Mapping fault geomorphology with drone-based lidar

Authors

  • Guy Salomon School of Earth and Ocean Sciences, University of Victoria
  • Theron Finley School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada
  • Edwin Nissen School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada
  • Roger Stephen School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada
  • Brian Menounos Department of Geography, Earth, and Environmental Sciences, University of Northern British Columbia, Prince George, British Columbia, Canada

DOI:

https://doi.org/10.26443/seismica.v3i1.1186

Keywords:

lidar, uls, geomorphology, active faults, uav, drone

Abstract

The advent of sub-meter resolution topographic surveying has revolutionized active fault mapping. Light detection and ranging (lidar) collected using crewed airborne laser scanning (ALS) can provide ground coverage of entire fault systems but is expensive, while Structure-from-Motion (SfM) photogrammetry from uncrewed aerial vehicles (UAVs) is popular for mapping smaller sites but cannot image beneath vegetation. Here, we present a new UAV laser scanning (ULS) system which overcomes these limitations to survey fault-related topography cost-effectively, at desirable spatial resolutions, and even beneath dense vegetation. In describing our system, data acquisition and processing workflows, we provide a practical guide for other researchers interested in developing their own ULS capabilities. We showcase ULS data collected over faults from a variety of terrain and vegetation types across the Canadian Cordillera and compare them to conventional ALS and SfM data. Due to the lower, slower UAV flights, ULS offers improved ground return density (~260 points/m2 for the capture of a paleoseismic trenching site and ~10–72 points/m2 for larger, multi-kilometer fault surveys) over conventional ALS (~3–9 points/m2) as well as better vegetation penetration than both ALS and SfM. The resulting ~20–50 cm-resolution ULS terrain models reveal fine-scale tectonic landforms that would otherwise be challenging to image.

References

Arrowsmith, J. R., Rhodes, D. D., & Pollard, D. D. (1998). Morphologic dating of scarps formed by repeated slip events along the San Andreas Fault, Carrizo Plain, California. Journal of Geophysical Research (Solid Earth), 103(B5), 10,141-10,160. https://doi.org/10.1029/98JB00505 DOI: https://doi.org/10.1029/98JB00505

Baldwin, K., Allen, L., Basquill, S., Chapman, K., Downing, D., Flynn, N., MacKenzie, W., Major, M., Meades, W., Meidinger, D., Morneau, C., Saucier, J.-P., Thorpe, J., & Uhlig, P. (2019). Vegetation Zones of Canada: A Biogeoclimate Perspective. Natural Resources Canada, Canadian Forest Service.

Bemis, S. P., Micklethwaite, S., Turner, D., James, M. R., Akciz, S., Thiele, S. T., & Bangash, H. A. (2014). Ground-based and UAV-Based photogrammetry: A multi-scale, high-resolution mapping tool for structural geology and paleoseismology. Journal of Structural Geology, 69, 163–178. https://doi.org/10.1016/j.jsg.2014.10.007 DOI: https://doi.org/10.1016/j.jsg.2014.10.007

Benavente, C., Wimpenny, S., Rosell, L., Robert, X., Palomino, A., Audin, L., Aguirre, E., & Garcı́a, B. (2021). Paleoseismic Evidence of an Mw 7 Pre-Hispanic Earthquake in the Peruvian Forearc. Tectonics, 40(6), e2020TC006479. https://doi.org/10.1029/2020TC006479 DOI: https://doi.org/10.1029/2020TC006479

Bender, A. M., & Haeussler, P. J. (2017). Eastern Denali Fault surface trace map, eastern Alaska and Yukon, Canada (USGS Numbered Series No. 2017–1049; p. 13). U.S. Geological Survey. https://doi.org/10.3133/ofr20171049 DOI: https://doi.org/10.3133/ofr20171049

Bertiger, W., Bar-Sever, Y., Dorsey, A., Haines, B., Harvey, N., Hemberger, D., Heflin, M., Lu, W., Miller, M., Moore, A. W., Murphy, D., Ries, P., Romans, L., Sibois, A., Sibthorpe, A., Szilagyi, B., Vallisneri, M., & Willis, P. (2020). GipsyX/RTGx, a new tool set for space geodetic operations and research. Advances in Space Research, 66(3), 469–489. https://doi.org/10.1016/j.asr.2020.04.015 DOI: https://doi.org/10.1016/j.asr.2020.04.015

Blais-Stevens, A., Clague, J. J., Brahney, J., Lipovsky, P., Haeussler, P. J., & Menounos, B. (2020). Evidence for Large Holocene Earthquakes along the Denali Fault in Southwest Yukon, Canada. Environmental & Engineering Geoscience, 26(2), 149–166. https://doi.org/10.2113/EEG-2263 DOI: https://doi.org/10.2113/EEG-2263

Bostock, H. S. (1952). Geology of northwest Shakwak Valley, Yukon Territory. E. Cloutier, Queen’s Printer. DOI: https://doi.org/10.4095/101583

Brandon, M. T. (1989). Origin of igneous rocks associated with melanges of the Pacific Rim Complex, western Vancouver Island, Canada. Tectonics, 8(6), 1115–1136. https://doi.org/10.1029/TC008i006p01115 DOI: https://doi.org/10.1029/TC008i006p01115

Brede, B., Lau, A., Bartholomeus, H. M., & Kooistra, L. (2017). Comparing RIEGL RiCOPTER UAV LiDAR Derived Canopy Height and DBH with Terrestrial LiDAR. Sensors, 17(10). https://doi.org/10.3390/s17102371 DOI: https://doi.org/10.3390/s17102371

Brooks, B. A., Glennie, C., Hudnut, K. W., Ericksen, T., & Hauser, D. (2013). Mobile Laser Scanning Applied to the Earth Sciences. Eos, Transactions American Geophysical Union, 94(36), 313–315. https://doi.org/10.1002/2013EO360002 DOI: https://doi.org/10.1002/2013EO360002

Brooks, B. A., Minson, S. E., Glennie, C. L., Nevitt, J. M., Dawson, T., Rubin, R., Ericksen, T. L., Lockner, D., Hudnut, K., Langenheim, V., Lutz, A., Mareschal, M., Murray, J., Schwartz, D., & Zaccone, D. (2017). Buried shallow fault slip from the South Napa earthquake revealed by near-field geodesy. Science Advances, 3(7), e1700525. https://doi.org/10.1126/sciadv.1700525 DOI: https://doi.org/10.1126/sciadv.1700525

Bubeck, A., Wilkinson, M., Roberts, G. P., Cowie, P. A., McCaffrey, K. J. W., Phillips, R., & Sammonds, P. (2015). The tectonic geomorphology of bedrock scarps on active normal faults in the Italian Apennines mapped using combined ground penetrating radar and terrestrial laser scanning. Geomorphology, 237, 38–51. https://doi.org/10.1016/j.geomorph.2014.03.011 DOI: https://doi.org/10.1016/j.geomorph.2014.03.011

Butler, H., Chambers, B., Hartzell, P., & Glennie, C. (2021). PDAL: An open source library for the processing and analysis of point clouds. Computers & Geosciences, 148, 104680. https://doi.org/10.1016/j.cageo.2020.104680 DOI: https://doi.org/10.1016/j.cageo.2020.104680

Cățeanu, M., Arcadie, C., & others. (2017). ALS for terrain mapping in forest environments: An analysis of LiDAR filtering algorithms. EARSeL EProceedings, 16(1), 9–20. https://doi.org/10.12760/01-2017-1-02

Chen, T., Akciz, S. O., Hudnut, K. W., Zhang, D. Z., & Stock, J. M. (2015). Fault‐Slip Distribution of the 1999 Mw 7.1 Hector Mine Earthquake, California, Estimated from Postearthquake Airborne LiDAR Data. Bulletin of the Seismological Society of America, 105(2A), 776–790. https://doi.org/10.1785/0120130108 DOI: https://doi.org/10.1785/0120130108

Choi, M., Eaton, D. W., & Enkelmann, E. (2021). Is the Eastern Denali fault still active? Geology, 49(6), 662–666. https://doi.org/10.1130/G48461.1 DOI: https://doi.org/10.1130/G48461.1

Civil Aviation Safety Authority. (2021). Remote pilot licence. %7Bhttps://www.casa.gov.au/drones/get-your-operator-credentials/remote-pilot-licence%7D

Clague, J. J. (1975). Late Quaternary Sediments and Geomorphic History of the Southern Rocky Mountain Trench, British Columbia. Canadian Journal of Earth Sciences, 12(4), 595–605. https://doi.org/10.1139/e75-054 DOI: https://doi.org/10.1139/e75-054

Clague, J. J., & James, T. S. (2002). History and isostatic effects of the last ice sheet in southern British Columbia. Quaternary Science Reviews, 21(1–3), 71–87. DOI: https://doi.org/10.1016/S0277-3791(01)00070-1

Clark, K. J., Nissen, E. K., Howarth, J. D., Hamling, I. J., Mountjoy, J. J., Ries, W. F., Jones, K., Goldstien, S., Cochran, U. A., Villamor, P., Hreinsdóttir, S., Litchfield, N. J., Mueller, C., Berryman, K. R., & Strong, D. T. (2017). Highly variable coastal deformation in the 2016 MW7.8 Kaikōura earthquake reflects rupture complexity along a transpressional plate boundary. Earth and Planetary Science Letters, 474, 334–344. https://doi.org/10.1016/j.epsl.2017.06.048 DOI: https://doi.org/10.1016/j.epsl.2017.06.048

Cui, Y., Miller, D., Schiarizza, P., & Diakow, L. (2017). British Columbia digital geology. British Columbia Ministry of Energy, Mines and Petroleum Resources, British Columbia Geological Survey Open File, 8(9).

Cunningham, D., Grebby, S., Tansey, K., Gosar, A., & Kastelic, V. (2006). Application of airborne LiDAR to mapping seismogenic faults in forested mountainous terrain, southeastern Alps, Slovenia. Geophysical Research Letters, 33(20), eL20308. https://doi.org/10.1029/2006GL027014 DOI: https://doi.org/10.1029/2006GL027014

DeLong, S. B., Lienkaemper, J. J., Pickering, A. J., & Avdievitch, N. N. (2015). Rates and patterns of surface deformation from laser scanning following the South Napa earthquake, California. Geosphere, 11(6), 2015–2030. https://doi.org/10.1130/GES01189.1 DOI: https://doi.org/10.1130/GES01189.1

Diederichs, A., Nissen, E. K., Lajoie, L. J., Langridge, R. M., Malireddi, S. R., Clark, K. J., Hamling, I. J., & Tagliasacchi, A. (2019). Unusual kinematics of the Papatea fault (2016 Kaikōura earthquake) suggest anelastic rupture. Science Advances, 5(10), eaax5703. https://doi.org/10.1126/sciadv.aax5703 DOI: https://doi.org/10.1126/sciadv.aax5703

DiFrancesco, P.-M., Bonneau, D., & Hutchinson, D. J. (2020). The implications of M3C2 projection diameter on 3D semi-automated rockfall extraction from sequential terrestrial laser scanning point clouds. Remote Sensing, 12(11), 1885. https://doi.org/10.3390/rs12111885 DOI: https://doi.org/10.3390/rs12111885

DuRoss, C. B., Bunds, M. P., Gold, R. D., Briggs, R. W., Reitman, N. G., Personius, S. F., & Toké, N. A. (2019). Variable normal-fault rupture behavior, northern Lost River fault zone, Idaho, USA. Geosphere, 15(6), 1869–1892. https://doi.org/10.1130/GES02096.1 DOI: https://doi.org/10.1130/GES02096.1

Eberhart-Phillips, D., Haeussler, P. J., Freymueller, J. T., Frankel, A. D., Rubin, C. M., Craw, P., Ratchkovski, N. A., Anderson, G., Carver, G. A., Crone, A. J., Dawson, T. E., Fletcher, H., Hansen, R., Harp, E. L., Harris, R. A., Hill, D. P., Hreinsdóttir, S., Jibson, R. W., Jones, L. M., … Wallace, W. K. (2003). The 2002 Denali Fault Earthquake, Alaska: A Large Magnitude, Slip-Partitioned Event. Science, 300(5622), 1113–1118. https://doi.org/10.1126/science.1082703 DOI: https://doi.org/10.1126/science.1082703

Elliott, J., Nissen, E., England, P., Jackson, J. A., Lamb, S., Li, Z., Oehlers, M., & Parsons, B. (2012). Slip in the 2010–2011 Canterbury earthquakes, New Zealand. Journal of Geophysical Research: Solid Earth, 117(B3). https://doi.org/10.1029/2011JB008868 DOI: https://doi.org/10.1029/2011JB008868

England, T., & Calon, T. (1991). The Cowichan fold and thrust system, Vancouver Island, southwestern British Columbia. Geological Society of America Bulletin, 103(3), 336–362. https://doi.org/10.1130/0016-7606(1991)103<0336:TCFATS>2.3.CO;2 DOI: https://doi.org/10.1130/0016-7606(1991)103<0336:TCFATS>2.3.CO;2

Esri. (2022). Ocean Basemap [Basemap]. Esri. https://www.arcgis.com/home/item.html?id=6348e67824504fc9a62976434bf0d8d5

European Union Aviation Safety Authority. (2022). Drones - National Aviation Authorities. In EASA. %7Bhttps://www.easa.europa.eu/en/domains/civil-drones/naa%7D

Federal Aviation Administration. (2023). Become a Drone Pilot. %7Bhttps://www.faa.gov/uas/commercial_operators/become_a_drone_pilot%7D

Fernandez-Diaz, J., Carter, W., Shrestha, R., & Glennie, C. (2014). Now You See It… Now You Don’t: Understanding Airborne Mapping LiDAR Collection and Data Product Generation for Archaeological Research in Mesoamerica. Remote Sensing, 6(10), 9951–10001. https://doi.org/10.3390/rs6109951 DOI: https://doi.org/10.3390/rs6109951

Finley, T. D., Johnston, S. T., Unsworth, M. J., Banks, J., & Pana, D.-I. (2022). Modern dextral strain controls active hydrothermal systems in the southeastern Canadian Cordillera. GSA Bulletin. https://doi.org/10.1130/B36500.1 DOI: https://doi.org/10.1130/B36500.1

Finley, T., Salomon, G., Stephen, R., Nissen, E., Cassidy, J., & Menounos, B. (2022). Preliminary results and structural interpretations from drone LiDAR surveys over the Eastern Denali fault, Yukon. Yukon Exploration and Geology, 83–105.

Gabrielse, H., Monger, J., Wheeler, J., & Yorath, C. (1991). Morphogeological Belts, Tectonic Assemblages and Terranes, Chapter 2, Part A, of Geology of the Cordilleran Orogen in Canada, Geology of Canada, no. 4. Geological Survey of Canada, 15–28. https://doi.org/10.4095/134073 DOI: https://doi.org/10.4095/134073

GDAL/OGR contributors. (2023). GDAL/OGR Geospatial Data Abstraction software Library. Open Source Geospatial Foundation. https://doi.org/10.5281/zenodo.5884351

Glennie, C. (2007). Rigorous 3D error analysis of kinematic scanning LIDAR systems. 1(3), 147–157. https://doi.org/10.1515/jag.2007.017 DOI: https://doi.org/10.1515/jag.2007.017

Glennie, C., Brooks, B., Ericksen, T., Hauser, D., Hudnut, K., Foster, J., & Avery, J. (2013). Compact Multipurpose Mobile Laser Scanning System — Initial Tests and Results. Remote Sensing, 5(2), 521–538. https://doi.org/10.3390/rs5020521 DOI: https://doi.org/10.3390/rs5020521

Glennie, C. L., Carter, W. E., Shrestha, R. L., & Dietrich, W. E. (2013). Geodetic imaging with airborne LiDAR: the Earth’s surface revealed. Reports on Progress in Physics, 76(8), e086801. https://doi.org/10.1088/0034-4885/76/8/086801 DOI: https://doi.org/10.1088/0034-4885/76/8/086801

Glennie, Craig L., Hinojosa-Corona, A., Nissen, E., Kusari, A., Oskin, M. E., Arrowsmith, J. R., & Borsa, A. (2014). Optimization of legacy lidar data sets for measuring near-field earthquake displacements. Geophysical Research Letters, 41(10), 3494–3501. https://doi.org/10.1002/2014GL059919 DOI: https://doi.org/10.1002/2014GL059919

Gold, P. O., Oskin, M. E., Elliott, A. J., Hinojosa-Corona, A., Taylor, M. H., Kreylos, O., & Cowgill, E. (2013). Coseismic slip variation assessed from terrestrial lidar scans of the El Mayor-Cucapah surface rupture. Earth and Planetary Science Letters, 366, 151–162. https://doi.org/10.1016/j.epsl.2013.01.040 DOI: https://doi.org/10.1016/j.epsl.2013.01.040

Gu, Y., Xiao, Z., & Li, X. (2023). A Spatial Alignment Method for UAV LiDAR Strip Adjustment in Nonurban Scenes. IEEE Transactions on Geoscience and Remote Sensing, 61, 1–13. https://doi.org/10.1109/TGRS.2023.3281692 DOI: https://doi.org/10.1109/TGRS.2023.3281692

Haddad, D. E., Akciz, S. O., Arrowsmith, J. R., Rhodes, D. D., Oldow, J. S., Zielke, O., Toke, N. A., Haddad, A. G., Mauer, J., & Shilpakar, P. (2012). Applications of airborne and terrestrial laser scanning to paleoseismology. Geosphere, 8(4), 771–786. https://doi.org/10.1130/GES00701.1 DOI: https://doi.org/10.1130/GES00701.1

Haeussler, P. J., Matmon, A., Schwartz, D. P., & Seitz, G. G. (2017). Neotectonics of interior Alaska and the late Quaternary slip rate along the Denali fault system. Geosphere, 13(5), 1445–1463. https://doi.org/10.1130/GES01447.1 DOI: https://doi.org/10.1130/GES01447.1

Harrichhausen, N., Finley, T., Morell, K. D., Regalla, C., Bennett, S. E. K., Leonard, L. J., Nissen, E., McLeod, E., Lynch, E. M., Salomon, G., & Sethanant, I. (2023). Discovery of an Active Forearc Fault in an Urban Region: Holocene Rupture on the XEOLXELEK-Elk Lake Fault, Victoria, British Columbia, Canada. Tectonics, 42(12), e2023TC008170. https://doi.org/10.1029/2023TC008170 DOI: https://doi.org/10.1029/2023TC008170

Harrichhausen, N., Morell, K. D., Regalla, C., Bennett, S. E., Leonard, L. J., Lynch, E. M., & Nissen, E. (2021). Paleoseismic trenching reveals Late Quaternary kinematics of the Leech River fault: Implications for forearc strain accumulation in northern Cascadia. Bulletin of the Seismological Society of America, 111(2), 1110–1138. https://doi.org/10.1785/0120200204 DOI: https://doi.org/10.1785/0120200204

Harrichhausen, N., Morell, K. D., Regalla, C., Lynch, E. M., & Leonard, L. J. (2022). Eocene Terrane Accretion in Northern Cascadia Recorded by Brittle Left-Lateral Slip on the San Juan Fault. Tectonics, 41(10), e2022TC007317. https://doi.org/10.1029/2022TC007317 DOI: https://doi.org/10.1029/2022TC007317

Harris Aerial. (2023). Carrier H6 Hybrid - Heavy Lift Drones.

Harwin, S., & Lucieer, A. (2012). Assessing the Accuracy of Georeferenced Point Clouds Produced via Multi-View Stereopsis from Unmanned Aerial Vehicle (UAV) Imagery. Remote Sensing, 4(6), 1573–1599. https://doi.org/10.3390/rs4061573 DOI: https://doi.org/10.3390/rs4061573

Haugerud, R. A., Harding, D. J., Johnson, S. Y., Harless, J. L., Weaver, C. S., & Sherrod, B. L. (2003). High-resolution lidar topography of the Puget Lowland, Washington. GSA Today, 13(6), 4–10. https://doi.org/10.1130/1052-5173(2003)13<0004:HLTOTP>2.0.CO;2 DOI: https://doi.org/10.1130/1052-5173(2003)13<0004:HLTOTP>2.0.CO;2

Hilley, G. E., DeLong, S., Prentice, C., Blisniuk, K., & Arrowsmith, Jr. (2010). Morphologic dating of fault scarps using airborne laser swath mapping (ALSM) data. Geophysical Research Letters, 37(4), eL04301. https://doi.org/10.1029/2009GL042044 DOI: https://doi.org/10.1029/2009GL042044

Hodge, M., Biggs, J., Fagereng, Å., Elliott, A., Mdala, H., & Mphepo, F. (2019). A semi-automated algorithm to quantify scarp morphology (SPARTA): application to normal faults in southern Malawi. Solid Earth, 10(1), 27–57. https://doi.org/10.5194/se-10-27-2019 DOI: https://doi.org/10.5194/se-10-27-2019

Hodgson, M. E., & Bresnahan, P. (2004). Accuracy of airborne lidar-derived elevation. Photogrammetric Engineering & Remote Sensing, 70(3), 331–339. https://doi.org/10.14358/pers.70.3.331 DOI: https://doi.org/10.14358/PERS.70.3.331

Hubbard, T. D., Koehler, R. D., & Combellick, R. A. (2011). High-resolution lidar data for Alaska infrastructure corridors. Alaska Division of Geological and Geophysical Surveys: Fairbanks, AK, USA, 3, 291. DOI: https://doi.org/10.14509/22722

Hunter, L. E., Howle, J. F., Rose, R. S., & Bawden, G. W. (2011). LiDAR-Assisted Identification of an Active Fault near Truckee, California. Bulletin of the Seismological Society of America, 101(3), 1162–1181. https://doi.org/10.1785/0120090261 DOI: https://doi.org/10.1785/0120090261

Isenburg, M. (2021). LAStools-efficient LiDAR processing software (version 210418), obtained from https://lastools.github.io/. LAStools.

Ishimura, D., Toda, S., Mukoyama, S., Homma, S., Yamaguchi, K., & Takahashi, N. (2019). 3D Surface Displacement and Surface Ruptures Associated with the 2014 Mw 6.2 Nagano Earthquake Using Differential Lidar. Bulletin of the Seismological Society of America, 109(2), 780–796. https://doi.org/10.1785/0120180020 DOI: https://doi.org/10.1785/0120180020

James, M. R., & Robson, S. (2012). Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application. Journal of Geophysical Research: Earth Surface, 117(F3), F03017. https://doi.org/10.1029/2011JF002289 DOI: https://doi.org/10.1029/2011JF002289

Johnson, K. L., Nissen, E., & Lajoie, L. (2018). Surface Rupture Morphology and Vertical Slip Distribution of the 1959 Mw 7.2 Hebgen Lake (Montana) Earthquake From Airborne Lidar Topography. Journal of Geophysical Research (Solid Earth), 123(9), 8229–8248. https://doi.org/10.1029/2017JB015039 DOI: https://doi.org/10.1029/2017JB015039

Johnson, K., Nissen, E., Saripalli, S., Arrowsmith, J. R., McGarey, P., Scharer, K., Williams, P., & Blisniuk, K. (2014). Rapid mapping of ultrafine fault zone topography with structure from motion. Geosphere, 10(5), 969–986. https://doi.org/10.1130/GES01017.1 DOI: https://doi.org/10.1130/GES01017.1

Johnson, S. Y. (1984). Evidence for a margin-truncating transcurrent fault (pre-late Eocene) in western Washington. Geology, 12(9), 538–541. https://doi.org/10.1130/0091-7613(1984)12<538:EFAMTF>2.0.CO;2 DOI: https://doi.org/10.1130/0091-7613(1984)12<538:EFAMTF>2.0.CO;2

Jones, R. R., Kokkalas, S., & McCaffrey, K. J. W. (2009). Quantitative analysis and visualization of nonplanar fault surfaces using terrestrial laser scanning (LIDAR)–The Arkitsa fault, central Greece, as a case study. Geosphere, 5(6), 465–482. https://doi.org/10.1130/GES00216.1 DOI: https://doi.org/10.1130/GES00216.1

Kellner, J. R., Armston, J., Birrer, M., Cushman, K. C., Duncanson, L., Eck, C., Falleger, C., Imbach, B., Král, K., Krůček, M., Trochta, J., Vrška, T., & Zgraggen, C. (2019). New Opportunities for Forest Remote Sensing Through Ultra-High-Density Drone Lidar. Surveys in Geophysics, 40(4), 959–977. https://doi.org/10.1007/s10712-019-09529-9 DOI: https://doi.org/10.1007/s10712-019-09529-9

Kolaj, M., Adams, J., & Halchuk, S. (2020). The 6th generation seismic hazard model of Canada. Geological Survey of Canada, Open File 8630, 1–12. https://doi.org/https://doi.org/10.4095/327322 DOI: https://doi.org/10.4095/327322

Lague, D., Brodu, N., & Leroux, J. (2013). Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (N-Z). ISPRS Journal of Photogrammetry and Remote Sensing, 82, 10–26. https://doi.org/10.1016/j.isprsjprs.2013.04.009 DOI: https://doi.org/10.1016/j.isprsjprs.2013.04.009

Lajoie, L. J., Nissen, E., Johnson, K. L., Arrowsmith, J. R., Glennie, C. L., Hinojosa-Corona, A., & Oskin, M. E. (2019). Extent of Low-Angle Normal Slip in the 2010 El Mayor-Cucapah (Mexico) Earthquake From Differential Lidar. Journal of Geophysical Research (Solid Earth), 124(1), 943–956. https://doi.org/10.1029/2018JB016828 DOI: https://doi.org/10.1029/2018JB016828

Langridge, R. M., Ries, W. F., Farrier, T., Barth, N. C., Khajavi, N., & De Pascale, G. P. (2014). Developing sub 5-m LiDAR DEMs for forested sections of the Alpine and Hope faults, South Island, New Zealand: Implications for structural interpretations. Journal of Structural Geology, 64, 53–66. https://doi.org/10.1016/j.jsg.2013.11.007 DOI: https://doi.org/10.1016/j.jsg.2013.11.007

Leandro, R. F., Santos, M. C., & Langley, R. B. (2011). Analyzing GNSS data in precise point positioning software. GPS Solutions, 15(1), 1–13. https://doi.org/10.1007/s10291-010-0173-9 DOI: https://doi.org/10.1007/s10291-010-0173-9

Liang, Y., Zhao, C.-Z., Yuan, H., Chen, Y., Zhang, W., Huang, J.-Q., Yu, D., Liu, Y., Titirici, M.-M., Chueh, Y.-L., Yu, H., & Zhang, Q. (2019). A review of rechargeable batteries for portable electronic devices. InfoMat, 1(1), 6–32. https://doi.org/10.1002/inf2.12000 DOI: https://doi.org/10.1002/inf2.12000

LidarBC. (2023). Open LiDAR Data Portal. Government of British Columbia, Ministry of Water, Land.

Lin, Z., Kaneda, H., Mukoyama, S., Asada, N., & Chiba, T. (2013). Detection of subtle tectonic–geomorphic features in densely forested mountains by very high-resolution airborne LiDAR survey. Geomorphology, 182, 104–115. https://doi.org/10.1016/j.geomorph.2012.11.001 DOI: https://doi.org/10.1016/j.geomorph.2012.11.001

Marechal, A., Ritz, J.-F., Ferry, M., Mazzotti, S., Blard, P.-H., Braucher, R., & Saint-Carlier, D. (2018). Active tectonics around the Yakutat indentor: New geomorphological constraints on the eastern Denali, Totschunda and Duke River Faults. Earth and Planetary Science Letters, 482, 71–80. https://doi.org/10.1016/j.epsl.2017.10.051 DOI: https://doi.org/10.1016/j.epsl.2017.10.051

Meigs, A. (2013). Active tectonics and the LiDAR revolution. Lithosphere, 5(2), 226–229. https://doi.org/10.1130/RF.L004.1 DOI: https://doi.org/10.1130/RF.L004.1

Metcalf, A., Welles, T., Murakami, Y., Nakamura, H., & Ahn, J. (2022). Unmanned Aerial Vehicle Solid Oxide Fuel Cell and Internal Combustion Engine Hybrid Powertrain: An Experimental and Simulation Centered Review. American Society of Mechanical Engineers Digital Collection. https://doi.org/10.1115/POWER2022-86357

Morell, K. D., Regalla, C., Leonard, L. J., Amos, C., & Levson, V. (2017). Quaternary rupture of a crustal fault beneath Victoria, British Columbia, Canada. GSA Today, 7(3). https://doi.org/10.1130/GSATG291A.1 DOI: https://doi.org/10.1130/GSATG291A.1

Morin, P., Porter, C., Cloutier, M., Howat, I., Noh, M.-J., Willis, M., Bates, B., Willamson, C., & Peterman, K. (2016). ArcticDEM; A Publically Available, High Resolution Elevation Model of the Arctic. EGU General Assembly Conference Abstracts, ePSC2016-8396.

Nash, D. B. (1980). Morphologic Dating of Degraded Normal Fault Scarps. Journal of Geology, 88(3), 353–360. https://doi.org/10.1086/628513 DOI: https://doi.org/10.1086/628513

Nelson, A. R., Personius, S. F., Wells, R. E., Schermer, E. R., Bradley, L., Buck, J., & Reitman, N. (2017). Holocene Earthquakes of Magnitude 7 during Westward Escape of the Olympic Mountains, Washington. Bulletin of the Seismological Society of America, 107(5), 2394–2415. https://doi.org/10.1785/0120160323 DOI: https://doi.org/10.1785/0120160323

Nevitt, J. M., Brooks, B. A., Catchings, R. D., Goldman, M. R., Ericksen, T. L., & Glennie, C. L. (2020). Mechanics of near-field deformation during co- and post-seismic shallow fault slip. Scientific Reports, 10, e5031. https://doi.org/10.1038/s41598-020-61400-9 DOI: https://doi.org/10.1038/s41598-020-61400-9

Nissen, E., Maruyama, T., Ramon Arrowsmith, J., Elliott, J. R., Krishnan, A. K., Oskin, M. E., & Saripalli, S. (2014). Coseismic fault zone deformation revealed with differential lidar: Examples from Japanese Mw ensuremathsim7 intraplate earthquakes. Earth and Planetary Science Letters, 405, 244–256. https://doi.org/10.1016/j.epsl.2014.08.031 DOI: https://doi.org/10.1016/j.epsl.2014.08.031

Oskin, M. E., Arrowsmith, J. R., Corona, A. H., Elliott, A. J., Fletcher, J. M., Fielding, E. J., Gold, P. O., Garcia, J. J. G., Hudnut, K. W., Liu-Zeng, J., & Teran, O. J. (2012). Near-Field Deformation from the El Mayor-Cucapah Earthquake Revealed by Differential LIDAR. Science, 335(6069), 702. https://doi.org/10.1126/science.1213778 DOI: https://doi.org/10.1126/science.1213778

Pellicani, R., Argentiero, I., Manzari, P., Spilotro, G., Marzo, C., Ermini, R., & Apollonio, C. (2019). UAV and Airborne LiDAR Data for Interpreting Kinematic Evolution of Landslide Movements: The Case Study of the Montescaglioso Landslide (Southern Italy). Geosciences, 9(6), 248. https://doi.org/10.3390/geosciences9060248 DOI: https://doi.org/10.3390/geosciences9060248

Pingel, T. J., Clarke, K. C., & McBride, W. A. (2013). An improved simple morphological filter for the terrain classification of airborne LIDAR data. ISPRS Journal of Photogrammetry and Remote Sensing, 77, 21–30. https://doi.org/10.1016/j.isprsjprs.2012.12.002 DOI: https://doi.org/10.1016/j.isprsjprs.2012.12.002

Piriz, R., Mozo, A., Navarro, P., & Rodriguez, D. (2008). MagicGNSS: Precise GNSS products out of the box. Proceedings of the 21st International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2008), 1242–1251. http://www.ion.org/publications/abstract.cfm?jp=p&articleID=8036

Prentice, C. S., Crosby, C. J., Whitehill, C. S., Arrowsmith, J. R., Furlong, K. P., & Phillips, D. A. (2009). Illuminating Northern California’s Active Faults. EOS Transactions, 90(7), 55. https://doi.org/10.1029/2009EO070002 DOI: https://doi.org/10.1029/2009EO070002

Purba, J. C. S., Gilbert, H., & Dettmer, J. (2021). Structure and Dynamics of the Southern Rocky Mountain Trench near Valemount, British Columbia, Inferred from Local Seismicity. Seismological Research Letters, 92(5), 3087–3099. https://doi.org/10.1785/0220200350 DOI: https://doi.org/10.1785/0220200350

Rajashekara, K. (2013). Present Status and Future Trends in Electric Vehicle Propulsion Technologies. IEEE Journal of Emerging and Selected Topics in Power Electronics, 1(1), 3–10. https://doi.org/10.1109/JESTPE.2013.2259614 DOI: https://doi.org/10.1109/JESTPE.2013.2259614

Resop, J. P., Lehmann, L., & Hession, W. C. (2019). Drone laser scanning for modeling riverscape topography and vegetation: Comparison with traditional aerial lidar. Drones, 3(2), 35. https://doi.org/10.3390/drones3020035 DOI: https://doi.org/10.3390/drones3020035

Risbøl, O., & Gustavsen, L. (2018). LiDAR from drones employed for mapping archaeology–Potential, benefits and challenges. Archaeological Prospection, 25(4), 329–338. https://doi.org/10.1002/arp.1712 DOI: https://doi.org/10.1002/arp.1712

Ristau, J., Rogers, G. C., & Cassidy, J. F. (2007). Stress in western Canada from regional moment tensor analysis. Canadian Journal of Earth Sciences, 44(2), 127–148. https://doi.org/10.1139/e06-057 DOI: https://doi.org/10.1139/e06-057

Rusmore, M. E., & Cowan, D. S. (1985). Jurassic–Cretaceous rock units along the southern edge of the Wrangellia terrane on Vancouver Island. Canadian Journal of Earth Sciences, 22(8), 1223–1232. https://doi.org/10.1139/e85-124 DOI: https://doi.org/10.1139/e85-124

Salisbury, J. B., Rockwell, T. K., Middleton, T. J., & Hudnut, K. W. (2012). LiDAR and Field Observations of Slip Distribution for the Most Recent Surface Ruptures along the Central San Jacinto Fault. Bulletin of the Seismological Society of America, 102(2), 598–619. https://doi.org/10.1785/0120110068 DOI: https://doi.org/10.1785/0120110068

Salomon, G. W., New, T., Muir, R. A., Whitehead, B., Scheiber-Enslin, S., Smit, J., Stevens, V., Kahle, B., Kahle, R., Eckardt, F. D., & Alastair Sloan, R. (2022). Geomorphological and geophysical analyses of the Hebron Fault, SW Namibia: implications for stable continental region seismic hazard. Geophysical Journal International, 229(1), 235–254. https://doi.org/10.1093/gji/ggab466 DOI: https://doi.org/10.1093/gji/ggab466

Sawicki, O., & Smith, D. G. (1992). Glacial Lake Invermere, upper Columbia River valley, British Columbia: a paleogeographic reconstruction. Canadian Journal of Earth Sciences, 29(4), 687–692. https://doi.org/10.1139/e92-059 DOI: https://doi.org/10.1139/e92-059

Schermer, E. R., Amos, C. B., Duckworth, W. C., Nelson, A. R., Angster, S., Delano, J., & Sherrod, B. L. (2021). Postglacial Mw 7.0-7.5 Earthquakes on the North Olympic Fault Zone, Washington. Bulletin of the Seismological Society of America, 111(1), 490–513. https://doi.org/10.1785/0120200176 DOI: https://doi.org/10.1785/0120200176

Scott, C., Phan, M., Nandigam, V., Crosby, C., & Arrowsmith, J. R. (2021). Measuring change at Earth’s surface: On-demand vertical and three-dimensional topographic differencing implemented in OpenTopography. Geosphere, 17(4), 1318–1332. https://doi.org/10.1130/GES02259.1 DOI: https://doi.org/10.1130/GES02259.1

Scott, Chelsea P., Arrowsmith, J. R., Nissen, E., Lajoie, L., Maruyama, T., & Chiba, T. (2018). The M7 2016 Kumamoto, Japan, Earthquake: 3-D Deformation Along the Fault and Within the Damage Zone Constrained From Differential Lidar Topography. Journal of Geophysical Research (Solid Earth), 123(7), 6138–6155. https://doi.org/10.1029/2018JB015581 DOI: https://doi.org/10.1029/2018JB015581

Scott, Chelsea Phipps, Beckley, M., Phan, M., Zawacki, E., Crosby, C., Nandigam, V., & Arrowsmith, R. (2022). Statewide USGS 3DEP Lidar Topographic Differencing Applied to Indiana, USA. Remote Sensing, 14(4), 847. https://doi.org/10.3390/rs14040847 DOI: https://doi.org/10.3390/rs14040847

Scott, Chelsea Phipps, DeLong, S. B., & Arrowsmith, J. R. (2020). Distribution of Aseismic Deformation Along the Central San Andreas and Calaveras Faults From Differencing Repeat Airborne Lidar. Geophysical Research Letters, 47(22), e90628. https://doi.org/10.1029/2020GL090628 DOI: https://doi.org/10.1029/2020GL090628

Skyfront. (2023). Perimeter 8 UAS. In Skyfront. https://skyfront.com/perimeter-8

Stöcker, C., Bennett, R., Nex, F., Gerke, M., & Zevenbergen, J. (2017). Review of the Current State of UAV Regulations. Remote Sensing, 9(5). https://doi.org/10.3390/rs9050459 DOI: https://doi.org/10.3390/rs9050459

Telling, J., Lyda, A., Hartzell, P., & Glennie, C. (2017). Review of Earth science research using terrestrial laser scanning. Earth Science Reviews, 169, 35–68. https://doi.org/10.1016/j.earscirev.2017.04.007 DOI: https://doi.org/10.1016/j.earscirev.2017.04.007

Tomsett, C., & Leyland, J. (2021). Development and Testing of a UAV Laser Scanner and Multispectral Camera System for Eco-Geomorphic Applications. Sensors, 21(22), 7719. https://doi.org/10.3390/s21227719 DOI: https://doi.org/10.3390/s21227719

Toth, C., Brzezinska, D., Csanyi, N., Paska, E., & Yastikli, N. (2007). LiDAR mapping supporting earthquake research of the San Andreas fault. Proceedings of the ASPRS 2007 Annual Conference, 1–11.

Townsend, A., Jiya, I. N., Martinson, C., Bessarabov, D., & Gouws, R. (2020). A comprehensive review of energy sources for unmanned aerial vehicles, their shortfalls and opportunities for improvements. Heliyon, 6(11), e05285. https://doi.org/10.1016/j.heliyon.2020.e05285 DOI: https://doi.org/10.1016/j.heliyon.2020.e05285

Transport Canada. (2022). Getting a drone pilot certificate. In AARV 14073622. %7Bhttps://tc.canada.ca/en/aviation/drone-safety/drone-pilot-licensing/getting-drone-pilot-certificate%7D

Transport Canada. (2023). Minister of Transport announces Canada’s first proposed drone safety regulations for beyond visual line-of-sight operations [News releases]. https://www.canada.ca/en/transport-canada/news/2023/06/minister-of-transport-announces-canadas-first-proposed-drone-safety-regulations-for-beyond-visual-line-of-sight-operations.html

UK Civil Aviation Authority. (2023). Registering a drone or model aircraft. %7Bhttps://register-drones.caa.co.uk/individual%7D

van der Velden, A. J., & Cook, F. A. (1996). Structure and tectonic development of the southern Rocky Mountain trench. Tectonics, 15(3), 517–544. https://doi.org/10.1029/95TC03288 DOI: https://doi.org/10.1029/95TC03288

Van Tassel, C. (2021). Defining the true cost behind implementing lidar systems into your business. In Candrone. %7Bhttps://candrone.com/blogs/news/the-real-cost-of-starting-a-lidar-drone-business%7D

VanValkenburgh, P., Cushman, K., Butters, L. J. C., Vega, C. R., Roberts, C. B., Kepler, C., & Kellner, J. (2020). Lasers without lost cities: Using drone lidar to capture architectural complexity at Kuelap, Amazonas, Peru. Journal of Field Archaeology, 45(sup1), S75–S88. https://doi.org/10.1080/00934690.2020.1713287 DOI: https://doi.org/10.1080/00934690.2020.1713287

Viswanathan, V., Epstein, A. H., Chiang, Y.-M., Takeuchi, E., Bradley, M., Langford, J., & Winter, M. (2022). The challenges and opportunities of battery-powered flight. Nature, 601(7894), 519–525. https://doi.org/10.1038/s41586-021-04139-1 DOI: https://doi.org/10.1038/s41586-021-04139-1

Wang, S., Ren, Z., Wu, C., Lei, Q., Gong, W., Ou, Q., Zhang, H., Ren, G., & Li, C. (2019). DEM generation from Worldview-2 stereo imagery and vertical accuracy assessment for its application in active tectonics. Geomorphology, 336, 107–118. https://doi.org/10.1016/j.geomorph.2019.03.016 DOI: https://doi.org/10.1016/j.geomorph.2019.03.016

Wedmore, L. N. J., Gregory, L. C., McCaffrey, K. J. W., Goodall, H., & Walters, R. J. (2019). Partitioned Off-Fault Deformation in the 2016 Norcia Earthquake Captured by Differential Terrestrial Laser Scanning. Geophysical Research Letters, 46(6), 3199–3205. https://doi.org/10.1029/2018GL080858 DOI: https://doi.org/10.1029/2018GL080858

Wei, Z., He, H., Su, P., Zhuang, Q., & Sun, W. (2019). Investigating paleoseismicity using fault scarp morphology of the Dushanzi Reverse Fault in the northern Tian Shan, China. Geomorphology, 327, 542–553. https://doi.org/10.1016/j.geomorph.2018.11.025 DOI: https://doi.org/10.1016/j.geomorph.2018.11.025

Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., & Reynolds, J. M. (2012). ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179, 300–314. https://doi.org/10.1016/j.geomorph.2012.08.021 DOI: https://doi.org/10.1016/j.geomorph.2012.08.021

Wiatr, T., Reicherter, K., Papanikolaou, I., Fernández-Steeger, T., & Mason, J. (2013). Slip vector analysis with high resolution t-LiDAR scanning. Tectonophysics, 608, 947–957. https://doi.org/10.1016/j.tecto.2013.07.024 DOI: https://doi.org/10.1016/j.tecto.2013.07.024

Wieser, M., Hollaus, M., Mandlburger, G., Glira, P., & Pfeifer, N. (2016). ULS LiDAR supported analyses of laser beam penetration from different ALS systems into vegetation. ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences, 3(3). https://doi.org/10.5194/isprs-annals-III-3-233-2016 DOI: https://doi.org/10.5194/isprsannals-III-3-233-2016

Witter, R. C., Bender, A. M., Scharer, K. M., DuRoss, C. B., Haeussler, P. J., & Lease, R. O. (2021). Geomorphic expression and slip rate of the Fairweather fault, southeast Alaska, and evidence for predecessors of the 1958 rupture. Geosphere, 17(3), 711–738. https://doi.org/10.1130/GES02299.1 DOI: https://doi.org/10.1130/GES02299.1

Xiaoye Liu. (2008). Airborne LiDAR for DEM generation: some critical issues. Progress in Physical Geography: Earth and Environment, 32(1), 31–49. https://doi.org/10.1177/0309133308089496 DOI: https://doi.org/10.1177/0309133308089496

Zhang, B., Liao, Y., Guo, S., Wallace, R. E., Bucknam, R. C., & Hanks, T. C. (1986). Fault scarps related to the 1739 earthquake and seismicity of the Yinchuan graben, Ningxia Huizu Zizhiqu, China. Bulletin of the Seismological Society of America, 76(5), 1253–1287. https://doi.org/10.1785/BSSA0760051253 DOI: https://doi.org/10.1785/BSSA0760051253

Zhang, K., Chen, S.-C., Whitman, D., Shyu, M.-L., Yan, J., & Zhang, C. (2003). A progressive morphological filter for removing nonground measurements from airborne LIDAR data. IEEE Transactions on Geoscience and Remote Sensing, 41(4), 872–882. https://doi.org/10.1109/TGRS.2003.810682 DOI: https://doi.org/10.1109/TGRS.2003.810682

Zhang, W., Qi, J., Wan, P., Wang, H., Xie, D., Wang, X., & Yan, G. (2016). An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation. Remote Sensing, 8(6). https://doi.org/10.3390/rs8060501 DOI: https://doi.org/10.3390/rs8060501

Zhu, X., Glennie, C. L., & Brooks, B. A. (2022). Automated near-field deformation detection from mobile laser scanning for the 2014 Mw 6.0 South Napa earthquake. Journal of Applied Geodesy, 16(1), 65–79. https://doi.org/10.1515/jag-2021-0023 DOI: https://doi.org/10.1515/jag-2021-0023

Zielke, O., Arrowsmith, J. R., Ludwig, L. G., & Akçiz, S. O. (2010). Slip in the 1857 and Earlier Large Earthquakes Along the Carrizo Plain, San Andreas Fault. Science, 327(5969), 1119–1122. https://doi.org/10.1126/science.1182781 DOI: https://doi.org/10.1126/science.1182781

Zielke, O., Klinger, Y., & Arrowsmith, J. R. (2015). Fault slip and earthquake recurrence along strike-slip faults - Contributions of high-resolution geomorphic data. Tectonophysics, 638, 43–62. https://doi.org/10.1016/j.tecto.2014.11.004 DOI: https://doi.org/10.1016/j.tecto.2014.11.004

Additional Files

Published

2024-06-05

How to Cite

Salomon, G., Finley, T., Nissen, E., Stephen, R., & Menounos, B. (2024). Mapping fault geomorphology with drone-based lidar. Seismica, 3(1). https://doi.org/10.26443/seismica.v3i1.1186

Issue

Section

Articles