Evidence for an active transtensional Beaufort Range fault in the northern Cascadia forearc
DOI:
https://doi.org/10.26443/seismica.v2i4.1163Keywords:
Cascadia Subduction Zone, Beaufort Range fault, forearc strain, 1946 Vancouver Island earthquakeAbstract
Geologic records of fault slip in subduction forearcs provide critical data on stress and strain in the upper plate and the seismogenic potential of hazardous faults. However, few active upper-plate faults have been identified in the northern Cascadia forearc. Here we investigate the slip history of the Beaufort Range fault (BRF) on Vancouver Island, BC, Canada, a proposed source of the 1946 M 7.3 Vancouver Island earthquake, the largest recorded in Cascadia. We use recently-collected lidar data, field mapping, and surveying of offset landforms to map the extent of previously unidentified post-glacial (<14 ka) tectonic scarps and reconstruct 3D fault slip vectors. Post-glacial landforms show increasing displacement with age, suggesting at least three Mw~6.5-7.5 earthquakes since ~14 ka, the most recent <4 ka. These displacements suggest the BRF is one of the fastest-slipping faults in the northern Cascadia forearc (0.5-2 mm/yr). Kinematic slip inversions of offset geomorphic piercing lines are consistent with right-lateral transtension along a steeply NE-dipping fault. Because BRF fault geometry and kinematics are similar to the 1946 earthquake, it is a plausible source. The kinematic similarity of millennial and decadal slip data suggests the BRF has accommodated transtension over multiple earthquake cycles.
References
Ainscoe, E. A., Abdrakhmatov, K. E., Baikulov, S., Carr, A. S., Elliott, A. J., Grützner, C., & Walker, R. T. (2019). Variability in surface rupture between successive earthquakes on the Suusamyr Fault, Kyrgyz Tien Shan: implications for palaeoseismology. Geophysical Journal International, 216(1), 703–725. https://doi.org/10.1093/gji/ggy457
Alley, N. F., & Chatwin, S. C. (1979). Late Pleistocene history and geomorphology, southwestern Vancouver Island, British Columbia. Canadian Journal of Earth Sciences, 16(9), 1645–1657. https://doi.org/10.1139/e79-154
Allmendinger, R. W., Cardozo, N., & Fisher, D. M. (2012). Structural geology algorithms: Vectors and tensors in structural geology. Cambridge University Press.
American Geosciences Institute. (2003). Global GIS: Volcanoes of the world. https://earthworks.stanford.edu/catalog/harvard-glb-volc
Anderson, W. A., Borns, H. W., Kelley, J. T., & Thompson, W. B. (1989). Neotectonic activity in coastal Maine. Maine Geological Survey, 195–212.
Angelier, J., & Mechler, P. (1977). Sur une methode graphique de recherche des contraintes principales egalement utilisables en tectonique et en seismologie: la methode des diedres droits. Bulletin de La Société Géologique de France, S7-XIX(6), 1309–1318. https://doi.org/10.2113/gssgfbull.S7-XIX.6.1309
Audet, P., Bostock, M. G., Mercier, J. P., & Cassidy, J. F. (2008). Morphology of the Explorer-Juan de Fuca slab edge in northern Cascadia: Imaging plate capture at a ridge-trench-transform triple junction. Geology, 36(11), 895–898. https://doi.org/10.1130/G25356A.1
Balfour, N. J., Cassidy, J. F., Dosso, S. E., & Mazzotti, S. (2011). Mapping crustal stress and strain in southwest British Columbia. Journal of Geophysical Research: Solid Earth, 116(3), 1–11. https://doi.org/10.1029/2010JB008003
Ballantyne, C. K. (2002). A general model of paraglacial landscape response. The Holocene, 12, 371–376. https://doi.org/10.1191/0959683602hl553fa
Ballantyne, C. K., & Benn, D. I. (1996). Paraglacial slope adjustment during recent deglaciation and its implications for slope evolution in formerly glaciated environments. In S. Brooks & M. G. Anderson (Eds.), Advances in Hillslope Processes (Vol. 2, pp. 1173–1195). Wiley.
Bawden, G. W. (2001). Source parameters for the 1952 Kern County earthquake, California: A joint inversion of leveling and triangulation observations. Journal of Geophysical Research: Solid Earth, 106(B1), 771–785. https://doi.org/10.1029/2000JB900315
Benavente, C., Palomino, A., Wimpenny, S., Garcia, B., Rosell, L., Aguirre, E., Macharé, J., Padilla, A. M. R., & Hall, S. R. (2022). Paleoseismic evidence of the 1715 CE earthquake on the Purgatorio Fault in Southern Peru: Implications for seismic hazard in subduction zones. Tectonophysics, 834, 229355. https://doi.org/10.1016/j.tecto.2022.229355
Biasi, G. P., & Wesnousky, S. G. (2016). Steps and gaps in ground ruptures: Empirical bounds on rupture propagation. Bulletin of the Seismological Society of America, 106(3), 1110–1124. https://doi.org/10.1785/0120150175
Blaise, B., Clague, J. J., & Mathewes, R. W. (1990). Time of maximum Late Wisconsin glaciation, west coast of Canada. Quaternary Research, 34(3), 282–295. https://doi.org/10.1016/0033-5894(90)90041-I
Brodzikowski, K., & van Loon, A. J. (1987). A systematic classification of glacial and periglacial environments, facies and deposits. Earth Science Reviews, 24(5), 297–381. https://doi.org/10.1016/0012-8252(87)90061-4
Bronk Ramsey, C. (1995). Radiocarbon calibration and analysis of stratigraphy: The OxCal program. Radiocarbon, 37(2), 425–430. https://doi.org/10.1017/s0033822200030903
Bronk Ramsey, C. (2021). OxCal Program, Version 4.4. Oxford Radiocarbon Accelerator Unit, University of Oxford.
Clague, J. J. (1994). Quaternary stratigraphy and history of south-coastal British Columbia. Geological Survey of Canada Bulletin, 481, 181–192.
Clague, J. J. (1996). Paleoseismology and seismic hazards, southwestern British Columbia. Geological Survey of Canada Bulletin, 494.
Clague, J. J., Armstrong, J. E., & Mathews, W. H. (1980). Advance of the late Wisconsin Cordilleran Ice Sheet in southern British Columbia since 22,000 Yr B.P. Quaternary Research, 13(3), 322–326. https://doi.org/10.1016/0033-5894(80)90060-5
Clague, J. J., & James, T. S. (2002). History and isostatic effects of the last ice sheet in southern British Columbia. Quaternary Science Reviews, 21, 71–87. https://doi.org/10.1016/S0277-3791(01)00070-1
Clague, J. J., & Ward, B. (2011). Pleistocene Glaciation of British Columbia. In J. Ehlers, P. L. Gibbard, & P. D. Hughes (Eds.), Developments in Quaternary Sciences (Vol. 15, pp. 563–573). Elsevier. https://doi.org/10.1016/B978-0-444-53447-7.00044-1
Clowes, R. M., Brandon, M. T., Green, A. G., Yorath, C. J., Brown, A. S., Kanasewich, E. R., & Spencer, C. (1987). LITHOPROBE - southern Vancouver Island: Cenozoic subduction complex imaged by deep seismic reflections. Canadian Journal of Earth Sciences, 24, 31–51. https://doi.org/10.1139/e87-004
Cui, Y., Miller, D., Schiarizza, P., & Diakow, L. J. (2017). British Columbia digital geology (Techreport No. 2017–8; p. 9). British Columbia Ministry of Energy, Mines.
Delano, J. E., Amos, C. B., Loveless, J. P., Rittenour, T. M., Sherrod, B. L., & Lynch, E. M. (2017). Influence of the megathrust earthquake cycle on upper-plate deformation in the Cascadia forearc of Washington State, USA. Geology, 45(11), 1051–1054. https://doi.org/10.1130/G39070.1
DeMets, C., Gordon, R. G., & Argus, D. F. (2010). Geologically current plate motions. Geophysical Journal International, 181(1), 1–80. https://doi.org/10.1111/j.1365-246X.2009.04491.x
Duckworth, W. C., Amos, C. B., Schermer, E. R., Loveless, J. P., & Rittenour, T. M. (2021). Slip and strain accumulation along the Sadie Creek fault, Olympic Peninsula, Washington. Journal of Geophysical Research: Solid Earth, 126(3). https://doi.org/10.1029/2020JB020276
DuRoss, C. B., Gold, R. D., Briggs, R. W., Delano, J. E., Ostenaa, D. A., Zellman, M. S., Cholewinski, N., Wittke, S. J., & Mahan, S. A. (2020). Holocene earthquake history and slip rate of the southern Teton fault, Wyoming, USA. GSA Bulletin, 132(7–8), 1566–1586. https://doi.org/10.1130/B35363.1
Easterbrook, D. J. (1992). Advance and retreat of Cordilleran ice sheets in Washington, U.S.A. Géographie Physique et Quaternaire, 46(October), 51–68. https://doi.org/10.7202/032888ar
England, T. D. J. (1990). Late Cretaceous to Paleogene evolution of the Georgia Basin, southwestern British Columbia [Ph.D. Thesis]. University of British Columbia.
England, T. D. J., & Calon, T. J. (1991). The Cowichan fold and thrust system, Vancouver Island, southwestern British Columbia. Geological Society of America Bulletin, 103(3), 336–362. https://doi.org/10.1130/0016-7606(1991)103<0336:TCFATS>2.3.CO;2
England, T. D. J., Currie, L. D., Massey, N. W. D., Roden-Tice, M. K., & Miller, D. S. (1997). Apatite fission-track dating of the Cowichan fold and thrust system, southern Vancouver Island, British Columbia. Canadian Journal of Earth Sciences, 34(5), 635–645. https://doi.org/10.1139/e17-050
Eyles, N., Boyce, J. I., & Barendregt, R. W. (1999). Hummocky moraine: Sedimentary record of stagnant Laurentide Ice Sheet lobes resting on soft beds. Sedimentary Geology, 123(3–4), 163–174. https://doi.org/10.1016/S0037-0738(98)00129-8
Finley, T., Morell, K. D., Leonard, L., Regalla, C., Johnston, S. T., & Zhang, W. (2019). Ongoing oroclinal bending on the Cascadia forearc margin and its relation to concave-outboard plate margin geometry. Geology, 47(2), 155–158. https://doi.org/10.1130/G45473.1
Fyles, J. G. (1963). Surficial geology of Horne Lake and Parksville map-areas, Vancouver Island, British Columbia. Geological Survey of Canada Memoir, 318, 142.
Gao, D., Wang, K., Davis, E. E., Jiang, Y., Insua, T. L., & He, J. (2017). Thermal state of the Explorer segment of the Cascadia subduction zone: Implications for seismic and tsunami hazards. Geochemistry, Geophysics, Geosystems, 18(4), 1569–1579. https://doi.org/10.1002/2017GC006838
Google Earth Pro. (2016). Alberni Region, BC Canada. 49°22’31.59"N, 124°53’50.52"W, Landsat, Copernicus. http://www.google.com/earth/index.html
Graham, A. (2017). Geometry, kinematics, and Quaternary activity of the Leech River fault zone, southern Vancouver Island, British Columbia, Canada. University of Victoria.
Halsted, E. C. (1968). The Cowichan ice tongue, Vancouver Island. Canadian Journal of Earth Sciences, 5, 1409–1415.
Hardebeck, J. L., & Okada, T. (2018). Temporal Stress Changes Caused by Earthquakes: A Review. Journal of Geophysical Research: Solid Earth, 123(2), 1350–1365. https://doi.org/10.1002/2017JB014617
Harrichhausen, N., Audin, L., Baize, S., Johnson, K. L., Beauval, C., Jarrin, P., Marconato, L., Rolandone, F., Jomard, H., Nocquet, J., Alvarado, A., & Mothes, P. A. (2023). Fault source models show slip rates measured across the width of the entire fault zone best represent the observed seismicity of the Pallatanga–Puna Fault, Ecuador. Seismological Research Letters, 95(1), 95–112. https://doi.org/10.1785/0220230217
Harrichhausen, N., Audin, L., Baize, S., Johnson, K. L., Beauval, C., Jarrin, P., Marconato, L., Rolandone, F., Jomard, H., Nocquet, J.-M., & others. (2024). Fault source models show slip rates measured across the width of the entire fault zone best represent the observed seismicity of the Pallatanga–Puna Fault, Ecuador. Seismological Research Letters, 95(1), 95–112.
Harrichhausen, N., Finley, T., Morell, K. D., Regalla, C., Bennett, S. E. K., Leonard, L. J., Nissen, E., McLeod, E., Lynch, E. M., Salomon, G., & Sethanant, I. (2023). Discovery of an active forearc fault in an urban region: Holocene rupture on the XEOLXELEK-Elk Lake Fault, Victoria, British Columbia, Canada. Tectonics, 42(12), e2023TC008170. https://doi.org/10.1029/2023TC008170
Harrichhausen, N., Morell, K. D., & Regalla, C. (2024). Inner forearc faults in northern Cascadia do not accommodate elastic strain driven by the megathrust seismic cycle. Seismica, 2(4). https://doi.org/10.26443/seismica.v2i4.1177
Harrichhausen, N., Morell, K. D., Regalla, C., Bennett, S. E. K., Leonard, L. J., Lynch, E. M., & Nissen, E. (2021). Paleoseismic trenching reveals Late Quaternary kinematics of the Leech River fault: implications for forearc strain accumulation in northern Cascadia. Bulletin of the Seismological Society of America, 111(2), 1110–1138. https://doi.org/10.1785/0120200204
Harrichhausen, N., Morell, K. D., Regalla, C., Lynch, E. M., & Leonard, L. J. (2022). Eocene terrane accretion in northern Cascadia recorded by brittle left-lateral slip on the San Juan fault. Tectonics, 41(10), e2022TC007317. https://doi.org/10.1029/2022TC007317
Hatem, A. E., Briggs, R. W., & Gold, R. D. (2025). How does the onset of offset influence geologic slip rates? Seismological Research Letters, 96(1), 363–376. https://doi.org/10.1785/0220240096
Hatem, A. E., Cooke, M. L., & Toeneboehn, K. (2017). Strain localization and evolving kinematic efficiency of initiating strike-slip faults within wet kaolin experiments. Journal of Structural Geology, 101, 96–108. https://doi.org/10.1016/j.jsg.2017.06.011
Hatem, A. E., Reitman, N. G., Briggs, R. W., Gold, R. D., Thompson Jobe, J. A., & Burgette, R. J. (2022). Western U.S. geologic deformation model for use in the U.S. National Seismic Hazard Model 2023. Seismological Research Letters, 93(6), 3053–3067. https://doi.org/10.1785/0220220154
Herman, M. W., & Govers, R. (2020). Stress evolution during the megathrust earthquake cycle and its role in triggering extensional deformation in subduction zones. Earth and Planetary Science Letters, 544, 116379. https://doi.org/10.1016/j.epsl.2020.116379
Hodgson, E. A. (1946). British Columbia earthquake June 23rd, 1946. The Journal of The Royal Astronomical Society of Canada, 40(8), 285–319.
Johnston, S. T., & Acton, S. (2003). The Eocene Southern Vancouver Island Orocline-a response to seamount accretion and the cause of fold-and-thrust belt and extensional basin formation. Tectonophysics, 365(1–4), 165–183. https://doi.org/10.1016/S0040-1951(03)00021-0
JPL, N. (2013). NASA Shuttle Radar Topography Mission Global 1 arc second. NASA EOSDIS Land Processes Distributed Active Archive Center. https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL1.003
Koral, H. (2000). Surface rupture and rupture mechanism of the October 1, 1995 (Mw=6.2) Dinar earthquake, SW Turkey. Tectonophysics, 327(1), 15–24. https://doi.org/10.1016/S0040-1951(00)00159-1
Kreemer, C., Blewitt, G., & Klein, E. C. (2014). A geodetic plate motion and Global Strain Rate Model. Geochemistry, Geophysics, Geosystems, 15(10), 3849–3889. https://doi.org/10.1002/2014GC005407
Lagerbäck, R. (1990). Late Quaternary faulting and paleoseismicity in northern Fennoscandia, with particular reference to the Lansjärv area, northern Sweden. Geologiska Föreningen i Stockholm Förhandlingar, 112(4), 333–354. https://doi.org/10.1080/11035899009452733
Lamontagne, M., Halchuk, S., Cassidy, J. F., & Rogers, G. C. (2018). Significant Canadian earthquakes 1600-2017 (Techreport No. 8285; p. 8285). Natural Resources Canada. https://doi.org/10.4095/311183
Lane, E. W. (1947). Report of the subcommittee on sediment terminology. Transactions of the American Geophysical Union, 28(6), 936–938.
Li, C., Pang, J., & Zhang, Z. (2012). Characteristics, geometry, and segmentation of the surface rupture associated with the 14 April 2010 Yushu Earthquake, Eastern Tibet, China. Bulletin of the Seismological Society of America, 102(4), 1618–1638. https://doi.org/10.1785/0120110261
Li, G., Liu, Y., Regalla, C., & Morell, K. D. (2018). Seismicity relocation and fault structure near the Leech River Fault Zone, southern Vancouver Island. Journal of Geophysical Research : Solid Earth, 123, 2841–2855. https://doi.org/10.1002/2017JB015021
Li, S., Wang, K., Wang, Y., Jiang, Y., & Dosso, S. E. (2018). Geodetically inferred locking state of the Cascadia megathrust based on a viscoelastic Earth model. Journal of Geophysical Research: Solid Earth, 123(9), 8056–8072. https://doi.org/10.1029/2018JB015620
Li, Z., Bruhn, R. L., Pavlis, T. L., Vorkink, M., & Zeng, Z. (2010). Origin of sackung uphill-facing scarps in the Saint Elias orogen, Alaska: LIDAR data visualization and stress modeling. Bulletin of the Geological Society of America, 122(9–10), 1585–1589. https://doi.org/10.1130/B30019.1
Loveless, J. P., Allmendinger, R. W., Pritchard, M. E., & González, G. (2010). Normal and reverse faulting driven by the subduction zone earthquake cycle in the northern Chilean fore arc. Tectonics, 29(2), 1–16. https://doi.org/10.1029/2009TC002465
Lynch, E. M., Regalla, C., Morell, K. D., Harrichhausen, N., & Leonard, L. J. (2025). Three-dimensional offsets of geomorphic piercing lines displaced by the Quaternary-active Beaufort Range fault, northern Cascadia forearc, BC, Canada. Dryad. https://doi.org/https://doi.org/10.5061/dryad.nvx0k6dvc
Madsen, J. K., Thorkelson, D. J., Friedman, R. M., & Marshall, D. D. (2006). Cenozoic to recent plate configurations in the Pacific Basin: Ridge subduction and slab window magmatism in Western North America. Geosphere, 2(1), 11–34. https://doi.org/10.1130/GES00020.1
Marrett, R. A., & Allmendinger, R. W. (1990). Kinematic analysis of fault-slip data. Journal of Structural Geology, 12, 973–986. https://doi.org/10.1016/0191-8141(90)90093-E
Massey, N. W. D., Friday, S. J., Riddell, J. M., & Dumais, S. E. (1991). Geology of the Port Alberni-Nanaimo Lakes area. British Columbia Geological Survey.
Mathews, W. H. (1979). Landslides of central Vancouver Island and the 1946 earthquake. Bulletin of the Seismological Society of America, 69(2), 445–450. https://doi.org/10.1785/BSSA0690020445
Mazzotti, S., Dragert, H., Hyndman, R. D., Miller, M. M., & Henton, J. A. (2002). GPS deformation in a region of high crustal seismicity: N. Cascadia forearc. Earth and Planetary Science Letters, 198(1–2), 41–48. https://doi.org/10.1016/S0012-821X(02)00520-4
McCaffrey, R., King, R. W., Payne, S. J., & Lancaster, M. (2013). Active tectonics of northwestern U.S. inferred from GPS-derived surface velocities. Journal of Geophysical Research: Solid Earth, 118(2), 709–723. https://doi.org/10.1029/2012JB009473
McCalpin, J. P. (1990). Criteria for determining the seismic significance of sackungen and other scarplike landforms in mountainous regions (Techreport NUREG/CR-5503). U.S. Nuclear Regulatory Commission.
McCalpin, J. P. (1996). Tectonic geomorphology and Holocene paleoseismicity of the Molesworth section of the Awatere Fault, South Island, New Zealand. New Zealand Journal of Geology and Geophysics, 39(1), 33–50. https://doi.org/10.1080/00288306.1996.9514693
Morell, K. D., Regalla, C., Amos, C. B., Bennett, S. E. K., Leonard, L. J., Graham, A., Reedy, T., Levson, V., & Telka, A. (2018). Holocene surface rupture history of an active forearc fault redefines seismic hazard in southwestern British Columbia, Canada. Geophysical Research Letters, 45(21), 11,605-11,611. https://doi.org/10.1029/2018GL078711
Morell, K. D., Regalla, C., Leonard, L. J., Amos, C. B., & Levson, V. (2017). Quaternary rupture of a crustal fault beneath Victoria, British Columbia, Canada. GSA Today, 27(3–4), 4–10. https://doi.org/10.1130/GSATG291A.1
Morell, K. D., Styron, R., Stirling, M., Griffin, J., Archuleta, R., & Onur, T. (2020). Seismic hazard analyses from geologic and geomorphic data: current and future challenges. Tectonics, 39(10), e2018TC005365. https://doi.org/10.1029/2018TC005365
Mosher, D. C., & Hewitt, A. T. (2004). Late Quaternary deglaciation and sea-level history of eastern Juan de Fuca Strait, Cascadia. Quaternary International, 121(1), 23–39. https://doi.org/10.1016/j.quaint.2004.01.021
Muir-Wood, R. (2000). Deglaciation Seismotectonics: a principal influence on intraplate seismogenesis at high latitudes. Quaternary Science Reviews, 19(14), 1399–1411. https://doi.org/10.1016/S0277-3791(00)00069-X
Mulder, T. (1995). Small earthquakes in southwestern British Columbia (1975-1991). University of Victoria.
Muller, J. E., & Carson, D. J. T. (1969). Geology and mineral deposits of Alberni map area, British Columbia (92F). Geological Survey of Canada Paper.
Natural Resources Canada. (2013). Canadian Digital Elevation Model 1945-2011 (1.1). Natural Resources Canada, Canada Centre for Mapping.
Nelson, A. R., Johnson, S. Y., Kelsey, H. M., Wells, R. E., Sherrod, B. L., Pezzopane, S. K., Bradley, L.-A., Koehler, R. D., & Bucknam, R. C. (2003). Late Holocene earthquakes on the Toe Jam Hill fault, Seattle fault zone, Bainbridge Island, Washington. Geological Society of America Bulletin, 115(11), 1388. https://doi.org/10.1130/B25262.1
Nelson, A. R., Personius, S. F., Wells, R. E., Schermer, E. R., Bradley, L. A., Buck, J., & Reitman, N. (2017). Holocene earthquakes of magnitude 7 during westward escape of the Olympic Mountains, Washington. Bulletin of the Seismological Society of America, 107(5), 2394–2415. https://doi.org/10.1785/0120160323
Personius, S. F., Briggs, R. W., Nelson, A. R., Schermer, E. R., Zebulon Maharrey, J., Sherrod, B. L., Spaulding, S. A., & Bradley, L. A. (2014). Holocene earthquakes and right-lateral slip on the left-lateral Darrington-Devils Mountain fault zone, northern Puget Sound, Washington. Geosphere, 10(6), 1482–1500. https://doi.org/10.1130/GES01067.1
Philip, H., & Meghraoui, M. (1983). Structural analysis and interpretation of the surface deformations of the El Asnam Earthquake of October 10, 1980. Tectonics, 2(1), 17–49. https://doi.org/10.1029/TC002i001p00017
Regalla, C., Fisher, D. M., Kirby, E., Oakley, D., & Taylor, S. (2017). Slip inversion along inner fore-arc faults, Eastern Tohoku, Japan. Tectonics, 36(11), 2647–2668. https://doi.org/10.1002/2017TC004766
Reimer, P. J., Austin, W. E. N., Bard, E., Bayliss, A., Blackwell, P. G., Bronk Ramsey, C., Butzin, M., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kromer, B., Manning, S. W., Muscheler, R., … Talamo, S. (2020). The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0-55 cal kBP). Radiocarbon, 62(4), 725–757. https://doi.org/10.1017/RDC.2020.41
Reitman, N. G., Klinger, Y., Briggs, R. W., & Gold, R. D. (2023). Climatic influence on the expression of strike-slip faulting. Geology, 51, 18–22. https://doi.org/10.1130/G50393.1
Reitman, N. G., Mueller, K. J., Tucker, G. E., Gold, R. D., Briggs, R. W., & Barnhart, K. R. (2019). Offset channels may not accurately record strike-slip fault displacement: Evidence from landscape evolution models. Journal of Geophysical Research: Solid Earth, 124(12), 13427–13451. https://doi.org/10.1029/2019JB018596
Riller, U., Clark, M. D., Daxberger, H., Doman, D., Lenauer, I., Plath, S., & Santimano, T. (2017). Fault-slip inversions: Their importance in terms of strain, heterogeneity, and kinematics of brittle deformation. Journal of Structural Geology, 101, 80–95. https://doi.org/10.1016/j.jsg.2017.06.013
Rodriguez Padilla, A. M., Oskin, M. E., Brodsky, E. E., Dascher-Cousineau, K., Herrera, V., & White, S. (2024). The influence of fault geometrical complexity on surface rupture length. Geophysical Research Letters, 51(20), e2024GL109957. https://doi.org/10.1029/2024GL109957
Rogers, G. C. (1979). Earthquake fault plane solutions near Vancouver Island. Canadian Journal of Earth Sciences, 16(3), 523–531. https://doi.org/10.1139/e79-047
Rogers, G. C., & Hasegawa, H. S. (1978). A second look at the British Columbia earthquake of June 23, 1946. Bulletin of the Seismological Society of America, 68(3), 653–676. https://doi.org/10.1785/BSSA0680030653
Ryder, J. M. (1971). The stratigraphy and morphology of para-glacial alluvial fans in South-central British Columbia. Canadian Journal of Earth Sciences, 8(2), 279–298. https://doi.org/10.1139/e71-027
Scharer, K., Salisbury, J., Arrowsmith, R., & Rockwell, T. (2014). Southern San Andreas fault evaluation field activity: approaches to measuring small geomorphic offsets–challenges and recommendations for active fault studies. Seismological Research Letters, 85, 68–76. https://doi.org/10.1785/0220130108
Schermer, E. R., Amos, C. B., Duckworth, W. C., Nelson, A. R., Angster, S., Delano, J., & Sherrod, B. L. (2021). Postglacial Mw 7.0–7.5 earthquakes on the North Olympic fault zone, Washington. Bulletin of the Seismological Society of America, 111(1), 490–513. https://doi.org/10.1785/0120200176
Sherrod, B. L., Barnett, E., Schermer, E. R., Kelsey, H. M., Hughes, J. F., Foit, F. F., Weaver, C. S., Haugerud, R. A., & Hyatt, T. (2013). Holocene tectonics and fault reactivation in the foothills of the north Cascade Mountains, Washington. Geosphere, 9(4), 827–852. https://doi.org/10.1130/GES00880.1
Sherrod, B. L., Blakely, R. J., Weaver, C. S., Kelsey, H. M., Barnett, E., Liberty, L., Meagher, K. L., & Pape, K. (2008). Finding concealed active faults: Extending the southern Whidbey Island fault across the Puget Lowland, Washington. Journal of Geophysical Research: Solid Earth, 113(5), 1–25. https://doi.org/10.1029/2007JB005060
Sieh, K. E. (1978). Prehistoric large earthquakes produced by slip on the San Andreas Fault at Pallett Creek, California. Journal of Geophysical Research, 83(B8), 3907. https://doi.org/10.1029/JB083iB08p03907
Slawson, W. F., & Savage, J. C. (1979). Geodetic deformation associated with the 1946 Vancouver Island, Canada, earthquake. Bulletin of the Seismological Society of America, 69(5), 1487–1496. https://doi.org/10.1785/BSSA0690051487
Steffen, R., Steffen, H., Wu, P., & Eaton, D. W. (2014). Stress and fault parameters affecting fault slip magnitude and activation time during a glacial cycle. Tectonics, 33(7), 1461–1476. https://doi.org/10.1002/2013TC003450
Stuiver, M., & Polach, H. A. (1977). Reporting of ¹⁴C data. Radiocarbon, 19(3), 355–363.
Styron, R. (2019). The impact of earthquake cycle variability on neotectonic and paleoseismic slip rate estimates. Solid Earth, 10(1), 15–25. https://doi.org/10.5194/se-10-15-2019
Thenhaus, P. C., & Campbell, K. (2002). Seismic hazard analysis. In W.-F. Chen & C. Scawthorn (Eds.), Earthquake Engineering Handbook. CRC Press.
Toda, S., Stein, R. S., & Lin, J. (2011). Widespread seismicity excitation throughout central Japan following the 2011 M=9.0 Tohoku earthquake and its interpretation by Coulomb stress transfer. Geophysical Research Letters, 38(7). https://doi.org/10.1029/2011GL047834
U.S. Geological Survey. (2018). Quaternary fault and fold database for the United States. https://www.usgs.gov/natural-hazards/earthquake-hazards/faults
van Wijk, J., Axen, G., & Abera, R. (2017). Initiation, evolution and extinction of pull-apart basins: Implications for opening of the Gulf of California. Tectonophysics, 719–720, 37–50. https://doi.org/10.1016/j.tecto.2017.04.019
Walton, M. A. L., Staisch, L. M., Dura, T., Pearl, J. K., Sherrod, B., Gomberg, J., Engelhart, S., Tréhu, A., Watt, J., Perkins, J., Witter, R. C., Bartlow, N., Goldfinger, C., Kelsey, H., Morey, A. E., Sahakian, V. J., Tobin, H., Wang, K., Wells, R., & Wirth, E. (2021). Toward an integrative geological and geophysical view of Cascadia subduction zone earthquakes. Annual Review of Earth and Planetary Sciences, 49(1), 367–398. https://doi.org/10.1146/annurev-earth-071620-065605
Wang, K. (2000). Stress-strain “paradox”, plate coupling, and forearc seismicity at the Cascadia and Nankai subduction zones. Tectonophysics, 319(4), 321–338. https://doi.org/10.1016/S0040-1951(99)00301-7
Wang, K., Mulder, T., Rogers, G. C., & Hyndman, R. (1995). Case for very low coupling stress on the Cascadia Subduction Fault. Journal of Geophysical Research, 100. https://doi.org/10.1029/95JB00516
Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4), 974–1002. https://doi.org/10.1785/BSSA0840040974
Wells, R. E., Weaver, C. S., & Blakely, R. J. (1998). Fore-arc migration in Cascadia and its neotectonic significance. Geology, 26(8), 759–762. https://doi.org/10.1130/0091-7613(1998)026<0759:FAMICA>2.3.CO;2
Wesnousky, S. G. (1988). Seismological and structural evolution of strike-slip faults. Nature, 335(6188), 340–343. https://doi.org/10.1038/335340a0
Wesnousky, S. G. (2008). Displacement and geometrical characteristics of earthquake surface ruptures: Issues and implications for seismic-hazard analysis and the process of earthquake rupture. Bulletin of the Seismological Society of America, 98(4), 1609–1632. https://doi.org/10.1785/0120070111
Working Group on California Earthquake Probabilities. (1990). Probabilities of Large Earthquakes in the San Francisco Bay Region, California. Department of the Interior, U.S. Geological Survey.
Yorath, C. J., Clowes, R. M., Green, A. G., Sutherland-Brown, A., Brandon, M. T., Massey, N. W. D., Spencer, C., Kanasewich, E. R., & Hyndman, R. D. (1985). Lithoprobe - Phase 1: southern Vancouver Island: preliminary analyses of reflection seismic profiles and surface geological studies. In Current Research, Part A (pp. 543–554). Geological Survey of Canada.
Yorath, C. J., Green, A. G., Clowes, R. M., Brown, A. S., Brandon, M. T., Kanasewich, E. R., & Spencer, C. (1985). Lithoprobe, southern Vancouver Island: Seismic reflection sees through Wrangellia to the Juan de Fuca plate. Geology, 13(13), 759–762. https://doi.org/10.1130/0091-7613(1985)13<759
Yuan, Z., Li, T., Su, P., Sun, H., Ha, G., Guo, P., Chen, G., & Thompson Jobe, J. (2022). Large surface-rupture gaps and low surface fault slip of the 2021 Mw 7.4 Maduo earthquake along a low-activity strike-slip Fault, Tibetan Plateau. Geophysical Research Letters, 49(6), e2021GL096874. https://doi.org/10.1029/2021GL096874
Zielke, O., & Arrowsmith, J. R. (2012). LaDiCaoz and LiDARimager—MATLAB GUIs for LiDAR data handling and lateral displacement measurement. Geosphere, 8(1), 206–221. https://doi.org/10.1130/GES00686.1
Zielke, O., Arrowsmith, J. R., Ludwig, L. G., & Sinan O. Akçiz. (2010). Slip in the 1857 and earlier large earthquakes along the Carrizo Plain, San Andreas Fault. Science, 327(5969), 1119–1122. https://doi.org/10.1126/science.1182781
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Emerson M. Lynch, Christine Regalla, Kristin D. Morell, Nicolas Harrichhausen, Lucinda J. Leonard

This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
National Science Foundation
Grant numbers EAR Tectonics 1756834;EAR Tectonics 2004684;EAR Tectonics 1756943 -
Northern Arizona University
Grant numbers Dubendorfer-Barnes Structure Endowment