Mapping fault geomorphology with drone-based lidar


  • Guy Salomon School of Earth and Ocean Sciences, University of Victoria
  • Theron Finley School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada
  • Edwin Nissen School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada
  • Roger Stephen School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada
  • Brian Menounos Department of Geography, Earth, and Environmental Sciences, University of Northern British Columbia, Prince George, British Columbia, Canada



lidar, uls, geomorphology, active faults, uav, drone


The advent of sub-meter resolution topographic surveying has revolutionized active fault mapping. Light detection and ranging (lidar) collected using crewed airborne laser scanning (ALS) can provide ground coverage of entire fault systems but is expensive, while Structure-from-Motion (SfM) photogrammetry from uncrewed aerial vehicles (UAVs) is popular for mapping smaller sites but cannot image beneath vegetation. Here, we present a new UAV laser scanning (ULS) system which overcomes these limitations to survey fault-related topography cost-effectively, at desirable spatial resolutions, and even beneath dense vegetation. In describing our system, data acquisition and processing workflows, we provide a practical guide for other researchers interested in developing their own ULS capabilities. We showcase ULS data collected over faults from a variety of terrain and vegetation types across the Canadian Cordillera and compare them to conventional ALS and SfM data. Due to the lower, slower UAV flights, ULS offers improved ground return density (~260 points/m2 for the capture of a paleoseismic trenching site and ~10–72 points/m2 for larger, multi-kilometer fault surveys) over conventional ALS (~3–9 points/m2) as well as better vegetation penetration than both ALS and SfM. The resulting ~20–50 cm-resolution ULS terrain models reveal fine-scale tectonic landforms that would otherwise be challenging to image.


Arrowsmith, J. R., Rhodes, D. D., & Pollard, D. D. (1998). Morphologic dating of scarps formed by repeated slip events along the San Andreas Fault, Carrizo Plain, California. Journal of Geophysical Research (Solid Earth), 103(B5), 10,141-10,160. DOI:

Baldwin, K., Allen, L., Basquill, S., Chapman, K., Downing, D., Flynn, N., MacKenzie, W., Major, M., Meades, W., Meidinger, D., Morneau, C., Saucier, J.-P., Thorpe, J., & Uhlig, P. (2019). Vegetation Zones of Canada: A Biogeoclimate Perspective. Natural Resources Canada, Canadian Forest Service.

Bemis, S. P., Micklethwaite, S., Turner, D., James, M. R., Akciz, S., Thiele, S. T., & Bangash, H. A. (2014). Ground-based and UAV-Based photogrammetry: A multi-scale, high-resolution mapping tool for structural geology and paleoseismology. Journal of Structural Geology, 69, 163–178. DOI:

Benavente, C., Wimpenny, S., Rosell, L., Robert, X., Palomino, A., Audin, L., Aguirre, E., & Garcı́a, B. (2021). Paleoseismic Evidence of an Mw 7 Pre-Hispanic Earthquake in the Peruvian Forearc. Tectonics, 40(6), e2020TC006479. DOI:

Bender, A. M., & Haeussler, P. J. (2017). Eastern Denali Fault surface trace map, eastern Alaska and Yukon, Canada (USGS Numbered Series No. 2017–1049; p. 13). U.S. Geological Survey. DOI:

Bertiger, W., Bar-Sever, Y., Dorsey, A., Haines, B., Harvey, N., Hemberger, D., Heflin, M., Lu, W., Miller, M., Moore, A. W., Murphy, D., Ries, P., Romans, L., Sibois, A., Sibthorpe, A., Szilagyi, B., Vallisneri, M., & Willis, P. (2020). GipsyX/RTGx, a new tool set for space geodetic operations and research. Advances in Space Research, 66(3), 469–489. DOI:

Blais-Stevens, A., Clague, J. J., Brahney, J., Lipovsky, P., Haeussler, P. J., & Menounos, B. (2020). Evidence for Large Holocene Earthquakes along the Denali Fault in Southwest Yukon, Canada. Environmental & Engineering Geoscience, 26(2), 149–166. DOI:

Bostock, H. S. (1952). Geology of northwest Shakwak Valley, Yukon Territory. E. Cloutier, Queen’s Printer. DOI:

Brandon, M. T. (1989). Origin of igneous rocks associated with melanges of the Pacific Rim Complex, western Vancouver Island, Canada. Tectonics, 8(6), 1115–1136. DOI:

Brede, B., Lau, A., Bartholomeus, H. M., & Kooistra, L. (2017). Comparing RIEGL RiCOPTER UAV LiDAR Derived Canopy Height and DBH with Terrestrial LiDAR. Sensors, 17(10). DOI:

Brooks, B. A., Glennie, C., Hudnut, K. W., Ericksen, T., & Hauser, D. (2013). Mobile Laser Scanning Applied to the Earth Sciences. Eos, Transactions American Geophysical Union, 94(36), 313–315. DOI:

Brooks, B. A., Minson, S. E., Glennie, C. L., Nevitt, J. M., Dawson, T., Rubin, R., Ericksen, T. L., Lockner, D., Hudnut, K., Langenheim, V., Lutz, A., Mareschal, M., Murray, J., Schwartz, D., & Zaccone, D. (2017). Buried shallow fault slip from the South Napa earthquake revealed by near-field geodesy. Science Advances, 3(7), e1700525. DOI:

Bubeck, A., Wilkinson, M., Roberts, G. P., Cowie, P. A., McCaffrey, K. J. W., Phillips, R., & Sammonds, P. (2015). The tectonic geomorphology of bedrock scarps on active normal faults in the Italian Apennines mapped using combined ground penetrating radar and terrestrial laser scanning. Geomorphology, 237, 38–51. DOI:

Butler, H., Chambers, B., Hartzell, P., & Glennie, C. (2021). PDAL: An open source library for the processing and analysis of point clouds. Computers & Geosciences, 148, 104680. DOI:

Cățeanu, M., Arcadie, C., & others. (2017). ALS for terrain mapping in forest environments: An analysis of LiDAR filtering algorithms. EARSeL EProceedings, 16(1), 9–20.

Chen, T., Akciz, S. O., Hudnut, K. W., Zhang, D. Z., & Stock, J. M. (2015). Fault‐Slip Distribution of the 1999 Mw 7.1 Hector Mine Earthquake, California, Estimated from Postearthquake Airborne LiDAR Data. Bulletin of the Seismological Society of America, 105(2A), 776–790. DOI:

Choi, M., Eaton, D. W., & Enkelmann, E. (2021). Is the Eastern Denali fault still active? Geology, 49(6), 662–666. DOI:

Civil Aviation Safety Authority. (2021). Remote pilot licence. %7B

Clague, J. J. (1975). Late Quaternary Sediments and Geomorphic History of the Southern Rocky Mountain Trench, British Columbia. Canadian Journal of Earth Sciences, 12(4), 595–605. DOI:

Clague, J. J., & James, T. S. (2002). History and isostatic effects of the last ice sheet in southern British Columbia. Quaternary Science Reviews, 21(1–3), 71–87. DOI:

Clark, K. J., Nissen, E. K., Howarth, J. D., Hamling, I. J., Mountjoy, J. J., Ries, W. F., Jones, K., Goldstien, S., Cochran, U. A., Villamor, P., Hreinsdóttir, S., Litchfield, N. J., Mueller, C., Berryman, K. R., & Strong, D. T. (2017). Highly variable coastal deformation in the 2016 MW7.8 Kaikōura earthquake reflects rupture complexity along a transpressional plate boundary. Earth and Planetary Science Letters, 474, 334–344. DOI:

Cui, Y., Miller, D., Schiarizza, P., & Diakow, L. (2017). British Columbia digital geology. British Columbia Ministry of Energy, Mines and Petroleum Resources, British Columbia Geological Survey Open File, 8(9).

Cunningham, D., Grebby, S., Tansey, K., Gosar, A., & Kastelic, V. (2006). Application of airborne LiDAR to mapping seismogenic faults in forested mountainous terrain, southeastern Alps, Slovenia. Geophysical Research Letters, 33(20), eL20308. DOI:

DeLong, S. B., Lienkaemper, J. J., Pickering, A. J., & Avdievitch, N. N. (2015). Rates and patterns of surface deformation from laser scanning following the South Napa earthquake, California. Geosphere, 11(6), 2015–2030. DOI:

Diederichs, A., Nissen, E. K., Lajoie, L. J., Langridge, R. M., Malireddi, S. R., Clark, K. J., Hamling, I. J., & Tagliasacchi, A. (2019). Unusual kinematics of the Papatea fault (2016 Kaikōura earthquake) suggest anelastic rupture. Science Advances, 5(10), eaax5703. DOI:

DiFrancesco, P.-M., Bonneau, D., & Hutchinson, D. J. (2020). The implications of M3C2 projection diameter on 3D semi-automated rockfall extraction from sequential terrestrial laser scanning point clouds. Remote Sensing, 12(11), 1885. DOI:

DuRoss, C. B., Bunds, M. P., Gold, R. D., Briggs, R. W., Reitman, N. G., Personius, S. F., & Toké, N. A. (2019). Variable normal-fault rupture behavior, northern Lost River fault zone, Idaho, USA. Geosphere, 15(6), 1869–1892. DOI:

Eberhart-Phillips, D., Haeussler, P. J., Freymueller, J. T., Frankel, A. D., Rubin, C. M., Craw, P., Ratchkovski, N. A., Anderson, G., Carver, G. A., Crone, A. J., Dawson, T. E., Fletcher, H., Hansen, R., Harp, E. L., Harris, R. A., Hill, D. P., Hreinsdóttir, S., Jibson, R. W., Jones, L. M., … Wallace, W. K. (2003). The 2002 Denali Fault Earthquake, Alaska: A Large Magnitude, Slip-Partitioned Event. Science, 300(5622), 1113–1118. DOI:

Elliott, J., Nissen, E., England, P., Jackson, J. A., Lamb, S., Li, Z., Oehlers, M., & Parsons, B. (2012). Slip in the 2010–2011 Canterbury earthquakes, New Zealand. Journal of Geophysical Research: Solid Earth, 117(B3). DOI:

England, T., & Calon, T. (1991). The Cowichan fold and thrust system, Vancouver Island, southwestern British Columbia. Geological Society of America Bulletin, 103(3), 336–362.<0336:TCFATS>2.3.CO;2 DOI:<0336:TCFATS>2.3.CO;2

Esri. (2022). Ocean Basemap [Basemap]. Esri.

European Union Aviation Safety Authority. (2022). Drones - National Aviation Authorities. In EASA. %7B

Federal Aviation Administration. (2023). Become a Drone Pilot. %7B

Fernandez-Diaz, J., Carter, W., Shrestha, R., & Glennie, C. (2014). Now You See It… Now You Don’t: Understanding Airborne Mapping LiDAR Collection and Data Product Generation for Archaeological Research in Mesoamerica. Remote Sensing, 6(10), 9951–10001. DOI:

Finley, T. D., Johnston, S. T., Unsworth, M. J., Banks, J., & Pana, D.-I. (2022). Modern dextral strain controls active hydrothermal systems in the southeastern Canadian Cordillera. GSA Bulletin. DOI:

Finley, T., Salomon, G., Stephen, R., Nissen, E., Cassidy, J., & Menounos, B. (2022). Preliminary results and structural interpretations from drone LiDAR surveys over the Eastern Denali fault, Yukon. Yukon Exploration and Geology, 83–105.

Gabrielse, H., Monger, J., Wheeler, J., & Yorath, C. (1991). Morphogeological Belts, Tectonic Assemblages and Terranes, Chapter 2, Part A, of Geology of the Cordilleran Orogen in Canada, Geology of Canada, no. 4. Geological Survey of Canada, 15–28. DOI:

GDAL/OGR contributors. (2023). GDAL/OGR Geospatial Data Abstraction software Library. Open Source Geospatial Foundation.

Glennie, C. (2007). Rigorous 3D error analysis of kinematic scanning LIDAR systems. 1(3), 147–157. DOI:

Glennie, C., Brooks, B., Ericksen, T., Hauser, D., Hudnut, K., Foster, J., & Avery, J. (2013). Compact Multipurpose Mobile Laser Scanning System — Initial Tests and Results. Remote Sensing, 5(2), 521–538. DOI:

Glennie, C. L., Carter, W. E., Shrestha, R. L., & Dietrich, W. E. (2013). Geodetic imaging with airborne LiDAR: the Earth’s surface revealed. Reports on Progress in Physics, 76(8), e086801. DOI:

Glennie, Craig L., Hinojosa-Corona, A., Nissen, E., Kusari, A., Oskin, M. E., Arrowsmith, J. R., & Borsa, A. (2014). Optimization of legacy lidar data sets for measuring near-field earthquake displacements. Geophysical Research Letters, 41(10), 3494–3501. DOI:

Gold, P. O., Oskin, M. E., Elliott, A. J., Hinojosa-Corona, A., Taylor, M. H., Kreylos, O., & Cowgill, E. (2013). Coseismic slip variation assessed from terrestrial lidar scans of the El Mayor-Cucapah surface rupture. Earth and Planetary Science Letters, 366, 151–162. DOI:

Gu, Y., Xiao, Z., & Li, X. (2023). A Spatial Alignment Method for UAV LiDAR Strip Adjustment in Nonurban Scenes. IEEE Transactions on Geoscience and Remote Sensing, 61, 1–13. DOI:

Haddad, D. E., Akciz, S. O., Arrowsmith, J. R., Rhodes, D. D., Oldow, J. S., Zielke, O., Toke, N. A., Haddad, A. G., Mauer, J., & Shilpakar, P. (2012). Applications of airborne and terrestrial laser scanning to paleoseismology. Geosphere, 8(4), 771–786. DOI:

Haeussler, P. J., Matmon, A., Schwartz, D. P., & Seitz, G. G. (2017). Neotectonics of interior Alaska and the late Quaternary slip rate along the Denali fault system. Geosphere, 13(5), 1445–1463. DOI:

Harrichhausen, N., Finley, T., Morell, K. D., Regalla, C., Bennett, S. E. K., Leonard, L. J., Nissen, E., McLeod, E., Lynch, E. M., Salomon, G., & Sethanant, I. (2023). Discovery of an Active Forearc Fault in an Urban Region: Holocene Rupture on the XEOLXELEK-Elk Lake Fault, Victoria, British Columbia, Canada. Tectonics, 42(12), e2023TC008170. DOI:

Harrichhausen, N., Morell, K. D., Regalla, C., Bennett, S. E., Leonard, L. J., Lynch, E. M., & Nissen, E. (2021). Paleoseismic trenching reveals Late Quaternary kinematics of the Leech River fault: Implications for forearc strain accumulation in northern Cascadia. Bulletin of the Seismological Society of America, 111(2), 1110–1138. DOI:

Harrichhausen, N., Morell, K. D., Regalla, C., Lynch, E. M., & Leonard, L. J. (2022). Eocene Terrane Accretion in Northern Cascadia Recorded by Brittle Left-Lateral Slip on the San Juan Fault. Tectonics, 41(10), e2022TC007317. DOI:

Harris Aerial. (2023). Carrier H6 Hybrid - Heavy Lift Drones.

Harwin, S., & Lucieer, A. (2012). Assessing the Accuracy of Georeferenced Point Clouds Produced via Multi-View Stereopsis from Unmanned Aerial Vehicle (UAV) Imagery. Remote Sensing, 4(6), 1573–1599. DOI:

Haugerud, R. A., Harding, D. J., Johnson, S. Y., Harless, J. L., Weaver, C. S., & Sherrod, B. L. (2003). High-resolution lidar topography of the Puget Lowland, Washington. GSA Today, 13(6), 4–10.<0004:HLTOTP>2.0.CO;2 DOI:<0004:HLTOTP>2.0.CO;2

Hilley, G. E., DeLong, S., Prentice, C., Blisniuk, K., & Arrowsmith, Jr. (2010). Morphologic dating of fault scarps using airborne laser swath mapping (ALSM) data. Geophysical Research Letters, 37(4), eL04301. DOI:

Hodge, M., Biggs, J., Fagereng, Å., Elliott, A., Mdala, H., & Mphepo, F. (2019). A semi-automated algorithm to quantify scarp morphology (SPARTA): application to normal faults in southern Malawi. Solid Earth, 10(1), 27–57. DOI:

Hodgson, M. E., & Bresnahan, P. (2004). Accuracy of airborne lidar-derived elevation. Photogrammetric Engineering & Remote Sensing, 70(3), 331–339. DOI:

Hubbard, T. D., Koehler, R. D., & Combellick, R. A. (2011). High-resolution lidar data for Alaska infrastructure corridors. Alaska Division of Geological and Geophysical Surveys: Fairbanks, AK, USA, 3, 291. DOI:

Hunter, L. E., Howle, J. F., Rose, R. S., & Bawden, G. W. (2011). LiDAR-Assisted Identification of an Active Fault near Truckee, California. Bulletin of the Seismological Society of America, 101(3), 1162–1181. DOI:

Isenburg, M. (2021). LAStools-efficient LiDAR processing software (version 210418), obtained from LAStools.

Ishimura, D., Toda, S., Mukoyama, S., Homma, S., Yamaguchi, K., & Takahashi, N. (2019). 3D Surface Displacement and Surface Ruptures Associated with the 2014 Mw 6.2 Nagano Earthquake Using Differential Lidar. Bulletin of the Seismological Society of America, 109(2), 780–796. DOI:

James, M. R., & Robson, S. (2012). Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application. Journal of Geophysical Research: Earth Surface, 117(F3), F03017. DOI:

Johnson, K. L., Nissen, E., & Lajoie, L. (2018). Surface Rupture Morphology and Vertical Slip Distribution of the 1959 Mw 7.2 Hebgen Lake (Montana) Earthquake From Airborne Lidar Topography. Journal of Geophysical Research (Solid Earth), 123(9), 8229–8248. DOI:

Johnson, K., Nissen, E., Saripalli, S., Arrowsmith, J. R., McGarey, P., Scharer, K., Williams, P., & Blisniuk, K. (2014). Rapid mapping of ultrafine fault zone topography with structure from motion. Geosphere, 10(5), 969–986. DOI:

Johnson, S. Y. (1984). Evidence for a margin-truncating transcurrent fault (pre-late Eocene) in western Washington. Geology, 12(9), 538–541.<538:EFAMTF>2.0.CO;2 DOI:<538:EFAMTF>2.0.CO;2

Jones, R. R., Kokkalas, S., & McCaffrey, K. J. W. (2009). Quantitative analysis and visualization of nonplanar fault surfaces using terrestrial laser scanning (LIDAR)–The Arkitsa fault, central Greece, as a case study. Geosphere, 5(6), 465–482. DOI:

Kellner, J. R., Armston, J., Birrer, M., Cushman, K. C., Duncanson, L., Eck, C., Falleger, C., Imbach, B., Král, K., Krůček, M., Trochta, J., Vrška, T., & Zgraggen, C. (2019). New Opportunities for Forest Remote Sensing Through Ultra-High-Density Drone Lidar. Surveys in Geophysics, 40(4), 959–977. DOI:

Kolaj, M., Adams, J., & Halchuk, S. (2020). The 6th generation seismic hazard model of Canada. Geological Survey of Canada, Open File 8630, 1–12. DOI:

Lague, D., Brodu, N., & Leroux, J. (2013). Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (N-Z). ISPRS Journal of Photogrammetry and Remote Sensing, 82, 10–26. DOI:

Lajoie, L. J., Nissen, E., Johnson, K. L., Arrowsmith, J. R., Glennie, C. L., Hinojosa-Corona, A., & Oskin, M. E. (2019). Extent of Low-Angle Normal Slip in the 2010 El Mayor-Cucapah (Mexico) Earthquake From Differential Lidar. Journal of Geophysical Research (Solid Earth), 124(1), 943–956. DOI:

Langridge, R. M., Ries, W. F., Farrier, T., Barth, N. C., Khajavi, N., & De Pascale, G. P. (2014). Developing sub 5-m LiDAR DEMs for forested sections of the Alpine and Hope faults, South Island, New Zealand: Implications for structural interpretations. Journal of Structural Geology, 64, 53–66. DOI:

Leandro, R. F., Santos, M. C., & Langley, R. B. (2011). Analyzing GNSS data in precise point positioning software. GPS Solutions, 15(1), 1–13. DOI:

Liang, Y., Zhao, C.-Z., Yuan, H., Chen, Y., Zhang, W., Huang, J.-Q., Yu, D., Liu, Y., Titirici, M.-M., Chueh, Y.-L., Yu, H., & Zhang, Q. (2019). A review of rechargeable batteries for portable electronic devices. InfoMat, 1(1), 6–32. DOI:

LidarBC. (2023). Open LiDAR Data Portal. Government of British Columbia, Ministry of Water, Land.

Lin, Z., Kaneda, H., Mukoyama, S., Asada, N., & Chiba, T. (2013). Detection of subtle tectonic–geomorphic features in densely forested mountains by very high-resolution airborne LiDAR survey. Geomorphology, 182, 104–115. DOI:

Marechal, A., Ritz, J.-F., Ferry, M., Mazzotti, S., Blard, P.-H., Braucher, R., & Saint-Carlier, D. (2018). Active tectonics around the Yakutat indentor: New geomorphological constraints on the eastern Denali, Totschunda and Duke River Faults. Earth and Planetary Science Letters, 482, 71–80. DOI:

Meigs, A. (2013). Active tectonics and the LiDAR revolution. Lithosphere, 5(2), 226–229. DOI:

Metcalf, A., Welles, T., Murakami, Y., Nakamura, H., & Ahn, J. (2022). Unmanned Aerial Vehicle Solid Oxide Fuel Cell and Internal Combustion Engine Hybrid Powertrain: An Experimental and Simulation Centered Review. American Society of Mechanical Engineers Digital Collection.

Morell, K. D., Regalla, C., Leonard, L. J., Amos, C., & Levson, V. (2017). Quaternary rupture of a crustal fault beneath Victoria, British Columbia, Canada. GSA Today, 7(3). DOI:

Morin, P., Porter, C., Cloutier, M., Howat, I., Noh, M.-J., Willis, M., Bates, B., Willamson, C., & Peterman, K. (2016). ArcticDEM; A Publically Available, High Resolution Elevation Model of the Arctic. EGU General Assembly Conference Abstracts, ePSC2016-8396.

Nash, D. B. (1980). Morphologic Dating of Degraded Normal Fault Scarps. Journal of Geology, 88(3), 353–360. DOI:

Nelson, A. R., Personius, S. F., Wells, R. E., Schermer, E. R., Bradley, L., Buck, J., & Reitman, N. (2017). Holocene Earthquakes of Magnitude 7 during Westward Escape of the Olympic Mountains, Washington. Bulletin of the Seismological Society of America, 107(5), 2394–2415. DOI:

Nevitt, J. M., Brooks, B. A., Catchings, R. D., Goldman, M. R., Ericksen, T. L., & Glennie, C. L. (2020). Mechanics of near-field deformation during co- and post-seismic shallow fault slip. Scientific Reports, 10, e5031. DOI:

Nissen, E., Maruyama, T., Ramon Arrowsmith, J., Elliott, J. R., Krishnan, A. K., Oskin, M. E., & Saripalli, S. (2014). Coseismic fault zone deformation revealed with differential lidar: Examples from Japanese Mw ensuremathsim7 intraplate earthquakes. Earth and Planetary Science Letters, 405, 244–256. DOI:

Oskin, M. E., Arrowsmith, J. R., Corona, A. H., Elliott, A. J., Fletcher, J. M., Fielding, E. J., Gold, P. O., Garcia, J. J. G., Hudnut, K. W., Liu-Zeng, J., & Teran, O. J. (2012). Near-Field Deformation from the El Mayor-Cucapah Earthquake Revealed by Differential LIDAR. Science, 335(6069), 702. DOI:

Pellicani, R., Argentiero, I., Manzari, P., Spilotro, G., Marzo, C., Ermini, R., & Apollonio, C. (2019). UAV and Airborne LiDAR Data for Interpreting Kinematic Evolution of Landslide Movements: The Case Study of the Montescaglioso Landslide (Southern Italy). Geosciences, 9(6), 248. DOI:

Pingel, T. J., Clarke, K. C., & McBride, W. A. (2013). An improved simple morphological filter for the terrain classification of airborne LIDAR data. ISPRS Journal of Photogrammetry and Remote Sensing, 77, 21–30. DOI:

Piriz, R., Mozo, A., Navarro, P., & Rodriguez, D. (2008). MagicGNSS: Precise GNSS products out of the box. Proceedings of the 21st International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2008), 1242–1251.

Prentice, C. S., Crosby, C. J., Whitehill, C. S., Arrowsmith, J. R., Furlong, K. P., & Phillips, D. A. (2009). Illuminating Northern California’s Active Faults. EOS Transactions, 90(7), 55. DOI:

Purba, J. C. S., Gilbert, H., & Dettmer, J. (2021). Structure and Dynamics of the Southern Rocky Mountain Trench near Valemount, British Columbia, Inferred from Local Seismicity. Seismological Research Letters, 92(5), 3087–3099. DOI:

Rajashekara, K. (2013). Present Status and Future Trends in Electric Vehicle Propulsion Technologies. IEEE Journal of Emerging and Selected Topics in Power Electronics, 1(1), 3–10. DOI:

Resop, J. P., Lehmann, L., & Hession, W. C. (2019). Drone laser scanning for modeling riverscape topography and vegetation: Comparison with traditional aerial lidar. Drones, 3(2), 35. DOI:

Risbøl, O., & Gustavsen, L. (2018). LiDAR from drones employed for mapping archaeology–Potential, benefits and challenges. Archaeological Prospection, 25(4), 329–338. DOI:

Ristau, J., Rogers, G. C., & Cassidy, J. F. (2007). Stress in western Canada from regional moment tensor analysis. Canadian Journal of Earth Sciences, 44(2), 127–148. DOI:

Rusmore, M. E., & Cowan, D. S. (1985). Jurassic–Cretaceous rock units along the southern edge of the Wrangellia terrane on Vancouver Island. Canadian Journal of Earth Sciences, 22(8), 1223–1232. DOI:

Salisbury, J. B., Rockwell, T. K., Middleton, T. J., & Hudnut, K. W. (2012). LiDAR and Field Observations of Slip Distribution for the Most Recent Surface Ruptures along the Central San Jacinto Fault. Bulletin of the Seismological Society of America, 102(2), 598–619. DOI:

Salomon, G. W., New, T., Muir, R. A., Whitehead, B., Scheiber-Enslin, S., Smit, J., Stevens, V., Kahle, B., Kahle, R., Eckardt, F. D., & Alastair Sloan, R. (2022). Geomorphological and geophysical analyses of the Hebron Fault, SW Namibia: implications for stable continental region seismic hazard. Geophysical Journal International, 229(1), 235–254. DOI:

Sawicki, O., & Smith, D. G. (1992). Glacial Lake Invermere, upper Columbia River valley, British Columbia: a paleogeographic reconstruction. Canadian Journal of Earth Sciences, 29(4), 687–692. DOI:

Schermer, E. R., Amos, C. B., Duckworth, W. C., Nelson, A. R., Angster, S., Delano, J., & Sherrod, B. L. (2021). Postglacial Mw 7.0-7.5 Earthquakes on the North Olympic Fault Zone, Washington. Bulletin of the Seismological Society of America, 111(1), 490–513. DOI:

Scott, C., Phan, M., Nandigam, V., Crosby, C., & Arrowsmith, J. R. (2021). Measuring change at Earth’s surface: On-demand vertical and three-dimensional topographic differencing implemented in OpenTopography. Geosphere, 17(4), 1318–1332. DOI:

Scott, Chelsea P., Arrowsmith, J. R., Nissen, E., Lajoie, L., Maruyama, T., & Chiba, T. (2018). The M7 2016 Kumamoto, Japan, Earthquake: 3-D Deformation Along the Fault and Within the Damage Zone Constrained From Differential Lidar Topography. Journal of Geophysical Research (Solid Earth), 123(7), 6138–6155. DOI:

Scott, Chelsea Phipps, Beckley, M., Phan, M., Zawacki, E., Crosby, C., Nandigam, V., & Arrowsmith, R. (2022). Statewide USGS 3DEP Lidar Topographic Differencing Applied to Indiana, USA. Remote Sensing, 14(4), 847. DOI:

Scott, Chelsea Phipps, DeLong, S. B., & Arrowsmith, J. R. (2020). Distribution of Aseismic Deformation Along the Central San Andreas and Calaveras Faults From Differencing Repeat Airborne Lidar. Geophysical Research Letters, 47(22), e90628. DOI:

Skyfront. (2023). Perimeter 8 UAS. In Skyfront.

Stöcker, C., Bennett, R., Nex, F., Gerke, M., & Zevenbergen, J. (2017). Review of the Current State of UAV Regulations. Remote Sensing, 9(5). DOI:

Telling, J., Lyda, A., Hartzell, P., & Glennie, C. (2017). Review of Earth science research using terrestrial laser scanning. Earth Science Reviews, 169, 35–68. DOI:

Tomsett, C., & Leyland, J. (2021). Development and Testing of a UAV Laser Scanner and Multispectral Camera System for Eco-Geomorphic Applications. Sensors, 21(22), 7719. DOI:

Toth, C., Brzezinska, D., Csanyi, N., Paska, E., & Yastikli, N. (2007). LiDAR mapping supporting earthquake research of the San Andreas fault. Proceedings of the ASPRS 2007 Annual Conference, 1–11.

Townsend, A., Jiya, I. N., Martinson, C., Bessarabov, D., & Gouws, R. (2020). A comprehensive review of energy sources for unmanned aerial vehicles, their shortfalls and opportunities for improvements. Heliyon, 6(11), e05285. DOI:

Transport Canada. (2022). Getting a drone pilot certificate. In AARV 14073622. %7B

Transport Canada. (2023). Minister of Transport announces Canada’s first proposed drone safety regulations for beyond visual line-of-sight operations [News releases].

UK Civil Aviation Authority. (2023). Registering a drone or model aircraft. %7B

van der Velden, A. J., & Cook, F. A. (1996). Structure and tectonic development of the southern Rocky Mountain trench. Tectonics, 15(3), 517–544. DOI:

Van Tassel, C. (2021). Defining the true cost behind implementing lidar systems into your business. In Candrone. %7B

VanValkenburgh, P., Cushman, K., Butters, L. J. C., Vega, C. R., Roberts, C. B., Kepler, C., & Kellner, J. (2020). Lasers without lost cities: Using drone lidar to capture architectural complexity at Kuelap, Amazonas, Peru. Journal of Field Archaeology, 45(sup1), S75–S88. DOI:

Viswanathan, V., Epstein, A. H., Chiang, Y.-M., Takeuchi, E., Bradley, M., Langford, J., & Winter, M. (2022). The challenges and opportunities of battery-powered flight. Nature, 601(7894), 519–525. DOI:

Wang, S., Ren, Z., Wu, C., Lei, Q., Gong, W., Ou, Q., Zhang, H., Ren, G., & Li, C. (2019). DEM generation from Worldview-2 stereo imagery and vertical accuracy assessment for its application in active tectonics. Geomorphology, 336, 107–118. DOI:

Wedmore, L. N. J., Gregory, L. C., McCaffrey, K. J. W., Goodall, H., & Walters, R. J. (2019). Partitioned Off-Fault Deformation in the 2016 Norcia Earthquake Captured by Differential Terrestrial Laser Scanning. Geophysical Research Letters, 46(6), 3199–3205. DOI:

Wei, Z., He, H., Su, P., Zhuang, Q., & Sun, W. (2019). Investigating paleoseismicity using fault scarp morphology of the Dushanzi Reverse Fault in the northern Tian Shan, China. Geomorphology, 327, 542–553. DOI:

Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., & Reynolds, J. M. (2012). ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179, 300–314. DOI:

Wiatr, T., Reicherter, K., Papanikolaou, I., Fernández-Steeger, T., & Mason, J. (2013). Slip vector analysis with high resolution t-LiDAR scanning. Tectonophysics, 608, 947–957. DOI:

Wieser, M., Hollaus, M., Mandlburger, G., Glira, P., & Pfeifer, N. (2016). ULS LiDAR supported analyses of laser beam penetration from different ALS systems into vegetation. ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences, 3(3). DOI:

Witter, R. C., Bender, A. M., Scharer, K. M., DuRoss, C. B., Haeussler, P. J., & Lease, R. O. (2021). Geomorphic expression and slip rate of the Fairweather fault, southeast Alaska, and evidence for predecessors of the 1958 rupture. Geosphere, 17(3), 711–738. DOI:

Xiaoye Liu. (2008). Airborne LiDAR for DEM generation: some critical issues. Progress in Physical Geography: Earth and Environment, 32(1), 31–49. DOI:

Zhang, B., Liao, Y., Guo, S., Wallace, R. E., Bucknam, R. C., & Hanks, T. C. (1986). Fault scarps related to the 1739 earthquake and seismicity of the Yinchuan graben, Ningxia Huizu Zizhiqu, China. Bulletin of the Seismological Society of America, 76(5), 1253–1287. DOI:

Zhang, K., Chen, S.-C., Whitman, D., Shyu, M.-L., Yan, J., & Zhang, C. (2003). A progressive morphological filter for removing nonground measurements from airborne LIDAR data. IEEE Transactions on Geoscience and Remote Sensing, 41(4), 872–882. DOI:

Zhang, W., Qi, J., Wan, P., Wang, H., Xie, D., Wang, X., & Yan, G. (2016). An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation. Remote Sensing, 8(6). DOI:

Zhu, X., Glennie, C. L., & Brooks, B. A. (2022). Automated near-field deformation detection from mobile laser scanning for the 2014 Mw 6.0 South Napa earthquake. Journal of Applied Geodesy, 16(1), 65–79. DOI:

Zielke, O., Arrowsmith, J. R., Ludwig, L. G., & Akçiz, S. O. (2010). Slip in the 1857 and Earlier Large Earthquakes Along the Carrizo Plain, San Andreas Fault. Science, 327(5969), 1119–1122. DOI:

Zielke, O., Klinger, Y., & Arrowsmith, J. R. (2015). Fault slip and earthquake recurrence along strike-slip faults - Contributions of high-resolution geomorphic data. Tectonophysics, 638, 43–62. DOI:

Additional Files



How to Cite

Salomon, G., Finley, T., Nissen, E., Stephen, R., & Menounos, B. (2024). Mapping fault geomorphology with drone-based lidar. Seismica, 3(1).