Effects on a Deep-Learning, Seismic Arrival-Time Picker of Domain-Knowledge Based Preprocessing of Input Seismograms
DOI:
https://doi.org/10.26443/seismica.v3i1.1164Keywords:
earthquake, arrival-time picker, machine learning, deep learning, domain knowledgeAbstract
Automated seismic arrival picking on large and real-time seismological waveform datasets is fundamental for monitoring and research. Recent, high-performance arrival pickers apply deep-neural-networks to nearly raw seismogram inputs. However, there is a long history of rule-based, automated arrival detection and picking methods that efficiently exploit variations in amplitude, frequency and polarization of seismograms. Here we use this seismological domain-knowledge to transform raw seismograms as input to a deep-learning picker. We preprocess 3-component seismograms into 3-component characteristic functions of a multi-band picker, plus modulus and inclination. We use these five time-series as input instead of raw seismograms to extend the deep-neural-network picker PhaseNet. We compare the original, data-driven PhaseNet and our domain-knowledge PhaseNet (DKPN) after identical training on datasets of different sizes and application to in- and cross-domain test datasets. We find DKPN and PhaseNet show near identical picking performance for in-domain picking, while DKPN outperforms PhaseNet for some cases of cross-domain picking, particularly with smaller training datasets; additionally, DKPN trains faster than PhaseNet. These results show that while the neural-network architecture underlying PhaseNet is remarkably robust with respect to transformations of the input data (e.g. DKPN preprocessing), use of domain-knowledge input can improve picker performance.
References
Akazawa, T. (2004). A technique for automatic detection of onset time of P-and S-phases in strong motion records. Proc. of the 13th World Conf. on Earthquake Engineering. http://www.iitk.ac.in/nicee/wcee/article/13_786.pdf
Allen, R. (1982). Automatic phase pickers: Their present use and future prospects. Bulletin of the Seismological Society of America, 72(6B), S225–S242. https://doi.org/10.1785/bssa07206b0225 DOI: https://doi.org/10.1785/BSSA07206B0225
Allen, R. V. (1978). Automatic earthquake recognition and timing from single traces. Bulletin of the Seismological Society of America, 68(5), 1521–1532. https://doi.org/10.1785/bssa0680051521 DOI: https://doi.org/10.1785/BSSA0680051521
Alvarez, I., Garcia, L., Mota, S., Cortes, G., Benitez, C., & De la Torre, A. (2013). An Automatic P-Phase Picking Algorithm Based on Adaptive Multiband Processing. IEEE Geoscience and Remote Sensing Letters, 10(6), 1488–1492. https://doi.org/10.1109/lgrs.2013.2260720 DOI: https://doi.org/10.1109/LGRS.2013.2260720
Anant, K. S., & Dowla, F. U. (1997). Wavelet transform methods for phase identification in three-component seismograms. Bulletin of the Seismological Society of America, 87(6), 1598–1612. https://doi.org/10.1785/bssa0870061598 DOI: https://doi.org/10.1785/BSSA0870061598
Baer, M., & Kradolfer, U. (1987). An automatic phase picker for local and teleseismic events. Bulletin of the Seismological Society of America, 77(4), 1437–1445. https://doi.org/10.1785/bssa0770041437 DOI: https://doi.org/10.1785/BSSA0770041437
Bagagli, M. (2022). Seismicity and seismic tomography across scales: application to the greater Alpine region [Phdthesis, ETH Zurich]. https://doi.org/10.3929/ETHZ-B-000580361
Bai, C. -y. (2000). Automatic Phase-Detection and Identification by Full Use of a Single Three-Component Broadband Seismogram. Bulletin of the Seismological Society of America, 90(1), 187–198. https://doi.org/10.1785/0119990070 DOI: https://doi.org/10.1785/0119990070
Balestriero, R., & Baraniuk, R. (2018). Mad Max: Affine Spline Insights into Deep Learning. arXiv. https://doi.org/10.48550/ARXIV.1805.06576
Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., & Wassermann, J. (2010). ObsPy: A Python Toolbox for Seismology. Seismological Research Letters, 81(3), 530–533. https://doi.org/10.1785/gssrl.81.3.530 DOI: https://doi.org/10.1785/gssrl.81.3.530
Beyreuther, Moritz, Hammer, C., Wassermann, J., Ohrnberger, M., & Megies, T. (2012). Constructing a Hidden Markov Model based earthquake detector: application to induced seismicity: Constructing a HMM based earthquake detector. Geophysical Journal International, 189(1), 602–610. https://doi.org/10.1111/j.1365-246x.2012.05361.x DOI: https://doi.org/10.1111/j.1365-246X.2012.05361.x
Borghesi, A., Baldo, F., & Milano, M. (2020). Improving Deep Learning Models via Constraint-Based Domain Knowledge: a Brief Survey. arXiv. https://doi.org/10.48550/ARXIV.2005.10691
Chen, C., & Holland, A. A. (2016). PhasePApy: A Robust Pure Python Package for Automatic Identification of Seismic Phases. Seismological Research Letters, 87(6), 1384–1396. https://doi.org/10.1785/0220160019 DOI: https://doi.org/10.1785/0220160019
Dai, H., & MacBeth, C. (1995). Automatic picking of seismic arrivals in local earthquake data using an artificial neural network. Geophysical Journal International, 120(3), 758–774. https://doi.org/10.1111/j.1365-246x.1995.tb01851.x DOI: https://doi.org/10.1111/j.1365-246X.1995.tb01851.x
Enescu, N. (1996). Seismic Data Processing Using Nonlinear Prediction and Neural networks. IEEE NORSIG Symposium.
Gentili, S., & Michelini, A. (2006). Automatic picking of P and S phases using a neural tree. Journal of Seismology, 10(1), 39–63. https://doi.org/10.1007/s10950-006-2296-6 DOI: https://doi.org/10.1007/s10950-006-2296-6
Hien, D. H. T. (2018). A guide to receptive field arithmetic for Convolutional Neural Networks. https://blog.mlreview.com/a-guide-to-receptive-field-arithmetic-for-convolutional-neural-networks-e0f514068807
Jozinović, D., Lomax, A., Štajduhar, I., & Michelini, A. (2021). Transfer learning: improving neural network based prediction of earthquake ground shaking for an area with insufficient training data. Geophysical Journal International, 229(1), 704–718. https://doi.org/10.1093/gji/ggab488 DOI: https://doi.org/10.1093/gji/ggab488
Kim, A., Nakamura, Y., Yukutake, Y., Uematsu, H., & Abe, Y. (2023). Development of a high-performance seismic phase picker using deep learning in the Hakone volcanic area. Earth, Planets and Space, 75(1). https://doi.org/10.1186/s40623-023-01840-5 DOI: https://doi.org/10.1186/s40623-023-01840-5
Kingma, D. P., & Ba, J. (2017). Adam: A Method for Stochastic Optimization. http://arxiv.org/abs/1412.6980
Kong, Q., Trugman, D. T., Ross, Z. E., Bianco, M. J., Meade, B. J., & Gerstoft, P. (2018). Machine Learning in Seismology: Turning Data into Insights. Seismological Research Letters, 90(1), 3–14. https://doi.org/10.1785/0220180259 DOI: https://doi.org/10.1785/0220180259
Krischer, L., Megies, T., Barsch, R., Beyreuther, M., Lecocq, T., Caudron, C., & Wassermann, J. (2015). ObsPy: a bridge for seismology into the scientific Python ecosystem. Computational Science & Discovery, 8(1), 14003. https://doi.org/10.1088/1749-4699/8/1/014003 DOI: https://doi.org/10.1088/1749-4699/8/1/014003
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539 DOI: https://doi.org/10.1038/nature14539
Liao, W.-Y., Lee, E.-J., Mu, D., Chen, P., & Rau, R.-J. (2021). ARRU Phase Picker: Attention Recurrent‐Residual U‐Net for Picking Seismic P‐ and S‐Phase Arrivals. Seismological Research Letters, 92(4), 2410–2428. https://doi.org/10.1785/0220200382 DOI: https://doi.org/10.1785/0220200382
Lomax, A. J., & Michelini, A. (1988). The use of spherical coordinates in the interpretation of seismograms. Geophysical Journal International, 93(3), 405–412. https://doi.org/10.1111/j.1365-246x.1988.tb03868.x DOI: https://doi.org/10.1111/j.1365-246X.1988.tb03868.x
Lomax, A., Satriano, C., & Vassallo, M. (2012). Automatic Picker Developments and Optimization: FilterPicker–a Robust, Broadband Picker for Real-Time Seismic Monitoring and Earthquake Early Warning. Seismological Research Letters, 83(3), 531–540. https://doi.org/10.1785/gssrl.83.3.531 DOI: https://doi.org/10.1785/gssrl.83.3.531
Lomax, Anthony, Michelini, A., & Curtis, A. (2014). Earthquake Location, Direct, Global-Search Methods. In Encyclopedia of Complexity and Systems Science (pp. 1–33). Springer New York. https://doi.org/10.1007/978-3-642-27737-5_150-2 DOI: https://doi.org/10.1007/978-3-642-27737-5_150-2
Marcus, G. (2018). Innateness, AlphaZero, and Artificial Intelligence. arXiv. https://doi.org/10.48550/ARXIV.1801.05667
McEvilly, T. V., & Majer, E. L. (1982). ASP: An Automated Seismic Processor for microearthquake networks. Bulletin of the Seismological Society of America, 72(1), 303–325. https://doi.org/10.1785/bssa0720010303 DOI: https://doi.org/10.1785/BSSA0720010303
Michelini, A., Cianetti, S., Gaviano, S., Giunchi, C., Jozinović, D., & Lauciani, V. (2021). INSTANCE – the Italian seismic dataset for machine learning. Earth System Science Data, 13(12), 5509–5544. https://doi.org/10.5194/essd-13-5509-2021 DOI: https://doi.org/10.5194/essd-13-5509-2021
Mousavi, S. M., & Beroza, G. C. (2022). Deep-learning seismology. Science, 377(6607). https://doi.org/10.1126/science.abm4470 DOI: https://doi.org/10.1126/science.abm4470
Mousavi, S. M., Ellsworth, W. L., Zhu, W., Chuang, L. Y., & Beroza, G. C. (2020). Earthquake transformer—an attentive deep-learning model for simultaneous earthquake detection and phase picking. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-17591-w DOI: https://doi.org/10.1038/s41467-020-17591-w
Mousavi, S. M., Langston, C. A., & Horton, S. P. (2016). Automatic microseismic denoising and onset detection using the synchrosqueezed continuous wavelet transform. GEOPHYSICS, 81(4), V341–V355. https://doi.org/10.1190/geo2015-0598.1 DOI: https://doi.org/10.1190/geo2015-0598.1
Mousavi, S. M., Zhu, W., Sheng, Y., & Beroza, G. C. (2019). CRED: A Deep Residual Network of Convolutional and Recurrent Units for Earthquake Signal Detection. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-45748-1 DOI: https://doi.org/10.1038/s41598-019-45748-1
Mousset, E., Cansi, Y., Crusem, R., & Souchet, Y. (1996). A connectionist approach for automatic labeling of regional seismic phases using a single vertical component seismogram. Geophysical Research Letters, 23(6), 681–684. https://doi.org/10.1029/95gl03811 DOI: https://doi.org/10.1029/95GL03811
Münchmeyer, J., Woollam, J., Rietbrock, A., Tilmann, F., Lange, D., Bornstein, T., Diehl, T., Giunchi, C., Haslinger, F., Jozinović, D., Michelini, A., Saul, J., & Soto, H. (2022). Which Picker Fits My Data? A Quantitative Evaluation of Deep Learning Based Seismic Pickers. Journal of Geophysical Research: Solid Earth, 127(1). https://doi.org/10.1029/2021jb023499 DOI: https://doi.org/10.1029/2021JB023499
Muralidhar, N., Islam, M. R., Marwah, M., Karpatne, A., & Ramakrishnan, N. (2018, December). Incorporating Prior Domain Knowledge into Deep Neural Networks. 2018 IEEE International Conference on Big Data (Big Data). https://doi.org/10.1109/bigdata.2018.8621955 DOI: https://doi.org/10.1109/BigData.2018.8621955
Ni, Y., Hutko, A., Skene, F., Denolle, M., Malone, S., Bodin, P., Hartog, R., & Wright, A. (2023). Curated Pacific Northwest AI-ready Seismic Dataset. Seismica, 2(1). https://doi.org/10.26443/seismica.v2i1.368 DOI: https://doi.org/10.26443/seismica.v2i1.368
Ning, I. L. C., Swafford, L., Craven, M., Davies, K., Earnest, E., & Thornton, D. (2022, August). Automation of passive seismic processing via machine learning and physics-informed methods. Second International Meeting for Applied Geoscience & Energy. https://doi.org/10.1190/image2022-3750116.1 DOI: https://doi.org/10.1190/image2022-3750116.1
Njirjak, M., Otović, E., Jozinović, D., Lerga, J., Mauša, G., Michelini, A., & Štajduhar, I. (2022). The Choice of Time–Frequency Representations of Non-Stationary Signals Affects Machine Learning Model Accuracy: A Case Study on Earthquake Detection from LEN-DB Data. Mathematics, 10(6), 965. https://doi.org/10.3390/math10060965 DOI: https://doi.org/10.3390/math10060965
Park, Y., Beroza, G. C., & Ellsworth, W. L. (2023). A Mitigation Strategy for the Prediction Inconsistency of Neural Phase Pickers. Seismological Research Letters. https://doi.org/10.1785/0220230003 DOI: https://doi.org/10.1785/0220230003
Plešinger, A., Hellweg, M., & Seidl, D. (1986). Interactive high-resolution polarization analysis of broad-band seismograms. Journal of Geophysics, 59(1), 129–139. https://journal.geophysicsjournal.com/JofG/article/view/203
Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015 (pp. 234–241). Springer International Publishing. https://doi.org/10.1007/978-3-319-24574-4_28 DOI: https://doi.org/10.1007/978-3-319-24574-4_28
Ross, Z. E., & Ben-Zion, Y. (2014). Automatic picking of direct P, S seismic phases and fault zone head waves. Geophysical Journal International, 199(1), 368–381. https://doi.org/10.1093/gji/ggu267 DOI: https://doi.org/10.1093/gji/ggu267
Ross, Zachary E., Meier, M., & Hauksson, E. (2018). P Wave Arrival Picking and First‐Motion Polarity Determination With Deep Learning. Journal of Geophysical Research: Solid Earth, 123(6), 5120–5129. https://doi.org/10.1029/2017jb015251 DOI: https://doi.org/10.1029/2017JB015251
Ross, Zachary E., Meier, M., Hauksson, E., & Heaton, T. H. (2018). Generalized Seismic Phase Detection with Deep Learning. Bulletin of the Seismological Society of America, 108(5A), 2894–2901. https://doi.org/10.1785/0120180080 DOI: https://doi.org/10.1785/0120180080
Satriano, C., Lomax, A., & Zollo, A. (2008). Real-Time Evolutionary Earthquake Location for Seismic Early Warning. Bulletin of the Seismological Society of America, 98(3), 1482–1494. https://doi.org/10.1785/0120060159 DOI: https://doi.org/10.1785/0120060159
Sleeman, R., & van Eck, T. (1999). Robust automatic P-phase picking: an on-line implementation in the analysis of broadband seismogram recordings. Physics of the Earth and Planetary Interiors, 113(1–4), 265–275. https://doi.org/10.1016/s0031-9201(99)00007-2 DOI: https://doi.org/10.1016/S0031-9201(99)00007-2
Soto, H., & Schurr, B. (2021). DeepPhasePick: A method for detecting and picking seismic phases from local earthquakes based on highly optimized convolutional and recurrent deep neural networks. Geophysical Journal International. https://doi.org/10.1093/gji/ggab266 DOI: https://doi.org/10.1093/gji/ggab266
Stevenson, P. R. (1976). Microearthquakes at Flathead Lake, Montana: A study using automatic earthquake processing. Bulletin of the Seismological Society of America, 66(1), 61–80. https://doi.org/10.1785/bssa0660010061 DOI: https://doi.org/10.1785/BSSA0660010061
Vassallo, M., Satriano, C., & Lomax, A. (2012). Automatic Picker Developments and Optimization: A Strategy for Improving the Performances of Automatic Phase Pickers. Seismological Research Letters, 83(3), 541–554. https://doi.org/10.1785/gssrl.83.3.541 DOI: https://doi.org/10.1785/gssrl.83.3.541
Vidale, J. E. (1986). Complex polarization analysis of particle motion. Bulletin of the Seismological Society of America, 76(5), 1393–1405. https://doi.org/10.1785/BSSA0760051393
Wang, J., & Teng, T.-L. (1995). Artificial neural network-based seismic detector. Bulletin of the Seismological Society of America, 85(1), 308–319. https://doi.org/10.1785/bssa0850010308 DOI: https://doi.org/10.1785/BSSA0850010308
Withers, M., Aster, R., Young, C., Beiriger, J., Harris, M., Moore, S., & Trujillo, J. (1998). A comparison of select trigger algorithms for automated global seismic phase and event detection. Bulletin of the Seismological Society of America, 88(1), 95–106. https://doi.org/10.1785/bssa0880010095 DOI: https://doi.org/10.1785/BSSA0880010095
Woollam, J., Münchmeyer, J., Tilmann, F., Rietbrock, A., Lange, D., Bornstein, T., Diehl, T., Giunchi, C., Haslinger, F., Jozinović, D., Michelini, A., Saul, J., & Soto, H. (2022). SeisBench—A Toolbox for Machine Learning in Seismology. Seismological Research Letters, 93(3), 1695–1709. https://doi.org/10.1785/0220210324 DOI: https://doi.org/10.1785/0220210324
Woollam, J., Rietbrock, A., Bueno, A., & De Angelis, S. (2019). Convolutional Neural Network for Seismic Phase Classification, Performance Demonstration over a Local Seismic Network. Seismological Research Letters, 90(2A), 491–502. https://doi.org/10.1785/0220180312 DOI: https://doi.org/10.1785/0220180312
Yeck, W. L., Patton, J. M., Ross, Z. E., Hayes, G. P., Guy, M. R., Ambruz, N. B., Shelly, D. R., Benz, H. M., & Earle, P. S. (2020). Leveraging Deep Learning in Global 24/7 Real-Time Earthquake Monitoring at the National Earthquake Information Center. Seismological Research Letters, 92(1), 469–480. https://doi.org/10.1785/0220200178 DOI: https://doi.org/10.1785/0220200178
Yu, Z., & Wang, W. (2022). LPPN: A Lightweight Network for Fast Phase Picking. Seismological Research Letters, 93(5), 2834–2846. https://doi.org/10.1785/0220210309 DOI: https://doi.org/10.1785/0220210309
Zhang, H., Thurber, C. H., & Rowe, C. (2003). Automatic P-Wave Arrival Detection and Picking with Multiscale Wavelet Analysis for Single-Component Recordings. Bulletin of the Seismological Society of America, 93(5), 1904–1912. https://doi.org/10.1785/0120020241 DOI: https://doi.org/10.1785/0120020241
Zhu, W., & Beroza, G. C. (2018). PhaseNet: A Deep-Neural-Network-Based Seismic Arrival Time Picking Method. Geophysical Journal International. https://doi.org/10.1093/gji/ggy423 DOI: https://doi.org/10.1093/gji/ggy423
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Anthony Lomax, Matteo Bagagli, Sonja Gaviano, Spina Cianetti, Dario Jozinović, Alberto Michelini, Christopher Zerafa, Carlo Giunchi
This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
Istituto Nazionale di Geofisica e Vulcanologia
Grant numbers CUP D53J1900017001 -
HORIZON EUROPE Marie Sklodowska-Curie Actions
Grant numbers 101105516