Refined Holocene Slip Rate for the Western and Central Segments of the Garlock Fault: Record of Alternating Millennial-Scale Periods of Fast and Slow Fault Slip

Authors

  • Dannielle Fougere Department of Earth Sciences, University of Southern California
  • James Dolan Department of Earth Sciences, University of Southern California
  • Edward Rhodes Department of Geography, University of Sheffield
  • Sally McGill Department of Geological Sciences, California State University San Bernardino

DOI:

https://doi.org/10.26443/seismica.v3i2.1202

Abstract

We use lidar- and field-based mapping coupled with single-grain infrared-stimulated luminescence dating to constrain three new slip rate estimates from the western and central segments of the Garlock fault in southern California, revealing a more complete picture of incremental slip rate in time and space for this major plate-boundary fault. These new rates reinforce and refine previous evidence showing that the Garlock fault experiences significant temporal variations in slip rates that span multiple earthquake cycles, with multi-millennial periods of very fast (13-14 mm/yr) early and late Holocene slip separated by a mid-Holocene period of slow slip (3 mm/yr). Similar ca. 8 ka slip rates for the central Garlock fault of 8.8 ± 1.0 mm/yr and 8.2 +1.0/-0.8 mm/yr for the western Garlock fault demonstrate that the fault has slipped at a faster long-term average rate than suggested by previous studies. These fast rates are consistent with kinematic models in which the western and central Garlock fault segments are driven primarily by lateral extrusion associated with N-S contractional shortening, with additional slip driven by WNW-ENE Basin and Range extension north of the fault and minor rotation of the Garlock within the N-S zone of dextral ECSZ shear.

References

Andrew, J. E., Walker, J. D., & Monastero, F. C. (2014). Evolution of the central Garlock fault zone, California: A major sinistral fault embedded in a dextral plate margin. Geological Society of America Bulletin, 127(1–2), 227–249. https://doi.org/10.1130/b31027.1 DOI: https://doi.org/10.1130/B31027.1

Berryman, K. R., Cochran, U. A., Clark, K. J., Biasi, G. P., Langridge, R. M., & Villamor, P. (2012). Major Earthquakes Occur Regularly on an Isolated Plate Boundary Fault. Science, 336(6089), 1690–1693. https://doi.org/10.1126/science.1218959 DOI: https://doi.org/10.1126/science.1218959

Blythe, A. E., & Longinotti, N. (2013). Exhumation of the southern Sierra Nevada–eastern Tehachapi Mountains constrained by low-temperature thermochronology: Implications for the initiation of the Garlock fault. Lithosphere, 5(3), 321–327. https://doi.org/10.1130/l252.1 DOI: https://doi.org/10.1130/L252.1

Bronk Ramsey, C. (2009). Bayesian analysis of radiocarbon dates. Radiocarbon, 51(5). https://doi.org/10.1017/S0033822200033865 DOI: https://doi.org/10.1017/S0033822200033865

Burbank, D. W., & Whistler, D. P. (1987). Temporally constrained tectonic rotations derived from magnetostratigiraphic data: Implications for the initiation of the Garlock fault, California. Geology, 15(12), 1172. https://doi.org/10.1130/0091-7613(1987)15<1172:tctrdf>2.0.co;2 DOI: https://doi.org/10.1130/0091-7613(1987)15<1172:TCTRDF>2.0.CO;2

Carter, B. (1994). Neogene offsets and displacement rates, central Garlock fault, California. In S.F. McGill & T. M. Ross (Eds.), Geological investigations of an active margin: Geological Society of America, Cordilleran Section Annual Meeting Guidebook: Vol. v. 27 (pp. 348–356).

Chuang, R. Y., & Johnson, K. M. (2011). Reconciling geologic and geodetic model fault slip-rate discrepancies in Southern California: Consideration of nonsteady mantle flow and lower crustal fault creep. Geology, 39(7), 627–630. https://doi.org/10.1130/g32120.1 DOI: https://doi.org/10.1130/G32120.1

Clark, M. M. (1973). Map showing recently active breaks along the Garlock and associated faults, California. United States Geologic Survey Report, 741. https://doi.org/10.3133/i741 DOI: https://doi.org/10.3133/i741

Clark, M. M., & Lajoie, K. R. (1974). Holocene behavior of the Garlock fault. Geological Society of America Abstracts with Programs, 6(7), 156–157.

Davis, G. A., & Burchfiel, B. C. (1973). Garlock Fault: An Intracontinental Transform Structure, Southern California. Geological Society of America Bulletin, 84(4), 1407. https://doi.org/10.1130/0016-7606(1973)84<1407:gfaits>2.0.co;2 DOI: https://doi.org/10.1130/0016-7606(1973)84<1407:GFAITS>2.0.CO;2

Dawson, T. E., McGill, S. F., & Rockwell, T. K. (2003). Irregular recurrence of paleoearthquakes along the central Garlock fault near El Paso Peaks, California. Journal of Geophysical Research: Solid Earth, 108(B7). https://doi.org/10.1029/2001jb001744 DOI: https://doi.org/10.1029/2001JB001744

Del Vecchio, J., Lang, K. A., Robins, C. R., McGuire, C. P., & Rhodes, E. J. (2018). Storage and weathering of landslide debris in the eastern San Gabriel Mountains, California, USA: Implications for mountain solute flux. Earth Surface Processes and Landforms, 43(13), 2724–2737. https://doi.org/10.1002/esp.4427 DOI: https://doi.org/10.1002/esp.4427

Dolan, J. F., Bowman, D. D., & Sammis, C. G. (2007). Long-range and long-term fault interactions in Southern California. Geology, 35(9), 855. https://doi.org/10.1130/g23789a.1 DOI: https://doi.org/10.1130/G23789A.1

Dolan, J. F., McAuliffe, L. J., Rhodes, E. J., McGill, S. F., & Zinke, R. (2016). Extreme multi-millennial slip rate variations on the Garlock fault, California: Strain super-cycles, potentially time-variable fault strength, and implications for system-level earthquake occurrence. Earth and Planetary Science Letters, 446, 123–136. https://doi.org/10.1016/j.epsl.2016.04.011 DOI: https://doi.org/10.1016/j.epsl.2016.04.011

Evans, E. L. (2017a). Persistent slip rate discrepancies in the eastern California (USA) shear zone: Reply. Geology, 45(9), e426–e426. https://doi.org/10.1130/g39439y.1 DOI: https://doi.org/10.1130/G39439Y.1

Evans, E. L. (2017b). A Comprehensive Analysis of Geodetic Slip‐Rate Estimates and Uncertainties in California. Bulletin of the Seismological Society of America, 108(1), 1–18. https://doi.org/10.1785/0120170159 DOI: https://doi.org/10.1785/0120170159

Evans, E. L., Thatcher, W. R., Pollitz, F. F., & Murray, J. R. (2016). Persistent slip rate discrepancies in the eastern California (USA) shear zone. Geology, 44(9), 691–694. https://doi.org/10.1130/g37967.1 DOI: https://doi.org/10.1130/G37967.1

Field, E. H., Biasi, G. P., Bird, P., Dawson, T. E., Felzer, K. R., Jackson, D. D., Johnson, K. M., Jordan, T. H., Madden, C., Michael, A. J., Milner, K. R., Page, M. T., Parsons, T., Powers, P. M., Shaw, B. E., Thatcher, W. R., Weldon, R. J., & Zeng, Y. (2015). Long‐Term Time‐Dependent Probabilities for the Third Uniform California Earthquake Rupture Forecast (UCERF3). Bulletin of the Seismological Society of America, 105(2A), 511–543. https://doi.org/10.1785/0120140093 DOI: https://doi.org/10.1785/0120140093

Field, E. H., Jordan, T. H., Page, M. T., Milner, K. R., Shaw, B. E., Dawson, T. E., Biasi, G. P., Parsons, T., Hardebeck, J. L., Michael, A. J., Weldon, R. J., Powers, P. M., Johnson, K. M., Zeng, Y., Felzer, K. R., Elst, N. van der, Madden, C., Arrowsmith, R., Werner, M. J., & Thatcher, W. R. (2017). A Synoptic View of the Third Uniform California Earthquake Rupture Forecast (UCERF3). Seismological Research Letters, 88(5), 1259–1267. https://doi.org/10.1785/0220170045 DOI: https://doi.org/10.1785/0220170045

Friedrich, A. M., Lee, J., Wernicke, B. P., & Sieh, K. (2004). Geologic context of geodetic data across a Basin and Range normal fault, Crescent Valley, Nevada. Tectonics, 23(2). https://doi.org/10.1029/2003tc001528 DOI: https://doi.org/10.1029/2003TC001528

Gan, W., Svarc, J. L., Savage, J. C., & Prescott, W. H. (2000). Strain accumulation across the Eastern California Shear Zone at latitude 36°30′N. Journal of Geophysical Research: Solid Earth, 105(B7), 16229–16236. https://doi.org/10.1029/2000jb900105 DOI: https://doi.org/10.1029/2000JB900105

Ganev, P. N., Dolan, J. F., McGill, S. F., & Frankel, K. L. (2012). Constancy of geologic slip rate along the central Garlock fault: Implications for strain accumulation and release in southern California. Geophysical Journal International, 190(2), 745–760. https://doi.org/10.1111/j.1365-246x.2012.05494.x DOI: https://doi.org/10.1111/j.1365-246X.2012.05494.x

Garfunkel, Z. (1974). Model for the Late Cenozoic Tectonic History of the Mojave Desert, California, and for Its Relation to Adjacent Regions. Geological Society of America Bulletin, 85(12), 1931. https://doi.org/10.1130/0016-7606(1974)85<1931:mftlct>2.0.co;2 DOI: https://doi.org/10.1130/0016-7606(1974)85<1931:MFTLCT>2.0.CO;2

Gauriau, J., & Dolan, J. (2024). Comparison of geodetic slip-deficit and geologic fault slip rates reveals that variability of elastic strain accumulation and release rates on strike-slip faults is controlled by the relative structural complexity of plate-boundary fault systems. Seismica, 3(1). https://doi.org/10.26443/seismica.v3i1.1119 DOI: https://doi.org/10.26443/seismica.v3i1.1119

Gauriau, J., & Dolan, J. F. (2021). Relative Structural Complexity of Plate‐Boundary Fault Systems Controls Incremental Slip‐Rate Behavior of Major Strike‐Slip Faults. Geochemistry, Geophysics, Geosystems, 22(11). https://doi.org/10.1029/2021gc009938 DOI: https://doi.org/10.1029/2021GC009938

Gold, R. D., Cowgill, E., Arrowsmith, J. R., Chen, X., Sharp, W. D., Cooper, K. M., & Wang, X.-F. (2011). Faulted terrace risers place new constraints on the late Quaternary slip rate for the central Altyn Tagh fault, northwest Tibet. Geological Society of America Bulletin, 123(5–6), 958–978. https://doi.org/10.1130/b30207.1 DOI: https://doi.org/10.1130/B30207.1

Gold, Ryan D., & Cowgill, E. (2011). Deriving fault-slip histories to test for secular variation in slip, with examples from the Kunlun and Awatere faults. Earth and Planetary Science Letters, 301(1–2), 52–64. https://doi.org/10.1016/j.epsl.2010.10.011 DOI: https://doi.org/10.1016/j.epsl.2010.10.011

Griffin, J. D., Stirling, M. W., Wilcken, K. M., & Barrell, D. J. A. (2022). Late Quaternary Slip Rates for the Hyde and Dunstan Faults, Southern New Zealand: Implications for Strain Migration in a Slowly Deforming Continental Plate Margin. Tectonics, 41(9). https://doi.org/10.1029/2022tc007250 DOI: https://doi.org/10.1029/2022TC007250

Guest, B., Pavlis, T. L., Golding, H., & Serpa, L. (2003). Chasing the Garlock: A study of tectonic response to vertical axis rotation. Geology, 31(6), 553. https://doi.org/10.1130/0091-7613(2003)031<0553:ctgaso>2.0.co;2 DOI: https://doi.org/10.1130/0091-7613(2003)031<0553:CTGASO>2.0.CO;2

Harvey, A. M., & Wells, S. G. (2003). Late Quaternary variations in alluvial fan sedimentologic and geomorphic processes, Soda Lake basin, eastern Mojave Desert, California. In Paleoenvironments and paleohydrology of the Mojave and southern Great Basin deserts. Geological Society of America. https://doi.org/10.1130/0-8137-2368-x.207 DOI: https://doi.org/10.1130/0-8137-2368-X.207

Hatem, A. E., & Dolan, J. F. (2018). A Model for the Initiation, Evolution, and Controls on Seismic Behavior of the Garlock Fault, California. Geochemistry, Geophysics, Geosystems, 19(7), 2166–2178. https://doi.org/10.1029/2017gc007349 DOI: https://doi.org/10.1029/2017GC007349

Hatem, A. E., Dolan, J. F., Zinke, R. W., Langridge, R. M., McGuire, C. P., Rhodes, E. J., Brown, N., & Van Dissen, R. J. (2020). Holocene to latest Pleistocene incremental slip rates from the east-central Hope fault (Conway segment) at Hossack Station, Marlborough fault system, South Island, New Zealand: Towards a dated path of earthquake slip along a plate boundary fault. Geosphere, 16(6), 1558–1584. https://doi.org/10.1130/ges02263.1 DOI: https://doi.org/10.1130/GES02263.1

Hearn, E. (2022). “Ghost Transient” Corrections to the Southern California GPS Velocity Field from San Andreas Fault Seismic Cycle Models. Seismological Research Letters, 93(6), 2973–2989. https://doi.org/10.1785/0220220156 DOI: https://doi.org/10.1785/0220220156

Hearn, E. H., Pollitz, F. F., Thatcher, W. R., & Onishi, C. T. (2013). How do “ghost transients” from past earthquakes affect GPS slip rate estimates on southern California faults? Geochemistry, Geophysics, Geosystems, 14(4), 828–838. https://doi.org/10.1002/ggge.20080 DOI: https://doi.org/10.1002/ggge.20080

Kirby, M. E., Heusser, L., Scholz, C., Ramezan, R., Anderson, M. A., Markle, B., Rhodes, E., Glover, K. C., Fantozzi, J., Hiner, C., Price, B., & Rangel, H. (2018). A late Wisconsin (32–10k cal a BP) history of pluvials, droughts and vegetation in the Pacific south‐west United States (Lake Elsinore, CA). Journal of Quaternary Science, 33(2), 238–254. https://doi.org/10.1002/jqs.3018 DOI: https://doi.org/10.1002/jqs.3018

Kozacı, Ö., Dolan, J. F., & Finkel, R. C. (2009). A late Holocene slip rate for the central North Anatolian fault, at Tahtaköprü, Turkey, from cosmogenic 10Be geochronology: Implications for fault loading and strain release rates. Journal of Geophysical Research: Solid Earth, 114(B1). https://doi.org/10.1029/2008jb005760 DOI: https://doi.org/10.1029/2008JB005760

Loomis, D. P., & Burbank, D. W. (1988). The stratigraphic evolution of the El Paso basin, southern California: Implications for the Miocene development of the Garlock fault and uplift of the Sierra Nevada. Geological Society of America Bulletin, 100(1), 12–28. https://doi.org/10.1130/0016-7606(1988)100<0012:tseote>2.3.co;2 DOI: https://doi.org/10.1130/0016-7606(1988)100<0012:TSEOTE>2.3.CO;2

Madden Madugo, C., Dolan, J. F., & Hartleb, R. D. (2012). New Paleoearthquake Ages from the Western Garlock Fault: Implications for Regional Earthquake Occurrence in Southern California. Bulletin of the Seismological Society of America, 102(6), 2282–2299. https://doi.org/10.1785/0120110310 DOI: https://doi.org/10.1785/0120110310

McClusky, S. C., Bjornstad, S. C., Hager, B. H., King, R. W., Meade, B. J., Miller, M. M., Monastero, F. C., & Souter, B. J. (2001). Present day kinematics of the Eastern California Shear Zone from a geodetically constrained block model. Geophysical Research Letters, 28(17), 3369–3372. https://doi.org/10.1029/2001gl013091 DOI: https://doi.org/10.1029/2001GL013091

McGill, Sally F., & Sieh, K. (1991). Surficial offsets on the Central and Eastern Garlock Fault associated with prehistoric earthquakes. Journal of Geophysical Research: Solid Earth, 96(B13), 21597–21621. https://doi.org/10.1029/91jb02030 DOI: https://doi.org/10.1029/91JB02030

McGill, Sally F., Wells, S. G., Fortner, S. K., Kuzma, H. A., & McGill, J. D. (2009). Slip rate of the western Garlock fault, at Clark Wash, near Lone Tree Canyon, Mojave Desert, California. Geological Society of America Bulletin, 121(3–4), 536–554. https://doi.org/10.1130/b26123.1 DOI: https://doi.org/10.1130/B26123.1

McGill, S. H. F. (1992). Paleoseismology and neotectonics of the central and eastern Garlock fault, California [[Doctoral dissertation],]. California Institute of Technology.

McGill, S., & Rockwell, T. (1998). Ages of Late Holocene earthquakes on the central Garlock fault near El Paso Peaks, California. Journal of Geophysical Research: Solid Earth, 103(B4), 7265–7279. https://doi.org/10.1029/97jb02129 DOI: https://doi.org/10.1029/97JB02129

McGill, S., & Sieh, K. (1993). Holocene slip rate of the Central Garlock Fault in southeastern Searles Valley, California. Journal of Geophysical Research: Solid Earth, 98(B8), 14217–14231. https://doi.org/10.1029/93jb00442 DOI: https://doi.org/10.1029/93JB00442

Meade, B. J., & Hager, B. H. (2005). Block models of crustal motion in southern California constrained by GPS measurements. Journal of Geophysical Research: Solid Earth, 110(B3). https://doi.org/10.1029/2004jb003209 DOI: https://doi.org/10.1029/2004JB003209

Miller, M. M., Johnson, D. J., Dixon, T. H., & Dokka, R. K. (2001). Refined kinematics of the eastern California shear zone from GPS observations, 1993–1998. Journal of Geophysical Research: Solid Earth, 106(B2), 2245–2263. https://doi.org/10.1029/2000jb900328 DOI: https://doi.org/10.1029/2000JB900328

Monastero, F. C., Sabin, A. E., & Walker, J. D. (1997). Evidence for post-early Miocene initiation of movement on the Garlock fault from offset of the Cudahy Camp Formation, east-central California. Geology, 25(3), 247. https://doi.org/10.1130/0091-7613(1997)025<0247:efpemi>2.3.co;2 DOI: https://doi.org/10.1130/0091-7613(1997)025<0247:EFPEMI>2.3.CO;2

Moulin, A., & Cowgill, E. (2023). The Mojave Section of the San Andreas Fault (California), 2: Pleistocene Records of Near‐Field Transpression Illuminate the Atypical Evolution of the Restraining “Big Bend.” Geochemistry, Geophysics, Geosystems, 24(10). https://doi.org/10.1029/2023gc010897 DOI: https://doi.org/10.1029/2023GC010897

Ninis, D., Little, T. A., Van Dissen, R. J., Litchfield, N. J., Smith, E. G. C., Wang, N., Rieser, U., & Mark Henderson, C. (2013). Slip Rate on the Wellington Fault, New Zealand, during the Late Quaternary: Evidence for Variable Slip during the Holocene. Bulletin of the Seismological Society of America, 103(1), 559–579. https://doi.org/10.1785/0120120162 DOI: https://doi.org/10.1785/0120120162

Noriega, G. R., Arrowsmith, J. R., Grant, L. B., & Young, J. J. (2006). Stream Channel Offset and Late Holocene Slip Rate of the San Andreas Fault at the Van Matre Ranch Site, Carrizo Plain, California. Bulletin of the Seismological Society of America, 96(1), 33–47. https://doi.org/10.1785/0120050094 DOI: https://doi.org/10.1785/0120050094

Onderdonk, N. W., McGill, S. F., & Rockwell, T. K. (2015). Short-term variations in slip rate and size of prehistoric earthquakes during the past 2000 years on the northern San Jacinto fault zone, a major plate-boundary structure in southern California. Lithosphere, 7(3), 211–234. https://doi.org/10.1130/l393.1 DOI: https://doi.org/10.1130/L393.1

Owen, L. A., Frankel, K. L., Knott, J. R., Reynhout, S., Finkel, R. C., Dolan, J. F., & Lee, J. (2011). Beryllium-10 terrestrial cosmogenic nuclide surface exposure dating of Quaternary landforms in Death Valley. Geomorphology, 125(4), 541–557. https://doi.org/10.1016/j.geomorph.2010.10.024 DOI: https://doi.org/10.1016/j.geomorph.2010.10.024

Peltzer, G., Crampé, F., Hensley, S., & Rosen, P. (2001). Transient strain accumulation and fault interaction in the Eastern California shear zone. Geology, 29(11), 975. https://doi.org/10.1130/0091-7613(2001)029<0975:tsaafi>2.0.co;2 DOI: https://doi.org/10.1130/0091-7613(2001)029<0975:TSAAFI>2.0.CO;2

Pena, K. (2019). Paleoseismology of the central Garlock fault in Searles Valley. California State University. DOI: https://doi.org/10.1130/abs/2018AM-321087

Platt, J. P., & Becker, T. W. (2013). Kinematics of rotating panels of E–W faults in the San Andreas system: what can we tell from geodesy? Geophysical Journal International, 194(3), 1295–1301. https://doi.org/10.1093/gji/ggt189 DOI: https://doi.org/10.1093/gji/ggt189

Reimer, P. J., Austin, W. E. N., Bard, E., Bayliss, A., Blackwell, P. G., Bronk Ramsey, C., Butzin, M., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kromer, B., Manning, S. W., Muscheler, R., … Talamo, S. (2020). The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP). Radiocarbon, 62(4), 725–757. https://doi.org/10.1017/rdc.2020.41 DOI: https://doi.org/10.1017/RDC.2020.41

Rhodes, E. J. (2015). Dating sediments using potassium feldspar single-grain IRSL: Initial methodological considerations. Quaternary International, 362, 14–22. https://doi.org/10.1016/j.quaint.2014.12.012 DOI: https://doi.org/10.1016/j.quaint.2014.12.012

Rittase, W. M., Kirby, E., McDonald, E., Walker, J. D., Gosse, J., Spencer, J. Q. G., & Herrs, A. J. (2014). Temporal variations in Holocene slip rate along the central Garlock fault, Pilot Knob Valley, California. Lithosphere, 6(1), 48–58. https://doi.org/10.1130/l286.1 DOI: https://doi.org/10.1130/L286.1

Saha, S., Moon, S., Brown, N. D., Rhodes, E. J., Scharer, K. M., McPhillips, D., McGill, S. F., & Castillo, B. A. (2021). Holocene Depositional History Inferred From Single‐Grain Luminescence Ages in Southern California, North America. Geophysical Research Letters, 48(15). https://doi.org/10.1029/2021gl092774 DOI: https://doi.org/10.1029/2021GL092774

Salisbury, J. B., Arrowsmith, J. R., Brown, N., Rockwell, T., Akciz, S., & Ludwig, L. G. (2018). The Age and Origin of Small Offsets at Van Matre Ranch along the San Andreas Fault in the Carrizo Plain, California. Bulletin of the Seismological Society of America, 108(2), 639–653. https://doi.org/10.1785/0120170162 DOI: https://doi.org/10.1785/0120170162

Savage, J. C., Gan, W., & Svarc, J. L. (2001). Strain accumulation and rotation in the Eastern California Shear Zone. Journal of Geophysical Research: Solid Earth, 106(B10), 21995–22007. https://doi.org/10.1029/2000jb000127 DOI: https://doi.org/10.1029/2000JB000127

Savage, J. C., Lisowski, M., & Prescott, W. H. (1990). An apparent shear zone trending north‐northwest across the Mojave Desert into Owens Valley, eastern California. Geophysical Research Letters, 17(12), 2113–2116. https://doi.org/10.1029/gl017i012p02113 DOI: https://doi.org/10.1029/GL017i012p02113

Savage, J. C., Prescott, W. H., Lisowski, M., & King, N. E. (1981). Strain accumulation in southern California, 1973–1980. Journal of Geophysical Research: Solid Earth, 86(B8), 6991–7001. https://doi.org/10.1029/jb086ib08p06991 DOI: https://doi.org/10.1029/JB086iB08p06991

Smith, George I. (1962). Large Lateral Displacement on Garlock Fault, California, as Measured from Offset Dike Swarm. AAPG Bulletin, 46. https://doi.org/10.1306/bc74375f-16be-11d7-8645000102c1865d DOI: https://doi.org/10.1306/BC74375F-16BE-11D7-8645000102C1865D

Smith, George I. (1964). Geology and volcanic petrology of the Lava Mountains, San Bernardino County, California. In Professional Paper. US Geological Survey. https://doi.org/10.3133/pp457 DOI: https://doi.org/10.3133/pp457

Smith, G.I., & Ketner, K. B. (1970). Lateral displacement on the Garlock fault, southeastern California, suggested by offset sections of similar metasedimentary rocks. United States Geological Survey Professional Paper, 700.

US Geological Survey, & California Geological Survey. (2023). Quaternary fault and fold database for the United States. https://www.usgs.gov/natural-hazards/earthquake-hazards/faults

Van Dissen, R., Abbott, E., Zinke, R., Ninis, D., Dolan, J., Little, T., Rhodes, E., Litchfield, N., & Hatem, A. (2020). Slip rate variations on major strike-slip faults in central New Zealand and potential impacts on hazard estimation. https://repo.nzsee.org.nz/handle/nzsee/1691

Wallace, R. E. (1987). Grouping and migration of surface faulting and variations in slip rates on faults in the Great Basin province. Bulletin of the Seismological Society of America, 77(3), 868–876. https://doi.org/10.1785/BSSA0770030868

Weldon, R., Scharer, K., Fumal, T., & Biasi, G. (2004). Wrightwood and the earthquake cycle: What a long recurrence record tells us about how faults work. GSA Today, 14(9), 4. https://doi.org/10.1130/1052-5173(2004)014<4:watecw>2.0.co;2 DOI: https://doi.org/10.1130/1052-5173(2004)014<4:WATECW>2.0.CO;2

Zinke, R. (2021). rzinke/RISeR: RISeR full release (v1.0). https://doi.org/10.5281/zenodo.4733235

Zinke, R., Dolan, J. F., Rhodes, E. J., Van Dissen, R. J., Hatem, A. E., McGuire, C. P., Brown, N. D., & Grenader, J. R. (2021). Latest Pleistocene–Holocene Incremental Slip Rates of the Wairau Fault: Implications for Long‐Distance and Long‐Term Coordination of Faulting Between North and South Island, New Zealand. Geochemistry, Geophysics, Geosystems, 22(9). https://doi.org/10.1029/2021gc009656 DOI: https://doi.org/10.1029/2021GC009656

Zinke, Robert, Dolan, J. F., Rhodes, E. J., Van Dissen, R., & McGuire, C. P. (2017). Highly Variable Latest Pleistocene‐Holocene Incremental Slip Rates on the Awatere Fault at Saxton River, South Island, New Zealand, Revealed by Lidar Mapping and Luminescence Dating. Geophysical Research Letters, 44(22). https://doi.org/10.1002/2017gl075048 DOI: https://doi.org/10.1002/2017GL075048

Zinke, Robert, Dolan, J. F., Rhodes, E. J., Van Dissen, R., McGuire, C. P., Hatem, A. E., Brown, N. D., & Langridge, R. M. (2019). Multimillennial Incremental Slip Rate Variability of the Clarence Fault at the Tophouse Road Site, Marlborough Fault System, New Zealand. Geophysical Research Letters, 46(2), 717–725. https://doi.org/10.1029/2018gl080688 DOI: https://doi.org/10.1029/2018GL080688

Additional Files

Published

2024-07-05

How to Cite

Fougere, D., Dolan, J., Rhodes, E., & McGill, S. (2024). Refined Holocene Slip Rate for the Western and Central Segments of the Garlock Fault: Record of Alternating Millennial-Scale Periods of Fast and Slow Fault Slip. Seismica, 3(2). https://doi.org/10.26443/seismica.v3i2.1202

Issue

Section

Articles