An exploration of potentially reversible controls on millennial-scale variations in the slip rate of seismogenic faults: Linking structural observations with variable earthquake recurrence patterns

Authors

  • Tarryn Cawood Natural Resources Canada, Geological Survey of Canada, Ottawa, Ontario, Canada
  • James Dolan Department of Earth Sciences, University of Southern California, Los Angeles, California, USA https://orcid.org/0000-0002-6799-5781

DOI:

https://doi.org/10.26443/seismica.v3i2.1165

Keywords:

paleoseismology, rheology, shear zone, fault slip rates

Abstract

Paleoseismic studies show that faults within a fault system may trade off slip over time, with mechanically complementary faults displaying alternating fast- and slow periods. Each of these periods spans multiple seismic cycles, and typically involves ~20-25m of slip. This suggests that the relative strength (or tendency to slip) of individual faults varies, over time and displacement scales larger than those of individual seismic cycles. The mechanisms responsible for these strength variations must: affect rocks in the strongest portion of the fault (the brittle-ductile transition) as this likely controls the overall slip rate of the fault; be reversible (or able to be counteracted) on a cyclical basis; provide a negative feedback that operates to change the fault from its current state; and have a measurable effect on fault strength over a time or length scale that corresponds to the observed fast and slow periods of fault slip. In this paper, we systematically explore 19 potentially weakening and 11 potential strengthening mechanisms and evaluate them in light of these criteria. This analysis reveals a relatively small subset of mechanisms that could account for the observed behavior, leading us to suggest a possible model for fault strength evolution.

References

Alsop, G. I., & Holdsworth, R. E. (2012). The three dimensional shape and localisation of deformation within multilayer sheath folds. Journal of Structural Geology, 44, 110–128. https://doi.org/10.1016/j.jsg.2012.08.015

Ashby, M. F., & Verall, R. A. (1978). Micromechanisms of flow and fracture, and their relevance to the rheology of the upper mantle: Philosophical Transactions of the Royal Society of London. Creep of Engineering Materials and of the Earth (Feb), 288(1350), 59–93.

Behr, W. M., & Platt, J. P. (2014). Brittle faults are weak, yet the ductile middle crust is strong: Implications for lithospheric mechanics. Geophysical Research Letters, 41(22), 8067–8075. https://doi.org/10.1002/2014gl061349

Beinlich, A., John, T., Vrijmoed, J. C., Tominaga, M., Magna, T., & Podladchikov, Y. Y. (2020). Instantaneous rock transformations in the deep crust driven by reactive fluid flow. Nature Geoscience, 13(4), 307–311. https://doi.org/10.1038/s41561-020-0554-9

Berryman, K. R., Cochran, U. A., Clark, K. J., Biasi, G. P., Langridge, R. M., & Villamor, P. (2012). Major Earthquakes Occur Regularly on an Isolated Plate Boundary Fault. Science, 336(6089), 1690–1693. https://doi.org/10.1126/science.1218959

Brace, W. F., & Kohlstedt, D. L. (1980). Limits on lithospheric stress imposed by laboratory experiments. Journal of Geophysical Research: Solid Earth, 85(B11), 6248–6252. https://doi.org/10.1029/jb085ib11p06248

Bürgmann, R., & Dresen, G. (2008). Rheology of the Lower Crust and Upper Mantle: Evidence from Rock Mechanics, Geodesy, and Field Observations. Annual Review of Earth and Planetary Sciences, 36(1), 531–567. https://doi.org/10.1146/annurev.earth.36.031207.124326

Callahan, O. A., Eichhubl, P., & Davatzes, N. C. (2020). Mineral precipitation as a mechanism of fault core growth. Journal of Structural Geology, 140, 104156. https://doi.org/10.1016/j.jsg.2020.104156

Campbell, L. R., & Menegon, L. (2019). Transient High Strain Rate During Localized Viscous Creep in the Dry Lower Continental Crust (Lofoten, Norway). Journal of Geophysical Research: Solid Earth, 124(10), 10240–10260. https://doi.org/10.1029/2019jb018052

Cao, S., Neubauer, F., Liu, J., Bernroider, M., Cheng, X., Li, J., Yu, Z., & Genser, J. (2017). Rheological weakening of high-grade mylonites during low-temperature retrogression: The exhumed continental Ailao Shan-Red River fault zone, SE Asia. Journal of Asian Earth Sciences, 139, 40–60. https://doi.org/10.1016/j.jseaes.2016.10.002

Carreras, J., Druguet, E., & Griera, A. (2005). Shear zone-related folds. Journal of Structural Geology, 27(7), 1229–1251. https://doi.org/10.1016/j.jsg.2004.08.004

Cawood, T. K., & Platt, J. P. (2021). What controls the width of ductile shear zones? Tectonophysics, 816, 229033. https://doi.org/10.1016/j.tecto.2021.229033

Ceccato, A., Menegon, L., & Hansen, L. N. (2022). Strength of Dry and Wet Quartz in the Low‐Temperature Plasticity Regime: Insights From Nanoindentation. Geophysical Research Letters, 49(2). https://doi.org/10.1029/2021gl094633

Cobbold, P. R. (1977). Description and origin of banded deformation structures. II. Rheology and the growth of banded perturbations. Canadian Journal of Earth Sciences, 14(11), 2510–2523. https://doi.org/10.1139/e77-217

Cole, J., Hacker, B., Ratschbacher, L., Dolan, J., Seward, G., Frost, E., & Frank, W. (2007). Localized ductile shear below the seismogenic zone: Structural analysis of an exhumed strike‐slip fault, Austrian Alps. Journal of Geophysical Research: Solid Earth, 112(B12). https://doi.org/10.1029/2007jb004975

Connolly, J. A. D. (1997). Devolatilization‐generated fluid pressure and deformation‐propagated fluid flow during prograde regional metamorphism. Journal of Geophysical Research: Solid Earth, 102(B8), 18149–18173. https://doi.org/10.1029/97jb00731

Connolly, J. A. D. (2010). The Mechanics of Metamorphic Fluid Expulsion. Elements, 6(3), 165–172. https://doi.org/10.2113/gselements.6.3.165

Connolly, J. A. D., & Podladchikov, Y. Y. (2004). Fluid flow in compressive tectonic settings: Implications for midcrustal seismic reflectors and downward fluid migration. Journal of Geophysical Research: Solid Earth, 109(B4). https://doi.org/10.1029/2003jb002822

Cox, S. F., Knackstedt, M. A., & Braun, J. (2001). Principles of Structural Control on Permeability and Fluid Flow in Hydrothermal Systems. In Structural Controls on Ore Genesis. Society of Economic Geologists. https://doi.org/10.5382/Rev.14.01

Cox, Stephen F. (2005). Coupling between Deformation, Fluid Pressures, and Fluid Flow in Ore-Producing Hydrothermal Systems at Depth in the Crust. In One Hundredth Anniversary Volume. Society of Economic Geologists. https://doi.org/10.5382/av100.04

Dawson, T. E., McGill, S. F., & Rockwell, T. K. (2003). Irregular recurrence of paleoearthquakes along the central Garlock fault near El Paso Peaks, California. Journal of Geophysical Research: Solid Earth, 108(B7). https://doi.org/10.1029/2001jb001744

Dolan, James F., Bowman, D. D., & Sammis, C. G. (2007). Long-range and long-term fault interactions in Southern California. Geology, 35(9), 855. https://doi.org/10.1130/g23789a.1

Dolan, James F., McAuliffe, L. J., Rhodes, E. J., McGill, S. F., & Zinke, R. (2016). Extreme multi-millennial slip rate variations on the Garlock fault, California: Strain super-cycles, potentially time-variable fault strength, and implications for system-level earthquake occurrence. Earth and Planetary Science Letters, 446, 123–136. https://doi.org/10.1016/j.epsl.2016.04.011

Dolan, James F., & Meade, B. J. (2017). A Comparison of Geodetic and Geologic Rates Prior to Large Strike‐Slip Earthquakes: A Diversity of Earthquake‐Cycle Behaviors? Geochemistry, Geophysics, Geosystems, 18(12), 4426–4436. https://doi.org/10.1002/2017gc007014

Dolan, J.F., Van Dissen, R. J., Rhodes, E. J., Zinke, R., Hatem, A. E., McGuire, C., Langridge, R. M., & Grenader, J. R. (2024). One tune, many tempos: Faults trade off slip in time and space to accommodate relative plate motions. Earth and Planetary Science Letters, 625, 118484. https://doi.org/10.1016/j.epsl.2023.118484

Ellis, S., & Stöckhert, B. (2004). Elevated stresses and creep rates beneath the brittle‐ductile transition caused by seismic faulting in the upper crust. Journal of Geophysical Research: Solid Earth, 109(B5). https://doi.org/10.1029/2003jb002744

Finch, M. A., Weinberg, R. F., & Hunter, N. J. R. (2016). Water loss and the origin of thick ultramylonites. Geology, 44(8), 599–602. https://doi.org/10.1130/g37972.1

Fougere, D. M., Dolan, J. F., Rhodes, E. J., & McGill, S. F. (2024). Refined Holocene slip rate for the Western and Central segments of the Garlock Fault: Record of alternating millennial-scale periods of fast and slow fault slip. Seismica, 3(2). https://doi.org/10.26443/seismica.v3i2.1202

Frost, E., Dolan, J., Ratschbacher, L., Hacker, B., & Seward, G. (2011). Direct observation of fault zone structure at the brittle-ductile transition along the Salzach-Ennstal-Mariazell-Puchberg fault system, Austrian Alps. Journal of Geophysical Research, 116(B2). https://doi.org/10.1029/2010jb007719

Fusseis, F., Regenauer-Lieb, K., Liu, J., Hough, R. M., & De Carlo, F. (2009). Creep cavitation can establish a dynamic granular fluid pump in ductile shear zones. Nature, 459(7249), 974–977. https://doi.org/10.1038/nature08051

Gauriau, J., & Dolan, J. (2024). Comparison of geodetic slip-deficit and geologic fault slip rates reveals that variability of elastic strain accumulation and release rates on strike-slip faults is controlled by the relative structural complexity of plate-boundary fault systems. Seismica, 3(1). https://doi.org/10.26443/seismica.v3i1.1119

Gauriau, J., & Dolan, J. F. (2021). Relative Structural Complexity of Plate‐Boundary Fault Systems Controls Incremental Slip‐Rate Behavior of Major Strike‐Slip Faults. Geochemistry, Geophysics, Geosystems, 22(11). https://doi.org/10.1029/2021gc009938

Ghosh, S. K., & Sengupta, S. (1984). Successive development of plane noncylindrical folds in progressive deformation. Journal of Structural Geology, 6(6), 703–709. https://doi.org/10.1016/0191-8141(84)90009-9

Gleason, G. C., & DeSisto, S. (2008). A natural example of crystal-plastic deformation enhancing the incorporation of water into quartz. Tectonophysics, 446(1–4), 16–30. https://doi.org/10.1016/j.tecto.2007.09.006

Goldfarb, R. J., Baker, T., Dubé, B., Groves, D. I., Hart, C. J. R., & Gosselin, P. (2005). Distribution, character, and genesis of gold deposits in metamorphic terranes. In One Hundredth Anniversary Volume. Society of Economic Geologists. https://doi.org/10.5382/av100.14

Graham, C. M., Valley, J. W., Eiler, J. M., & Wada, H. (1998). Timescales and mechanisms of fluid infiltration in a marble: an ion microprobe study. Contributions to Mineralogy and Petrology, 132(4), 371–389. https://doi.org/10.1007/s004100050430

Grall, C., Henry, P., Thomas, Y., Westbrook, G. K., Çağatay, M. N., Marsset, B., Saritas, H., Çifçi, G., & Géli, L. (2013). Slip rate estimation along the western segment of the Main Marmara Fault over the last 405–490 ka by correlating mass transport deposits. Tectonics, 32(6), 1587–1601. https://doi.org/10.1002/2012tc003255

Grant Ludwig, L., Akciz, S. O., Arrowsmith, J. R., & Salisbury, J. B. (2019). Reproducibility of San Andreas Fault Slip Rate Measurements at Wallace Creek in the Carrizo Plain, CA. Earth and Space Science, 6(1), 156–165. https://doi.org/10.1029/2017ea000360

Griffin, J. D., Stirling, M. W., Wilcken, K. M., & Barrell, D. J. A. (2022). Late Quaternary Slip Rates for the Hyde and Dunstan Faults, Southern New Zealand: Implications for Strain Migration in a Slowly Deforming Continental Plate Margin. Tectonics, 41(9). https://doi.org/10.1029/2022tc007250

Griggs, D. T., & Blacic, J. D. (1965). Quartz: Anomalous Weakness of Synthetic Crystals. Science, 147(3655), 292–295. https://doi.org/10.1126/science.147.3655.292

Groves, D. I., Santosh, M., Goldfarb, R. J., & Zhang, L. (2018). Structural geometry of orogenic gold deposits: Implications for exploration of world-class and giant deposits. Geoscience Frontiers, 9(4), 1163–1177. https://doi.org/10.1016/j.gsf.2018.01.006

Gülyüz, N., Shipton, Z. K., Kuşcu, Í., Lord, R. A., Kaymakcı, N., Gülyüz, E., & Gladwell, D. R. (2018). Repeated reactivation of clogged permeable pathways in epithermal gold deposits: Kestanelik epithermal vein system, NW Turkey. Journal of the Geological Society, 175(3), 509–524. https://doi.org/10.1144/jgs2017-039

Handy, M. R. (1994). Flow laws for rocks containing two non-linear viscous phases: A phenomenological approach. Journal of Structural Geology, 16(3), 287–301. https://doi.org/10.1016/0191-8141(94)90035-3

Handy, M. R., Hirth, G., & Bürgmann, R. (2007). Continental Fault Structure and Rheology from the Frictional-to-Viscous Transition Downward. In Tectonic Faults (pp. 139–182). The MIT Press. https://doi.org/10.7551/mitpress/6703.003.0008

Hansen, L. N., Zimmerman, M. E., & Kohlstedt, D. L. (2012). Laboratory measurements of the viscous anisotropy of olivine aggregates. Nature, 492(7429), 415–418. https://doi.org/10.1038/nature11671

Hatem, A. E., Cooke, M. L., & Toeneboehn, K. (2017). Strain localization and evolving kinematic efficiency of initiating strike-slip faults within wet kaolin experiments. Journal of Structural Geology, 101, 96–108. https://doi.org/10.1016/j.jsg.2017.06.011

Hatem, A. E., Dolan, J. F., Zinke, R. W., Langridge, R. M., McGuire, C. P., Rhodes, E. J., Brown, N., & Van Dissen, R. J. (2020). Holocene to latest Pleistocene incremental slip rates from the east-central Hope fault (Conway segment) at Hossack Station, Marlborough fault system, South Island, New Zealand: Towards a dated path of earthquake slip along a plate boundary fault. Geosphere, 16(6), 1558–1584. https://doi.org/10.1130/ges02263.1

Hawemann, F., Mancktelow, N. S., Pennacchioni, G., Wex, S., & Camacho, A. (2019). Weak and Slow, Strong and Fast: How Shear Zones Evolve in a Dry Continental Crust (Musgrave Ranges, Central Australia). Journal of Geophysical Research: Solid Earth, 124(1), 219–240. https://doi.org/10.1029/2018jb016559

Hawemann, Friedrich, Mancktelow, N. S., Wex, S., Camacho, A., & Pennacchioni, G. (2018). Pseudotachylyte as field evidence for lower-crustal earthquakes during the intracontinental Petermann Orogeny (Musgrave Block, Central Australia). Solid Earth, 9(3), 629–648. https://doi.org/10.5194/se-9-629-2018

Hearn, E. H., & Bürgmann, R. (2005). The Effect of Elastic Layering on Inversions of GPS Data for Coseismic Slip and Resulting Stress Changes: Strike-Slip Earthquakes. Bulletin of the Seismological Society of America, 95(5), 1637–1653. https://doi.org/10.1785/0120040158

Hickey, K. A., Barker, S. L. L., Dipple, G. M., Arehart, G. B., & Donelick, R. A. (2014). The Brevity of Hydrothermal Fluid Flow Revealed by Thermal Halos around Giant Gold Deposits: Implications for Carlin-Type Gold Systems. Economic Geology, 109(5), 1461–1487. https://doi.org/10.2113/econgeo.109.5.1461

Hirth, G., & Tullis, J. (1992). Dislocation creep regimes in quartz aggregates. Journal of Structural Geology, 14(2), 145–159. https://doi.org/10.1016/0191-8141(92)90053-y

Honsberger, I. W., Bleeker, W., Sandeman, H. A. I., Evans, D. T. W., & Kamo, S. L. (2020). Vein-hosted gold mineralization in the Wilding Lake area, central Newfoundland: structural geology and vein evolution. Natural Resources Canada/CMSS/Information Management. https://doi.org/10.4095/326020

Imber, J., Holdsworth, R. E., Butler, C. A., & Strachan, R. A. (2001). A reappraisal of the Sibson‐Scholz fault zone model: The nature of the frictional to viscous (“brittle‐ductile”) transition along a long‐lived, crustal‐scale fault, Outer Hebrides, Scotland. Tectonics, 20(5), 601–624. https://doi.org/10.1029/2000tc001250

Jordan, P. (1988). The rheology of polymineralic rocks — an approach. Geologische Rundschau, 77(1), 285–294. https://doi.org/10.1007/bf01848690

Kerrich, R. (1986). Fluid transport in lineaments. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 317(1539), 219–251. https://doi.org/10.1098/rsta.1986.0033

King, G. C. P., & Wesnousky, S. G. (2007). Scaling of Fault Parameters for Continental Strike-Slip Earthquakes. Bulletin of the Seismological Society of America, 97(6), 1833–1840. https://doi.org/10.1785/0120070048

Kirkpatrick, J. D., & Rowe, C. D. (2013). Disappearing ink: How pseudotachylytes are lost from the rock record. Journal of Structural Geology, 52, 183–198. https://doi.org/10.1016/j.jsg.2013.03.003

Kolb, J. (2008). The role of fluids in partitioning brittle deformation and ductile creep in auriferous shear zones between 500 and 700 °C. Tectonophysics, 446(1–4), 1–15. https://doi.org/10.1016/j.tecto.2007.10.001

Kozacı, Ö., Dolan, J. F., & Finkel, R. C. (2009). A late Holocene slip rate for the central North Anatolian fault, at Tahtaköprü, Turkey, from cosmogenic 10Be geochronology: Implications for fault loading and strain release rates. Journal of Geophysical Research: Solid Earth, 114(B1). https://doi.org/10.1029/2008jb005760

Kozacı, Ö., Dolan, J. F., Yönlü, Ö., & Hartleb, R. D. (2011). Paleoseismologic evidence for the relatively regular recurrence of infrequent, large-magnitude earthquakes on the eastern North Anatolian fault at Yaylabeli, Turkey. Lithosphere, 3(1), 37–54. https://doi.org/10.1130/l118.1

Kronenberg, A. K., Kirby, S. H., Aines, R. D., & Rossman, G. R. (1986). Solubility and diffusional uptake of hydrogen in quartz at high water pressures: Implications for hydrolytic weakening. Journal of Geophysical Research: Solid Earth, 91(B12), 12723–12741. https://doi.org/10.1029/jb091ib12p12723

Kronenberg, Andreas K. (1994). Hydrogen speciation and chemical weakening of quartz. In Silica (pp. 123–176). De Gruyter. https://doi.org/10.1515/9781501509698-009

Kronenberg, Andreas K., Ashley, K. T., Francsis, M. K., Holyoke III, C. W., Jezek, L., Kronenberg, J. A., Law, R. D., & Thomas, J. B. (2020). Water loss during dynamic recrystallization of Moine thrust quartzites, northwest Scotland. Geology, 48(6), 557–561. https://doi.org/10.1130/g47041.1

Kronenberg, Andreas K., & Tullis, J. (1984). Flow strengths of quartz aggregates: Grain size and pressure effects due to hydrolytic weakening. Journal of Geophysical Research: Solid Earth, 89(B6), 4281–4297. https://doi.org/10.1029/jb089ib06p04281

Kronenberg, Andreas K., & Wolf, G. H. (1990). Fourier transform infrared spectroscopy determinations of intragranular water content in quartz-bearing rocks: implications for hydrolytic weakening in the laboratory and within the earth. Tectonophysics, 172(3–4), 255–271. https://doi.org/10.1016/0040-1951(90)90034-6

Kurt, H., Sorlien, C. C., Seeber, L., Steckler, M. S., Shillington, D. J., Cifci, G., Cormier, M. ‐H., Dessa, J. ‐X., Atgin, O., Dondurur, D., Demirbag, E., Okay, S., Imren, C., Gurcay, S., & Carton, H. (2013). Steady late quaternary slip rate on the Cinarcik section of the North Anatolian fault near Istanbul, Turkey. Geophysical Research Letters, 40(17), 4555–4559. https://doi.org/10.1002/grl.50882

Leloup, P. H., Ricard, Y., Battaglia, J., & Lacassin, R. (1999). Shear heating in continental strike-slip shear zones: Model and field examples. Geophysical Journal International, 136(1), 19–40. https://doi.org/10.1046/j.1365-246x.1999.00683.x

Louis, S., Luijendijk, E., Dunkl, I., & Person, M. (2019). Episodic fluid flow in an active fault. Geology, 47(10), 938–942. https://doi.org/10.1130/g46254.1

Maggi, M., Rossetti, F., Ranalli, G., & Theye, T. (2014). Feedback between fluid infiltration and rheology along a regional ductile-to-brittle shear zone: The East Tenda Shear Zone (Alpine Corsica). Tectonics, 33(3), 253–280. https://doi.org/10.1002/2013tc003370

Mako, C. A., & Caddick, M. J. (2018). Quantifying magnitudes of shear heating in metamorphic systems. Tectonophysics, 744, 499–517. https://doi.org/10.1016/j.tecto.2018.07.003

Mancktelow, N. S. (2002). Finite-element modelling of shear zone development in viscoelastic materials and its implications for localisation of partial melting. Journal of Structural Geology, 24(6–7), 1045–1053. https://doi.org/10.1016/s0191-8141(01)00090-6

Mancktelow, N. S. (2006). How ductile are ductile shear zones? Geology, 34(5), 345. https://doi.org/10.1130/g22260.1

Mancktelow, N. S. (2008). Tectonic pressure: Theoretical concepts and modelled examples. Lithos, 103(1–2), 149–177. https://doi.org/10.1016/j.lithos.2007.09.013

Mancktelow, N. S., Grujic, D., & Johnson, E. L. (1998). An SEM study of porosity and grain boundary microstructure in quartz mylonites, Simplon Fault Zone, Central Alps. Contributions to Mineralogy and Petrology, 131(1), 71–85. https://doi.org/10.1007/s004100050379

Mancktelow, N. S., & Pennacchioni, G. (2004). The influence of grain boundary fluids on the microstructure of quartz-feldspar mylonites. Journal of Structural Geology, 26(1), 47–69. https://doi.org/10.1016/s0191-8141(03)00081-6

Means, W. D. (1989). Stretching faults. Geology, 17(10), 893. https://doi.org/10.1130/0091-7613(1989)017<0893:sf>2.3.co;2

Melosh, B. L., Rowe, C. D., Gerbi, C., Smit, L., & Macey, P. (2018). Seismic cycle feedbacks in a mid-crustal shear zone. Journal of Structural Geology, 112, 95–111. https://doi.org/10.1016/j.jsg.2018.04.004

Menegon, L., & Fagereng, AAke. (2021). Tectonic pressure gradients during viscous creep drive fluid flow and brittle failure at the base of the seismogenic zone. Geology, 49(10), 1255–1259. https://doi.org/10.1130/g49012.1

Menegon, L., Fusseis, F., Stünitz, H., & Xiao, X. (2015). Creep cavitation bands control porosity and fluid flow in lower crustal shear zones. Geology, 43(3), 227–230. https://doi.org/10.1130/g36307.1

Montési, L. G. J. (2013). Fabric development as the key for forming ductile shear zones and enabling plate tectonics. Journal of Structural Geology, 50, 254–266. https://doi.org/10.1016/j.jsg.2012.12.011

Mulyukova, E., & Bercovici, D. (2019). The Generation of Plate Tectonics From Grains to Global Scales: A Brief Review. Tectonics, 38(12), 4058–4076. https://doi.org/10.1029/2018tc005447

Muto, J., Hirth, G., Heilbronner, R., & Tullis, J. (2011). Plastic anisotropy and fabric evolution in sheared and recrystallized quartz single crystals. Journal of Geophysical Research, 116(B2). https://doi.org/10.1029/2010jb007891

Okazaki, K., Burdette, E., & Hirth, G. (2021). Rheology of the Fluid Oversaturated Fault Zones at the Brittle‐Plastic Transition. Journal of Geophysical Research: Solid Earth, 126(2). https://doi.org/10.1029/2020jb020804

Okudaira, T., Shigematsu, N., Harigane, Y., & Yoshida, K. (2017). Grain size reduction due to fracturing and subsequent grain-size-sensitive creep in a lower crustal shear zone in the presence of a CO2-bearing fluid. Journal of Structural Geology, 95, 171–187. https://doi.org/10.1016/j.jsg.2016.11.001

Oliot, E., Goncalves, P., Schulmann, K., Marquer, D., & Lexa, O. (2014). Mid-crustal shear zone formation in granitic rocks: Constraints from quantitative textural and crystallographic preferred orientations analyses. Tectonophysics, 612–613, 63–80. https://doi.org/10.1016/j.tecto.2013.11.032

Oskin, M., Perg, L., Shelef, E., Strane, M., Gurney, E., Singer, B., & Zhang, X. (2008). Elevated shear zone loading rate during an earthquake cluster in eastern California. Geology, 36(6), 507. https://doi.org/10.1130/g24814a.1

Palazzin, G., Raimbourg, H., Stünitz, H., Heilbronner, R., Neufeld, K., & Précigout, J. (2018). Evolution in H2O contents during deformation of polycrystalline quartz: An experimental study. Journal of Structural Geology, 114, 95–110. https://doi.org/10.1016/j.jsg.2018.05.021

Passchier, C. W., & Trouw, R. A. J. (2005). Microtectonics (2nd ed.). Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-29359-0

Peacock, J. M. (1976). Temperature and Leaf Growth in Four Grass Species. The Journal of Applied Ecology, 13(1), 225. https://doi.org/10.2307/2401942

Phelps, P. R., Lee, C.-T. A., & Morton, D. M. (2020). Episodes of fast crystal growth in pegmatites. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-18806-w

Phillips, G. N., & Powell, R. (2010). Formation of gold deposits: a metamorphic devolatilization model. Journal of Metamorphic Geology, 28(6), 689–718. https://doi.org/10.1111/j.1525-1314.2010.00887.x

Platt, John P. (2015). Rheology of two-phase systems: A microphysical and observational approach. Journal of Structural Geology, 77, 213–227. https://doi.org/10.1016/j.jsg.2015.05.003

Platt, J.P., & Behr, W. M. (2011). Lithospheric shear zones as constant stress experiments. Geology, 39(2), 127–130. https://doi.org/10.1130/g31561.1

Pongrac, P., Jeřábek, P., Stünitz, H., Raimbourg, H., Heilbronner, R., Racek, M., & Nègre, L. (2022). Mechanical properties and recrystallization of quartz in presence of H2O: Combination of cracking, subgrain rotation and dissolution-precipitation processes. Journal of Structural Geology, 160, 104630. https://doi.org/10.1016/j.jsg.2022.104630

Précigout, J., Prigent, C., Palasse, L., & Pochon, A. (2017). Water pumping in mantle shear zones. Nature Communications, 8(1). https://doi.org/10.1038/ncomms15736

Précigout, J., Stünitz, H., & Villeneuve, J. (2019). Excess water storage induced by viscous strain localization during high-pressure shear experiment. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-40020-y

Price, N. A., Johnson, S. E., Gerbi, C. C., & West, D. P. (2012). Identifying deformed pseudotachylyte and its influence on the strength and evolution of a crustal shear zone at the base of the seismogenic zone. Tectonophysics, 518–521, 63–83. https://doi.org/10.1016/j.tecto.2011.11.011

Pucci, S., De Martini, P. M., & Pantosti, D. (2008). Preliminary slip rate estimates for the Düzce segment of the North Anatolian Fault Zone from offset geomorphic markers. Geomorphology, 97(3–4), 538–554. https://doi.org/10.1016/j.geomorph.2007.09.002

Putnis, A., & Austrheim, H. (2010). Fluid‐induced processes: metasomatism and metamorphism. Geofluids, 10(1–2), 254–269. https://doi.org/10.1111/j.1468-8123.2010.00285.x

Rhys, D. A., Lewis, P. D., & Rowland, J. V. (2020). Structural controls on ore localization in epithermal gold-silver deposits: A mineral systems approach. In APPLIED STRUCTURAL GEOLOGY OF ORE-FORMING HYDROTHERMAL SYSTEMS (pp. 83–145). Society of Economic Geologists. https://doi.org/10.5382/rev.21.03

Rolandone, F., Bürgmann, R., & Nadeau, R. M. (2004). The evolution of the seismic‐aseismic transition during the earthquake cycle: Constraints from the time‐dependent depth distribution of aftershocks. Geophysical Research Letters, 31(23). https://doi.org/10.1029/2004gl021379

Rowe, C. D., & Griffith, W. A. (2015). Do faults preserve a record of seismic slip: A second opinion. Journal of Structural Geology, 78, 1–26. https://doi.org/10.1016/j.jsg.2015.06.006

Rutter, E. H., & Brodie, K. H. (1988). The role of tectonic grain size reduction in the rheological stratification of the lithosphere. Geologische Rundschau, 77(1), 295–307. https://doi.org/10.1007/bf01848691

Salisbury, J. B., Arrowsmith, J. R., Brown, N., Rockwell, T., Akciz, S., & Ludwig, L. G. (2018). The Age and Origin of Small Offsets at Van Matre Ranch along the San Andreas Fault in the Carrizo Plain, California. Bulletin of the Seismological Society of America, 108(2), 639–653. https://doi.org/10.1785/0120170162

Sanchez-Alfaro, P., Reich, M., Driesner, T., Cembrano, J., Arancibia, G., Pérez-Flores, P., Heinrich, C. A., Rowland, J., Tardani, D., Lange, D., & Campos, E. (2016). The optimal windows for seismically-enhanced gold precipitation in the epithermal environment. Ore Geology Reviews, 79, 463–473. https://doi.org/10.1016/j.oregeorev.2016.06.005

Sanematsu, K., Watanabe, K., Duncan, R. A., & Izawa, E. (2006). THE HISTORY OF VEIN FORMATION DETERMINED BY 40Ar/39Ar DATING OF ADULARIA IN THE HOSEN-1 VEIN AT THE HISHIKARI EPITHERMAL GOLD DEPOSIT, JAPAN. Economic Geology, 101(3), 685–698. https://doi.org/10.2113/gsecongeo.101.3.685

Schmidt, W. L., & Platt, J. P. (2022). Stress, microstructure, and deformation mechanisms during subduction underplating at the depth of tremor and slow slip, Franciscan Complex, northern California. Journal of Structural Geology, 154, 104469. https://doi.org/10.1016/j.jsg.2021.104469

Scholz, C. H. (1988). The brittle-plastic transition and the depth of seismic faulting. Geologische Rundschau, 77(1), 319–328. https://doi.org/10.1007/bf01848693

Sibson, R. H. (1977). Fault rocks and fault mechanisms. Journal of the Geological Society, 133(3), 191–213. https://doi.org/10.1144/gsjgs.133.3.0191

Sibson, R.H. (1982). Shear zone models, heat flow, and the depth distribution of earthquakes in the continental crust of the United States. Bulletin of the Seismological Society of America, 72, 151–163.

Sibson, Richard H. (1987). Earthquake rupturing as a mineralizing agent in hydrothermal systems. Geology, 15(8), 701. https://doi.org/10.1130/0091-7613(1987)15<701:eraama>2.0.co;2

Sibson, Richard H., Robert, F., & Poulsen, K. H. (1988). High-angle reverse faults, fluid-pressure cycling, and mesothermal gold-quartz deposits. Geology, 16(6), 551. https://doi.org/10.1130/0091-7613(1988)016<0551:harffp>2.3.co;2

Singleton, J. S., Rahl, J. M., & Befus, K. S. (2020). Rheology of a coaxial shear zone in the Virginia Blue Ridge: Wet quartzite dislocation creep at 250–280 °C. Journal of Structural Geology, 140, 104109. https://doi.org/10.1016/j.jsg.2020.104109

Song, W. J., Johnson, S. E., & Gerbi, C. C. (2020). Quartz fluid inclusion abundance and off-fault damage in a deeply exhumed, strike-slip, seismogenic fault. Journal of Structural Geology, 139, 104118. https://doi.org/10.1016/j.jsg.2020.104118

Spruzeniece, L., & Piazolo, S. (2015). Strain localization in brittle–ductile shear zones: fluid-abundant vs. fluid-limited conditions (an example from Wyangala area, Australia). Solid Earth, 6(3), 881–901. https://doi.org/10.5194/se-6-881-2015

Strozewski, B., Sly, M. K., Flores, K. M., & Skemer, P. (2021). Viscoplastic Rheology of α‐Quartz Investigated by Nanoindentation. Journal of Geophysical Research: Solid Earth, 126(9). https://doi.org/10.1029/2021jb022229

Stünitz, H., Thust, A., Heilbronner, R., Behrens, H., Kilian, R., Tarantola, A., & Fitz Gerald, J. D. (2017). Water redistribution in experimentally deformed natural milky quartz single crystals—Implications for H2O‐weakening processes. Journal of Geophysical Research: Solid Earth, 122(2), 866–894. https://doi.org/10.1002/2016jb013533

Stünitz, Holger, & Tullis, J. (2000). Weakening and strain localization produced by syn-deformational reaction of plagioclase. International Journal of Earth Sciences, 90(1), 136–148. https://doi.org/10.1007/s005310000148

Sullivan, W. A., & O’Hara, E. J. (2021). A natural example of brittle-to-viscous strain localization under constant-stress conditions: a case study of the Kellyland fault zone, Maine, USA. Geological Magazine, 159(3), 421–440. https://doi.org/10.1017/s0016756821001035

Tullis, J., & Yund, R. A. (1985). Dynamic recrystallization of feldspar: A mechanism for ductile shear zone formation. Geology, 13(4), 238. https://doi.org/10.1130/0091-7613(1985)13<238:drofam>2.0.co;2

Tullis, J., & Yund, R. A. (1989). Hydrolytic weakening of quartz aggregates: The effects of water and pressure on recovery. Geophysical Research Letters, 16(11), 1343–1346. https://doi.org/10.1029/gl016i011p01343

van Haren, J. L. M., Ague, J. J., & Rye, D. M. (1996). Oxygen isotope record of fluid infiltration and mass transfer during regional metamorphism of pelitic schist, Connecticut, USA. Geochimica et Cosmochimica Acta, 60(18), 3487–3504. https://doi.org/10.1016/0016-7037(96)00182-2

Vignaroli, G., Rossetti, F., Petracchini, L., Argante, V., Bernasconi, S. M., Brilli, M., Giustini, F., Yu, T.-L., Shen, C.-C., & Soligo, M. (2022). Middle Pleistocene fluid infiltration with 10–15 ka recurrence within the seismic cycle of the active Monte Morrone Fault System (central Apennines, Italy). Tectonophysics, 827, 229269. https://doi.org/10.1016/j.tecto.2022.229269

Wallis, D., Lloyd, G. E., & Hansen, L. N. (2018). The role of strain hardening in the transition from dislocation-mediated to frictional deformation of marbles within the Karakoram Fault Zone, NW India. Journal of Structural Geology, 107, 25–37. https://doi.org/10.1016/j.jsg.2017.11.008

Weatherley, D. K., & Henley, R. W. (2013). Flash vaporization during earthquakes evidenced by gold deposits. Nature Geoscience, 6(4), 294–298. https://doi.org/10.1038/ngeo1759

Weldon, R., Scharer, K., Fumal, T., & Biasi, G. (2004). Wrightwood and the earthquake cycle: What a long recurrence record tells us about how faults work. GSA Today, 14(9), 4. https://doi.org/10.1130/1052-5173(2004)014<4:watecw>2.0.co;2

Wesnousky, S. G. (1988). Seismological and structural evolution of strike-slip faults. Nature, 335(6188), 340–343. https://doi.org/10.1038/335340a0

Wesnousky, S. G., Barron, A. D., Briggs, R. W., Caskey, S. J., Kumar, S., & Owen, L. (2005). Paleoseismic transect across the northern Great Basin. Journal of Geophysical Research: Solid Earth, 110(B5). https://doi.org/10.1029/2004jb003283

White, S. (1977). Geological significance of recovery and recrystallization processes in quartz. Tectonophysics, 39(1–3), 143–170. https://doi.org/10.1016/0040-1951(77)90093-2

White, S. H., & Knipe, R. J. (1978). Transformation- and reaction-enhanced ductility in rocks. Journal of the Geological Society, 135(5), 513–516. https://doi.org/10.1144/gsjgs.135.5.0513

Whitehead, B. A., Harris, C., & Sloan, R. A. (2020). Deep infiltration of surface water during deformation? Evidence from a low-δ18O shear zone at Koegel Fontein, Namaqualand, South Africa. Lithos, 366–367, 105562. https://doi.org/10.1016/j.lithos.2020.105562

Williams, R. T., & Fagereng, AAke. (2022). The Role of Quartz Cementation in the Seismic Cycle: A Critical Review. Reviews of Geophysics, 60(1). https://doi.org/10.1029/2021rg000768

Wintsch, R. P., & Yeh, M.-W. (2013). Oscillating brittle and viscous behavior through the earthquake cycle in the Red River Shear Zone: Monitoring flips between reaction and textural softening and hardening. Tectonophysics, 587, 46–62. https://doi.org/10.1016/j.tecto.2012.09.019

Woodcock, N. H., Dickson, J. A. D., & Tarasewicz, J. P. T. (2007). Transient permeability and reseal hardening in fault zones: evidence from dilation breccia textures. Geological Society, London, Special Publications, 270(1), 43–53. https://doi.org/10.1144/gsl.sp.2007.270.01.03

Zinke, R., Dolan, J. F., Rhodes, E. J., Van Dissen, R. J., Hatem, A. E., McGuire, C. P., Brown, N. D., & Grenader, J. R. (2021). Latest Pleistocene–Holocene Incremental Slip Rates of the Wairau Fault: Implications for Long‐Distance and Long‐Term Coordination of Faulting Between North and South Island, New Zealand. Geochemistry, Geophysics, Geosystems, 22(9). https://doi.org/10.1029/2021gc009656

Zinke, Robert, Dolan, J. F., Rhodes, E. J., Van Dissen, R., & McGuire, C. P. (2017). Highly Variable Latest Pleistocene‐Holocene Incremental Slip Rates on the Awatere Fault at Saxton River, South Island, New Zealand, Revealed by Lidar Mapping and Luminescence Dating. Geophysical Research Letters, 44(22). https://doi.org/10.1002/2017gl075048

Zinke, Robert, Dolan, J. F., Rhodes, E. J., Van Dissen, R., McGuire, C. P., Hatem, A. E., Brown, N. D., & Langridge, R. M. (2019). Multimillennial Incremental Slip Rate Variability of the Clarence Fault at the Tophouse Road Site, Marlborough Fault System, New Zealand. Geophysical Research Letters, 46(2), 717–725. https://doi.org/10.1029/2018gl080688

Published

2024-07-22

How to Cite

Cawood, T., & Dolan, J. (2024). An exploration of potentially reversible controls on millennial-scale variations in the slip rate of seismogenic faults: Linking structural observations with variable earthquake recurrence patterns. Seismica, 3(2). https://doi.org/10.26443/seismica.v3i2.1165

Issue

Section

Articles