Late Quaternary Surface Displacements on Accretionary Wedge Splay Faults in the Cascadia Subduction Zone: Implications for Megathrust Rupture


  • Anna Ledeczi Department of Earh & Space Sciences, University of Washington
  • Madeleine Lucas Department of Earh & Space Sciences, University of Washington
  • Harold Tobin Department of Earh & Space Sciences, University of Washington
  • Janet Watt Pacific Coastal and Marine Science Center, United States Geological Survey, Santa Cruz, CA
  • Nathan Miller Woods Hole Coastal and Marine Science Center, United States Geological Survey, Woods Hole, MA



Cascadia Subduction Zone, splay fault, tsunami


Because splay faults branch at a steep dip angle from the plate-boundary décollement in an accretionary wedge, their coseismic displacement can potentially result in larger tsunamis with distinct characteristics compared to megathrust-only fault ruptures, posing an enhanced hazard to coastal communities. Elsewhere, there is evidence of coseismic slip on splay faults during many of the largest subduction zone earthquakes, but our understanding of potentially active splay faults and their hazards at the Cascadia subduction zone remains limited. To identify the most recently active splay faults at Cascadia, we conduct stratigraphic and structural interpretations of near-surface deformation in the outer accretionary wedge for the ~400 km along-strike length of the landward vergence zone. We analyze recently acquired high-frequency sparker seismic data and crustal-scale multi-channel seismic data to examine the record of deformation in shallow slope basins and the upper ~1 km of the surrounding accreted sediments and to investigate linkages to deeper décollement structure. We present a new fault map for widest, most completely locked portion of Cascadia from 45 to 48°N latitude, which documents the distribution of faults that show clear evidence of recent late Quaternary activity. We find widespread evidence for active splay faulting up to 30 km landward of the deformation front, in what we define as the active domain, and diminished fault activity landward outside of this zone. The abundance of surface-deforming splay faults in the active outer wedge domain suggests Cascadia megathrust events may commonly host distributed shallow rupture on multiple splay faults located within 30 km of the deformation front.


Adam, J., Klaeschen, D., Kukowski, N., & Flueh, E. (2004). Upward delamination of Cascadia Basin sediment infill with landward frontal accretion thrusting caused by rapid glacial age material flux. Tectonics, 23(3). DOI:

Appelgate, B., Goldfinger, C., MacKay, M. E., Kulm, L. D., Fox, C. G., Embley, R. W., & Meis, P. J. (1992). A left‐lateral strike‐slip fault seaward of the Oregon Convergent Margin. Tectonics, 11(3), 465–477. DOI:

Aslam, K. S., Thomas, A. M., & Melgar, D. (2021). The Effect of Fore‐Arc Deformation on Shallow Earthquake Rupture Behavior in the Cascadia Subduction Zone. Geophysical Research Letters, 48(20). DOI:

Balster-Gee, A. F., Miller, N. C., Watt, J. T., Roland, E. C., Kluesner, J. W., Heller, S. J., Hart, P. E., Sliter, R. W., Myers, E. K., Wyland, R. M., Marcuson, R. K., Johnson, C., Nichols, A. R., Pszczola, K., & Williams, C. (2023). High-resolution multichannel sparker seismic-reflection and chirp sub-bottom data acquired along the Cascadia margin during USGS field activity 2019-024-FA. U.S. Geological Survey.

Barnard, W. D. (1978). The Washington continental slope: Quaternary tectonics and sedimentation. Marine Geology, 27(1–2), 79–114. DOI:

Beeson, J. W., Goldfinger, C., & Fortin, W. F. (2017). Large-scale modification of submarine geomorphic features on the Cascadia accretionary wedge caused by catastrophic flooding events. Geosphere, 13(5), 1713–1728. DOI:

Bilotti, F., & Shaw, J. H. (2005). Deep-water Niger Delta fold and thrust belt modeled as a critical-taper wedge: The influence of elevated basal fluid pressure on structural styles. AAPG Bulletin, 89(11), 1475–1491. DOI:

Booth, D. B., Troost, K. G., Clague, J. J., & Waitt, R. B. (2003). The Cordilleran Ice Sheet. In Developments in Quaternary Sciences (pp. 17–43). Elsevier. DOI:

Booth‐Rea, G., Klaeschen, D., Grevemeyer, I., & Reston, T. (2008). Heterogeneous deformation in the Cascadia convergent margin and its relation to thermal gradient. Tectonics, 27(4). DOI:

Brooks, B. A., Goldberg, D., DeSanto, J., Ericksen, T. L., Webb, S. C., Nooner, S. L., Chadwell, C. D., Foster, J., Minson, S., Witter, R., Haeussler, P., Freymueller, J., Barnhart, W., & Nevitt, J. (2023). Rapid shallow megathrust afterslip from the 2021 M8.2 Chignik, Alaska earthquake revealed by seafloor geodesy. Science Advances, 9(17). DOI:

Byrne, D. E., Davis, D. M., & Sykes, L. R. (1988). Loci and maximum size of thrust earthquakes and the mechanics of the shallow region of subduction zones. Tectonics, 7(4), 833–857. DOI:

Carbotte, S., Han, S., Boston, B., & Canales, J. (2023). Processed pre-stack depth-migrated seismic reflection data from the 2021 CASIE21 multi-channel seismic survey (MGL2104). Interdisciplinary Earth Data Alliance (IEDA).

Caulet, J. P. (1995). Proceedings of the Ocean Drilling Program, 146 Part 1 Scientific Results. In Proceedings of the Ocean Drilling Program. Ocean Drilling Program. DOI:

Chiama, K., Chauvin, B., Plesch, A., Moss, R., & Shaw, J. H. (2023). Geomechanical Modeling of Ground Surface Deformation Associated with Thrust and Reverse-Fault Earthquakes: A Distinct Element Approach. Bulletin of the Seismological Society of America, 113(4), 1702–1723. DOI:

Davis, D., Suppe, J., & Dahlen, F. A. (1983). Mechanics of fold‐and‐thrust belts and accretionary wedges. Journal of Geophysical Research: Solid Earth, 88(B2), 1153–1172. DOI:

DeMets, C., Gordon, R. G., & Argus, D. F. (2010). Geologically current plate motions. Geophysical Journal International, 181(1), 1–80. DOI:

Ding, X., Xu, S., Xie, Y., Van den Ende, M., Premus, J., & Ampuero, J.-P. (2023). The sharp turn: Backward rupture branching during the 2023 Mw 7.8 Kahramanmaraş (Türkiye) earthquake. Seismica, 2(3). DOI:

Fisher, M. A., Flueh, E. R., Scholl, D. W., Parsons, T., Wells, R. E., Trehu, A., Brink, U. ten, & Weaver, C. S. (1999). Geologic processes of accretion in the Cascadiasubduction zone west of Washington State. Journal of Geodynamics, 27(3), 277–288. DOI:

Flueh, E. R., Fisher, M. A., Bialas, J., Childs, J. R., Klaeschen, D., Kukowski, N., Parsons, T., Scholl, D. W., ten Brink, U., Tréhu, A. M., & Vidal, N. (1998). New seismic images of the Cascadia subduction zone from cruise SO108 — ORWELL. Tectonophysics, 293(1–2), 69–84. DOI:

Frederik, M. C. G., Gulick, S. P. S., Austin, J. A., Bangs, N. L. B., & Udrekh. (2015). What 2‐D multichannel seismic and multibeam bathymetric data tell us about the North Sumatra wedge structure and coseismic response. Tectonics, 34(9), 1910–1926. DOI:

Fujiwara, T., Kodaira, S., No, T., Kaiho, Y., Takahashi, N., & Kaneda, Y. (2011). The 2011 Tohoku-Oki Earthquake: Displacement Reaching the Trench Axis. Science, 334(6060), 1240–1240. DOI:

Fuller, C. W., Willett, S. D., & Brandon, M. T. (2006). Formation of forearc basins and their influence on subduction zone earthquakes. Geology, 34(2), 65. DOI:

Gao, D., Wang, K., Insua, T. L., Sypus, M., Riedel, M., & Sun, T. (2018). Defining megathrust tsunami source scenarios for northernmost Cascadia. Natural Hazards, 94(1), 445–469. DOI:

Goldfinger, C., Beeson, J., Romsos, C., & Patton, J. R. (2023). Neotectonic Map of the Cascadia Margin [(Open-File Report O-23-05).]. Oregon Department of Geology.

Goldfinger, Chris, Kulm, L. D., Yeats, R. S., Appelgate, B., MacKay, M. E., & Moore, G. F. (1992). Transverse structural trends along the Oregon convergent margin: Implications for Cascadia earthquake potential and crustal rotations. Geology, 20(2), 141.<0141:tstato>;2 DOI:<0141:TSTATO>2.3.CO;2

Goldfinger, Chris, Kulm, L. D., Yeats, R. S., Hummon, C., Huftile, G. J., Niem, A. R., & McNeill, L. C. (1996). Oblique Strike-Slip Faulting of the Cascadia Submarine Forearc: The Daisy Bank Fault Zone off Central Oregon. In Geophysical Monograph Series (pp. 65–74). American Geophysical Union. DOI:

Goldfinger, Chris, Kulm, L. D., Yeats, R. S., McNeill, L., & Hummon, C. (1997). Oblique strike‐slip faulting of the central Cascadia submarine forearc. Journal of Geophysical Research: Solid Earth, 102(B4), 8217–8243. DOI:

Gulick, S. P. S., Austin, J. A., McNeill, L. C., Bangs, N. L. B., Martin, K. M., Henstock, T. J., Bull, J. M., Dean, S., Djajadihardja, Y. S., & Permana, H. (2011). Updip rupture of the 2004 Sumatra earthquake extended by thick indurated sediments. Nature Geoscience, 4(7), 453–456. DOI:

Gulick, S. P. S., Bangs, N. L. B., Moore, G. F., Ashi, J., Martin, K. M., Sawyer, D. S., Tobin, H. J., Kuramoto, S., & Taira, A. (2010). Rapid forearc basin uplift and megasplay fault development from 3D seismic images of Nankai Margin off Kii Peninsula, Japan. Earth and Planetary Science Letters, 300(1–2), 55–62. DOI:

Gutscher, M.-A., Klaeschen, D., Flueh, E., & Malavieille, J. (2001). Non-Coulomb wedges, wrong-way thrusting, and natural hazards in Cascadia. Geology, 29(5), 379.<0379:ncwwwt>;2 DOI:<0379:NCWWWT>2.0.CO;2

Haeussler, P. J., Armstrong, P. A., Liberty, L. M., Ferguson, K. M., Finn, S. P., Arkle, J. C., & Pratt, T. L. (2015). Focused exhumation along megathrust splay faults in Prince William Sound, Alaska. Quaternary Science Reviews, 113, 8–22. DOI:

Han, S., Carbotte, S. M., Canales, J. P., Nedimović, M. R., & Carton, H. (2018). Along‐Trench Structural Variations of the Subducting Juan de Fuca Plate From Multichannel Seismic Reflection Imaging. Journal of Geophysical Research: Solid Earth, 123(4), 3122–3146. DOI:

Henstock, T. J., McNeill, L. C., & Tappin, D. R. (2006). Seafloor morphology of the Sumatran subduction zone: Surface rupture during megathrust earthquakes? Geology, 34(6), 485. DOI:

Hill, J. C., Brothers, D. S., Craig, B. K., ten Brink, U. S., Chaytor, J. D., & Flores, C. H. (2017). Geologic controls on submarine slope failure along the central U.S. Atlantic margin: Insights from the Currituck Slide Complex. Marine Geology, 385, 114–130. DOI:

Hill, J. C., Watt, J. T., & Brothers, D. S. (2022). Mass wasting along the Cascadia subduction zone: Implications for abyssal turbidite sources and the earthquake record. Earth and Planetary Science Letters, 597, 117797. DOI:

Hubbard, J., & Shaw, J. H. (2009). Uplift of the Longmen Shan and Tibetan plateau, and the 2008 Wenchuan (M = 7.9) earthquake. Nature, 458(7235), 194–197. DOI:

Hüpers, A., Torres, M. E., Owari, S., McNeill, L. C., Dugan, B., Henstock, T. J., Milliken, K. L., Petronotis, K. E., Backman, J., Bourlange, S., Chemale, F., Chen, W., Colson, T. A., Frederik, M. C. G., Guèrin, G., Hamahashi, M., House, B. M., Jeppson, T. N., Kachovich, S., … Zhao, X. (2017). Release of mineral-bound water prior to subduction tied to shallow seismogenic slip off Sumatra. Science, 356(6340), 841–844. DOI:

Hyndman, R. D., & Wang, K. (1993). Thermal constraints on the zone of major thrust earthquake failure: The Cascadia Subduction Zone. Journal of Geophysical Research: Solid Earth, 98(B2), 2039–2060. DOI:

Ide, S., Baltay, A., & Beroza, G. C. (2011). Shallow Dynamic Overshoot and Energetic Deep Rupture in the 2011 Mw 9.0 Tohoku-Oki Earthquake. Science, 332(6036), 1426–1429. DOI:

Ishii, M., Shearer, P. M., Houston, H., & Vidale, J. E. (2005). Extent, duration and speed of the 2004 Sumatra–Andaman earthquake imaged by the Hi-Net array. Nature, 435(7044), 933–936. DOI:

Ito, Y., Tsuji, T., Osada, Y., Kido, M., Inazu, D., Hayashi, Y., Tsushima, H., Hino, R., & Fujimoto, H. (2011). Frontal wedge deformation near the source region of the 2011 Tohoku-Oki earthquake. Geophysical Research Letters, 38(7). DOI:

Kaiser, A., Balfour, N., Fry, B., Holden, C., Litchfield, N., Gerstenberger, M., D’Anastasio, E., Horspool, N., McVerry, G., Ristau, J., Bannister, S., Christophersen, A., Clark, K., Power, W., Rhoades, D., Massey, C., Hamling, I., Wallace, L., Mountjoy, J., … Gledhill, K. (2017). The 2016 Kaikōura, New Zealand, Earthquake: Preliminary Seismological Report. Seismological Research Letters, 88(3), 727–739. DOI:

Kluesner, J., Brothers, D., Hart, P., Miller, N., & Hatcher, G. (2018). Practical approaches to maximizing the resolution of sparker seismic reflection data. Marine Geophysical Research, 40(3), 279–301. DOI:

Kodaira, S., Fujiwara, T., Fujie, G., Nakamura, Y., & Kanamatsu, T. (2020). Large Coseismic Slip to the Trench During the 2011 Tohoku-Oki Earthquake. Annual Review of Earth and Planetary Sciences, 48(1), 321–343. DOI:

Kodaira, S., No, T., Nakamura, Y., Fujiwara, T., Kaiho, Y., Miura, S., Takahashi, N., Kaneda, Y., & Taira, A. (2012). Coseismic fault rupture at the trench axis during the 2011 Tohoku-oki earthquake. Nature Geoscience, 5(9), 646–650. DOI:

Kopp, H., & Kukowski, N. (2003). Backstop geometry and accretionary mechanics of the Sunda margin. Tectonics, 22(6). DOI:

Li, S., Wang, K., Wang, Y., Jiang, Y., & Dosso, S. E. (2018). Geodetically Inferred Locking State of the Cascadia Megathrust Based on a Viscoelastic Earth Model. Journal of Geophysical Research: Solid Earth, 123(9), 8056–8072. DOI:

Liberty, L. M., Finn, S. P., Haeussler, P. J., Pratt, T. L., & Peterson, A. (2013). Megathrust splay faults at the focus of the Prince William Sound asperity, Alaska. Journal of Geophysical Research: Solid Earth, 118(10), 5428–5441. DOI:

Lin, Y. N., Sladen, A., Ortega‐Culaciati, F., Simons, M., Avouac, J., Fielding, E. J., Brooks, B. A., Bevis, M., Genrich, J., Rietbrock, A., Vigny, C., Smalley, R., & Socquet, A. (2013). Coseismic and postseismic slip associated with the 2010 Maule Earthquake, Chile: Characterizing the Arauco Peninsula barrier effect. Journal of Geophysical Research: Solid Earth, 118(6), 3142–3159. DOI:

Lindsey, E. O., Mallick, R., Hubbard, J. A., Bradley, K. E., Almeida, R. V., Moore, J. D. P., Bürgmann, R., & Hill, E. M. (2021). Slip rate deficit and earthquake potential on shallow megathrusts. Nature Geoscience, 14(5), 321–326. DOI:

Litchfield, N. J., Villamor, P., Dissen, R. J. V., Nicol, A., Barnes, P. M., A. Barrell, D. J., Pettinga, J. R., Langridge, R. M., Little, T. A., Mountjoy, J. J., Ries, W. F., Rowland, J., Fenton, C., Stirling, M. W., Kearse, J., Berryman, K. R., Cochran, U. A., Clark, K. J., Hemphill‐Haley, M., … Zinke, R. (2018). Surface Rupture of Multiple Crustal Faults in the 2016 Mw 7.8 Kaikōura, New Zealand, Earthquake. Bulletin of the Seismological Society of America, 108(3B), 1496–1520. DOI:

MacKay, M. E. (1995). Structural variation and landward vergence at the toe of the Oregon accretionary prism. Tectonics, 14(6), 1309–1320. DOI:

Maloney, D., Davies, R., Imber, J., Higgins, S., & King, S. (2010). New insights into deformation mechanisms in the gravitationally driven Niger Delta deep-water fold and thrust belt. AAPG Bulletin, 94(9), 1401–1424. DOI:

Mannu, U., Ueda, K., Willett, S. D., Gerya, T. V., & Strasser, M. (2016). Impact of sedimentation on evolution of accretionary wedges: Insights from high-resolution thermomechanical modeling. Tectonics, 35(12), 2828–2846. DOI:

Mannu, U., Ueda, K., Willett, S. D., Gerya, T. V., & Strasser, M. (2017). Stratigraphic signatures of forearc basin formation mechanisms. Geochemistry, Geophysics, Geosystems, 18(6), 2388–2410. DOI:

McAdoo, B. G., Orange, D. L., Screaton, E., Lee, H., & Kayen, R. (1997). Slope basins, headless canyons, and submarine palaeoseismology of the Cascadia accretionary complex. Basin Research, 9(4), 313–324. DOI:

McCalpin, J. P., & Nelson, A. R. (2009). Chapter 1 Introduction to Paleoseismology. In Paleoseismology (pp. 1–27). Elsevier. DOI:

McNeill, L. C., Goldfinger, C., Kulm, L. D., & Yeats, R. S. (2000). Tectonics of the Neogene Cascadia forearc basin: Investigations of a deformed late Miocene unconformity. Geological Society of America Bulletin, 112(8), 1209–1224.<1209:totncf>;2 DOI:<1209:TOTNCF>2.3.CO;2

McNeill, Lisa C., & Henstock, T. J. (2014). Forearc structure and morphology along the Sumatra‐Andaman subduction zone. Tectonics, 33(2), 112–134. DOI:

McNeill, Lisa C., Piper, K. A., Goldfinger, C., Kulm, L. D., & Yeats, R. S. (1997). Listric normal faulting on the Cascadia continental margin. Journal of Geophysical Research: Solid Earth, 102(B6), 12123–12138. DOI:

Melgar, D. (2021). Was the January 26th, 1700 Cascadia Earthquake Part of a Rupture Sequence? Journal of Geophysical Research: Solid Earth, 126(10). DOI:

Mitchum, R. M., Vail, P. R., & Sangree, J. B. (1977). Seismic Stratigraphy and Global Changes of Sea Level, Part 6Stratigraphic Interpretation of Seismic Reflection Patterns in Depositional Sequences. In Seismic Stratigraphy — Applications to Hydrocarbon Exploration. American Association of Petroleum Geologists. DOI:

Moore, J. C., Rowe, C., & Meneghini, F. (2007). 10. How Accretionary Prisms Elucidate Seismogenesis in Subduction Zones. In The Seismogenic Zone of Subduction Thrust Faults (pp. 288–315). Columbia University Press. DOI:

Moore, J. C., & Saffer, D. (2001). Updip limit of the seismogenic zone beneath the accretionary prism of southwest Japan: An effect of diagenetic to low-grade metamorphic processes and increasing effective stress. Geology, 29(2), 183.<0183:ulotsz>;2 DOI:<0183:ULOTSZ>2.0.CO;2

Morton, E. A., Bilek, S. L., & Rowe, C. A. (2023). Cascadia Subduction Zone Fault Heterogeneities From Newly Detected Small Magnitude Earthquakes. Journal of Geophysical Research: Solid Earth, 128(6). DOI:

Nedimović, M. R., Bohnenstiehl, D. R., Carbotte, S. M., Pablo Canales, J., & Dziak, R. P. (2009). Faulting and hydration of the Juan de Fuca plate system. Earth and Planetary Science Letters, 284(1–2), 94–102. DOI:

Plafker, G. (1969). Tectonics of the March 27, 1964, Alaska earthquake. In Professional Paper. US Geological Survey. DOI:

Posamentier, H. W., Paumard, V., & Lang, S. C. (2022). Principles of seismic stratigraphy and seismic geomorphology I: Extracting geologic insights from seismic data. Earth-Science Reviews, 228, 103963. DOI:

Qiu, Q., & Barbot, S. (2022). Tsunami excitation in the outer wedge of global subduction zones. Earth-Science Reviews, 230, 104054. DOI:

Ramos, M. D., Liberty, L. M., Haeussler, P. J., & Humphreys, R. (2022). Upper-plate structure and tsunamigenic faults near the Kodiak Islands, Alaska, USA. Geosphere, 18(5), 1474–1491. DOI:

Riedel, M., Côté, M. M., Urlaub, M., Geersen, J., Scholz, N. A., Naegeli, K., & Spence, G. D. (2018). Slope failures along the deformation front of the Cascadia margin: linking slide morphology to subduction zone parameters. Geological Society, London, Special Publications, 477(1), 47–67. DOI:

Ross, W. C., Halliwell, B. A., May, J. A., Watts, D. E., & Syvitski, J. P. M. (1994). Slope readjustment: A new model for the development of submarine fans and aprons. Geology, 22(6), 511.<0511:sranmf>;2 DOI:<0511:SRANMF>2.3.CO;2

Ryan, W. B. F., Carbotte, S. M., Coplan, J. O., O’Hara, S., Melkonian, A., Arko, R., Weissel, R. A., Ferrini, V., Goodwillie, A., Nitsche, F., Bonczkowski, J., & Zemsky, R. (2009). Global Multi‐Resolution Topography synthesis. Geochemistry, Geophysics, Geosystems, 10(3). DOI:

Sakaguchi, A., Chester, F., Curewitz, D., Fabbri, O., Goldsby, D., Kimura, G., Li, C.-F., Masaki, Y., Screaton, E. J., Tsutsumi, A., Ujiie, K., & Yamaguchi, A. (2011). Seismic slip propagation to the updip end of plate boundary subduction interface faults: Vitrinite reflectance geothermometry on Integrated Ocean Drilling Program NanTro SEIZE cores. Geology, 39(4), 395–398. DOI:

Salmi, M. S., Johnson, H. P., & Harris, R. N. (2017). Thermal environment of the Southern Washington region of the Cascadia subduction zone. Journal of Geophysical Research: Solid Earth, 122(8), 5852–5870. DOI:

Satake, K., Shimazaki, K., Tsuji, Y., & Ueda, K. (1996). Time and size of a giant earthquake in Cascadia inferred from Japanese tsunami records of January 1700. Nature, 379(6562), 246–249. DOI:

Schmalzle, G. M., McCaffrey, R., & Creager, K. C. (2014). Central Cascadia subduction zone creep. Geochemistry, Geophysics, Geosystems, 15(4), 1515–1532. DOI:

Schmitt, R. G. (2017). Quaternary Faults Web Application. U.S. Geological Survey.

Seeber, L., Mueller, C., Fujiwara, T., Arai, K., Soh, W., Djajadihardja, Y., & Cormier, M. (2007). Accretion, mass wasting, and partitioned strain over the 26 Dec 2004 Mw9.2 rupture offshore Aceh, northern Sumatra. Earth and Planetary Science Letters, 263(1–2), 16–31. DOI:

Seely, D. R. (1977). The significance of landward vergence and oblique structural trends on trench inner slopes. In Maurice Ewing Series (pp. 187–198). American Geophysical Union. DOI:

Silver, E. A. (1972). Pleistocene tectonic accretion of the continental slope off Washington. Marine Geology, 13(4), 239–249. DOI:

Simpson, G. D. H. (2010). Formation of accretionary prisms influenced by sediment subduction and supplied by sediments from adjacent continents. Geology, 38(2), 131–134. DOI:

Smith, G., McNeill, L., Henstock, T. J., & Bull, J. (2012). The structure and fault activity of the Makran accretionary prism. Journal of Geophysical Research: Solid Earth, 117(B7). DOI:

Stevens, D. E., Henstock, T. J., & McNeill, L. C. (2021). Evolution of the Thermal and Dehydration State of Sediments Entering the North Sumatra Subduction Zone. Geochemistry, Geophysics, Geosystems, 22(4). DOI:

Stone, I., Vidale, J. E., Han, S., & Roland, E. (2018). Catalog of Offshore Seismicity in Cascadia: Insights Into the Regional Distribution of Microseismicity and its Relation to Subduction Processes. Journal of Geophysical Research: Solid Earth, 123(1), 641–652. DOI:

Sun, T., Wang, K., Fujiwara, T., Kodaira, S., & He, J. (2017). Large fault slip peaking at trench in the 2011 Tohoku-oki earthquake. Nature Communications, 8(1). DOI:

Suppe, J., Chou, G. T., & Hook, S. C. (1992). Rates of folding and faulting determined from growth strata. In Thrust Tectonics (pp. 105–121). Springer Netherlands. DOI:

Tobin, H. J., & Kinoshita, M. (2006). NanTroSEIZE: The IODP Nankai Trough Seismogenic Zone Experiment. Scientific Drilling, 2, 23–27. DOI:

Tobin, H., Kimura, G., & Kodaira, S. (2019). Processes Governing Giant Subduction Earthquakes: IODP Drilling to Sample and Instrument Subduction Zone Megathrusts. Oceanography, 32(1), 80–93. DOI:

Tobin, Harold J., Moore, J. C., Mackay, M. E., Orange, D. L., & Kulm, L. D. (1993). Fluid flow along a strike-slip fault at the toe of the Oregon accretionary prism: Implications for the geometry of frontal accretion. Geological Society of America Bulletin, 105(5), 569–582.<0569:ffaass>;2 DOI:<0569:FFAASS>2.3.CO;2

Ueda, H., Kitazato, H., Jamieson, A., Bond, T., Cardigos, S., Funaki, M., Maroni, P. J., Nanbu, H., O’Callaghan, J. M., Onishi, T., Pedersen, S. W., Roperez, J., Tsuruzono, H., Watanabe, H. K., & Yasuda, T. (2023). The submarine fault scarp of the 2011 Tohoku-oki Earthquake in the Japan Trench. Communications Earth & Environment, 4(1). DOI:

Ulrich, T., Gabriel, A.-A., Ampuero, J.-P., & Xu, W. (2019). Dynamic viability of the 2016 Mw 7.8 Kaikōura earthquake cascade on weak crustal faults. Nature Communications, 10(1). DOI:

Underwood, M. B. (2002). Strike-parallel variations in clay minerals and fault vergence in the Cascadia subduction zone. Geology, 30(2), 155.<0155:spvicm>;2 DOI:<0155:SPVICM>2.0.CO;2

van Zelst, I., Rannabauer, L., Gabriel, A. ‐A., & van Dinther, Y. (2022). Earthquake Rupture on Multiple Splay Faults and Its Effect on Tsunamis. Journal of Geophysical Research: Solid Earth, 127(8). DOI:

von Huene, R., Miller, J. J., & Krabbenhoeft, A. (2021). The Alaska Convergent Margin Backstop Splay Fault Zone, a Potential Large Tsunami Generator Between the Frontal Prism and Continental Framework. Geochemistry, Geophysics, Geosystems, 22(1). DOI:

Wang, K., & Hu, Y. (2006). Accretionary prisms in subduction earthquake cycles: The theory of dynamic Coulomb wedge. Journal of Geophysical Research: Solid Earth, 111(B6). DOI:

Watt, J. T., & Brothers, D. S. (2020). Systematic characterization of morphotectonic variability along the Cascadia convergent margin: Implications for shallow megathrust behavior and tsunami hazards. Geosphere, 17(1), 95–117. DOI:

Wendt, J., Oglesby, D. D., & Geist, E. L. (2009). Tsunamis and splay fault dynamics. Geophysical Research Letters, 36(15). DOI:

Wilson, A., & Ma, S. (2021). Wedge Plasticity and Fully Coupled Simulations of Dynamic Rupture and Tsunami in the Cascadia Subduction Zone. Journal of Geophysical Research: Solid Earth, 126(7). DOI:

Witter, R. C., Zhang, Y. J., Wang, K., Priest, G. R., Goldfinger, C., Stimely, L., English, J. T., & Ferro, P. A. (2013). Simulated tsunami inundation for a range of Cascadia megathrust earthquake scenarios at Bandon, Oregon, USA. Geosphere, 9(6), 1783–1803. DOI:

Xu, S., Fukuyama, E., Ben-Zion, Y., & Ampuero, J.-P. (2015). Dynamic rupture activation of backthrust fault branching. Tectonophysics, 644–645, 161–183. DOI:

Yamaguchi, A., Sakaguchi, A., Sakamoto, T., Iijima, K., Kameda, J., Kimura, G., Ujiie, K., Chester, F. M., Fabbri, O., Goldsby, D., Tsutsumi, A., Li, C.-F., & Curewitz, D. (2011). Progressive illitization in fault gouge caused by seismic slip propagation along a megasplay fault in the Nankai Trough. Geology, 39(11), 995–998. DOI:

Additional Files



How to Cite

Ledeczi, A., Lucas, M., Tobin, H., Watt, J., & Miller, N. (2024). Late Quaternary Surface Displacements on Accretionary Wedge Splay Faults in the Cascadia Subduction Zone: Implications for Megathrust Rupture. Seismica, 2(4).



Special Issue: the Cascadia Subduction Zone