The influence of ground shaking on the distribution and size of coseismic landslides from the Mw 7.6 2005 Kashmir earthquake

Authors

  • Audrey Dunham Department of Geoscience, University of Arizona, Tucson, AZ, 85721
  • Eric Kiser Department of Geoscience, University of Arizona, Tucson, AZ, 85721 https://orcid.org/0000-0001-9792-2447
  • Jeffrey Kargel Planetary Science Institute, Tucson AZ, 85719
  • Umesh Haritashya Department of Geology and Environmental Geosciences, University of Dayton, Dayton, OH 45469 https://orcid.org/0000-0001-9527-954X
  • C. Scott Watson COMET, School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK https://orcid.org/0000-0003-2656-961X
  • Daniel Shugar Water, Sediment, Hazards, and Earth-surface Dynamics (waterSHED) Lab, Department of Geoscience, University of Calgary, Canada https://orcid.org/0000-0002-6279-8420

DOI:

https://doi.org/10.26443/seismica.v3i2.1203

Keywords:

Earthquake ground motion, Computational seismology

Abstract

Understanding the conditions that governed the distribution of coseismic landslide frequency and size from past earthquakes is imperative for quantifying the hazard potential of future events. However, it remains a challenge to evaluate the many factors controlling coseismic landsliding including ground shaking, topography, rock strength, and hydrology, among others, for any given earthquake, partly due to the lack of direct seismic observations in high mountain regions. To address the dearth of ground motion observations near triggered landslides, we develop simulated ground motions, including topographic amplification, to investigate these key factors that control the distribution of coseismic landslides from the Mw 7.6 2005 Kashmir earthquake. We show that the combination of strong peak ground motions, steep slopes, proximity to faults and rivers, and lithology control the overall spatial distribution of landslides. We also investigate the role of topographic amplification in triggering the largest landslide induced by this earthquake, the Hattian Bala landslide, finding that it is amplified at the landslide initiation point due to the trapping of energy within the ridge kink as it changes orientation from E to NE. This focusing effect combined with predisposing conditions for hillslope failure may have influenced the location and size of this devastating landslide.

References

Abrahamson, N. A., & Somerville, P. G. (1996). Effects of the hanging wall and footwall on ground motions recorded during the Northridge earthquake. Bulletin of the Seismological Society of America, 86(1B), S93–S99. https://doi.org/10.1785/bssa08601b0s93 DOI: https://doi.org/10.1785/BSSA08601B0S93

Allstadt, K. E., Jibson, R. W., Thompson, E. M., Massey, C. I., Wald, D. J., Godt, J. W., & Rengers, F. K. (2018). Improving Near‐Real‐Time Coseismic Landslide Models: Lessons Learned from the 2016 Kaikōura, New Zealand, Earthquake. Bulletin of the Seismological Society of America, 108(3B), 1649–1664. https://doi.org/10.1785/0120170297 DOI: https://doi.org/10.1785/0120170297

Asimaki, D., & Mohammadi, K. (2018). On the complexity of seismic waves trapped in irregular topographies. Soil Dynamics and Earthquake Engineering, 114, 424–437. https://doi.org/10.1016/j.soildyn.2018.07.020 DOI: https://doi.org/10.1016/j.soildyn.2018.07.020

Assimaki, D., & Jeong, S. (2013). Ground-Motion Observations at Hotel Montana during the M 7.0 2010 Haiti Earthquake: Topography or Soil Amplification? Bulletin of the Seismological Society of America, 103(5), 2577–2590. https://doi.org/10.1785/0120120242 DOI: https://doi.org/10.1785/0120120242

Avouac, J.-P., Ayoub, F., Leprince, S., Konca, O., & Helmberger, D. V. (2006). The 2005, Mw 7.6 Kashmir earthquake: Sub-pixel correlation of ASTER images and seismic waveforms analysis. Earth and Planetary Science Letters, 249(3–4), 514–528. https://doi.org/10.1016/j.epsl.2006.06.025 DOI: https://doi.org/10.1016/j.epsl.2006.06.025

Basharat, M., Ali, A., Jadoon, I. A. K., & Rohn, J. (2016). Using PCA in evaluating event-controlling attributes of landsliding in the 2005 Kashmir earthquake region, NW Himalayas, Pakistan. Natural Hazards, 81(3), 1999–2017. https://doi.org/10.1007/s11069-016-2172-9 DOI: https://doi.org/10.1007/s11069-016-2172-9

Basharat, M., Riaz, M. T., Jan, M. Q., Xu, C., & Riaz, S. (2021). A review of landslides related to the 2005 Kashmir Earthquake: implication and future challenges. Natural Hazards, 108(1), 1–30. https://doi.org/10.1007/s11069-021-04688-8 DOI: https://doi.org/10.1007/s11069-021-04688-8

Basharat, M., Rohn, J., Baig, M. S., & Khan, M. R. (2014). Spatial distribution analysis of mass movements triggered by the 2005 Kashmir earthquake in the Northeast Himalayas of Pakistan. Geomorphology, 206, 203–214. https://doi.org/10.1016/j.geomorph.2013.09.025 DOI: https://doi.org/10.1016/j.geomorph.2013.09.025

Bilham, R. (2019). Himalayan earthquakes: a review of historical seismicity and early 21st century slip potential. Geological Society, London, Special Publications, 483(1), 423–482. https://doi.org/10.1144/sp483.16 DOI: https://doi.org/10.1144/SP483.16

Borcherdt, R. D. (1970). Effects of local geology on ground motion near San Francisco Bay. Bulletin of the Seismological Society of America, 60(1), 29–61.

Bourdeau, C., Havenith, H.-B., Fleurisson, J.-A., & Grandjean, G. (2004). Numerical Modelling of Seismic Slope Stability. In Lecture Notes in Earth Sciences (pp. 671–684). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-39918-6_74 DOI: https://doi.org/10.1007/978-3-540-39918-6_74

Calkins, J. A., Offield, T. W., Abdullah, S. K., & Ali, S. T. (1975). Geology of the southern Himalaya in Hazara, Pakistan, and adjacent areas. In Professional Paper. US Geological Survey. https://doi.org/10.3133/pp716c DOI: https://doi.org/10.3133/pp716C

Chen, K., Xu, W., Mai, P. M., Gao, H., Zhang, L., & Ding, X. (2018). The 2017 Mw 7.3 Sarpol Zahāb Earthquake, Iran: A compact blind shallow-dipping thrust event in the mountain front fault basement. Tectonophysics, 747–748, 108–114. https://doi.org/10.1016/j.tecto.2018.09.015 DOI: https://doi.org/10.1016/j.tecto.2018.09.015

Chung, C.-J. F., & Fabbri, A. G. (2003). Validation of Spatial Prediction Models for Landslide Hazard Mapping. Natural Hazards, 30(3), 451–472. https://doi.org/10.1023/b:nhaz.0000007172.62651.2b DOI: https://doi.org/10.1023/B:NHAZ.0000007172.62651.2b

Dafni, J., & Wartman, J. (2021). Centrifuge Studies of Topographic Effects: Dynamic Response Mechanisms. Bulletin of the Seismological Society of America, 111(4), 2101–2111. https://doi.org/10.1785/0120200353 DOI: https://doi.org/10.1785/0120200353

Dahal, A., Tanyaş, H., & Lombardo, L. (2024). Full seismic waveform analysis combined with transformer neural networks improves coseismic landslide prediction. Communications Earth & Environment, 5(1). https://doi.org/10.1038/s43247-024-01243-8 DOI: https://doi.org/10.1038/s43247-024-01243-8

Dobry, R., Borcherdt, R. D., Crouse, C. B., Idriss, I. M., Joyner, W. B., Martin, G. R., Power, M. S., Rinne, E. E., & Seed, R. B. (2000). New Site Coefficients and Site Classification System Used in Recent Building Seismic Code Provisions. Earthquake Spectra, 16(1), 41–67. https://doi.org/10.1193/1.1586082 DOI: https://doi.org/10.1193/1.1586082

Dunham, A. (2024). Supplementary Movies for “The influence of ground shaking on the distribution and size of coseismic landslides from the Mw 7.6 2005 Kashmir earthquake.” Zenodo. https://doi.org/10.5281/zenodo.12534705

Dunham, A. M., Kiser, E., Kargel, J. S., Haritashya, U. K., Watson, C. S., Shugar, D. H., Hughes, A., & DeCelles, P. G. (2022). Topographic Control on Ground Motions and Landslides From the 2015 Gorkha Earthquake. Geophysical Research Letters, 49(10). https://doi.org/10.1029/2022gl098582 DOI: https://doi.org/10.1029/2022GL098582

Dunning, S. A., Mitchell, W. A., Rosser, N. J., & Petley, D. N. (2007). The Hattian Bala rock avalanche and associated landslides triggered by the Kashmir Earthquake of 8 October 2005. Engineering Geology, 93(3–4), 130–144. https://doi.org/10.1016/j.enggeo.2007.07.003 DOI: https://doi.org/10.1016/j.enggeo.2007.07.003

Fan, X., Domènech, G., Scaringi, G., Huang, R., Xu, Q., Hales, T. C., Dai, L., Yang, Q., & Francis, O. (2018). Spatio-temporal evolution of mass wasting after the 2008 Mw 7.9 Wenchuan earthquake revealed by a detailed multi-temporal inventory. Landslides, 15(12), 2325–2341. https://doi.org/10.1007/s10346-018-1054-5 DOI: https://doi.org/10.1007/s10346-018-1054-5

Fan, X., Scaringi, G., Korup, O., West, A. J., van Westen, C. J., Tanyas, H., Hovius, N., Hales, T. C., Jibson, R. W., Allstadt, K. E., Zhang, L., Evans, S. G., Xu, C., Li, G., Pei, X., Xu, Q., & Huang, R. (2019). Earthquake‐Induced Chains of Geologic Hazards: Patterns, Mechanisms, and Impacts. Reviews of Geophysics, 57(2), 421–503. https://doi.org/10.1029/2018rg000626 DOI: https://doi.org/10.1029/2018RG000626

Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., & Alsdorf, D. (2007). The Shuttle Radar Topography Mission. Reviews of Geophysics, 45(2). https://doi.org/https://doi.org/10.1029/2005RG000183 DOI: https://doi.org/10.1029/2005RG000183

Gorum, T., Fan, X., van Westen, C. J., Huang, R. Q., Xu, Q., Tang, C., & Wang, G. (2011). Distribution pattern of earthquake-induced landslides triggered by the 12 May 2008 Wenchuan earthquake. Geomorphology, 133(3–4), 152–167. https://doi.org/10.1016/j.geomorph.2010.12.030 DOI: https://doi.org/10.1016/j.geomorph.2010.12.030

Gorum, T., Korup, O., van Westen, C. J., van der Meijde, M., Xu, C., & van der Meer, F. D. (2014). Why so few? Landslides triggered by the 2002 Denali earthquake, Alaska. Quaternary Science Reviews, 95, 80–94. https://doi.org/10.1016/j.quascirev.2014.04.032 DOI: https://doi.org/10.1016/j.quascirev.2014.04.032

Görüm, T., Tanyas, H., Karabacak, F., Yılmaz, A., Girgin, S., Allstadt, K. E., Süzen, M. L., & Burgi, P. (2023). Preliminary documentation of coseismic ground failure triggered by the February 6, 2023 Türkiye earthquake sequence. Engineering Geology, 327, 107315. https://doi.org/10.1016/j.enggeo.2023.107315 DOI: https://doi.org/10.1016/j.enggeo.2023.107315

Graves, R. W., & Pitarka, A. (2010). Broadband ground-motion simulation using a hybrid approach. Bulletin of the Seismological Society of America, 100(5 A), 2095–2123. https://doi.org/10.1785/0120100057 DOI: https://doi.org/10.1785/0120100057

Hailemikael, S., Lenti, L., Martino, S., Paciello, A., Rossi, D., & Mugnozza, G. S. (2016). Ground-motion amplification at the Colle di Roio ridge, central Italy: a combined effect of stratigraphy and topography. Geophysical Journal International, 206(1), 1–18. https://doi.org/10.1093/gji/ggw120 DOI: https://doi.org/10.1093/gji/ggw120

Harp, E. L., Hartzell, S. H., Jibson, R. W., Ramirez-Guzman, L., & Schmitt, R. G. (2014). Relation of Landslides Triggered by the Kiholo Bay Earthquake to Modeled Ground Motion. Bulletin of the Seismological Society of America, 104(5), 2529–2540. https://doi.org/10.1785/0120140047 DOI: https://doi.org/10.1785/0120140047

Harp, Edwin L., & Crone, A. J. (2006). Landslides triggered by the October 8, 2005, Pakistan earthquake and associated landslide-dammed reservoirs. In Open-File Report. US Geological Survey. https://doi.org/10.3133/ofr20061052 DOI: https://doi.org/10.3133/ofr20061052

Hartzell, S., Meremonte, M., Ramirez-Guzman, L., & McNamara, D. (2013). Ground Motion in the Presence of Complex Topography: Earthquake and Ambient Noise Sources. Bulletin of the Seismological Society of America, 104(1), 451–466. https://doi.org/10.1785/0120130088 DOI: https://doi.org/10.1785/0120130088

Hartzell, Stephen, Ramírez‐Guzmán, L., Meremonte, M., & Leeds, A. (2016). Ground Motion in the Presence of Complex Topography II: Earthquake Sources and 3D Simulations. Bulletin of the Seismological Society of America, 107(1), 344–358. https://doi.org/10.1785/0120160159 DOI: https://doi.org/10.1785/0120160159

Héloïse, C., Bard, P.-Y., & Rodriguez-Marek, A. (2011). Site effect assessment using KiK-net data: Part 1. A simple correction procedure for surface/downhole spectral ratios. Bulletin of Earthquake Engineering, 10(2), 421–448. https://doi.org/10.1007/s10518-011-9283-1 DOI: https://doi.org/10.1007/s10518-011-9283-1

Huang, R., Pei, X., Fan, X., Zhang, W., Li, S., & Li, B. (2011). The characteristics and failure mechanism of the largest landslide triggered by the Wenchuan earthquake, May 12, 2008, China. Landslides, 9(1), 131–142. https://doi.org/10.1007/s10346-011-0276-6 DOI: https://doi.org/10.1007/s10346-011-0276-6

Jibson, R. W., Harp, E. L., & Michael, J. A. (2000). A method for producing digital probabilistic seismic landslide hazard maps. Engineering Geology, 58(3–4), 271–289. https://doi.org/10.1016/s0013-7952(00)00039-9 DOI: https://doi.org/10.1016/S0013-7952(00)00039-9

Jibson, R. W., & Tanyaş, H. (2020). The influence of frequency and duration of seismic ground motion on the size of triggered landslides—A regional view. Engineering Geology, 273, 105671. https://doi.org/10.1016/j.enggeo.2020.105671 DOI: https://doi.org/10.1016/j.enggeo.2020.105671

Kagawa, T., Irikura, K., & Somerville, P. G. (2004). Differences in ground motion and fault rupture process between the surface and buried rupture earthquakes. Earth, Planets and Space, 56(1), 3–14. https://doi.org/10.1186/bf03352486 DOI: https://doi.org/10.1186/BF03352486

Kamp, U., Growley, B. J., Khattak, G. A., & Owen, L. A. (2008). GIS-based landslide susceptibility mapping for the 2005 Kashmir earthquake region. Geomorphology, 101(4), 631–642. https://doi.org/10.1016/j.geomorph.2008.03.003 DOI: https://doi.org/10.1016/j.geomorph.2008.03.003

Kamp, U., Owen, L. A., Growley, B. J., & Khattak, G. A. (2009). Back analysis of landslide susceptibility zonation mapping for the 2005 Kashmir earthquake: an assessment of the reliability of susceptibility zoning maps. Natural Hazards, 54(1), 1–25. https://doi.org/10.1007/s11069-009-9451-7 DOI: https://doi.org/10.1007/s11069-009-9451-7

Kaneda, H., Nakata, T., Tsutsumi, H., Kondo, H., Sugito, N., Awata, Y., Akhtar, S. S., Majid, A., Khattak, W., Awan, A. A., Yeats, R. S., Hussain, A., Ashraf, M., Wesnousky, S. G., & Kausar, A. B. (2008). Surface Rupture of the 2005 Kashmir, Pakistan, Earthquake and Its Active Tectonic Implications. Bulletin of the Seismological Society of America, 98(2), 521–557. https://doi.org/10.1785/0120070073 DOI: https://doi.org/10.1785/0120070073

Kennett, B. L. N., & Engdahl, E. R. (1991). Traveltimes for global earthquake location and phase identification. Geophysical Journal International, 105(2), 429–465. https://doi.org/10.1111/j.1365-246x.1991.tb06724.x DOI: https://doi.org/10.1111/j.1365-246X.1991.tb06724.x

Khan, S. F., Kamp, U., & Owen, L. A. (2013). Documenting five years of landsliding after the 2005 Kashmir earthquake, using repeat photography. Geomorphology, 197, 45–55. https://doi.org/10.1016/j.geomorph.2013.04.033 DOI: https://doi.org/10.1016/j.geomorph.2013.04.033

Khan, S., van der Meijde, M., van der Werff, H., & Shafique, M. (2020). The impact of topography on seismic amplification during the 2005 Kashmir earthquake. Natural Hazards and Earth System Sciences, 20(2), 399–411. https://doi.org/10.5194/nhess-20-399-2020 DOI: https://doi.org/10.5194/nhess-20-399-2020

Khattak, G. A., Owen, L. A., Kamp, U., & Harp, E. L. (2010). Evolution of earthquake-triggered landslides in the Kashmir Himalaya, northern Pakistan. Geomorphology, 115(1–2), 102–108. https://doi.org/10.1016/j.geomorph.2009.09.035 DOI: https://doi.org/10.1016/j.geomorph.2009.09.035

Komatitsch, D., & Tromp, J. (1999). Introduction to the spectral element method for three-dimensional seismic wave propagation. Geophysical Journal International, 139(3), 806–822. https://doi.org/10.1046/j.1365-246x.1999.00967.x DOI: https://doi.org/10.1046/j.1365-246x.1999.00967.x

Komatitsch, D., & Tromp, J. (2002a). Spectral-element simulations of global seismic wave propagation-I. Validation. Geophysical Journal International, 149(2), 390–412. https://doi.org/10.1046/j.1365-246x.2002.01653.x DOI: https://doi.org/10.1046/j.1365-246X.2002.01653.x

Komatitsch, D., & Tromp, J. (2002b). Spectral-element simulations of global seismic wave propagation-II. Three-dimensional models, oceans, rotation and self-gravitation. Geophysical Journal International, 150(1), 303–318. https://doi.org/10.1046/j.1365-246x.2002.01716.x DOI: https://doi.org/10.1046/j.1365-246X.2002.01716.x

Konagai, K., & Sattar, A. (2011). Partial breaching of Hattian Bala Landslide Dam formed in the 8th October 2005 Kashmir Earthquake, Pakistan. Landslides, 9(1), 1–11. https://doi.org/10.1007/s10346-011-0280-x DOI: https://doi.org/10.1007/s10346-011-0280-x

Konno, K., & Ohmachi, T. (1998). Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bulletin of the Seismological Society of America, 88(1), 228–241. https://doi.org/10.1785/bssa0880010228 DOI: https://doi.org/10.1785/BSSA0880010228

Kramer, S. L. (1996). Geotechnical Earthquake Engineering. Prentice-Hall.

Lee, S., Chen, H., & Ma, K. (2007). Strong ground motion simulation of the 1999 Chi‐Chi, Taiwan earthquake from a realistic three‐dimensional source and crustal structure. Journal of Geophysical Research: Solid Earth, 112(B6). https://doi.org/10.1029/2006jb004615 DOI: https://doi.org/10.1029/2006JB004615

Lee, S.-J., Chan, Y.-C., Komatitsch, D., Huang, B.-S., & Tromp, J. (2009). Effects of Realistic Surface Topography on Seismic Ground Motion in the Yangminshan Region of Taiwan Based Upon the Spectral-Element Method and LiDAR DTM. Bulletin of the Seismological Society of America, 99(2A), 681–693. https://doi.org/10.1785/0120080264 DOI: https://doi.org/10.1785/0120080264

Mahesh, P., Rai, S. S., Sivaram, K., Paul, A., Gupta, S., Sarma, R., & Gaur, V. K. (2013). One‐Dimensional Reference Velocity Model and Precise Locations of Earthquake Hypocenters in the Kumaon–Garhwal Himalaya. Bulletin of the Seismological Society of America, 103(1), 328–339. https://doi.org/10.1785/0120110328 DOI: https://doi.org/10.1785/0120110328

Mahmood, I., Qureshi, S. N., Tariq, S., Atique, L., & Iqbal, M. F. (2015). Analysis of Landslides Triggered by October 2005, Kashmir Earthquake. PLoS Currents. https://doi.org/10.1371/currents.dis.0bc3ebc5b8adf5c7fe9fd3d702d44a99 DOI: https://doi.org/10.1371/currents.dis.0bc3ebc5b8adf5c7fe9fd3d702d44a99

Marano, K. D., Wald, D. J., & Allen, T. I. (2009). Global earthquake casualties due to secondary effects: a quantitative analysis for improving rapid loss analyses. Natural Hazards, 52(2), 319–328. https://doi.org/10.1007/s11069-009-9372-5 DOI: https://doi.org/10.1007/s11069-009-9372-5

Marc, O., Hovius, N., Meunier, P., Gorum, T., & Uchida, T. (2016). A seismologically consistent expression for the total area and volume of earthquake‐triggered landsliding. Journal of Geophysical Research: Earth Surface, 121(4), 640–663. https://doi.org/10.1002/2015jf003732 DOI: https://doi.org/10.1002/2015JF003732

Marc, O., Stumpf, A., Malet, J.-P., Gosset, M., Uchida, T., & Chiang, S.-H. (2018). Initial insights from a global database of rainfall-induced landslide inventories: the weak influence of slope and strong influence of total storm rainfall. Earth Surface Dynamics, 6(4), 903–922. https://doi.org/10.5194/esurf-6-903-2018 DOI: https://doi.org/10.5194/esurf-6-903-2018

Massa, M., Barani, S., & Lovati, S. (2014). Overview of topographic effects based on experimental observations: meaning, causes and possible interpretations. Geophysical Journal International, 197(3), 1537–1550. https://doi.org/10.1093/gji/ggt341 DOI: https://doi.org/10.1093/gji/ggt341

Massey, C., Townsend, D., Rathje, E., Allstadt, K. E., Lukovic, B., Kaneko, Y., Bradley, B., Wartman, J., Jibson, R. W., Petley, D. N., Horspool, N., Hamling, I., Carey, J., Cox, S., Davidson, J., Dellow, S., Godt, J. W., Holden, C., Jones, K., … Villeneuve, M. (2018). Landslides Triggered by the 14 November 2016 Mw 7.8 Kaikōura Earthquake, New Zealand. Bulletin of the Seismological Society of America, 108(3B), 1630–1648. https://doi.org/10.1785/0120170305 DOI: https://doi.org/10.1785/0120170305

Maufroy, E., Cruz‐Atienza, V. M., Cotton, F., & Gaffet, S. (2014). Frequency‐Scaled Curvature as a Proxy for Topographic Site‐Effect Amplification and Ground‐Motion Variability. Bulletin of the Seismological Society of America, 105(1), 354–367. https://doi.org/10.1785/0120140089 DOI: https://doi.org/10.1785/0120140089

Meunier, P., Hovius, N., & Haines, A. J. (2007). Regional patterns of earthquake‐triggered landslides and their relation to ground motion. Geophysical Research Letters, 34(20). https://doi.org/10.1029/2007gl031337 DOI: https://doi.org/10.1029/2007GL031337

Meunier, P., Hovius, N., & Haines, J. A. (2008). Topographic site effects and the location of earthquake induced landslides. Earth and Planetary Science Letters, 275(3–4), 221–232. https://doi.org/10.1016/j.epsl.2008.07.020 DOI: https://doi.org/10.1016/j.epsl.2008.07.020

Mir, R. R., Parvez, I. A., Gaur, V. K., Ashish, Chandra, R., & Romshoo, S. A. (2017). Crustal Structure beneath the Kashmir Basin Adjoining the Western Himalayan Syntaxis. Bulletin of the Seismological Society of America, 107(5), 2443–2458. https://doi.org/10.1785/0120150334 DOI: https://doi.org/10.1785/0120150334

Nowicki Jessee, M. A., Hamburger, M. W., Allstadt, K., Wald, D. J., Robeson, S. M., Tanyas, H., Hearne, M., & Thompson, E. M. (2018). A Global Empirical Model for Near‐Real‐Time Assessment of Seismically Induced Landslides. Journal of Geophysical Research: Earth Surface, 123(8), 1835–1859. https://doi.org/10.1029/2017jf004494 DOI: https://doi.org/10.1029/2017JF004494

Oglesby, D. D., Archuleta, R. J., & Nielsen, S. B. (1998). Earthquakes on Dipping Faults: The Effects of Broken Symmetry. Science, 280(5366), 1055–1059. https://doi.org/10.1126/science.280.5366.1055 DOI: https://doi.org/10.1126/science.280.5366.1055

Owen, L. A., Kamp, U., Khattak, G. A., Harp, E. L., Keefer, D. K., & Bauer, M. A. (2008). Landslides triggered by the 8 October 2005 Kashmir earthquake. Geomorphology, 94(1–2), 1–9. https://doi.org/10.1016/j.geomorph.2007.04.007 DOI: https://doi.org/10.1016/j.geomorph.2007.04.007

Paolucci, R. (2002). Amplification of earthquake ground motion by steep topographic irregularities. Earthquake Engineering & Structural Dynamics, 31(10), 1831–1853. https://doi.org/10.1002/eqe.192 DOI: https://doi.org/10.1002/eqe.192

Parsons, T., Yeats, R. S., Yagi, Y., & Hussain, A. (2006). Static stress change from the 8 October, 2005 M = 7.6 Kashmir earthquake. Geophysical Research Letters, 33(6). https://doi.org/10.1029/2005gl025429 DOI: https://doi.org/10.1029/2005GL025429

Patera, A. T. (1984). A spectral element method for fluid dynamics: Laminar flow in a channel expansion. Journal of Computational Physics, 54(3), 468–488. https://doi.org/10.1016/0021-9991(84)90128-1 DOI: https://doi.org/10.1016/0021-9991(84)90128-1

Pathier, E., Fielding, E. J., Wright, T. J., Walker, R., Parsons, B. E., & Hensley, S. (2006). Displacement field and slip distribution of the 2005 Kashmir earthquake from SAR imagery. Geophysical Research Letters, 33(20). https://doi.org/10.1029/2006gl027193 DOI: https://doi.org/10.1029/2006GL027193

Peiris, N., Rossetto, T., Burton, P., & Mahmood, S. (2006). EEFIT Mission: October 8, 2005 Kashmir Earthquake [In Published Report,]. The Institution of Structural Engineers.

Petley, D., Dunning, S., Rosser, N., & Kausar, A. B. (2006). Incipient Landslides in the Jhelum Valley, Pakistan Following the 8th October 2005 Earthquake. In Disaster mitigation of debris flows, slope failures and landslides (Vol. 47).

Rault, C., Chao, W.-A., Gelis, C., Burtin, A., Chang, J.-M., Marc, O., Lai, T.-S., Wu, Y.-M., Hovius, N., & Meunier, P. (2020). Seismic Response of a Mountain Ridge Prone to Landsliding. Bulletin of the Seismological Society of America, 110(6), 3004–3020. https://doi.org/10.1785/0120190127 DOI: https://doi.org/10.1785/0120190127

Rault, C., Robert, A., Marc, O., Hovius, N., & Meunier, P. (2019). Seismic and geologic controls on spatial clustering of landslides in three large earthquakes. Earth Surface Dynamics, 7(3), 829–839. https://doi.org/10.5194/esurf-7-829-2019 DOI: https://doi.org/10.5194/esurf-7-829-2019

Saba, S. B., van der Meijde, M., & van der Werff, H. (2010). Spatiotemporal landslide detection for the 2005 Kashmir earthquake region. Geomorphology, 124(1–2), 17–25. https://doi.org/10.1016/j.geomorph.2010.07.026 DOI: https://doi.org/10.1016/j.geomorph.2010.07.026

Sarfraz, Y., Basharat, M., Riaz, M. T., Akram, M. S., Ahmed, K. S., & Shahzad, A. (2023). Spatio-temporal evolution of landslides along transportation corridors of Muzaffarabad, Northern Pakistan. Environmental Earth Sciences, 82(5). https://doi.org/10.1007/s12665-023-10822-5 DOI: https://doi.org/10.1007/s12665-023-10822-5

Sato, H. P., Hasegawa, H., Fujiwara, S., Tobita, M., Koarai, M., Une, H., & Iwahashi, J. (2007). Interpretation of landslide distribution triggered by the 2005 Northern Pakistan earthquake using SPOT 5 imagery. Landslides, 4(2), 113–122. https://doi.org/10.1007/s10346-006-0069-5 DOI: https://doi.org/10.1007/s10346-006-0069-5

Sattar, A., & Konagai, K. (2023). Post-formation Behavior of Hattian Landslide Dam and Post-breaching Situation. In Progress in Landslide Research and Technology, Volume 2 Issue 2, 2023 (pp. 299–309). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-44296-4_16 DOI: https://doi.org/10.1007/978-3-031-44296-4_16

Shafique, M. (2020). Spatial and temporal evolution of co-seismic landslides after the 2005 Kashmir earthquake. Geomorphology, 362, 107228. https://doi.org/10.1016/j.geomorph.2020.107228 DOI: https://doi.org/10.1016/j.geomorph.2020.107228

Shafique, M., van der Meijde, M., & Khan, M. A. (2016). A review of the 2005 Kashmir earthquake-induced landslides; from a remote sensing prospective. Journal of Asian Earth Sciences, 118, 68–80. https://doi.org/10.1016/j.jseaes.2016.01.002 DOI: https://doi.org/10.1016/j.jseaes.2016.01.002

Tanyaş, H., Allstadt, K. E., & van Westen, C. J. (2018). An updated method for estimating landslide‐event magnitude. Earth Surface Processes and Landforms, 43(9), 1836–1847. https://doi.org/10.1002/esp.4359 DOI: https://doi.org/10.1002/esp.4359

Valagussa, A., Marc, O., Frattini, P., & Crosta, G. B. (2019). Seismic and geological controls on earthquake-induced landslide size. Earth and Planetary Science Letters, 506, 268–281. https://doi.org/10.1016/j.epsl.2018.11.005 DOI: https://doi.org/10.1016/j.epsl.2018.11.005

Xu, C., Xu, X., Yao, X., & Dai, F. (2014). Three (nearly) complete inventories of landslides triggered by the May 12, 2008 Wenchuan Mw 7.9 earthquake of China and their spatial distribution statistical analysis. Landslides, 11(3), 441–461. https://doi.org/10.1007/s10346-013-0404-6 DOI: https://doi.org/10.1007/s10346-013-0404-6

Yan, Y., Pinel, V., Trouvé, E., Pathier, E., Perrin, J., Bascou, P., & Jouanne, F. (2013). Coseismic displacement field and slip distribution of the 2005 Kashmir earthquake from SAR amplitude image correlation and differential interferometry. Geophysical Journal International, 193(1), 29–46. https://doi.org/10.1093/gji/ggs102 DOI: https://doi.org/10.1093/gji/ggs102

Additional Files

Published

2024-07-29

How to Cite

Dunham, A., Kiser, E., Kargel, J., Haritashya, U., Watson, C. S., & Shugar, D. (2024). The influence of ground shaking on the distribution and size of coseismic landslides from the Mw 7.6 2005 Kashmir earthquake. Seismica, 3(2). https://doi.org/10.26443/seismica.v3i2.1203

Issue

Section

Articles

Funding data