Deep learning detects uncataloged low-frequency earthquakes across regions
DOI:
https://doi.org/10.26443/seismica.v3i1.1185Keywords:
Low frequency earthquake, deep learning, Earthquake detectionAbstract
Documenting the interplay between slow deformation and seismic ruptures is essential to understand the physics of earthquakes nucleation. However, slow deformation is often difficult to detect and characterize. The most pervasive seismic markers of slow slip are low-frequency earthquakes (LFEs) that allow resolving deformation at minute-scale. Detecting LFEs is hard, due to their emergent onsets and low signal-to-noise ratios, usually requiring region-specific template matching approaches. These approaches suffer from low flexibility and might miss LFEs as they are constrained to sources identified a priori. Here, we develop a deep learning-based workflow for LFE detection and location, modeled after classical earthquake detection with phase picking, phase association, and location. Across three regions with known LFE activity, we detect LFEs from both previously cataloged sources and newly identified sources. Furthermore, the approach is transferable across regions, enabling systematic studies of LFEs in regions without known LFE activity.
References
Armbruster, J. G., Kim, W.-Y., & Rubin, A. M. (2014). Accurate Tremor Locations from Coherent S and P Waves. Journal of Geophysical Research: Solid Earth, 119(6), 5000–5013. https://doi.org/10.1002/2014JB011133
Bombardier, M., Dosso, S. E., Cassidy, J. F., & Kao, H. (2023). Tackling the Challenges of Tectonic Tremor Localization Using Differential Traveltimes and Bayesian Inversion. Geophysical Journal International, 234(1), 479–493. https://doi.org/10.1093/gji/ggad086
Bostock, M. G., Thomas, A. M., Savard, G., Chuang, L., & Rubin, A. M. (2015). Magnitudes and Moment-Duration Scaling of Low-Frequency Earthquakes beneath Southern Vancouver Island. Journal of Geophysical Research: Solid Earth, 120(9), 6329–6350. https://doi.org/10.1002/2015JB012195
California Institute of Technology and United States Geological Survey Pasadena. (1926). Southern California Seismic Network. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/CI
Caltech. (2007). Meso America Subduction Experiment. International Federation of Digital Seismograph Networks. https://doi.org/10.7909/C3RN35SP
Costantino, G., Giffard-Roisin, S., Radiguet, M., Dalla Mura, M., Marsan, D., & Socquet, A. (2023). Multi-station deep learning on geodetic time series detects slow slip events in Cascadia. Communications Earth & Environment, 4(1), 435. https://doi.org/10.1038/s43247-023-01107-7
Cruz-Atienza, V. M., Tago, J., Villafuerte, C., Wei, M., Garza-Girón, R., Dominguez, L. A., Kostoglodov, V., Nishimura, T., Franco, S., Real, J., & others. (2021). Short-term interaction between silent and devastating earthquakes in Mexico. Nature Communications, 12(1), 2171. https://doi.org/10.1038/s41467-021-22326-6
Dragert, H., Wang, K., & James, T. S. (2001). A silent slip event on the deeper Cascadia subduction interface. Science, 292(5521), 1525–1528. https://doi.org/10.1126/science.1060152
Frank, W. B., & Shapiro, N. M. (2014). Automatic Detection of Low-Frequency Earthquakes (LFEs) Based on a Beamformed Network Response. Geophysical Journal International, 197(2), 1215–1223. https://doi.org/10.1093/gji/ggu058
Frank, William B, & Brodsky, E. E. (2019). Daily measurement of slow slip from low-frequency earthquakes is consistent with ordinary earthquake scaling. Science Advances, 5(10), eaaw9386. https://doi.org/10.1126/sciadv.aaw9386
Frank, William B., Shapiro, N. M., Husker, A. L., Kostoglodov, V., Romanenko, A., & Campillo, M. (2014). Using Systematically Characterized Low-Frequency Earthquakes as a Fault Probe in Guerrero, Mexico. Journal of Geophysical Research: Solid Earth, 119(10), 7686–7700. https://doi.org/10.1002/2014JB011457
Geological Survey of Canada. (2000). Portable Observatories for Lithospheric Analysis and Research Investigating Seismicity (POLARIS). International Federation of Digital Seismograph Networks. https://fdsn.org/networks/detail/PO/
Gombert, B., & Hawthorne, J. C. (2023). Rapid Tremor Migration During Few Minute-Long Slow Earthquakes in Cascadia. Journal of Geophysical Research: Solid Earth, 128(2), e2022JB025034. https://doi.org/10.1029/2022JB025034
González-Vidal, D., Moreno, M., Sippl, C., Baez, J. C., Ortega-Culaciati, F., Lange, D., Tilmann, F., Socquet, A., Bolte, J., Hormazabal, J., & others. (2023). Relation between oceanic plate structure, patterns of interplate locking and microseismicity in the 1922 Atacama seismic gap. Geophysical Research Letters, 50(15), e2023GL103565. https://doi.org/10.1029/2023GL103565
Ide, S., Beroza, G. C., Shelly, D. R., & Uchide, T. (2007). A Scaling Law for Slow Earthquakes. Nature, 447(7140), 76–79. https://doi.org/10.1038/nature05780
Ide, S., Shelly, D. R., & Beroza, G. C. (2007). Mechanism of deep low frequency earthquakes: Further evidence that deep non-volcanic tremor is generated by shear slip on the plate interface. Geophysical Research Letters, 34(3). https://doi.org/10.1029/2006GL028890
Imanishi, K., Uchide, T., & Takeda, N. (2016). Determination of focal mechanisms of nonvolcanic tremor using S wave polarization data corrected for the effects of anisotropy. Geophysical Research Letters, 43(2), 611–619. https://doi.org/10.1002/2015GL067249
IRIS Transportable Array. (2003). USArray Transportable Array. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/TA
Japan Meteorological Agency. (2023). The Seismological Bulletin of Japan. http://www.data.jma.go.jp/svd/eqev/data/bulletin/index_e.html
Kao, H., Shan, S.-J., Dragert, H., Rogers, G., Cassidy, J. F., & Ramachandran, K. (2005). A Wide Depth Distribution of Seismic Tremors along the Northern Cascadia Margin. Nature, 436(7052), 841–844. https://doi.org/10.1038/nature03903
Lomax, A., Virieux, J., Volant, P., & Berge-Thierry, C. (2000). Probabilistic earthquake location in 3D and layered models: Introduction of a Metropolis-Gibbs method and comparison with linear locations. Advances in Seismic Event Location, 101–134. https://doi.org/10.1007/978-94-015-9536-0_5
Lowry, A. R., Larson, K. M., Kostoglodov, V., & Bilham, R. (2001). Transient fault slip in Guerrero, southern Mexico. Geophysical Research Letters, 28(19), 3753–3756. https://doi.org/10.1029/2001GL013238
Michel, S., Gualandi, A., & Avouac, J.-P. (2019). Interseismic coupling and slow slip events on the Cascadia megathrust. Pure and Applied Geophysics, 176, 3867–3891. https://doi.org/10.1007/s00024-018-1991-x
Michelini, A., Cianetti, S., Gaviano, S., Giunchi, C., Jozinović, D., & Lauciani, V. (2021). INSTANCE–the Italian seismic dataset for machine learning. Earth System Science Data, 13(12), 5509–5544. https://doi.org/10.5194/essd-13-5509-2021
Mouchon, C., Frank, W. B., Radiguet, M., Poli, P., & Cotte, N. (2023). Subdaily Slow Fault Slip Dynamics Captured by Low-Frequency Earthquakes. AGU Advances, 4(4), e2022AV000848. https://doi.org/10.1029/2022AV000848
Moutote, L., Itoh, Y., Lengliné, O., Duputel, Z., & Socquet, A. (2023). Evidence of a transient aseismic slip driving the 2017 Valparaiso earthquake sequence, from foreshocks to aftershocks. Journal of Geophysical Research: Solid Earth, e2023JB026603. https://doi.org/10.1029/2023JB026603
Münchmeyer, J. (2024). PyOcto: A high-throughput seismic phase associator. Seismica, 3(1). https://doi.org/10.26443/seismica.v3i1.1130
Münchmeyer, J., Woollam, J., Rietbrock, A., Tilmann, F., Lange, D., Bornstein, T., Diehl, T., Giunchi, C., Haslinger, F., Jozinović, D., & others. (2022). Which picker fits my data? A quantitative evaluation of deep learning based seismic pickers. Journal of Geophysical Research: Solid Earth, 127(1), e2021JB023499. https://doi.org/10.1029/2021JB023499
Natural Resources Canada. (1975). Canadian National Seismograph Network. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/CN
Natural Resources Canada. (2002). Canadian Seismic Research Network. International Federation of Digital Seismograph Networks. https://fdsn.org/networks/detail/C8/
Northern California Earthquake Data Center. (2014a). Berkeley Digital Seismic Network (BDSN). International Federation of Digital Seismograph Networks. https://doi.org/10.7932/BDSN
Northern California Earthquake Data Center. (2014b). High Resolution Seismic Network (HRSN). International Federation of Digital Seismograph Networks. https://doi.org/10.7932/HRSN
Okada, Y., Nishimura, T., Tabei, T., Matsushima, T., & Hirose, H. (2022). Development of a detection method for short-term slow slip events using GNSS data and its application to the Nankai subduction zone. Earth, Planets and Space, 74(1), 1–18. https://doi.org/10.1186/s40623-022-01576-8
Ozawa, S., Murakami, M., Kaidzu, M., Tada, T., Sagiya, T., Hatanaka, Y., Yarai, H., & Nishimura, T. (2002). Detection and monitoring of ongoing aseismic slip in the Tokai region, central Japan. Science, 298(5595), 1009–1012. https://doi.org/10.1126/science.1076780
Radiguet, M., Perfettini, H., Cotte, N., Gualandi, A., Valette, B., Kostoglodov, V., Lhomme, T., Walpersdorf, A., Cabral Cano, E., & Campillo, M. (2016). Triggering of the 2014 M w 7.3 Papanoa earthquake by a slow slip event in Guerrero, Mexico. Nature Geoscience, 9(11), 829–833. https://doi.org/10.1038/ngeo2817
Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, 234–241. https://doi.org/10.1007/978-3-319-24574-4_28
Ross, Z. E., Meier, M.-A., Hauksson, E., & Heaton, T. H. (2018). Generalized seismic phase detection with deep learning. Bulletin of the Seismological Society of America, 108(5A), 2894–2901. https://doi.org/10.1785/0120180080
Royer, A., & Bostock, M. (2014). A comparative study of low frequency earthquake templates in northern Cascadia. Earth and Planetary Science Letters, 402, 247–256. https://doi.org/10.1016/j.epsl.2013.08.040
Rubin, A. M., & Armbruster, J. G. (2013). Imaging Slow Slip Fronts in Cascadia with High Precision Cross-Station Tremor Locations. Geochemistry, Geophysics, Geosystems, 14(12), 5371–5392. https://doi.org/10.1002/2013GC005031
Savard, G., & Bostock, M. G. (2015). Detection and Location of Low-Frequency Earthquakes Using Cross-Station Correlation. Bulletin of the Seismological Society of America, 105(4), 2128–2142. https://doi.org/10.1785/0120140301
Shelly, D. R. (2010). Migrating tremors illuminate complex deformation beneath the seismogenic San Andreas fault. Nature, 463(7281), 648–652. https://doi.org/10.1038/nature08755
Shelly, D. R. (2017). A 15 Year Catalog of More than 1 Million Low-Frequency Earthquakes: Tracking Tremor and Slip along the Deep San Andreas Fault. Journal of Geophysical Research: Solid Earth, 122(5), 3739–3753. https://doi.org/10.1002/2017JB014047
Shelly, D. R., Beroza, G. C., & Ide, S. (2007). Non-Volcanic Tremor and Low-Frequency Earthquake Swarms. Nature, 446(7133), 305–307. https://doi.org/10.1038/nature05666
Shelly, D. R., Ellsworth, W. L., Ryberg, T., Haberland, C., Fuis, G. S., Murphy, J., Nadeau, R. M., & Bürgmann, R. (2009). Precise Location of San Andreas Fault Tremors near Cholame, California Using Seismometer Clusters: Slip on the Deep Extension of the Fault? Geophysical Research Letters, 36(1). https://doi.org/10.1029/2008GL036367
Socquet, A., Valdes, J. P., Jara, J., Cotton, F., Walpersdorf, A., Cotte, N., Specht, S., Ortega-Culaciati, F., Carrizo, D., & Norabuena, E. (2017). An 8 Month Slow Slip Event Triggers Progressive Nucleation of the 2014 Chile Megathrust. Geophysical Research Letters, 44(9), 4046–4053. https://doi.org/10.1002/2017GL073023
Supino, M., Poiata, N., Festa, G., Vilotte, J. P., Satriano, C., & Obara, K. (2020). Self-Similarity of Low-Frequency Earthquakes. Scientific Reports, 10(1), 6523. https://doi.org/10.1038/s41598-020-63584-6
Tan, Y. J., Waldhauser, F., Ellsworth, W. L., Zhang, M., Zhu, W., Michele, M., Chiaraluce, L., Beroza, G. C., & Segou, M. (2021). Machine-learning-based high-resolution earthquake catalog reveals how complex fault structures were activated during the 2016–2017 Central Italy sequence. The Seismic Record, 1(1), 11–19. https://doi.org/10.1785/0320210001
UNAVCO, United States of America. (2004). Plate Boundary Observatory Borehole Seismic Network (PBO). International Federation of Digital Seismograph Networks. https://fdsn.org/networks/detail/PB/
USGS Menlo Park. (1966). USGS Northern California Seismic Network. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/NC
Wang, Q.-Y., Frank, W. B., Abercrombie, R. E., Obara, K., & Kato, A. (2023). What makes low-frequency earthquakes low frequency. Science Advances, 9(32), eadh3688. https://doi.org/10.1126/sciadv.adh3688
Wech, A. G. (2021). Cataloging Tectonic Tremor Energy Radiation in the Cascadia Subduction Zone. Journal of Geophysical Research: Solid Earth, 126(10), e2021JB022523. https://doi.org/10.1029/2021JB022523
Woollam, J., Münchmeyer, J., Tilmann, F., Rietbrock, A., Lange, D., Bornstein, T., Diehl, T., Giunchi, C., Haslinger, F., Jozinović, D., & others. (2022). SeisBench—A toolbox for machine learning in seismology. Seismological Research Letters, 93(3), 1695–1709. https://doi.org/10.1785/0220210324
Zhu, W., & Beroza, G. C. (2019). PhaseNet: A deep-neural-network-based seismic arrival-time picking method. Geophysical Journal International, 216(1), 261–273. https://doi.org/10.1093/gji/ggy423
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Jannes Münchmeyer, Sophie Giffard-Roisin, Marielle Malfante, William B. Frank, Piero Poli, David Marsan, Anne Socquet
This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
European Research Council
Grant numbers ERC CoG 865963 -
HORIZON EUROPE Marie Sklodowska-Curie Actions
Grant numbers 101104996 -
Agence Nationale de la Recherche
Grant numbers ANR-19-P3IA-0003 -
Grand Équipement National De Calcul Intensif
Grant numbers 2022-AD011012345R1