Extensional failure in a weak slab under slab pull -- the 2023 Mw 6.4 Quiché, Guatemala, earthquake


  • Timothy Craig COMET, Institute for Geophysics and Tectonics, School of Earth and Environment, University of Leeds, Leeds, UK https://orcid.org/0000-0003-2198-9172
  • Amber Hull Institute for Geophysics and Tectonics, School of Earth and Environment, University of Leeds, Leeds, UK




Earthquake Location, intermediate depth earthquake, Subduction Zone, geodynamics


The 2023 Mw 6.4 Quiché earthquake is the deepest recorded major (Mw > 6) earthquake to have occurred in the Cocos slab beneath Central America, at a depth of ~ 255 km. Here, we refine the source parameters of both the Quiché earthquake, and the only other event at comparable depths (the 1997 Mw 5.5 Jutiapa earthquake), confirming both their exceptional depth within the downgoing slab, and their down-dip extensional mechanism. That the Cocos slab remains capable of hosting major intraslab earthquakes, with mechanisms consistent with down-dip extension, near, or at, the tip of the contiguous slab, suggests that the slab itself is weak, such that the minimal stresses derived from supporting the negative buoyancy of the short section of slab down-dip from this earthquake are still sufficient to lead to brittle failure of the slab.


Bailey, I. W., Alpert, L. A., Becker, T. W., & Miller, M. S. (2012). Co-seismic deformation of deep slabs based on summed CMT data. Journal of Geophysical Reearch, 117. https://doi.org/10.1029/2011JB008943 DOI: https://doi.org/10.1029/2011JB008943

Boneh, Y., Schottenfels, E., Kwong, K., van Zelst, I., Tong, X., Eimer, M., Miller, M. S., Moresi, L., Warren, J. M., Wiens, D. A., nd J. Naliboff, M. B., & Zhan, Z. (2019). Intermediate-depth earthquakes controlled by incoming plate hydration along bending-related faults. Geophysical Research Letters, 46, 3688–3697. https://doi.org/10.1029/2018GL081585 DOI: https://doi.org/10.1029/2018GL081585

Craig, T. J., Methley, P., & Sandiford, D. (2022). Imbalanced moment release within subducting places during initial bending and unbending. Journal of Geophysical Research, 127. https://doi.org/10.1029/2021JB023658 DOI: https://doi.org/10.1029/2021JB023658

Hayes, G. P., Moore, G. L., Portner, D. E., Hearne, M., Flamme, H., Furtney, M., & Smocyzk, G. M. (2018). Slab2, a comprehensive subduction zone geometry. Science. https://doi.org/10.1126/science.aat4723 DOI: https://doi.org/10.1126/science.aat4723

Heimann, S., Isken, M., Kuhn, D., Sudhaus, H., Steinberg, A., Vasyura-Bathke, H., Daout, S., Cesca, S., & Dahm, T. (2018). Grond - A probabilistic earthquake source inversion framework. GFZ Data Services. https://doi.org/10.5880/GFZ.2.1.2018.003

Heimann, S., Kriegerowski, M., Isken, M., Cesca, S., Daout, S., Grigoli, F., Juretzek, C., Megies, T., Nooshiri, N., Steinberg, A., Sudhaus, H., Vasyura-Bathke, H., Willey, T., & Dahm, T. (2017). Pyrocko - An open-source seismology toolbox and library. GFZ Data Services. https://doi.org/10.5880/GFZ.2.1.2017.001

Hosseinzadehsabeti, E., Ferre, E. C., Persaud, P., Fabbri, O., & Geissman, J. W. (2021). The rupture mechanisms of intraslab earthquakes: a multiscale review and re-evaluation. Earth Science Reviews, 221. https://doi.org/10.1016/j.earscirev.2021.103782 DOI: https://doi.org/10.1016/j.earscirev.2021.103782

Isacks, B., & Molnar, P. (1969). Mantle earthquake mechanisms and the sinking of the lithosphere. Nature, 223, 1121–1124. DOI: https://doi.org/10.1038/2231121a0

Kennett, B. L. N., Engdahl, E. R., & Buland, R. (1995). Constraints on seismic velocities in the Earth from travel times. Geophysical Journal International, 122, 108–124. DOI: https://doi.org/10.1111/j.1365-246X.1995.tb03540.x

Kim, Y., Clayton, R. W., & Jackson, J. M. (2010). Geometry and seismic properties of the subducting Cocos plate in central Mexico. Journal of Geophysical Research, 115. https://doi.org/10.1029/2009JB006942 DOI: https://doi.org/10.1029/2009JB006942

Manea, V. C., Manea, M., & Ferrari, L. (2013). A geodynamical perspective on the subduction of Cocos and Rivera plates beneath Mexico and Central America. Tectonophysics, 609, 56–81. https://doi.org/10.1016/j.tecto.2012.12.039 DOI: https://doi.org/10.1016/j.tecto.2012.12.039

Manea, V. C., Manea, M., Ferrari, L., Orozco-Esquivel, T., Valenzuela, R. W., Husker, A., & Kostoglodov, V. (2017). A review of the geodynamic evolution of flat slab subduction in Mexico, Peru and Chile. Tectonophysics, 695, 27–52. https://doi.org/10.1016/j.tecto.2016.11.037 DOI: https://doi.org/10.1016/j.tecto.2016.11.037

Manea, V., Manea, M., Kostoglodov, V., & Sewell, G. (2006). Intraslab seismicity and thermal stress in the subducted Cocos plate beneath central Mexico. Tectonophysics, 420. https://doi.org/10.1016/j.tecto.2006.03.029 DOI: https://doi.org/10.1016/j.tecto.2006.03.029

Masson, D. G. (1991). Fault Patterns at Outer Trench Walls. Marine Geophysical Researches, 1991, 209–225. DOI: https://doi.org/10.1007/BF00369150

Melgar, D., Pérez-Campos, X., Ramirez-Guzman, L., Spica, Z., Espíndola, V. H., Hammond, W. C., & Cabral-Cano, E. (2018). Bend Faulting at the Edge of a Flat Slab: The 2017 MW7.1 Puebla-Morelos, Mexico, Earthquake. Geophysical Research Letters, 45, 2633–2641. https://doi.org/10.1002/2017GL076895 DOI: https://doi.org/10.1002/2017GL076895

Melgar, D., Ruiz-Angula, A., Garcia, E. S., Manea, M., Manea, V. C., Xu, X., Ramirez-Herrera, M. T., Zavala-Hidalgo, J., Geng, J., Corona, N., Pérez-Campos, X., Cabral-Cano, E., & Ramirez-Guzmán, L. (2018). Deep embrittlement and complete rupture of the lithosphere during he Mw 8.2 Tehuantepec earthquake. Nature Geoscience, 955–960. https://doi.org/10.1038/s41561-018-0229y DOI: https://doi.org/10.1038/s41561-018-0229-y

Prakash, A., Holyoke III, C. W., Kelemen, P. B., Kirby, S., Kronenberg, A. K., & Lamb, W. M. (2023). Carbonates and intermediate-depth seismicity: Stable and unstable shear in altered subducting plates and overlying mantle. Proceedings of the National Academy of Sciences, 120. https://doi.org/10.1073/pnas.2219076120 DOI: https://doi.org/10.1073/pnas.2219076120

Ranero, C. R., Villaseñor, A., Morgan, J. P., & Weinrebe, W. (2005). Relationship between bend-faulting at trenches and intermediate-depth seismicity. Geochemistry, Geophysics, Geosystems, 6. https://doi.org/10.1029/2005GC0009972 DOI: https://doi.org/10.1029/2005GC000997

Rogers, R. D., Kárason, H., & van der Hilst, R. D. (2002). Epeirogenic uplift above a detached slab in northern Central America. Geology, 30, 1031–1034. https://doi.org/10.1130/0091-7613(2002)030 DOI: https://doi.org/10.1130/0091-7613(2002)030<1031:EUAADS>2.0.CO;2

Sandiford, D., Moresi, L. M., Sandiford, M., Farrington, R., & Yang, T. (2020). The Fingerprints of Flexure in Slab Seismicity. Tectonics, 39. https://doi.org/10.1029/2019TC005894 DOI: https://doi.org/10.1029/2019TC005894

Sandiford, D., Moresi, L., Sandiford, M., & Yang, T. (2019). Geometric controls on flat slab seismicity. Earth and Planetary Science Letters, 527. https://doi.org/10.1016/j.epsl.2019.115787 DOI: https://doi.org/10.1016/j.epsl.2019.115787

Singh, S. K., Ordaz, M., Alcántara, L., Shapiro, N., Kostoglodov, V., Pacheco, J. F., Alcocer, S., Gutiérrez, C., Quass, R., Mikumo, T., & Ovando, E. (2000). The Oaxaca Earthquake of 30 September 1999 (Mw = 7.5): A Normal-faulting Event in the Subducted Cocos Plate. Seismological Research Letters, 71, 67–78. https://doi.org/10.1785/gssrl.71.1.67 DOI: https://doi.org/10.1785/gssrl.71.1.67

Sippl, C., Dielforder, A., John, T., & Schmalholz, S. M. (2022). Global Constraints on Intermediate-Depth Intraslab Stresses From Slab Geometries and Mechanisms of Double Seismic Zone Earthquakes. Geochemistry Geophyics Geosystems, 23. https://doi.org/10.1029/2022GC010498 DOI: https://doi.org/10.1029/2022GC010498

Syracuse, E. M., Abers, G. A., Fischer, K., MacKenzie, L., Rychert, C., Protti, M., González, V., & Strauch, W. (2008). Seismic tomography and earthquake locations int he Nicaragua and Costa Rican upper mantle. Geochemistry Geophysics Geosystems, 9. https://doi.org/10.1029/2008GC001963 DOI: https://doi.org/10.1029/2008GC001963

Vallée, M., Bouchon, M., & Schwartz, S. Y. (2003). The 13 January 2001 El Salvador earthquake: A multidata analysis. Journal of Geophysical Research, 108. https://doi.org/10.1029/2002JB001922 DOI: https://doi.org/10.1029/2002JB001922

Vassilou, M. S., & Hager, B. H. (1988). Subduction Zone Earthquakes and Stress in Slabs. Pure and Applied Geopysics, 128, 547–624. https://doi.org/10.1007/BF00874550 DOI: https://doi.org/10.1007/BF00874550

Vassilou, M. S., Hager, B. H., & Raefsky, A. (1984). the distribution of earthquakes with depth and stress in subducting slabs. Journal of Geodynamics, 1, 11–28. https://doi.org/10.1016/0264-3707(84)90004-8 DOI: https://doi.org/10.1016/0264-3707(84)90004-8

Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J. F., & Wobbe, F. (2013). Generic Mapping Tools: Improved version released. EOS Transactions, 94, 409–410. DOI: https://doi.org/10.1002/2013EO450001

Wimpenny, S., Craig, T. J., & Marcou, S. (2023). Re-Examining Temporal Variations in Intermediate-Depth Seismicity. Journal of Geophysical Research, 128. https://doi.org/10.1029/2022JB026269 DOI: https://doi.org/10.1029/2022JB026269

Xue, T., Peng, D., Liu, K. H., Obrist-Farner, J., Locmelis, M., Gao, S. S., & Liu, L. (2023). Ongoing fragmentation of the usubducting Cocos slab, Central America. Geology, 51. https://doi.org/10.1130/G51403.1 DOI: https://doi.org/10.1130/G51403.1

Yani-Quiyuch, R., Asturias, L., & Castro, D. (2023). The rupture plane of the 16 February 2022 Mw 6.2 Guatemala, intermediate depth earthquake. Seismica, 2.2. https://doi.org/10.26443/seismica.v2i2.691 DOI: https://doi.org/10.26443/seismica.v2i2.691

Ye, L., Lay, T., & Kanamori, H. (2020). Anomalously low aftershock productivity of the 2019 Mw 8.0 energetic intermediate-depth faulting beneath Peru. Earth and Planetary Science Letters, 549. https://doi.org/10.1016/j.epsl.2020.116528 DOI: https://doi.org/10.1016/j.epsl.2020.116528

Zhu, H., Stern, R. J., & Yang, J. (2020). Seismic evidence for subduction-induced mantle flows underneath Middle America. Nature Communications, 11. https://doi.org/10.1038/s41467-020-15492-6 DOI: https://doi.org/10.1038/s41467-020-15492-6

Additional Files



How to Cite

Craig, T., & Hull, A. (2024). Extensional failure in a weak slab under slab pull -- the 2023 Mw 6.4 Quiché, Guatemala, earthquake. Seismica, 3(1). https://doi.org/10.26443/seismica.v3i1.1190




Funding data