Investigation of suspected Holocene fault scarp near Montréal, Québec: The first paleoseismic trench in eastern Canada

Authors

  • Aube Gourdeau Department of Earth & Planetary Sciences, McGill University, Montréal, Qc, Canada H3A 0E8
  • Veronica B. Prush Earth and Environmental Science Department, New Mexico Institute of Mining and Technology, Socorro, NM, USA 87801 https://orcid.org/0000-0001-5981-4576
  • Christie D. Rowe Department of Earth & Planetary Sciences, McGill University, Montréal, Qc, Canada H3A 0E8 https://orcid.org/0000-0002-9208-3960
  • Claudine Nackers Civil, Geological and Mining Engineering Department, Polytechnique Montreal, Montréal, Qc, Canada H3T 1J4
  • Hannah Mark Department of Geology & Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, USA 02543 https://orcid.org/0000-0002-1722-3759
  • Isabel Morris Department of Civil and Environmental Engineering, New Mexico Institute of Mining and Technology, Socorro, NM, USA 87801 https://orcid.org/0000-0001-7808-0141
  • Philippe Rosset Departement of Civil Engineering, McGill University, Montréal, Qc, Canada, H3A 0C3 https://orcid.org/0000-0002-7596-9196
  • Michel Lamothe Département des Sciences de la terre et de l'atmosphère, Université du Québec à Montréal, Montréal, Qc, Canada, H2X 3Y7
  • Luc Chouinard Departement of Civil Engineering, McGill University, Montréal, Qc, Canada, H3A 0C3
  • Matthew S. Tarling Department of Earth & Planetary Sciences, McGill University, Montréal, Qc, Canada H3A 0E8 https://orcid.org/0000-0002-9235-5348

DOI:

https://doi.org/10.26443/seismica.v3i2.1179

Keywords:

neotectonics, active faults, earthquake hazard, Remote Sensing

Abstract

Québec has experienced historical damaging earthquakes in several seismic zones (e.g. 1732 M5.8 Montréal, 1663 M7 Charlevoix, 1935 M6.2 Témiscamingue). Despite a high seismicity rate, no surface-rupturing faults have been discovered due to a combination of dense vegetation cover, recent glaciation, sparse earthquake records, and low regional strain rates. We manually searched lidar-derived digital elevation models (DEMs) of the region to search for potential post-glacial surface-rupturing faults across southern Québec and identified a scarp ~50km north of Montréal. We performed three geophysical surveys (ground penetrating radar, depth estimates from ambient seismic noise, and refraction seismology) that revealed a buried scarp, confirmed with a <1 m-deep hand-dug test pit. These observations convinced us to excavate the first paleoseismic trench in Québec to test for the presence of a surface-rupturing fault in July 2023. We found a glacial diamict containing no signs of syn- or post-glacial deformation. In this paper, we present the observations that led to the identification of a scarp and hypothesized faulting. We highlight the importance of trenching to confirm recent fault scarps in challenging environments. We hope our study can be used to optimize future paleoseismic research in the province of Québec and similar intracratonic glaciated landscapes.

References

Acerra, C., Aguacil, G., Anastasiadis, A., Atakan, K., Azzara, R., Bard, P.-Y., Basili, R., Bertrand, E., Bettig, B., Blarel, F., & others. (2004). Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations measurements, processing and interpretation. European Commission–EVG1-CT-2000-00026 SESAME.

Adams, J., Wetmiller, R. J., Hasegawa, H. S., & Drysdale, J. (1991). The first surface faulting from a historical intraplate earthquake in North America. Nature, 352, 617–619. https://doi.org/10.1038/352617a0 DOI: https://doi.org/10.1038/352617a0

Akçiz, S. O., Ludwig, L. G., Zielke, O., & Arrowsmith, J. R. (2014). Three-dimensional investigation of a 5 m deflected swale along the San Andreas fault in the Carrizo Plain. Bulletin of the Seismological Society of America, 104(6), 2799–2808. https://doi.org/https://doi.org/10.1785/0120120172 DOI: https://doi.org/10.1785/0120120172

Atkinson, G. M. (2007). Challenges in seismic hazard analysis for continental interiors. In S. Stein & S. Mazzotti (Eds.), Continental Intraplate Earthquakes: Science, Hazard, and Policy Issues: Geological Society of America Special Paper 425 (pp. 329–344). The Geological Society of America. https://doi.org/10.1130/2007.2425(21) DOI: https://doi.org/10.1130/2007.2425(21)

Balsamo, F., Aldega, L., De Paola, N., Faoro, I., & Storti, F. (2014). The signature and mechanics of earthquake ruptures along shallow creeping faults in poorly lithified sediments. Geology, 42(5), 435–438. https://doi.org/https://doi.org/10.1130/G35272.1 DOI: https://doi.org/10.1130/G35272.1

Basham, P. (1982). New Probabilistic Strong Seismic Ground Motion map of Canada: a Compilation of Earthquake Source Zones, Methods and Results (Vols. 82–33). Earth Physics Branch. DOI: https://doi.org/10.4095/8869

Bennett, M. M., & Glasser, N. F. (2011). Glacial geology: ice sheets and landforms. John Wiley & Sons.

Bernstein, L. (1992). A revised lithostratigraphy of the Lower–Middle Ordovician Beekmantown Group, St. Lawrence Lowlands, Quebec and Ontario. Canadian Journal of Earth Sciences, 29(12), 2677–2694. https://doi.org/https://doi.org/10.1139/e92-212 DOI: https://doi.org/10.1139/e92-212

Biasi, G. P., & Weldon, R. J. (2006). Estimating surface rupture length and magnitude of paleoearthquakes from point measurements of rupture displacement. Bulletin of the Seismological Society of America, 96(5), 1612–1623. DOI: https://doi.org/10.1785/0120040172

Bray, J. D., Seed, R. B., Ciuff, L. S., & Seed, H. B. (1994). Earthquake fault rupture propagation through soil. Journal of Geotechnical Engineering, 120(3), 543–561. https://doi.org/https://doi.org/10.1061/(ASCE)0733-9410(1994)120:3(543) DOI: https://doi.org/10.1061/(ASCE)0733-9410(1994)120:3(543)

Brooks, G. R., & Adams, J. (2020). A review of evidence of glacially-induced faulting and seismic shaking in eastern Canada. Quaternary Science Reviews, 228, 106070. https://doi.org/https://doi.org/10.1016/j.quascirev.2019.106070 DOI: https://doi.org/10.1016/j.quascirev.2019.106070

Brooks, G. R., & Perret, D. (2023). A long-term context for the 1663 Charlevoix CE earthquake interpreted from the postglacial landslide record in the Gouffre Valley, Quebec, Canada. Quaternary Science Reviews, 309, 108096. https://doi.org/https://doi.org/10.1016/j.quascirev.2023.108096 DOI: https://doi.org/10.1016/j.quascirev.2023.108096

Brune, J. N. (1996). Precariously balanced rocks and ground-motion maps for southern California. Bulletin of the Seismological Society of America, 86(1A), 43–54. DOI: https://doi.org/10.1785/BSSA08601A0043

Chien, J., & Liu, Y. (2023). Application of a Novel Workflow to Enhance Seismicity Catalog and Compute Earthquake Source Parameters in the Western Québec Seismic Zone. American Geophysical Union Fall Meeting; Presentation S21E-0339, San Francisco, USA. https://agu.confex.com/agu/fm23/meetingapp.cgi/Paper/1387806

Cox, S. C., Stirling, M. W., Herman, F., Gerstenberger, M., & Ristau, J. (2012). Potentially active faults in the rapidly eroding landscape adjacent to the Alpine Fault, central Southern Alps, New Zealand. Tectonics, 31(2). https://doi.org/https://doi.org/10.1029/2011TC003038 DOI: https://doi.org/10.1029/2011TC003038

Cronin, T. M., Manley, P. L., Brachfeld, S., Manley, T., Willard, D., Guilbault, J.-P., Rayburn, J. A., Thunell, R., & Berke, M. (2008). Impacts of post-glacial lake drainage events and revised chronology of the Champlain Sea episode 13–9 ka. Palaeogeography, Palaeoclimatology, Palaeoecology, 262(1–2), 46–60. https://doi.org/https://doi.org/10.1016/j.palaeo.2008.02.001 DOI: https://doi.org/10.1016/j.palaeo.2008.02.001

Doig, R. (1990). 2300 yr history of seismicity from silting events, in Lake Tadoussac, Charlevoix, Quebec. Geology, 18(9), 820–823. https://doi.org/https://doi.org/10.1130/0091-7613(1990)018<0820:YHOSFS>2.3.CO;2 DOI: https://doi.org/10.1130/0091-7613(1990)018<0820:YHOSFS>2.3.CO;2

Dyke, A., Andrews, J., Clark, P., England, J., Miller, G., Shaw, J., & Veillette, J. (2002). The Laurentide and Innuitian ice sheets during the last glacial maximum. Quaternary Science Reviews, 21(1–3), 9–31. https://doi.org/https://doi.org/10.1016/S0277-3791(01)00095-6 DOI: https://doi.org/10.1016/S0277-3791(01)00095-6

Earthquakes Canada. (2020). 2020 National Building Code of Canada seismic hazard maps (Techreport Article 1.1.3.1 of Division B). Government of Canada.

Ebel, J. E. (2011). A new analysis of the magnitude of the February 1663 earthquake at Charlevoix, Quebec. Bulletin of the Seismological Society of America, 101(3), 1024–1038. https://doi.org/https://doi.org/10.1785/0120100190 DOI: https://doi.org/10.1785/0120100190

Eyles, N., Eyles, C. H., & Miall, A. D. (1983). Lithofacies types and vertical profile models; an alternative approach to the description and environmental interpretation of glacial diamict and diamictite sequences. Sedimentology, 30, 393–410. https://doi.org/https://doi.org/10.1111/j.1365-3091.1983.tb00679.x DOI: https://doi.org/10.1111/j.1365-3091.1983.tb00679.x

Fenton, C. H., Adams, J., & Halchuk, S. (2006). Seismic hazards assessment for radioactive waste disposal sites in regions of low seismic activity. Geotechnical & Geological Engineering, 24, 579–592. https://doi.org/https://doi.org/10.1007/s10706-005-1148-4 DOI: https://doi.org/10.1007/s10706-005-1148-4

Figueiredo, P., Hill, J., Merschat, A., Scheip, C., Stewart, K., Owen, L., Wooten, R., Carter, M., Szymanski, E., Horton, S., & others. (2022). The Mw 5.1, 9 August 2020, Sparta earthquake, North Carolina: The first documented seismic surface rupture in the eastern United States. GSA Today, 32(3–4). https://doi.org/https://doi.org/10.1130/GSATG517A.1. CC-BY-NC DOI: https://doi.org/10.1130/GSATG517A.1

Fulton, R. J., & Prest, V. K. (1987). Introduction: The Laurentide ice sheet and its significance. Géographie Physique et Quaternaire, 41(2), 181–186. DOI: https://doi.org/10.7202/032676ar

Gagnon, J. (1979). Sous le clocher de Saint-Liguori. Imprimerie Nationale Joliette Ltée.

Globensky, Y. (1987). Géologie des basses-terres du Saint-Laurent (Techreport MM 85-02; p. 72). Les publications du Ministère de l’Énergie et des Ressources Naturelles Québec.

Godbout, P.-M., Brouard, E., & Roy, M. (2023). 1-km resolution rebound surfaces and paleotopography of glaciated North America since the Last Glacial Maximum. Scientific Data, 10(1), 735. https://doi.org/https://doi.org/10.1038/s41597-023-02566-5 DOI: https://doi.org/10.1038/s41597-023-02566-5

Goldthwaite, R. P. (1992). Historical overview of early Wisconsin glaciation. In P. U. Clark & P. D. Lea (Eds.), The Last Interglacial-Glacial Transition in North America: Geological Society of America Special Paper 270 (pp. 13–18). https://doi.org/https://doi.org/10.1130/SPE270-p13 DOI: https://doi.org/10.1130/SPE270-p13

Goudarzi, M. A. (2016). GPS inferred velocity and strain rate fields in eastern Canada [Phdthesis]. Université Laval.

Gourdeau, A., Prush, V., Rowe, C. D., Wang, K., Laly, M., Rosset, P., Chouinard, L., Lamothe, M., Nackers, I. M. C., & Mark, H. (2023). An Ongoing Search for Active Faults in the Western Quebec Seismic Zone, Eastern Canada. American Geophysical Union Fall Meeting; Presentation T11D-0188, San Francisco, USA. https://agu.confex.com/agu/fm23/meetingapp.cgi/Paper/1365245

Gouvernement du Québec. (1979). Code de sécurité pour les travaux de construction en date du 1er Juillet 2023, Loi sur la santé et la sécurité du travail, chapitre S-2.1, a. 223, section III : Chantiers de construction (3.15.3.): Vol. L 218 (pp. 85–216). https://www.legisquebec.gouv.qc.ca/fr/document/lc/S-2.1?langCont=en#se:223

Grant Ludwig, L., Akciz, S. O., Arrowsmith, J. R., & Salisbury, J. B. (2019). Reproducibility of San Andreas fault slip rate measurements at Wallace Creek in the Carrizo Plain, CA. Earth and Space Science, 6(1), 156–165. https://doi.org/https://doi.org/10.1029/2017EA000360 DOI: https://doi.org/10.1029/2017EA000360

Grasemann, B., Martel, S., & Passchier, C. (2005). Reverse and normal drag along a fault. Journal of Structural Geology, 27(6), 999–1010. https://doi.org/10.1016/J.JSG.2005.04.006 DOI: https://doi.org/10.1016/j.jsg.2005.04.006

Guedes, V. J. C. B., Maciel, S. T. R., & Rocha, M. P. (2022). Refrapy: A Python program for seismic refraction data analysis. Computers & Geosciences, 159, 105020. https://doi.org/https://doi.org/10.1016/j.cageo.2021.105020 DOI: https://doi.org/10.1016/j.cageo.2021.105020

Henton, J. A., Craymer, M. R., Ferland, R., Dragert, H., Mazzotti, S., & Forbes, D. L. (2006). Crustal motion and deformation monitoring of the Canadian landmass. Geomatica, 60(2), 173–191. https://doi.org/https://doi.org/10.5623/geomat-2006-0021

Hersi, O. S., Lavoie, D., & Nowlan, G. (2003). Reappraisal of the Beekmantown Group sedimentology and stratigraphy, Montréal area, southwestern Quebec: implications for understanding the depositional evolution of the Lower–Middle Ordovician Laurentian passive margin of eastern Canada. Canadian Journal of Earth Sciences, 40(2), 149–176. https://doi.org/https://doi.org/10.1139/e02-077 DOI: https://doi.org/10.1139/e02-077

Hoque, M. (2014). Géologie du Québec: Introduction (Techreport MM 94-01; pp. 2799–2808). Les publications du Ministère de l’Énergie et des Ressources Naturelles Québec.

Hu, G., Zeng-Liu, J., Shao, Y., Qin, K., & Gao, Y. (2024). The applications of optically stimulated luminescence dating in active fault and paleo-earthquake studies: A review. Quaternary International. https://doi.org/https://doi.org/10.1016/j.quaint.2024.01.016 DOI: https://doi.org/10.1016/j.quaint.2024.01.016

Iturrieta, P., Gerstenberger, M. C., Rollins, C., Van Dissen, R., Wang, T., & Schorlemmer, D. (2024). Accounting for the variability of earthquake rates within low-seismicity regions: Application to the 2022 Aotearoa New Zealand National Seismic Hazard Model. Bulletin of the Seismological Society of America, 114(1), 217–243. https://doi.org/https://doi.org/10.1785/0120230164 DOI: https://doi.org/10.1785/0120230164

Kozacı, Ö., Madugo, C. M., Bachhuber, J. L., Hitchcock, C. S., Kottke, A. R., Higgins, K., Wade, A., & Rittenour, T. (2021). Rapid postearthquake field reconnaissance, paleoseismic trenching, and GIS-based fault slip variability measurements along the Mw 6.4 and Mw 7.1 Ridgecrest earthquake sequence, southern California. Bulletin of the Seismological Society of America, 111(5), 2334–2357. https://doi.org/https://doi.org/10.1785/0120200262 DOI: https://doi.org/10.1785/0120200262

Kumarapeli, P., & Saull, V. A. (1966). The St. Lawrence valley system: a North American equivalent of the East African rift valley system. Canadian Journal of Earth Sciences, 3(5), 639–658. https://doi.org/https://doi.org/10.1139/e66-045 DOI: https://doi.org/10.1139/e66-045

Lambeck, K., Purcell, A., & Zhao, S. (2017). The North American Late Wisconsin ice sheet and mantle viscosity from glacial rebound analyses. Quaternary Science Reviews, 158, 172–210. https://doi.org/https://doi.org/10.1016/j.quascirev.2016.11.033 DOI: https://doi.org/10.1016/j.quascirev.2016.11.033

Lamontagne, M. (2002). An overview of some significant eastern Canadian earthquakes and their impacts on the geological environment, buildings and the public. Natural Hazards, 26, 55–68. https://doi.org/https://doi.org/10.1023/A:1015268710302 DOI: https://doi.org/10.1023/A:1015268710302

Lamontagne, M., Halchuk, S., Cassidy, J. F., & Rogers, G. C. (2018). Significant Canadian Earthquakes 1600-2017. Geological Survey of Canada. DOI: https://doi.org/10.4095/311183

Lamothe, M. (1989). A new framework for the Pleistocene stratigraphy of the central St. Lawrence Lowland, southern Québec. Géographie Physique et Quaternaire, 43(2), 119–129. https://doi.org/https://doi.org/10.7202/032764ar DOI: https://doi.org/10.7202/032764ar

Lamothe, M. (1993). Géologie des formations quaternaires de la région du Lac Saint-Pierre [Techreport]. Rapport Statutaire Intragaz, Min Ress Nat Québec.

Leblanc, G. (1981). A closer look at the September 16, 1732, Montreal earthquake. Canadian Journal of Earth Sciences, 18(3), 539–550. https://doi.org/https://doi.org/10.1139/e81-047 DOI: https://doi.org/10.1139/e81-047

Leonard, M. (2014). Self-consistent earthquake fault-scaling relations: Update and extension to stable continental strike-slip faults. Bulletin of the Seismological Society of America, 104(6), 2953–2965. DOI: https://doi.org/10.1785/0120140087

Ma, S., & Eaton, D. W. (2007). Western Quebec seismic zone (Canada): Clustered, midcrustal seismicity along a Mesozoic hot spot track. Journal of Geophysical Research: Solid Earth, 112(B6). https://doi.org/https://doi.org/10.1029/2006JB004827 DOI: https://doi.org/10.1029/2006JB004827

Markovaara-Koivisto, M., Ojala, A. E., Mattila, J., Kukkonen, I., Aro, I., Pullinen, A., Hänninen, P., Middleton, M., Sutinen, A., Majaniemi, J., & others. (2020). Geomorphological evidence of paleoseismicity: surficial and underground structures of Pasmajärvi postglacial fault. Earth Surface Processes and Landforms, 45(12), 3011–3024. https://doi.org/https://doi.org/10.1002/esp.4948 DOI: https://doi.org/10.1002/esp.4948

Mazzotti, S. (2007). Geodynamic models for earthquake studies in intraplate North America. In Seth Stein & S. Mazzotti (Eds.), Continental Intraplate Earthquakes: Science, Hazard, and Policy Issues (Vol. 425, pp. 17–33). The Geological Society of America. https://doi.org/https://doi.org/10.1130/2007.2425(02) DOI: https://doi.org/10.1130/2007.2425(02)

McCalpin, J. (Ed.). (2009). Paleoseismology, 2nd Edition (p. 629). Elsevier Academic Press.

Mérindol, M., St-Onge, G., Sultan, N., Lajeunesse, P., & Garziglia, S. (2022). Earthquake-triggered submarine landslides in the St. Lawrence Estuary (Québec, Canada) during the last two millennia and the record of the major 1663 CE Mge 7 event. Quaternary Science Reviews, 291, 107640. https://doi.org/https://doi.org/10.1016/j.quascirev.2022.107640 DOI: https://doi.org/10.1016/j.quascirev.2022.107640

Mikko, H., Smith, C. A., Lund, B., Ask, M. V., & Munier, R. (2015). LiDAR-derived inventory of post-glacial fault scarps in Sweden. GFF, 137(4), 334–338. https://doi.org/https://doi.org/10.1080/11035897.2015.1036360 DOI: https://doi.org/10.1080/11035897.2015.1036360

Ministère de l’Économie, de l’Innovation et de l’Énergie. (2022). Démographie, population. Québec government.

Ministère des Forêts, Q. P. D. Q., Faune et Parcs. (2016). LiDAR - Modèles Numériques (terrain, canopée, pente). https://www.donneesquebec.ca/recherche/fr/dataset/produits-derives-de-base-du-lidar. https://www.donneesquebec.ca/recherche/fr/dataset/produits-derives-de-base-du-lidar

Ministère des Ressources naturelles et des Forêts. (2021). système d’information géominière, Carte interactive [Techreport]. Gouvernement du Québec.

Molnar, S., Cassidy, J., Castellaro, S., Cornou, C., Crow, H., Hunter, J., Matsushima, S., Sánchez-Sesma, F., & Yong, A. (2018). Application of microtremor horizontal-to-vertical spectral ratio (MHVSR) analysis for site characterization: State of the art. Surveys in Geophysics, 39, 613–631. https://doi.org/https://doi.org/10.1007/s10712-018-9464-4 DOI: https://doi.org/10.1007/s10712-018-9464-4

Morell, K. D., Styron, R., Stirling, M., Griffin, J., Archuleta, R., & Onur, T. (2020). Seismic hazard analyses from geologic and geomorphic data: Current and future challenges. Tectonics, 39(10), e2018TC005365. https://doi.org/https://doi.org/10.1029/2018TC005365 DOI: https://doi.org/10.1029/2018TC005365

Morell, K., Regalla, C., Amos, C., Bennett, S., Leonard, L., Graham, A., Reedy, T., Levson, V., & Telka, A. (2018). Holocene surface rupture history of an active forearc fault redefines seismic hazard in southwestern British Columbia, Canada. Geophysical Research Letters, 45(21), 11–605. https://doi.org/https://doi.org/10.1130/B35571.1 DOI: https://doi.org/10.1029/2018GL078711

Mörner, N.-A., Tröften, P. E., Sjöberg, R., Grant, D., Dawson, S., Bronge, C., Kvamsdal, O., & Sidén, A. (2000). Deglacial paleoseismicity in Sweden: the 9663 BP Iggesund event. Quaternary Science Reviews, 19(14–15), 1461–1468. https://doi.org/https://doi.org/10.1016/S0277-3791(00)00095-0 DOI: https://doi.org/10.1016/S0277-3791(00)00095-0

Müller, K., Winsemann, J., Pisarska-Jamroży, M., Lege, T., Spies, T., Brandes, C., & others. (2021). The challenge to distinguish soft-sediment deformation structures (SSDS) formed by glaciotectonic, periglacial and seismic processes in a formerly glaciated area: a review and synthesis. Glacially-Triggered Faulting, 67–88. DOI: https://doi.org/10.1017/9781108779906.007

Muller, S. D., Richard, P. J., Guiot, J., de Beaulieu, J.-L., & Fortin, D. (2003). Postglacial climate in the St. Lawrence lowlands, southern Québec: pollen and lake-level evidence. Palaeogeography, Palaeoclimatology, Palaeoecology, 193(1), 51–72. https://doi.org/https://doi.org/10.1016/S0031-0182(02)00710-1 DOI: https://doi.org/10.1016/S0031-0182(02)00710-1

Natural Resources Canada. (2024). Earthquakes Database, search the Earthquake Database. https://www.earthquakescanada.nrcan.gc.ca/stndon/NEDB-BNDS/bulletin-en.php. https://www.earthquakescanada.nrcan.gc.ca/stndon/NEDB-BNDS/bulletin-en.php

Occhietti, S., Parent, M., Lajeunesse, P., Robert, F., & Govare, É. (2011). Late Pleistocene–early Holocene decay of the Laurentide ice sheet in Québec–Labrador. In Developments in quaternary sciences (Vol. 15, pp. 601–630). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-444-53447-7.00047-7 DOI: https://doi.org/10.1016/B978-0-444-53447-7.00047-7

Occhietti, S., & Richard, P. J. (2003). Effet réservoir sur les âges 14C de la Mer de Champlain à la transition Pléistocène-Holocène: révision de la chronologie de la déglaciation au Québec méridional. Géographie Physique et Quaternaire, 57(2), 115–138. https://doi.org/https://doi.org/10.7202/011308ar DOI: https://doi.org/10.7202/011308ar

Oettle, N. K., & Bray, J. D. (2013). Fault rupture propagation through previously ruptured soil. Journal of Geotechnical and Geoenvironmental Engineering, 139(10), 1637–1647. https://doi.org/https://doi.org/10.1061/(ASCE)GT.1943-5606.0000919 DOI: https://doi.org/10.1061/(ASCE)GT.1943-5606.0000919

Oliver, J., Johnson, T., & Dorman, J. (1970). Postglacial faulting and seismicity in New York and Quebec. Canadian Journal of Earth Sciences, 7(2), 579–590. https://doi.org/https://doi.org/10.1139/e70-059 DOI: https://doi.org/10.1139/e70-059

Pagani, M., Monelli, D., Weatherill, G., Danciu, L., Crowley, H., Silva, V., Henshaw, P., Butler, L., Nastasi, M., Panzeri, L., & others. (2014). OpenQuake engine: An open hazard (and risk) software for the global earthquake model. Seismological Research Letters, 85(3), 692–702. https://doi.org/https://doi.org/10.1785/0220130087 DOI: https://doi.org/10.1785/0220130087

Palmu, J.-P., Ojala, A. E., Ruskeeniemi, T., Sutinen, R., & Mattila, J. (2015). LiDAR DEM detection and classification of postglacial faults and seismically-induced landforms in Finland: a paleoseismic database. Gff, 137(4), 344–352. https://doi.org/https://doi.org/10.1080/11035897.2015.1068370 DOI: https://doi.org/10.1080/11035897.2015.1068370

Parent, M., & Occhietti, S. (1988). Late Wisconsinan deglaciation and Champlain Sea invasion in the St. Lawrence Valley, Québec. Géographie Physique et Quaternaire, 42(3), 215–246. https://doi.org/https://doi.org/10.7202/032734ar DOI: https://doi.org/10.7202/032734ar

Pinet, N., Lamontagne, M., Duchesne, M. J., & Brake, V. I. (2020). Hunting for Quaternary faults in eastern Canada: A critical appraisal of two potential candidates. Seismological Research Letters, 92(2A), 1102–1111. https://doi.org/10.1785/0220200322 DOI: https://doi.org/10.1785/0220200322

Pisarska-Jamroży, M., Belzyt, S., Bitinas, A., Jusienė, A., & Woronko, B. (2019). Seismic shocks, periglacial conditions and glaciotectonics as causes of the deformation of a Pleistocene meandering river succession in central Lithuania. Baltica, 32(1), 63–77. https://doi.org/ https://doi.org/10.5200/baltica.2019.1.6 DOI: https://doi.org/10.5200/baltica.2019.1.6

R., T. (2014). Géologie des Basses-Terres du Saint-Laurent (Geologic Map DV 2014-05). Ministère d’Énergie et Ressources naturelles de Québec.

Randour, I., Daigneault, R.-A., Lamothe, M., Roy, M., & Robitaille, A. (2020). Région des Laurentides (Techreport MB202008PLAN006). Ministère des Ressources naturelles et des Forêts. https://gq.mines.gouv.qc.ca/documents/EXAMINE/MB202008/MB202008PLAN001.pdf

Randour, Iyse, Daigneault, R.-A., Lamothe, M., Roy, M., & Robitaille, A. (2020). Cartographie des formations superficielles de la région des Laurentides-Lanaudière, phase 2. Gouvernement Du Québec, Canada.

Richard, P. J., & Occhietti, S. (2005). 14C chronology for ice retreat and inception of Champlain Sea in the St. Lawrence Lowlands, Canada. Quaternary Research, 63(3), 353–358. https://doi.org/https://doi.org/10.1016/j.yqres.2005.02.003 DOI: https://doi.org/10.1016/j.yqres.2005.02.003

Rimando, J. M., & Peace, A. L. (2021). Reactivation potential of intraplate faults in the western Quebec seismic zone, eastern Canada. Earth and Space Science, 8(8), e2021EA001825. https://doi.org/https://doi.org/10.1029/2021EA001825 DOI: https://doi.org/10.1029/2021EA001825

Rimando, R. E., & Benn, K. (2005). Evolution of faulting and paleo-stress field within the Ottawa graben, Canada. Journal of Geodynamics, 39(4), 337–360. https://doi.org/https://doi.org/10.1016/j.jog.2005.01.003 DOI: https://doi.org/10.1016/j.jog.2005.01.003

Roesset, J. M. (1970). Fundamentals of soil amplification. In R. J. Hansen (Ed.), Seismic Design for Nuclear Power Plants (pp. 183–244). M.I.T. Press.

Rood, A., Rood, D., Stirling, M., Madugo, C., Abrahamson, N., Wilcken, K., Gonzalez, T., Kottke, A., Whittaker, A., Page, W., & others. (2020). Earthquake hazard uncertainties improved using precariously balanced rocks. AGU Advances, 1(4), e2020AV000182. https://doi.org/https://doi.org/10.1029/2020AV000182 DOI: https://doi.org/10.1029/2020AV000182

Rosset, P., Bour-Belvaux, M., & and Chouinard, L. (2015). Estimation and comparison of Vs30; microzonation maps for Montreal Using multiple sources of information. Bulletin of Earthquake Engineering, 13(8), 2225–2239. https://doi.org/https://doi.org/10.3390/geosciences13090256 DOI: https://doi.org/10.1007/s10518-014-9716-8

Rosset, P, Chouinard, L., & Nollet, M.-J. (2021). Consequences on residential buildings in greater Montreal for a repeat of the 1732 M5.8 Montreal earthquake. Canadian Society of Civil Engineering Annual Conference, 667–679. https://doi.org/https://doi.org/10.1007/978-981-19-0507-0_58 DOI: https://doi.org/10.1007/978-981-19-0507-0_58

Rosset, Philippe, Long, X., & Chouinard, L. (2023). Influence of the 2020 Seismic Hazard Update on residential losses in greater Montreal, Canada. GeoHazards, 4(4), 406–420. https://doi.org/https://doi.org/10.3390/geohazards4040023 DOI: https://doi.org/10.3390/geohazards4040023

Rücker, C., Günther, T., & Wagner, F. M. (2017). pyGIMLi: An open-source library for modelling and inversion in geophysics. Computers & Geosciences, 109, 106–123. https://doi.org/https://doi.org/10.1016/j.cageo.2017.07.011 DOI: https://doi.org/10.1016/j.cageo.2017.07.011

Sella, G. F., Stein, S., Dixon, T. H., Craymer, M., James, T. S., Mazzotti, S., & Dokka, R. K. (2007). Observation of glacial isostatic adjustment in “stable” North America with GPS. Geophysical Research Letters, 34(2). https://doi.org/https://doi.org/10.1029/2006GL027081 DOI: https://doi.org/10.1029/2006GL027081

Shao, Y., Liu-Zeng, J., Van der Woerd, J., Klinger, Y., Oskin, M. E., Zhang, J., Wang, P., Wang, P., Wang, W., & Yao, W. (2021). Late Pleistocene slip rate of the central Haiyuan fault constrained from optically stimulated luminescence, 14C, and cosmogenic isotope dating and high-resolution topography. GSA Bulletin, 133(7–8), 1347–1369. https://doi.org/https://doi.org/10.1130/B35571.1 DOI: https://doi.org/10.1130/B35571.1

Shilts, W. W. (1992). Sangamonian and early Wisconsinan events in the St. Lawrence Lowland and Appalachians of southern Quebec, Canada. The Last Interglacial-Glacial Transition in North America, 270, 171. https://doi.org/https://doi.org/10.1130/SPE270-p171 DOI: https://doi.org/10.1130/SPE270-p171

Simon, K., James, T., Henton, J., & Dyke, A. (2016). A glacial isostatic adjustment model for the central and northern Laurentide Ice Sheet based on relative sea level and GPS measurements. Geophysical Journal International, 205(3), 1618–1636. https://doi.org/https://doi.org/10.1093/gji/ggw103 DOI: https://doi.org/10.1093/gji/ggw103

Smith, C. A., Sundh, M., & Mikko, H. (2014). Surficial geology indicates early Holocene faulting and seismicity, central Sweden. International Journal of Earth Sciences, 103, 1711–1724. https://doi.org/https://doi.org/10.1007/s00531-014-1025-6 DOI: https://doi.org/10.1007/s00531-014-1025-6

Steffen, H., Olesen, O., & Sutinen, R. (Eds.). (2021). Glacially-triggered faulting. Cambridge University Press. https://doi.org/https://doi-org.proxy3.library.mcgill.ca/10.1017/9781108779906 DOI: https://doi.org/10.1017/9781108779906.003

Steffen, R., Wu, P., & Lund, B. (2021). Geomechanics of Glacially Triggered Faulting. In Glacially-Triggered Faulting. Cambridge University Press. https://doi.org/https://doi.org/10.1017/9781108779906.004 DOI: https://doi.org/10.1017/9781108779906

Stein, Seth. (2007). Approaches to continental intraplate earthquake issues. In S. Stein & S. Mazzotti (Eds.), Continental Intraplate Earthquakes: Science, Hazard, and Policy Issues: Geological Society of America Special Paper (Vol. 425, pp. 1–16). Geological Society of America. https://doi.org/https://doi.org/10.1130/SPE425 DOI: https://doi.org/10.1130/978-0-8137-2425-6(2007)425[v:P]2.0.CO;2

Stevens, V., & Avouac, J. (2021). On the relationship between strain rate and seismicity in the India–Asia collision zone: implications for probabilistic seismic hazard. Geophysical Journal International, 226(1), 220–245. https://doi.org/https://doi.org/10.1093/gji/ggab098 DOI: https://doi.org/10.1093/gji/ggab098

St-Onge, G., Mulder, T., Piper, D. J., Hillaire-Marcel, C., & Stoner, J. S. (2004). Earthquake and flood-induced turbidites in the Saguenay Fjord (Québec): a Holocene paleoseismicity record. Quaternary Science Reviews, 23(3–4), 283–294. https://doi.org/https://doi.org/10.1016/j.quascirev.2003.03.001 DOI: https://doi.org/10.1016/j.quascirev.2003.03.001

Sutinen, R., Hyvönen, E., Middleton, M., & Ruskeeniemi, T. (2014). Airborne LiDAR detection of postglacial faults and Pulju moraine in Palojärvi, Finnish Lapland. Global and Planetary Change, 115, 24–32. https://doi.org/https://doi.org/10.1016/j.gloplacha.2014.01.007 DOI: https://doi.org/10.1016/j.gloplacha.2014.01.007

Tarayoun, A., Mazzotti, S., Craymer, M., & Henton, J. (2018). Structural inheritance control on intraplate present-day deformation: GPS strain rate variations in the Saint Lawrence Valley, eastern Canada. Journal of Geophysical Research: Solid Earth, 123(8), 7004–7020. https://doi.org/https://doi.org/10.1029/2017JB015417 DOI: https://doi.org/10.1029/2017JB015417

Thompson Jobe, J. A., Hatem, A. E., Gold, R. D., DuRoss, C., Reitman, N. G., Briggs, R. W., & Collett, C. M. (2022). Earthquake geology inputs for the National Seismic Hazard Model (NSHM) 2023 (central and eastern United States), version 1.0 [Techreport]. U.S. Geological Survey data release, https://doi.org/10.5066/P94HLE5G.

Tremblay, A., Long, B., & Massé, M. (2003). Supracrustal faults of the St. Lawrence rift system, Québec: kinematics and geometry as revealed by field mapping and marine seismic reflection data. Tectonophysics, 369(3–4), 231–252. https://doi.org/https://doi.org/10.1016/S0040-1951(03)00227-0 DOI: https://doi.org/10.1016/S0040-1951(03)00227-0

Tremblay, A., Roden-Tice, M. K., Brandt, J. A., & Megan, T. W. (2013). Mesozoic fault reactivation along the St. Lawrence rift system, eastern Canada: Thermochronologic evidence from apatite fission-track dating. Bulletin, 125(5–6), 794–810. https://doi.org/https://doi.org/10.1130/B30703.1 DOI: https://doi.org/10.1130/B30703.1

Tuttle, M. P., & Atkinson, G. M. (2010). Localization of large earthquakes in the Charlevoix seismic zone, Quebec, Canada, during the past 10,000 years. Seismological Research Letters, 81(1), 140–147. https://doi.org/https://doi.org/10.1785/gssrl.81.1.140 DOI: https://doi.org/10.1785/gssrl.81.1.140

Tuttle, M. P., Dyer-Williams, K., Carter, M. W., Forman, S. L., Tucker, K., Fuentes, Z., Velez, C., & Bauer, L. M. (2021). The liquefaction record of past earthquakes in the Central Virginia seismic zone, Eastern United States. Seismological Research Letters, 92(5), 3126–3144. https://doi.org/https://doi.org/10.1785/0220200456 DOI: https://doi.org/10.1785/0220200456

Tuttle, M., & Seeber, L. (1991). Historic and prehistoric earthquake-induced liquefaction in Newbury, Massachusetts. Geology, 19(6), 594–597. https://doi.org/https://doi.org/10.1130/0091-7613(1991)019<0594:HAPEIL>2.3.CO;2 DOI: https://doi.org/10.1130/0091-7613(1991)019<0594:HAPEIL>2.3.CO;2

Vrolijk, P., Pevear, D., Covey, M., & LaRiviere, A. (2018). Fault gouge dating: history and evolution. Clay Minerals, 53(3), 305–324. https://doi.org/https://doi.org/10.1180/clm.2018.22 DOI: https://doi.org/10.1180/clm.2018.22

Walcott, R. (1972). Late Quaternary vertical movements in eastern North America: Quantitative evidence of glacio-isostatic rebound. Reviews of Geophysics, 10(4), 849–884. https://doi.org/https://doi.org/10.1029/RG010i004p00849 DOI: https://doi.org/10.1029/RG010i004p00849

Wathelet, M., Chatelain, J.-L., Cornou, C., Giulio, G. D., Guillier, B., Ohrnberger, M., & Savvaidis, A. (2020). Geopsy: A user-friendly open-source tool set for ambient vibration processing. Seismological Research Letters, 91(3), 1878–1889. https://doi.org/https://doi.org/10.1785/0220190360 DOI: https://doi.org/10.1785/0220190360

Weichert, D. (1994). Omak rock and the 1872 Pacific Northwest earthquake. Bulletin of the Seismological Society of America, 84(2), 444–450. DOI: https://doi.org/10.1016/0148-9062(94)90081-7

Wells, D., & Coppersmith, K. (1993). Likelihood of surface rupture as a function of magnitude. Seismological Research Letters, 64(1), 54.

Yu, H., Liu, Y., Harrington, R. M., & Lamontagne, M. (2016). Seismicity along St. Lawrence Paleorift faults overprinted by a meteorite impact structure in Charlevoix, Québec, Eastern Canada. Bulletin of the Seismological Society of America, 106(6), 2663–2673. https://doi.org/https://doi.org/10.1785/0120160036 DOI: https://doi.org/10.1785/0120160036

Yu, K., Chouinard, L. E., & Rosset, P. (2016). Seismic vulnerability assessment for Montreal. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 10(2), 164–178. https://doi.org/https://doi.org/10.1080/17499518.2015.1106562 DOI: https://doi.org/10.1080/17499518.2015.1106562

Zelt, C. A. (1998). Lateral velocity resolution from three-dimensional seismic refraction data. Geophysical Journal International, 135(3), 1101–1112. https://doi.org/https://doi.org/10.1046/j.1365-246X.1998.00695.x DOI: https://doi.org/10.1046/j.1365-246X.1998.00695.x

Zielke, O., Klinger, Y., & Arrowsmith, J. R. (2015). Fault slip and earthquake recurrence along strike-slip faults—Contributions of high-resolution geomorphic data. Tectonophysics, 638, 43–62. https://doi.org/https://doi.org/10.1016/j.tecto.2014.11.004 DOI: https://doi.org/10.1016/j.tecto.2014.11.004

Additional Files

Published

2024-07-25

How to Cite

Gourdeau, A., B. Prush, V., D. Rowe, C., Nackers, C., Mark, H., Morris, I., Rosset, P., Lamothe, M., Chouinard, L., & Tarling, M. S. (2024). Investigation of suspected Holocene fault scarp near Montréal, Québec: The first paleoseismic trench in eastern Canada. Seismica, 3(2). https://doi.org/10.26443/seismica.v3i2.1179

Issue

Section

Reports (excl. Fast Reports)