 48(1), 321–343. https://doi.org/10.1146/annurev-earth-071719-055216 DOI: https://doi.org/10.1146/annurev-earth-071719-055216

Kodaira, S., No, T., Nakamura, Y., Fujiwara, T., Kaiho, Y., Miura, S., Takahashi, N., Kaneda, Y., & Taira, A. (2012). Coseismic fault rupture at the trench axis during the 2011 Tohoku-oki earthquake. Nature Geoscience, 5(9), 646–650. https://doi.org/10.1038/ngeo1547 DOI: https://doi.org/10.1038/ngeo1547

Kopp, H., & Kukowski, N. (2003). Backstop geometry and accretionary mechanics of the Sunda margin. Tectonics, 22(6). https://doi.org/10.1029/2002tc001420 DOI: https://doi.org/10.1029/2002TC001420

Li, S., Wang, K., Wang, Y., Jiang, Y., & Dosso, S. E. (2018). Geodetically Inferred Locking State of the Cascadia Megathrust Based on a Viscoelastic Earth Model. Journal of Geophysical Research: Solid Earth, 123(9), 8056–8072. https://doi.org/10.1029/2018jb015620 DOI: https://doi.org/10.1029/2018JB015620

Liberty, L. M., Finn, S. P., Haeussler, P. J., Pratt, T. L., & Peterson, A. (2013). Megathrust splay faults at the focus of the Prince William Sound asperity, Alaska. Journal of Geophysical Research: Solid Earth, 118(10), 5428–5441. https://doi.org/10.1002/jgrb.50372 DOI: https://doi.org/10.1002/jgrb.50372

Lin, Y. N., Sladen, A., Ortega‐Culaciati, F., Simons, M., Avouac, J., Fielding, E. J., Brooks, B. A., Bevis, M., Genrich, J., Rietbrock, A., Vigny, C., Smalley, R., & Socquet, A. (2013). Coseismic and postseismic slip associated with the 2010 Maule Earthquake, Chile: Characterizing the Arauco Peninsula barrier effect. Journal of Geophysical Research: Solid Earth, 118(6), 3142–3159. https://doi.org/10.1002/jgrb.50207 DOI: https://doi.org/10.1002/jgrb.50207

Lindsey, E. O., Mallick, R., Hubbard, J. A., Bradley, K. E., Almeida, R. V., Moore, J. D. P., Bürgmann, R., & Hill, E. M. (2021). Slip rate deficit and earthquake potential on shallow megathrusts. Nature Geoscience, 14(5), 321–326. https://doi.org/10.1038/s41561-021-00736-x DOI: https://doi.org/10.1038/s41561-021-00736-x

Litchfield, N. J., Villamor, P., Dissen, R. J. V., Nicol, A., Barnes, P. M., A. Barrell, D. J., Pettinga, J. R., Langridge, R. M., Little, T. A., Mountjoy, J. J., Ries, W. F., Rowland, J., Fenton, C., Stirling, M. W., Kearse, J., Berryman, K. R., Cochran, U. A., Clark, K. J., Hemphill‐Haley, M., … Zinke, R. (2018). Surface Rupture of Multiple Crustal Faults in the 2016 Mw 7.8 Kaikōura, New Zealand, Earthquake. Bulletin of the Seismological Society of America, 108(3B), 1496–1520. https://doi.org/10.1785/0120170300 DOI: https://doi.org/10.1785/0120170300

MacKay, M. E. (1995). Structural variation and landward vergence at the toe of the Oregon accretionary prism. Tectonics, 14(6), 1309–1320. https://doi.org/10.1029/95tc02320 DOI: https://doi.org/10.1029/95TC02320

Maloney, D., Davies, R., Imber, J., Higgins, S., & King, S. (2010). New insights into deformation mechanisms in the gravitationally driven Niger Delta deep-water fold and thrust belt. AAPG Bulletin, 94(9), 1401–1424. https://doi.org/10.1306/01051009080 DOI: https://doi.org/10.1306/01051009080

Mannu, U., Ueda, K., Willett, S. D., Gerya, T. V., & Strasser, M. (2016). Impact of sedimentation on evolution of accretionary wedges: Insights from high-resolution thermomechanical modeling. Tectonics, 35(12), 2828–2846. https://doi.org/10.1002/2016tc004239 DOI: https://doi.org/10.1002/2016TC004239

Mannu, U., Ueda, K., Willett, S. D., Gerya, T. V., & Strasser, M. (2017). Stratigraphic signatures of forearc basin formation mechanisms. Geochemistry, Geophysics, Geosystems, 18(6), 2388–2410. https://doi.org/10.1002/2017gc006810 DOI: https://doi.org/10.1002/2017GC006810

McAdoo, B. G., Orange, D. L., Screaton, E., Lee, H., & Kayen, R. (1997). Slope basins, headless canyons, and submarine palaeoseismology of the Cascadia accretionary complex. Basin Research, 9(4), 313–324. https://doi.org/10.1046/j.1365-2117.1997.00049.x DOI: https://doi.org/10.1046/j.1365-2117.1997.00049.x

McCalpin, J. P., & Nelson, A. R. (2009). Chapter 1 Introduction to Paleoseismology. In Paleoseismology (pp. 1–27). Elsevier. https://doi.org/10.1016/s0074-6142(09)95001-x DOI: https://doi.org/10.1016/S0074-6142(09)95001-X

McNeill, L. C., Goldfinger, C., Kulm, L. D., & Yeats, R. S. (2000). Tectonics of the Neogene Cascadia forearc basin: Investigations of a deformed late Miocene unconformity. Geological Society of America Bulletin, 112(8), 1209–1224. https://doi.org/10.1130/0016-7606(2000)112<1209:totncf>2.0.co;2 DOI: https://doi.org/10.1130/0016-7606(2000)112<1209:TOTNCF>2.3.CO;2

McNeill, Lisa C., & Henstock, T. J. (2014). Forearc structure and morphology along the Sumatra‐Andaman subduction zone. Tectonics, 33(2), 112–134. https://doi.org/10.1002/2012tc003264 DOI: https://doi.org/10.1002/2012TC003264

McNeill, Lisa C., Piper, K. A., Goldfinger, C., Kulm, L. D., & Yeats, R. S. (1997). Listric normal faulting on the Cascadia continental margin. Journal of Geophysical Research: Solid Earth, 102(B6), 12123–12138. https://doi.org/10.1029/97jb00728 DOI: https://doi.org/10.1029/97JB00728

Melgar, D. (2021). Was the January 26th, 1700 Cascadia Earthquake Part of a Rupture Sequence? Journal of Geophysical Research: Solid Earth, 126(10). https://doi.org/10.1029/2021jb021822 DOI: https://doi.org/10.1029/2021JB021822

Mitchum, R. M., Vail, P. R., & Sangree, J. B. (1977). Seismic Stratigraphy and Global Changes of Sea Level, Part 6Stratigraphic Interpretation of Seismic Reflection Patterns in Depositional Sequences. In Seismic Stratigraphy — Applications to Hydrocarbon Exploration. American Association of Petroleum Geologists. https://doi.org/10.1306/m26490c8 DOI: https://doi.org/10.1306/M26490C8

Moore, J. C., Rowe, C., & Meneghini, F. (2007). 10. How Accretionary Prisms Elucidate Seismogenesis in Subduction Zones. In The Seismogenic Zone of Subduction Thrust Faults (pp. 288–315). Columbia University Press. https://doi.org/10.7312/dixo13866-010 DOI: https://doi.org/10.7312/dixo13866-010

Moore, J. C., & Saffer, D. (2001). Updip limit of the seismogenic zone beneath the accretionary prism of southwest Japan: An effect of diagenetic to low-grade metamorphic processes and increasing effective stress. Geology, 29(2), 183. https://doi.org/10.1130/0091-7613(2001)029<0183:ulotsz>2.0.co;2 DOI: https://doi.org/10.1130/0091-7613(2001)029<0183:ULOTSZ>2.0.CO;2

Morton, E. A., Bilek, S. L., & Rowe, C. A. (2023). Cascadia Subduction Zone Fault Heterogeneities From Newly Detected Small Magnitude Earthquakes. Journal of Geophysical Research: Solid Earth, 128(6). https://doi.org/10.1029/2023jb026607 DOI: https://doi.org/10.1029/2023JB026607

Nedimović, M. R., Bohnenstiehl, D. R., Carbotte, S. M., Pablo Canales, J., & Dziak, R. P. (2009). Faulting and hydration of the Juan de Fuca plate system. Earth and Planetary Science Letters, 284(1–2), 94–102. https://doi.org/10.1016/j.epsl.2009.04.013 DOI: https://doi.org/10.1016/j.epsl.2009.04.013

Plafker, G. (1969). Tectonics of the March 27, 1964, Alaska earthquake. In Professional Paper. US Geological Survey. https://doi.org/10.3133/pp543i DOI: https://doi.org/10.3133/pp543I

Posamentier, H. W., Paumard, V., & Lang, S. C. (2022). Principles of seismic stratigraphy and seismic geomorphology I: Extracting geologic insights from seismic data. Earth-Science Reviews, 228, 103963. https://doi.org/10.1016/j.earscirev.2022.103963 DOI: https://doi.org/10.1016/j.earscirev.2022.103963

Qiu, Q., & Barbot, S. (2022). Tsunami excitation in the outer wedge of global subduction zones. Earth-Science Reviews, 230, 104054. https://doi.org/10.1016/j.earscirev.2022.104054 DOI: https://doi.org/10.1016/j.earscirev.2022.104054

Ramos, M. D., Liberty, L. M., Haeussler, P. J., & Humphreys, R. (2022). Upper-plate structure and tsunamigenic faults near the Kodiak Islands, Alaska, USA. Geosphere, 18(5), 1474–1491. https://doi.org/10.1130/ges02486.1 DOI: https://doi.org/10.1130/GES02486.1

Riedel, M., Côté, M. M., Urlaub, M., Geersen, J., Scholz, N. A., Naegeli, K., & Spence, G. D. (2018). Slope failures along the deformation front of the Cascadia margin: linking slide morphology to subduction zone parameters. Geological Society, London, Special Publications, 477(1), 47–67. https://doi.org/10.1144/sp477.33 DOI: https://doi.org/10.1144/SP477.33

Ross, W. C., Halliwell, B. A., May, J. A., Watts, D. E., & Syvitski, J. P. M. (1994). Slope readjustment: A new model for the development of submarine fans and aprons. Geology, 22(6), 511. https://doi.org/10.1130/0091-7613(1994)022<0511:sranmf>2.3.co;2 DOI: https://doi.org/10.1130/0091-7613(1994)022<0511:SRANMF>2.3.CO;2

Ryan, W. B. F., Carbotte, S. M., Coplan, J. O., O’Hara, S., Melkonian, A., Arko, R., Weissel, R. A., Ferrini, V., Goodwillie, A., Nitsche, F., Bonczkowski, J., & Zemsky, R. (2009). Global Multi‐Resolution Topography synthesis. Geochemistry, Geophysics, Geosystems, 10(3). https://doi.org/10.1029/2008gc002332 DOI: https://doi.org/10.1029/2008GC002332

Sakaguchi, A., Chester, F., Curewitz, D., Fabbri, O., Goldsby, D., Kimura, G., Li, C.-F., Masaki, Y., Screaton, E. J., Tsutsumi, A., Ujiie, K., & Yamaguchi, A. (2011). Seismic slip propagation to the updip end of plate boundary subduction interface faults: Vitrinite reflectance geothermometry on Integrated Ocean Drilling Program NanTro SEIZE cores. Geology, 39(4), 395–398. https://doi.org/10.1130/g31642.1 DOI: https://doi.org/10.1130/G31642.1

Salmi, M. S., Johnson, H. P., & Harris, R. N. (2017). Thermal environment of the Southern Washington region of the Cascadia subduction zone. Journal of Geophysical Research: Solid Earth, 122(8), 5852–5870. https://doi.org/10.1002/2016jb013839 DOI: https://doi.org/10.1002/2016JB013839

Satake, K., Shimazaki, K., Tsuji, Y., & Ueda, K. (1996). Time and size of a giant earthquake in Cascadia inferred from Japanese tsunami records of January 1700. Nature, 379(6562), 246–249. https://doi.org/10.1038/379246a0 DOI: https://doi.org/10.1038/379246a0

Schmalzle, G. M., McCaffrey, R., & Creager, K. C. (2014). Central Cascadia subduction zone creep. Geochemistry, Geophysics, Geosystems, 15(4), 1515–1532. https://doi.org/10.1002/2013gc005172 DOI: https://doi.org/10.1002/2013GC005172

Schmitt, R. G. (2017). Quaternary Faults Web Application. U.S. Geological Survey. https://doi.org/10.5066/F7S75FJM

Seeber, L., Mueller, C., Fujiwara, T., Arai, K., Soh, W., Djajadihardja, Y., & Cormier, M. (2007). Accretion, mass wasting, and partitioned strain over the 26 Dec 2004 Mw9.2 rupture offshore Aceh, northern Sumatra. Earth and Planetary Science Letters, 263(1–2), 16–31. https://doi.org/10.1016/j.epsl.2007.07.057 DOI: https://doi.org/10.1016/j.epsl.2007.07.057

Seely, D. R. (1977). The significance of landward vergence and oblique structural trends on trench inner slopes. In Maurice Ewing Series (pp. 187–198). American Geophysical Union. https://doi.org/10.1029/me001p0187 DOI: https://doi.org/10.1029/ME001p0187

Silver, E. A. (1972). Pleistocene tectonic accretion of the continental slope off Washington. Marine Geology, 13(4), 239–249. https://doi.org/10.1016/0025-3227(72)90053-9 DOI: https://doi.org/10.1016/0025-3227(72)90053-9

Simpson, G. D. H. (2010). Formation of accretionary prisms influenced by sediment subduction and supplied by sediments from adjacent continents. Geology, 38(2), 131–134. https://doi.org/10.1130/g30461.1 DOI: https://doi.org/10.1130/G30461.1

Smith, G., McNeill, L., Henstock, T. J., & Bull, J. (2012). The structure and fault activity of the Makran accretionary prism. Journal of Geophysical Research: Solid Earth, 117(B7). https://doi.org/10.1029/2012jb009312 DOI: https://doi.org/10.1029/2012JB009312

Stevens, D. E., Henstock, T. J., & McNeill, L. C. (2021). Evolution of the Thermal and Dehydration State of Sediments Entering the North Sumatra Subduction Zone. Geochemistry, Geophysics, Geosystems, 22(4). https://doi.org/10.1029/2020gc009306 DOI: https://doi.org/10.1029/2020GC009306

Stone, I., Vidale, J. E., Han, S., & Roland, E. (2018). Catalog of Offshore Seismicity in Cascadia: Insights Into the Regional Distribution of Microseismicity and its Relation to Subduction Processes. Journal of Geophysical Research: Solid Earth, 123(1), 641–652. https://doi.org/10.1002/2017jb014966 DOI: https://doi.org/10.1002/2017JB014966

Sun, T., Wang, K., Fujiwara, T., Kodaira, S., & He, J. (2017). Large fault slip peaking at trench in the 2011 Tohoku-oki earthquake. Nature Communications, 8(1). https://doi.org/10.1038/ncomms14044 DOI: https://doi.org/10.1038/ncomms14044

Suppe, J., Chou, G. T., & Hook, S. C. (1992). Rates of folding and faulting determined from growth strata. In Thrust Tectonics (pp. 105–121). Springer Netherlands. https://doi.org/10.1007/978-94-011-3066-0_9 DOI: https://doi.org/10.1007/978-94-011-3066-0_9

Tobin, H. J., & Kinoshita, M. (2006). NanTroSEIZE: The IODP Nankai Trough Seismogenic Zone Experiment. Scientific Drilling, 2, 23–27. https://doi.org/10.5194/sd-2-23-2006 DOI: https://doi.org/10.5194/sd-2-23-2006

Tobin, H., Kimura, G., & Kodaira, S. (2019). Processes Governing Giant Subduction Earthquakes: IODP Drilling to Sample and Instrument Subduction Zone Megathrusts. Oceanography, 32(1), 80–93. https://doi.org/10.5670/oceanog.2019.125 DOI: https://doi.org/10.5670/oceanog.2019.125

Tobin, Harold J., Moore, J. C., Mackay, M. E., Orange, D. L., & Kulm, L. D. (1993). Fluid flow along a strike-slip fault at the toe of the Oregon accretionary prism: Implications for the geometry of frontal accretion. Geological Society of America Bulletin, 105(5), 569–582. https://doi.org/10.1130/0016-7606(1993)105<0569:ffaass>2.3.co;2 DOI: https://doi.org/10.1130/0016-7606(1993)105<0569:FFAASS>2.3.CO;2

Ueda, H., Kitazato, H., Jamieson, A., Bond, T., Cardigos, S., Funaki, M., Maroni, P. J., Nanbu, H., O’Callaghan, J. M., Onishi, T., Pedersen, S. W., Roperez, J., Tsuruzono, H., Watanabe, H. K., & Yasuda, T. (2023). The submarine fault scarp of the 2011 Tohoku-oki Earthquake in the Japan Trench. Communications Earth & Environment, 4(1). https://doi.org/10.1038/s43247-023-01118-4 DOI: https://doi.org/10.1038/s43247-023-01118-4

Ulrich, T., Gabriel, A.-A., Ampuero, J.-P., & Xu, W. (2019). Dynamic viability of the 2016 Mw 7.8 Kaikōura earthquake cascade on weak crustal faults. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-09125-w DOI: https://doi.org/10.1038/s41467-019-09125-w

Underwood, M. B. (2002). Strike-parallel variations in clay minerals and fault vergence in the Cascadia subduction zone. Geology, 30(2), 155. https://doi.org/10.1130/0091-7613(2002)030<0155:spvicm>2.0.co;2 DOI: https://doi.org/10.1130/0091-7613(2002)030<0155:SPVICM>2.0.CO;2

van Zelst, I., Rannabauer, L., Gabriel, A. ‐A., & van Dinther, Y. (2022). Earthquake Rupture on Multiple Splay Faults and Its Effect on Tsunamis. Journal of Geophysical Research: Solid Earth, 127(8). https://doi.org/10.1029/2022jb024300 DOI: https://doi.org/10.1029/2022JB024300

von Huene, R., Miller, J. J., & Krabbenhoeft, A. (2021). The Alaska Convergent Margin Backstop Splay Fault Zone, a Potential Large Tsunami Generator Between the Frontal Prism and Continental Framework. Geochemistry, Geophysics, Geosystems, 22(1). https://doi.org/10.1029/2019gc008901 DOI: https://doi.org/10.1029/2019GC008901

Wang, K., & Hu, Y. (2006). Accretionary prisms in subduction earthquake cycles: The theory of dynamic Coulomb wedge. Journal of Geophysical Research: Solid Earth, 111(B6). https://doi.org/10.1029/2005jb004094 DOI: https://doi.org/10.1029/2005JB004094

Watt, J. T., & Brothers, D. S. (2020). Systematic characterization of morphotectonic variability along the Cascadia convergent margin: Implications for shallow megathrust behavior and tsunami hazards. Geosphere, 17(1), 95–117. https://doi.org/10.1130/ges02178.1 DOI: https://doi.org/10.1130/GES02178.1

Wendt, J., Oglesby, D. D., & Geist, E. L. (2009). Tsunamis and splay fault dynamics. Geophysical Research Letters, 36(15). https://doi.org/10.1029/2009gl038295 DOI: https://doi.org/10.1029/2009GL038295

Wilson, A., & Ma, S. (2021). Wedge Plasticity and Fully Coupled Simulations of Dynamic Rupture and Tsunami in the Cascadia Subduction Zone. Journal of Geophysical Research: Solid Earth, 126(7). https://doi.org/10.1029/2020jb021627 DOI: https://doi.org/10.1029/2020JB021627

Witter, R. C., Zhang, Y. J., Wang, K., Priest, G. R., Goldfinger, C., Stimely, L., English, J. T., & Ferro, P. A. (2013). Simulated tsunami inundation for a range of Cascadia megathrust earthquake scenarios at Bandon, Oregon, USA. Geosphere, 9(6), 1783–1803. https://doi.org/10.1130/ges00899.1 DOI: https://doi.org/10.1130/GES00899.1

Xu, S., Fukuyama, E., Ben-Zion, Y., & Ampuero, J.-P. (2015). Dynamic rupture activation of backthrust fault branching. Tectonophysics, 644–645, 161–183. https://doi.org/10.1016/j.tecto.2015.01.011 DOI: https://doi.org/10.1016/j.tecto.2015.01.011

Yamaguchi, A., Sakaguchi, A., Sakamoto, T., Iijima, K., Kameda, J., Kimura, G., Ujiie, K., Chester, F. M., Fabbri, O., Goldsby, D., Tsutsumi, A., Li, C.-F., & Curewitz, D. (2011). Progressive illitization in fault gouge caused by seismic slip propagation along a megasplay fault in the Nankai Trough. Geology, 39(11), 995–998. https://doi.org/10.1130/g32038.1 DOI: https://doi.org/10.1130/G32038.1

Additional Files

Published

2024-04-30

How to Cite

Ledeczi, A., Lucas, M., Tobin, H., Watt, J., & Miller, N. (2024). Late Quaternary Surface Displacements on Accretionary Wedge Splay Faults in the Cascadia Subduction Zone: Implications for Megathrust Rupture. Seismica, 2(4). https://doi.org/10.26443/seismica.v2i4.1158

Issue

Section

Special Issue: the Cascadia Subduction Zone