Inner forearc faults in northern Cascadia do not accommodate elastic strain driven by the megathrust seismic cycle
DOI:
https://doi.org/10.26443/seismica.v2i4.1177Abstract
We employ numerical models to explore the connection between subduction zone coupling or megathrust rupture and upper plate faults in the northern Cascadia forearc. Active forearc faults north of the Olympic Peninsula exhibit similar characteristics: west-northwest strike, oblique right-lateral slip senses, and low slip rates (<1 mm/yr), but a potential to generate large (M ~ 7) earthquakes. Previous hypotheses suggest that stress in the upper plate due to interseismic coupling or coseismic rupture along the subduction zone interface could drive permanent forearc strain. To test these hypotheses, we used a 3D boundary element method model to predict slip on the LRDM if interseismic coupling or coeseismic rupture cause deformation. Our model predicts reverse left-lateral slip if the strain results solely from subduction zone coupling, or normal right-lateral slip if these faults accommodate strain during a megathrust rupture. These results contradict the observed fault kinematics. Additionally, if we use our model to mimic strain partitioning, where only the strain from the strike-slip component of subduction zone coupling is accommodated in the forearc, our results are also inconsistent observed fault kinematics. These models challenge the hypothesis that subduction zone coupling or coseismic rupture are the primary driver of permanent forearc deformation in northern Cascadia.
References
Allmendinger, R. W., & González, G. (2010). Invited review paper: Neogene to Quaternary tectonics of the coastal Cordillera, northern Chile. Tectonophysics, 495(1–2), 93–110. https://doi.org/10.1016/j.tecto.2009.04.019
Audet, P., & Bürgmann, R. (2014). Possible control of subduction zone slow-earthquake periodicity by silica enrichment. Nature, 510(7505), 389–392. https://doi.org/10.1038/nature13391
Balfour, N. J., Cassidy, J. F., Dosso, S. E., & Mazzotti, S. (2011). Mapping crustal stress and strain in southwest British Columbia. Journal of Geophysical Research: Solid Earth, 116(B3). https://doi.org/10.1029/2010jb008003
Barrie, J. V., & Greene, H. G. (2018). The Devils Mountain Fault zone: An active Cascadia upper plate zone of deformation, Pacific Northwest of North America. Sedimentary Geology, 364, 228–241. https://doi.org/10.1016/j.sedgeo.2017.12.018
Bassett, D., & Watts, A. B. (2015). Gravity anomalies, crustal structure, and seismicity at subduction zones: 1. Seafloor roughness and subducting relief. Geochemistry, Geophysics, Geosystems, 16(5), 1508–1540. https://doi.org/10.1002/2014gc005684
Bellier, O., Sebrier, M., Pramumijoyo, S., Beaudouin, T., Harjono, H., Bahar, I., & Forni, O. (1997). Paleoseismicity and seismic hazard along the Great Sumatran Fault (Indonesia). Journal of Geodynamics, 24(1–4), 169–183. https://doi.org/10.1016/s0264-3707(96)00051-8
Blair, J. L., McCrory, P., Oppenheimer, D., & Waldhauser, F. (2011). A geo-referenced 3D model of the Juan de Fuca slab and associated seismicity. US Department of the Interior, US Geological Survey. https://doi.org/10.3133/ds633
Blakely, R. J., Wells, R. E., Weaver, C. S., & Johnson, S. Y. (2002). Location, structure, and seismicity of the Seattle fault zone, Washington: Evidence from aeromagnetic anomalies, geologic mapping, and seismic-reflection data. Geological Society of America Bulletin, 114(2), 169–177. https://doi.org/10.1130/0016-7606(2002)114<0169:lsasot>2.0.co;2
Bostock, M. G., Christensen, N. I., & Peacock, S. M. (2019). Seismicity in Cascadia. Lithos, 332, 55–66. https://doi.org/10.1016/j.lithos.2019.02.019
Brocher, T. M., Wells, R. E., Lamb, A. P., & Weaver, C. S. (2017). Evidence for distributed clockwise rotation of the crust in the northwestern United States from fault geometries and focal mechanisms. Tectonics, 36(5), 787–818. https://doi.org/10.1002/2016tc004223
Burgette, R. J., Weldon II, R. J., & Schmidt, D. A. (2009). Interseismic uplift rates for western Oregon and along-strike variation in locking on the Cascadia subduction zone. Journal of Geophysical Research: Solid Earth, 114(B1). https://doi.org/https://doi.org/10.1029/2008JB005679
Chen, Z., Schellart, W. P., Strak, V., & Duarte, J. C. (2016). Does subduction-induced mantle flow drive backarc extension? Earth and Planetary Science Letters, 441, 200–210. https://doi.org/10.1016/j.epsl.2016.02.027
Condit, C. B., Guevara, V. E., Delph, J. R., & French, M. E. (2020). Slab dehydration in warm subduction zones at depths of episodic slip and tremor. Earth and Planetary Science Letters, 552, 116601. https://doi.org/10.1016/j.epsl.2020.116601
Cortés-Aranda, J., González, J., Molina, D., Astudillo-Sotomayor, L., Tassara, A., Miller, M., Álvarez-Amado, F., González, R., & Bahamondes, D. (2022). Linking Upper-Plate Fault Reactivation With the Megathrust Earthquake Cycle: The Case of the Northern Chile Outer Forearc (19°S–23°S). Tectonics, 41(11), e2021TC006956. https://doi.org/https://doi.org/10.1029/2021TC006956
Crouch, S. L., & Starfield, A. M. (1983). Boundary Element Methods in Solid Mechanics: With Applications in Rock Mechanics and Geological Engineering. Allen & Unwin. https://books.google.com.tr/books?id=l-6uQgAACAAJ
Delano, J. E., Amos, C. B., Loveless, J. P., Rittenour, T. M., Sherrod, B. L., & Lynch, E. M. (2017). Influence of the megathrust earthquake cycle on upper-plate deformation in the Cascadia forearc of Washington State, USA. Geology, 45(11), 1051–1054. https://doi.org/10.1130/g39070.1
DeMets, C., Gordon, R. G., & Argus, D. F. (2010). Geologically current plate motions. Geophysical Journal International, 181(1), 1–80. https://doi.org/10.1111/j.1365-246x.2009.04491.x
Dimitrova, L., Wallace, L., Haines, A., & Williams, C. (2016). High-resolution view of active tectonic deformation along the Hikurangi subduction margin and the Taupo Volcanic Zone, New Zealand. New Zealand Journal of Geology and Geophysics, 59(1), 43–57. https://doi.org/10.1080/00288306.2015.1127823
Dragert, H., Hyndman, R., Rogers, G., & Wang, K. (1994). Current deformation and the width of the seismogenic zone of the northern Cascadia subduction thrust. Journal of Geophysical Research: Solid Earth, 99(B1), 653–668. https://doi.org/10.1029/93jb02516
Duckworth, W. C., Amos, C. B., Schermer, E. R., Loveless, J. P., & Rittenour, T. M. (2021). Slip and strain accumulation along the Sadie Creek fault, Olympic Peninsula, Washington. Journal of Geophysical Research: Solid Earth, 126(3), 2020JB020276. https://doi.org/10.1029/2020jb020276
Evans, E. L. (2022). A dense block model representing western continental United States deformation for the 2023 update to the National Seismic Hazard Model. Seismological Society of America, 93(6), 3024–3036. https://doi.org/10.1785/0220220141
Fagereng, AAke, Diener, J. F., Meneghini, F., Harris, C., & Kvadsheim, A. (2018). Quartz vein formation by local dehydration embrittlement along the deep, tremorgenic subduction thrust interface. Geology, 46(1), 67–70. https://doi.org/10.1130/G39649.1
Fairchild, L. H., & Cowan, D. S. (1982). Structure, petrology, and tectonic history of the Leech River complex northwest of Victoria, Vancouver Island. Canadian Journal of Earth Sciences, 19(9), 1817–1835. https://doi.org/10.1139/e82-161
Feng, L., Newman, A. V., Protti, M., Gonzalez, V., Jiang, Y., & Dixon, T. H. (2012). Active deformation near the Nicoya Peninsula, northwestern Costa Rica, between 1996 and 2010: Interseismic megathrust coupling. Journal of Geophysical Research: Solid Earth, 117(B6). https://doi.org/10.1029/2012jb009230
Finley, T., Morell, K., Leonard, L., Regalla, C., Johnston, S. T., & Zhang, W. (2019). Ongoing oroclinal bending in the Cascadia forearc and its relation to concave-outboard plate margin geometry. Geology, 47(2), 155–158. https://doi.org/10.1130/g45473.1
Graham, A. (2018). Geometry, kinematics, and Quaternary activity of the brittle Leech River fault zone, southern Vancouver Island, British Columbia, Canada. University of Victoria.
Greene, H. G., Barrie, J. V., & Todd, B. J. (2018). The Skipjack Island fault zone: An active transcurrent structure within the upper plate of the Cascadia subduction complex. Sedimentary Geology, 378, 61–79. https://doi.org/10.1016/j.sedgeo.2018.05.005
Groome, W. G., Thorkelson, D. J., Friedman, R. M., Mortensen, J. K., Massey, N. W. D., Marshall, D. D., & Layer, P. W. (2003). Magmatic and tectonic history of the Leech River Complex, Vancouver Island, British Columbia: Evidence for ridge-trench intersection and accretion of the Crescent Terrane. Special Papers-Geological Society of America, 327–354. https://doi.org/10.1130/0-8137-2371-x.327
Harrichhausen, N., Finley, T., Morell, K. D., Regalla, C., Bennett, S. E. K., Leonard, L. J., Nissen, E., McLeod, E., Lynch, E. M., Salomon, G., & Sethanant, I. (2023). Discovery of an Active Forearc Fault in an Urban Region: Holocene Rupture on the XEOLXELEK-Elk Lake Fault, Victoria, British Columbia, Canada. Tectonics, 42(12). https://doi.org/https://doi.org/10.1029/2023TC008170
Harrichhausen, N., Morell, K. D., & Regalla, C. (2024). Forearc faults in northern Cascadia do not accommodate elastic strain driven by the megathrust seismic cycle: techreport (1.2). https://doi.org/10.5281/zenodo.11104836
Harrichhausen, N., Morell, K. D., Regalla, C., Bennett, S. E., Leonard, L. J., Lynch, E. M., & Nissen, E. (2021). Paleoseismic Trenching Reveals Late Quaternary Kinematics of the Leech River Fault: Implications for Forearc Strain Accumulation in Northern Cascadia. Bulletin of the Seismological Society of America, 111(2), 1110–1138. https://doi.org/10.1785/0120200204
Hasegawa, A., Yoshida, K., Asano, Y., Okada, T., Iinuma, T., & Ito, Y. (2012). Change in stress field after the 2011 great Tohoku-Oki earthquake. Earth and Planetary Science Letters, 355–356, 231–243.
Hayward, N., & Calvert, A. J. (2007). Seismic reflection and tomographic velocity model constraints on the evolution of the Tofino forearc basin, British Columbia. Geophysical Journal International, 168(2), 634–646. https://doi.org/10.1111/j.1365-246x.2006.03209.x
Hyndman, R D, & Wang, K. (1995). The rupture zone of Cascadia great earthquakes from current deformation and the thermal regime. Journal of Geophysical Research: Solid Earth, 100(B11), 22133–22154. https://doi.org/10.1029/95jb01970
Hyndman, Robert D, & Wang, K. (1993). Thermal constraints on the zone of major thrust earthquake failure: The Cascadia subduction zone. Journal of Geophysical Research: Solid Earth, 98(B2), 2039–2060. https://doi.org/10.1029/92jb02279
Hyndman, Roy D, Yamano, M., & Oleskevich, D. A. (1997). The seismogenic zone of subduction thrust faults. Island Arc, 6(3), 244–260. https://doi.org/10.1111/j.1440-1738.1997.tb00175.x
Johnson, S. Y., Blakely, R. J., Stephenson, W. J., Dadisman, S. V., & Fisher, M. A. (2004). Active shortening of the Cascadia forearc and implications for seismic hazards of the Puget Lowland. Tectonics, 23(1), 27 pages. https://doi.org/10.1029/2003tc001507
Johnson, S. Y., Dadisman, S. V., Childs, J. R., & Stanley, W. D. (1999). Active tectonics of the Seattle fault and central Puget Sound, Washington Implications for earthquake hazards. Geological Society of America Bulletin, 111(7), 1042–1053. https://doi.org/10.1130/0016-7606(1999)111<1042:atotsf>2.3.co;2
Johnson, S. Y., Dadisman, S. V., Mosher, D. C., Blakely, R. J., & Childs, J. R. (2001). Active tectonics of the Devils Mountain fault and related structures, northern Puget Lowland and eastern Strait of Juan de Fuca region, Pacific Northwest. U.S. Geological Survey Professional Paper, 1643. https://doi.org/10.3133/pp1643
Johnson, S. Y., Nelson, A. R., Personius, S. F., Wells, R. E., Kelsey, H. M., Sherrod, B. L., Okumura, K., Koehler, R., Witter, R. C., Bradley, L.-A., & others. (2004). Evidence for late Holocene earthquakes on the Utsalady Point fault, northern Puget lowland, Washington. Bulletin of the Seismological Society of America, 94(6), 2299–2316. https://doi.org/10.1785/0120040050
Johnson, S. Y., Potter, C. J., & Armentrout, J. M. (1994). Origin and evolution of the Seattle fault and Seattle basin, Washington. Geology, 22(1), 71–74. https://doi.org/10.1130/0091-7613(1994)022<0071:oaeots>2.3.co;2
Johnson, S. Y., Potter, C. J., Miller, J. J., Armentrout, J. M., Finn, C., & Weaver, C. S. (1996). The southern Whidbey Island fault: an active structure in the Puget Lowland, Washington. Geological Society of America Bulletin, 108(3), 334–354. https://doi.org/10.1130/0016-7606(1996)108<0334:tswifa>2.3.co;2
Khazaradze, G., Qamar, A., & Dragert, H. (1999). Tectonic deformation in western Washington from continuous GPS measurements. Geophysical Research Letters, 26(20), 3153–3156. https://doi.org/10.1029/1999gl010458
Kimura, G. (1986). Oblique subduction and collision: Forearc tectonics of the Kuril arc. Geology, 14(5), 404–407. https://doi.org/10.1130/0091-7613(1986)14<404:osacft>2.0.co;2
Leonard, L. J., Hyndman, R. D., & Mazzotti, S. (2004). Coseismic subsidence in the 1700 great Cascadia earthquake: Coastal estimates versus elastic dislocation models. Geological Society of America Bulletin, 116(5–6), 655–670. https://doi.org/10.1130/b25369.1
Li, G., Liu, Y., Regalla, C., & Morell, K. D. (2018). Seismicity relocation and fault structure near the Leech River Fault Zone, southern Vancouver Island. Journal of Geophysical Research: Solid Earth, 123(4), 2841–2855. https://doi.org/10.1002/2017jb015021
Li, S., Wang, K., Wang, Y., Jiang, Y., & Dosso, S. E. (2018). Geodetically inferred locking state of the Cascadia megathrust based on a viscoelastic Earth model. Journal of Geophysical Research: Solid Earth, 123(9), 8056–8072. https://doi.org/10.1029/2018jb015620
Littel, G. F., Bostock, M. G., Schaeffer, A., & Roecker, S. (2023). Microplate Evolution in the Queen Charlotte Triple Junction & Explorer Region: New Insights From Microseismicity. Tectonics, 42(6), e2022TC007494. https://doi.org/https://doi.org/10.1029/2022TC007494
Loveless, John P, Allmendinger, R. W., Pritchard, M. E., & González, G. (2010). Normal and reverse faulting driven by the subduction zone earthquake cycle in the northern Chilean fore arc. Tectonics, 29(2). https://doi.org/10.1029/2009tc002465
Loveless, J.P. (2021). jploveless/tribem: tribem 1.2 (v1.2). Zenodo. https://doi.org/https://doi.org/10.5281/zenodo.5735649
MacLeod, N. S., Tiffin, D. L., Snavely Jr, P. D., & Currie, R. G. (1977). Geologic interpretation of magnetic and gravity anomalies in the Strait of Juan de Fuca, US–Canada. Canadian Journal of Earth Sciences, 14(2), 223–238. https://doi.org/10.1139/e77-024
Malatesta, L. C., Bruhat, L., Finnegan, N. J., & Olive, J.-A. L. (2018). Co-location of the downdip end of seismic coupling and the continental shelf break. Journal of Geophysical Research: Solid Earth, e2020JB019589. https://doi.org/10.31223/osf.io/uwzbr
Marshall, J. S., Fisher, D. M., & Gardner, T. W. (2000). Central Costa Rica deformed belt: Kinematics of diffuse faulting across the western Panama block. Tectonics, 19(3), 468–492. https://doi.org/10.1029/1999tc001136
Massey, N. W. D., MacIntyre, D. G., Desjardins, P. J., & Cooney, R. T. (2005). Digital geology map of British Columbia. BC Ministry of Energy and Mines, Geofile, 7, 2005.
Mazzotti, Stéphane, Dragert, H., Henton, J., Schmidt, M., Hyndman, R., James, T., Lu, Y., & Craymer, M. (2003). Current tectonics of northern Cascadia from a decade of GPS measurements. Journal of Geophysical Research: Solid Earth, 108(B12). https://doi.org/10.1029/2003jb002653
Mazzotti, Stephane, Dragert, H., Hyndman, R. D., Miller, M. M., & Henton, J. A. (2002). GPS deformation in a region of high crustal seismicity: N. Cascadia forearc. Earth and Planetary Science Letters, 198(1), 41–48. https://doi.org/10.1016/s0012-821x(02)00520-4
Mazzotti, Stephane, Leonard, L. J., Cassidy, J. F., Rogers, G. C., & Halchuk, S. (2011). Seismic hazard in western Canada from GPS strain rates versus earthquake catalog. Journal of Geophysical Research: Solid Earth, 116(B12). https://doi.org/10.1029/2011jb008213
McCaffrey, R. (1991). Slip vectors and stretching of the Sumatran fore arc. Geology, 19(9), 881–884. https://doi.org/10.1130/0091-7613(1991)019<0881:svasot>2.3.co;2
McCaffrey, R. (1992). Oblique plate convergence, slip vectors, and forearc deformation. Journal of Geophysical Research: Solid Earth, 97(B6), 8905–8915. https://doi.org/10.1029/92jb00483
McCaffrey, R. (2009). Time-dependent inversion of three-component continuous GPS for steady and transient sources in northern Cascadia. Geophysical Research Letters, 36(7). https://doi.org/10.1029/2008gl036784
McCaffrey, R., King, R. W., Payne, S. J., & Lancaster, M. (2013). Active tectonics of northwestern US inferred from GPS-derived surface velocities. Journal of Geophysical Research: Solid Earth, 118(2), 709–723. https://doi.org/10.1029/2012jb009473
McCaffrey, R., Long, M. D., Goldfinger, C., Zwick, P. C., Nabelek, J. L., Johnson, C. K., & Smith, C. (2000). Rotation and plate locking at the southern Cascadia subduction zone. Geophysical Research Letters, 27(19), 3117–3120. https://doi.org/10.1029/2000gl011768
McCaffrey, R., Qamar, A. I., King, R. W., Wells, R., Khazaradze, G., Williams, C. A., Stevens, C. W., Vollick, J. J., & Zwick, P. C. (2007). Fault locking, block rotation and crustal deformation in the Pacific Northwest. Geophysical Journal International, 169(3), 1315–1340. https://doi.org/10.1111/j.1365-246x.2007.03371.x
McCrory, P. A., Blair, J. L., Oppenheimer, D. H., & Walter, S. R. (2006). Depth to the Juan de Fuca slab beneath the Cascadia subduction margin; a 3-D model for sorting earthquakes. U.S. Geological Survey. Data Series 91. https://pubs.usgs.gov/ds/91/
McKenzie, K., & Furlong, K. (2021). Isolating non-subduction-driven tectonic processes in Cascadia. Geoscience Letters, 8(1), 1–12. https://doi.org/10.1186/s40562-021-00181-z
Meade, B. J. (2007). Algorithms for the calculation of exact displacements, strains, and stresses for triangular dislocation elements in a uniform elastic half space. Computers & Geosciences, 33(8), 1064–1075. https://doi.org/10.1016/j.cageo.2006.12.003
Meade, B. J., & Loveless, J. P. (2009). Block modeling with connected fault-network geometries and a linear elastic coupling estimator in spherical coordinates. Bulletin of the Seismological Society of America, 99(6), 3124–3139. https://doi.org/10.1785/0120090088
Miller, M. M., Johnson, D. J., Rubin, C. M., Dragert, H., Wang, K., Qamar, A., & Goldfinger, C. (2001). GPS-determination of along-strike variation in Cascadia margin kinematics: Implications for relative plate motion, subduction zone coupling, and permanent deformation. Tectonics, 20(2), 161–176. https://doi.org/10.1029/2000tc001224
Moore, J. C., & Saffer, D. (2001). Updip limit of the seismogenic zone beneath the accretionary prism of southwest Japan: An effect of diagenetic to low-grade metamorphic processes and increasing effective stress. Geology, 29(2), 183–186. https://doi.org/10.1130/0091-7613(2001)029<0183:ulotsz>2.0.co;2
Morell, K D, Regalla, C., Amos, C., Bennett, S., Leonard, L., Graham, A., Reedy, T., Levson, V., & Telka, A. (2018). Holocene surface rupture history of an active forearc fault redefines seismic hazard in southwestern British Columbia, Canada. Geophysical Research Letters, 45(21), 11–605. https://doi.org/10.1029/2018gl078711
Morell, K D, Regalla, C., Leonard, L. J., Amos, C., & Levson, V. (2017). Quaternary Rupture of a Crustal Fault beneath Victoria, British Columbia, Canada. GSA Today, 27(3–4). https://doi.org/10.1130/gsatg291a.1
Morell, Kristin D, Gardner, T. W., Fisher, D. M., Idleman, B. D., & Zellner, H. M. (2013). Active thrusting, landscape evolution, and late Pleistocene sector collapse of Barú Volcano above the Cocos-Nazca slab tear, southern Central America. Bulletin, 125(7–8), 1301–1318. https://doi.org/10.1130/b30771.1
Mouslopoulou, V., Nicol, A., Begg, J., Oncken, O., & Moreno, M. (2015). Clusters of megaearthquakes on upper plate faults control the Eastern Mediterranean hazard. Geophysical Research Letters, 42(23), 10–282. https://doi.org/10.1002/2015gl066371
Nelson, A. R., Johnson, S. Y., Kelsey, H. M., Wells, R. E., Sherrod, B. L., Pezzopane, S. K., Bradley, L.-A., Koehler, R. D., & Bucknam, R. C. (2003). Late Holocene earthquakes on the Toe Jam Hill fault, Seattle fault zone, Bainbridge Island, Washington. Geological Society of America Bulletin, 115(11), 1388–1403. https://doi.org/10.1130/b25262.1
Nelson, A. R., Personius, S. F., Wells, R. E., Schermer, E. R., Bradley, L.-A., Buck, J., & Reitman, N. (2017). Holocene earthquakes of Magnitude 7 during westward escape of the Olympic Mountains, Washington. Bulletin of the Seismological Society of America, 107(5), 2394–2415. https://doi.org/10.1785/0120160323
Oleskevich, D. A., Hyndman, R. D., & Wang, K. (1999). The updip and downdip limits to great subduction earthquakes: Thermal and structural models of Cascadia, south Alaska, SW Japan, and Chile. Journal of Geophysical Research: Solid Earth, 104(B7), 14965–14991. https://doi.org/10.1029/1999jb900060
Pacific Northwest Seismic Network. (2022). Seismicity Data from January 1, 1970 to April 29, 2015 [techreport]. https://pnsn.org/
Personius, S. F., Briggs, R. W., Nelson, A. R., Schermer, E. R., Maharrey, J. Z., Sherrod, B. L., Spaulding, S. A., & Bradley, L.-A. (2014). Holocene earthquakes and right-lateral slip on the left-lateral Darrington–Devils Mountain fault zone, northern Puget Sound, Washington. Geosphere, 10(6), 1482–1500. https://doi.org/10.1130/ges01067.1
Pezzopane, S. K., & Weldon, R. J. (1993). Tectonic role of active faulting in central Oregon. Tectonics, 12(5), 1140–1169. https://doi.org/10.1029/92tc02950
Polenz, M., Wegmann, K. W., & Schasse, H. W. (2004). Geologic map of the Elwha and Angeles Point 7.5-minute quadrangles, Clallam County, Washington. Washington State Division of Geology.
Quigley, M., Van Dissen, R., Litchfield, N., Villamor, P., Duffy, B., Barrell, D., Furlong, K., Stahl, T., Bilderback, E., & Noble, D. (2012). Surface rupture during the 2010 Mw 7.1 Darfield (Canterbury) earthquake: Implications for fault rupture dynamics and seismic-hazard analysis. Geology, 40(1), 55–58. https://doi.org/10.1130/G32528.1
Regalla, C., Fisher, D. M., Kirby, E., Oakley, D., & Taylor, S. (2017). Slip Inversion Along Inner Fore-Arc Faults, Eastern Tohoku, Japan. Tectonics, 36(11), 2647–2668. https://doi.org/10.1002/2017tc004766
Rippke, J. (August 2020). Forearc Stresses in the Northern Cascadia Subduction Zone. University of Minnesota.
Ryder, I., Rietbrock, A., Kelson, K., Bürgmann, R., Floyd, M., Socquet, A., Vigny, C., & Carrizo, D. (2012). Large extensional aftershocks in the continental forearc triggered by the 2010 Maule earthquake, Chile. Geophysical Journal International, 188(3), 879–890. https://doi.org/10.1111/j.1365-246x.2011.05321.x
Saux, J. P., Molitors Bergman, E. G., Evans, E. L., & Loveless, J. P. (2022). The Role of Slow Slip Events in the Cascadia Subduction Zone Earthquake Cycle. Journal of Geophysical Research: Solid Earth, 127(2), e2021JB022425. https://doi.org/https://doi.org/10.1029/2021JB022425
Savard, G, Bostock, M., Hutchinson, J., Kao, H., Christensen, N., & Peacock, S. (2020). The northern terminus of Cascadia subduction. Journal of Geophysical Research: Solid Earth, 125(6), e2019JB018453. https://doi.org/10.1029/2019jb018453
Savard, Geneviève, Bostock, M. G., & Christensen, N. I. (2018). Seismicity, metamorphism, and fluid evolution across the Northern Cascadia fore arc. Geochemistry, Geophysics, Geosystems, 19(6), 1881–1897. https://doi.org/10.1029/2017gc007417
Schermer, E. R., Amos, C. B., Duckworth, W. C., Nelson, A. R., Angster, S., Delano, J., & Sherrod, B. L. (2021). Postglacial Mw 7.0–7.5 earthquakes on the North Olympic Fault Zone, Washington. Bulletin of the Seismological Society of America, 111(1), 490–513. https://doi.org/10.1785/0120200176
Schmalzle, G. M., McCaffrey, R., & Creager, K. C. (2014). Central Cascadia subduction zone creep. Geochemistry, Geophysics, Geosystems, 15(4), 1515–1532. https://doi.org/10.1002/2013gc005172
Sherrod, B. L., Blakely, R. J., Weaver, C. S., Kelsey, H. M., Barnett, E., Liberty, L., Meagher, K. L., & Pape, K. (2008). Finding concealed active faults: Extending the southern Whidbey Island fault across the Puget Lowland, Washington. Journal of Geophysical Research: Solid Earth, 113(B5). https://doi.org/10.1029/2007jb005060
Sieh, K., & Natawidjaja, D. (2000). Neotectonics of the Sumatran fault, Indonesia. Journal of Geophysical Research: Solid Earth, 105(B12), 28295–28326. https://doi.org/10.1029/2000jb900120
Sitchler, J. C., Fisher, D. M., Gardner, T. W., & Protti, M. (2007). Constraints on inner forearc deformation from balanced cross sections, Fila Costeña thrust belt, Costa Rica. Tectonics, 26(6). https://doi.org/10.1029/2006tc001949
Sternai, P., Jolivet, L., Menant, A., & Gerya, T. (2014). Driving the upper plate surface deformation by slab rollback and mantle flow. Earth and Planetary Science Letters, 405, 110–118. https://doi.org/10.1016/j.epsl.2014.08.023
Stevens, V., & Avouac, J. (2021). On the relationship between strain rate and seismicity in the India-Asia collision zone: Implications for probabilistic seismic hazard. Geophysical Journal International. https://doi.org/10.1093/gji/ggab098
Thomas, A. L. (1993). Poly 3D: a three-dimensional, polygonal element, displacement discontinuity boundary element computer program with applications to fractures, faults, and cavities in the Earth’s crust. Stanford University.
Townend, J., Sherburn, S., Arnold, R., Boese, C., & Woods, L. (2012). Three-dimensional variations in present-day tectonic stress along the Australia–Pacific plate boundary in New Zealand. Earth and Planetary Science Letters, 353, 47–59. https://doi.org/10.1016/j.epsl.2012.08.003
Townend, J., & Zoback, M. D. (2006). Stress, strain, and mountain building in central Japan. Journal of Geophysical Research: Solid Earth, 111(B3). https://doi.org/10.26686/wgtn.13876118
Van Rijsingen, E., Funiciello, F., Corbi, F., & Lallemand, S. (2019). Rough subducting seafloor reduces interseismic coupling and mega-earthquake occurrence: Insights from analogue models. Geophysical Research Letters, 46(6), 3124–3132. https://doi.org/10.1029/2018gl081272
Vrolijk, P. (1990). On the mechanical role of smectite in subduction zones. Geology, 18(8), 703–707. https://doi.org/10.1130/0091-7613(1990)018<0703:otmros>2.3.co;2
Wallace, L. M., Beavan, J., McCaffrey, R., & Darby, D. (2004). Subduction zone coupling and tectonic block rotations in the North Island, New Zealand. Journal of Geophysical Research: Solid Earth, 109(B12). https://doi.org/10.1029/2004jb003241
Wang, K. (2000). Stress–strain ‘paradox’, plate coupling, and forearc seismicity at the Cascadia and Nankai subduction zones. Tectonophysics, 319(4), 321–338. https://doi.org/10.1016/s0040-1951(99)00301-7
Wang, Kelin, & Bilek, S. L. (2014). Invited review paper: Fault creep caused by subduction of rough seafloor relief. Tectonophysics, 610, 1–24. https://doi.org/10.1016/j.tecto.2013.11.024
Wang, Kelin, Hu, Y., Bevis, M., Kendrick, E., Smalley, R., Vargas, R. B., & Laurı́a, E. (2007). Crustal motion in the zone of the 1960 Chile earthquake: Detangling earthquake-cycle deformation and forearc-sliver translation. Geochemistry, Geophysics, Geosystems, 8(10). https://doi.org/10.1029/2007gc001721
Wang, Kelin, & Tréhu, A. M. (2016). Invited review paper: Some outstanding issues in the study of great megathrust earthquakes—The Cascadia example. Journal of Geodynamics, 98, 1–18. https://doi.org/10.1016/j.jog.2016.03.010
Wang, Kelin, Wells, R., Mazzotti, S., Hyndman, R. D., & Sagiya, T. (2003). A revised dislocation model of interseismic deformation of the Cascadia subduction zone. Journal of Geophysical Research: Solid Earth, 108(B1). https://doi.org/10.1029/2001jb001227
Wells, R. E., Blakely, R. J., Wech, A. G., McCrory, P. A., & Michael, A. (2017). Cascadia subduction tremor muted by crustal faults. Geology, 45(6), 515–518. https://doi.org/10.1130/g38835.1
Wells, R. E., & McCaffrey, R. (2013). Steady rotation of the Cascade arc. Geology, 41(9), 1027–1030. https://doi.org/10.1130/g34514.1
Wells, R. E., Weaver, C. S., & Blakely, R. J. (1998). Fore-arc migration in Cascadia and its neotectonic significance. Geology, 26(8), 759–762. https://doi.org/10.1130/0091-7613(1998)026<0759:famica>2.3.co;2
Yoshioka, S., Wang, K., & Mazzotti, S. (2005). Interseismic locking of the plate interface in the northern Cascadia subduction zone, inferred from inversion of GPS data. Earth and Planetary Science Letters, 231(3–4), 239–247. https://doi.org/10.1016/j.epsl.2004.12.018
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Nicolas Harrichhausen, Kristin D Morell, Christine Regalla
This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
National Science Foundation
Grant numbers 1756943 -
National Science Foundation
Grant numbers 2046278 -
Centre National d’Etudes Spatiales
-
Natural Sciences and Engineering Research Council of Canada
-
National Science Foundation
Grant numbers 1756834