Distributed Acoustic Sensing for aftershock monitoring: the case of the 2019 Mw 4.9 Le Teil earthquake
DOI:
https://doi.org/10.26443/seismica.v4i1.1204Keywords:
Distributed Acoustic Sensing, 2019 Le Teil earthquake, aftershock analysis, Bayesian hypocentre inversionAbstract
Recent developments in Distributed Acoustic Sensing (DAS) have greatly expanded our capabilities for dense geophysical instrumentation by tapping into existing (but unused) fibre-optic telecommunication networks. Leveraging these so-called "dark fibres" permits an extremely rapid deployment of thousands of vibration sensors over distances of several tens of kilometres, which is ideal for rapid postseismic response efforts. Here we report on the use of dark-fibre DAS for monitoring of the aftershock sequence of the 2019-11-11 Mw 4.9 Le Teil, France earthquake. Through comparison with the local seismometer network, we assess the capabilities of the DAS array to detect and locate small-magnitude seismic events. Likely owing to cable deployment and DAS sensing characteristics, we find that the DAS noise floor is up to 3 orders of magnitude higher than that of nearby seismometers, which greatly inhibits the detection and analysis of the low-energy events. However, locating a selected aftershock with DAS yields an accuracy and precision that is comparable to that of the seismic network, even though the DAS array has a relatively unfavourable geometry. Based on these observations we provide a number of recommendations for routinely incorporating DAS into postseismic response protocols, and for optimal use of DAS alongside conventional seismic instrumentation.
References
Ajo-Franklin, J. B., Dou, S., Lindsey, N. J., Monga, I., Tracy, C., Robertson, M., Rodriguez Tribaldos, V., Ulrich, C., Freifeld, B., Daley, T., & Li, X. (2019). Distributed Acoustic Sensing Using Dark Fiber for Near-Surface Characterization and Broadband Seismic Event Detection. Scientific Reports, 9(1), 1–14. https://doi.org/10.1038/s41598-018-36675-8
Bao, F., Zeng, X., Lin, R., Chi, B., Lü, H., & Sha, C. (2022). Detecting Aftershocks of the Ms6.9 Menyuan Earthquake and Mapping Blind Faults by a Distributed Acoustic Sensing Array with an Existing Fiber-Optic Cable. Chinese Science Bulletin, 67(27), 3340–3347. https://doi.org/10.1360/TB-2022-0155
Becker, J. S., Potter, S. H., McBride, S. K., H. Doyle, E. E., Gerstenberger, M. C., & Christophersen, A. (2020). Forecasting for a Fractured Land: A Case Study of the Communication and Use of Aftershock Forecasts from the 2016 Mw 7.8 Kaikōura Earthquake in Aotearoa New Zealand. Seismological Research Letters, 91(6), 3343–3357. https://doi.org/10.1785/0220190354
Bertrand, E., Cornou, C., Gélis, C., Rivet, D., & SISMOB-RESIF. (2019). Le Teil P5 Post Seismic Experiment. https://doi.org/10.15778/RESIF.3C2019
Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., & Wassermann, J. (2010). ObsPy: A Python Toolbox for Seismology. Seismological Research Letters, 81(3), 530–533. https://doi.org/10.1785/gssrl.81.3.530
Bonijoly, D., Perrin, J., Roure, F., Bergerat, F., Courel, L., Elmi, S., & Mignot, A. (1996). The Ardèche Palaeomargin of the South-East Basin of France: Mesozoic Evolution of a Part of the Tethyan Continental Margin (Géologie Profonde de La France Programme). Marine and Petroleum Geology, 13(6), 607–623. https://doi.org/10.1016/0264-8172(95)00075-5
Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J., Wanderman-Milne, S., & Zhang, Q. (2020). JAX: Composable Transformations of Python+NumPy Programs.
Calais, E., Symithe, S., Monfret, T., Delouis, B., Lomax, A., Courboulex, F., Ampuero, J. P., Lara, P. E., Bletery, Q., Chèze, J., Peix, F., Deschamps, A., de Lépinay, B., Raimbault, B., Jolivet, R., Paul, S., St Fleur, S., Boisson, D., Fukushima, Y., … Meng, L. (2022). Citizen Seismology Helps Decipher the 2021 Haiti Earthquake. Science, 376(6590), 283–287. https://doi.org/10.1126/science.abn1045
Causse, M., Cornou, C., Maufroy, E., Grasso, J.-R., Baillet, L., & El Haber, E. (2021). Exceptional Ground Motion during the Shallow Mw 4.9 2019 Le Teil Earthquake, France. Communications Earth & Environment, 2(1), 14. https://doi.org/10.1038/s43247-020-00089-0
Cerveny, V. (2001). Seismic Ray Theory (1st ed.). Cambridge University Press. https://doi.org/10.1017/CBO9780511529399
Cornou, C., Ampuero, J.-P., Aubert, C., Audin, L., Baize, S., Billant, J., Brenguier, F., Causse, M., Chlieh, M., Combey, A., de Michele, M., Delouis, B., Deschamps, A., Ferry, M., Foumelis, M., Froment, B., Gélis, C., Grandin, R., Grasso, J.-R., … Weng, H. (2021). Rapid Response to the M w 4.9 Earthquake of November 11, 2019 in Le Teil, Lower Rhône Valley, France. Comptes Rendus. Géoscience, 353(S1), 1–23. https://doi.org/10.5802/crgeos.30
Correa, J., Egorov, A., Tertyshnikov, K., Bona, A., Pevzner, R., Dean, T., Freifeld, B., & Marshall, S. (2017). Analysis of Signal to Noise and Directivity Characteristics of DAS VSP at near and Far Offsets — A CO2CRC Otway Project Data Example. The Leading Edge, 36(12), 994a1-994a7. https://doi.org/10.1190/tle36120994a1.1
Crameri, F., Shephard, G. E., & Heron, P. J. (2020). The Misuse of Colour in Science Communication. Nature Communications, 11(1), 5444. https://doi.org/10.1038/s41467-020-19160-7
Daley, T. M., Miller, D. E., Dodds, K., Cook, P., & Freifeld, B. M. (2016). Field Testing of Modular Borehole Monitoring with Simultaneous Distributed Acoustic Sensing and Geophone Vertical Seismic Profiles at Citronelle, Alabama. Geophysical Prospecting, 64(5), 1318–1334. https://doi.org/10.1111/1365-2478.12324
Danciu, L., Nandan, S., Reyes, C., Basili, R., Weatherill, G., Beauval, C., Rovida, A., Vilanova, S., Sesetyan, K., Bard, P.-Y., Cotton, F., Wiemer, S., & Giardini, D. (2021). ESHM20 - EFEHR Technical ReportThe 2020 Update of the European Seismic Hazard Model - ESHM20: Model Overview [Techreport]. EFEHR European Facilities of Earthquake Hazard and Risk. https://doi.org/10.12686/A15
Delouis, B., Oral, E., Menager, M., Ampuero, J.-P., Guilhem Trilla, A., Régnier, M., & Deschamps, A. (2022). Constraining the Point Source Parameters of the 11 November 2019 Mw 4.9 Le Teil Earthquake Using Multiple Relocation Approaches, First Motion and Full Waveform Inversions. Comptes Rendus. Géoscience, 353(S1), 493–516. https://doi.org/10.5802/crgeos.78
Delouis, B., van den Ende, M., & Ampuero, J.-P. (2023). Kinematic Rupture Model of the February 6th 2023 Mw7.8 Turkey Earthquake from a Large Set of near-Source Strong Motion Records Combined by GNSS Offsets Reveals Intermittent Supershear Rupture [Preprint]. Preprints. https://doi.org/10.22541/essoar.168286647.71550161/v1
Dou, S., Lindsey, N., Wagner, A. M., Daley, T. M., Freifeld, B., Robertson, M., Peterson, J., Ulrich, C., Martin, E. R., & Ajo-Franklin, J. B. (2017). Distributed Acoustic Sensing for Seismic Monitoring of The Near Surface: A Traffic-Noise Interferometry Case Study. Scientific Reports, 7(1), 11620. https://doi.org/10.1038/s41598-017-11986-4
Font, Y., Kao, H., Lallemand, S., Liu, C.-S., & Chiao, L.-Y. (2004). Hypocentre Determination Offshore of Eastern Taiwan Using the Maximum Intersection Method. Geophysical Journal International, 158(2), 655–675. https://doi.org/10.1111/j.1365-246X.2004.02317.x
Gibbons, S. J., & Ringdal, F. (2006). The Detection of Low Magnitude Seismic Events Using Array-Based Waveform Correlation. Geophysical Journal International, 165(1), 149–166. https://doi.org/10.1111/j.1365-246X.2006.02865.x
Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del Río, J. F., Wiebe, M., Peterson, P., … Oliphant, T. E. (2020). Array Programming with NumPy. Nature, 585(7825), 357–362. https://doi.org/10.1038/s41586-020-2649-2
Hartog, A. H. (2017). An Introduction to Distributed Optical Fibre Sensors. CRC Press. https://doi.org/10.1201/9781315119014
Hauksson, E., Yoon, C., Yu, E., Andrews, J. R., Alvarez, M., Bhadha, R., & Thomas, V. (2020). Caltech/USGS Southern California Seismic Network (SCSN) and Southern California Earthquake Data Center (SCEDC): Data Availability for the 2019 Ridgecrest Sequence. Seismological Research Letters, 91(4), 1961–1970. https://doi.org/10.1785/0220190290
Hunter, J. D. (2007). Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering, 9(3), 90–95. https://doi.org/10.1109/MCSE.2007.55
Hutchison, A. A., & Ghosh, A. (2019). Repeating VLFEs During ETS Events in Cascadia Track Slow Slip and Continue Throughout Inter-ETS Period. Journal of Geophysical Research: Solid Earth, 124(1), 554–565. https://doi.org/10.1029/2018JB016138
Ide, S., Araki, E., & Matsumoto, H. (2021). Very Broadband Strain-Rate Measurements along a Submarine Fiber-Optic Cable off Cape Muroto, Nankai Subduction Zone, Japan. Earth, Planets and Space, 73(1), 63. https://doi.org/10.1186/s40623-021-01385-5
Ip, E., Huang, Y.-K., Huang, M.-F., Yaman, F., Wellbrock, G., Xia, T., Wang, T., Asahi, K., & Aono, Y. (2022). DAS Over 1,007-Km Hybrid Link With 10-Tb/s DP-16QAM Co-propagation Using Frequency-Diverse Chirped Pulses. Journal of Lightwave Technology, 1–10. https://doi.org/10.1109/JLT.2022.3219369
Jousset, P., Currenti, G., Schwarz, B., Chalari, A., Tilmann, F., Reinsch, T., Zuccarello, L., Privitera, E., & Krawczyk, C. M. (2022). Fibre Optic Distributed Acoustic Sensing of Volcanic Events. Nature Communications, 13(1), 1753. https://doi.org/10.1038/s41467-022-29184-w
Jousset, P., Reinsch, T., Ryberg, T., Blanck, H., Clarke, A., Aghayev, R., Hersir, G. P., Henninges, J., Weber, M., & Krawczyk, C. M. (2018). Dynamic Strain Determination Using Fibre-Optic Cables Allows Imaging of Seismological and Structural Features. Nature Communications, 9(1), 2509. https://doi.org/10.1038/s41467-018-04860-y
Kingma, D. P., & Ba, J. (2017). Adam: A Method for Stochastic Optimization. ArXiv:1412.6980 [Cs].
Kuvshinov, B. N. (2016). Interaction of Helically Wound Fibre-Optic Cables with Plane Seismic Waves. Geophysical Prospecting, 64(3), 671–688. https://doi.org/10.1111/1365-2478.12303
Larroque, C., Baize, S., Albaric, J., Jomard, H., Trévisan, J., Godano, M., Cushing, M., Deschamps, A., Sue, C., Delouis, B., Potin, B., Courboulex, F., Régnier, M., Rivet, D., Brunel, D., Chèze, J., Martin, X., Maron, C., & Peix, F. (2022). Seismotectonics of Southeast France: From the Jura Mountains to Corsica. Comptes Rendus. Géoscience, 353(S1), 105–151. https://doi.org/10.5802/crgeos.69
Lengliné, O., Duputel, Z., & Ferrazzini, V. (2016). Uncovering the Hidden Signature of a Magmatic Recharge at Piton de La Fournaise Volcano Using Small Earthquakes. Geophysical Research Letters, 43(9), 4255–4262. https://doi.org/10.1002/2016GL068383
Li, H., Xu, Z., Taylor, G., & Goldstein, T. (2018). Visualizing the Loss Landscape of Neural Nets. Advances in Neural Information Processing Systems, 31.
Li, Z., Shen, Z., Yang, Y., Williams, E., Wang, X., & Zhan, Z. (2021). Rapid Response to the 2019 Ridgecrest Earthquake With Distributed Acoustic Sensing. AGU Advances, 2(2), e2021AV000395. https://doi.org/10.1029/2021AV000395
Lior, I., Sladen, A., Rivet, D., Ampuero, J.-P., Hello, Y., Becerril, C., Martins, H. F., Lamare, P., Jestin, C., Tsagkli, S., & Markou, C. (2021). On the Detection Capabilities of Underwater DAS. Journal of Geophysical Research: Solid Earth, 126(3), e2020JB020925. https://doi.org/10.1029/2020JB020925
Liu, Q., & Wang, D. (2016). Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm. Advances in Neural Information Processing Systems, 29.
Lomax, A., Virieux, J., Volant, P., & Berge-Thierry, C. (2000). Probabilistic Earthquake Location in 3D and Layered Models. In G. Nolet, C. H. Thurber, & N. Rabinowitz (Eds.), Advances in Seismic Event Location (Vol. 18, pp. 101–134). Springer Netherlands. https://doi.org/10.1007/978-94-015-9536-0_5
Luo, B., Jin, G., & Stanek, F. (2021). Near-Field Strain in Distributed Acoustic Sensing-Based Microseismic observationDAS Microseismic near-Field Strain. Geophysics, P49–P60. https://doi.org/10.1190/geo2021-0031.1
Marconato, L., Leloup, P. H., Lasserre, C., Jolivet, R., Caritg, S., Grandin, R., Métois, M., Cavalié, O., & Audin, L. (2022). Insights on Fault Reactivation during the 2019 November 11, M w 4.9 Le Teil Earthquake in Southeastern France, from a Joint 3-D Geological Model and InSAR Time-Series Analysis. Geophysical Journal International, 229(2), 758–775. https://doi.org/10.1093/gji/ggab498
Melgar, D., Taymaz, T., Ganas, A., Crowell, B., Öcalan, T., Kahraman, M., Tsironi, V., Yolsal-Çevikbil, S., Valkaniotis, S., Irmak, T. S., Eken, T., Erman, C., Özkan, B., Dogan, A. H., & Altuntaş, C. (2023). Sub- and Super-Shear Ruptures during the 2023 Mw 7.8 and Mw 7.6 Earthquake Doublet in SE Türkiye. Seismica, 2(3). https://doi.org/10.26443/seismica.v2i3.387
Met Office. (2015). Cartopy: a cartographic python library with a Matplotlib interface. https://scitools.org.uk/cartopy
Michael, A. J., McBride, S. K., Hardebeck, J. L., Barall, M., Martinez, E., Page, M. T., van der Elst, N., Field, E. H., Milner, K. R., & Wein, A. M. (2020). Statistical Seismology and Communication of the USGS Operational Aftershock Forecasts for the 30 November 2018 Mw 7.1 Anchorage, Alaska, Earthquake. Seismological Research Letters, 91(1), 153–173. https://doi.org/10.1785/0220190196
Rawlinson, N., Hauser, J., & Sambridge, M. (2008). Seismic Ray Tracing and Wavefront Tracking in Laterally Heterogeneous Media. In R. Dmowska (Ed.), Advances in Geophysics (Vol. 49, pp. 203–273). Elsevier. https://doi.org/10.1016/S0065-2687(07)49003-3
Reasenberg, P. A., & Jones, L. M. (1989). Earthquake Hazard After a Mainshock in California. Science, 243(4895), 1173–1176. https://doi.org/10.1126/science.243.4895.1173
Ritz, J.-F., Baize, S., Ferry, M., Larroque, C., Audin, L., Delouis, B., & Mathot, E. (2020). Surface Rupture and Shallow Fault Reactivation during the 2019 Mw 4.9 Le Teil Earthquake, France. Communications Earth & Environment, 1(1), 10. https://doi.org/10.1038/s43247-020-0012-z
Ross, Z. E., Trugman, D. T., Hauksson, E., & Shearer, P. M. (2019). Searching for Hidden Earthquakes in Southern California. Science, 364(6442), 767–771. https://doi.org/10.1126/science.aaw6888
Roure, F., Brun, J.-P., Colletta, B., & Van Den Driessche, J. (1992). Geometry and Kinematics of Extensional Structures in the Alpine Foreland Basin of Southeastern France. Journal of Structural Geology, 14(5), 503–519. https://doi.org/10.1016/0191-8141(92)90153-N
Savage, H. M., Kirkpatrick, J. D., Mori, J. J., Brodsky, E. E., Ellsworth, W. L., Carpenter, B. M., Chen, X., Cappa, F., & Kano, Y. (2017). Scientific Exploration of Induced SeisMicity and Stress (SEISMS). Scientific Drilling, 23, 57–63. https://doi.org/10.5194/sd-23-57-2017
Schneider, M., McDowell, M., Guttorp, P., Steel, E. A., & Fleischhut, N. (2022). Effective Uncertainty Visualization for Aftershock Forecast Maps. Natural Hazards and Earth System Sciences, 22(4), 1499–1518. https://doi.org/10.5194/nhess-22-1499-2022
Shelly, D. R. (2020). A High-Resolution Seismic Catalog for the Initial 2019 Ridgecrest Earthquake Sequence: Foreshocks, Aftershocks, and Faulting Complexity. Seismological Research Letters, 91(4), 1971–1978. https://doi.org/10.1785/0220190309
Shelly, D. R., Beroza, G. C., & Ide, S. (2007). Non-Volcanic Tremor and Low-Frequency Earthquake Swarms. Nature, 446(7133), 305–307. https://doi.org/10.1038/nature05666
Sladen, A., Rivet, D., Ampuero, J. P., De Barros, L., Hello, Y., Calbris, G., & Lamare, P. (2019). Distributed Sensing of Earthquakes and Ocean-Solid Earth Interactions on Seafloor Telecom Cables. Nature Communications, 10(1), 1–8. https://doi.org/10.1038/s41467-019-13793-z
Smith, J. D., Ross, Z. E., Azizzadenesheli, K., & Muir, J. B. (2022). HypoSVI: Hypocentre Inversion with Stein Variational Inference and Physics Informed Neural Networks. Geophysical Journal International, 228(1), 698–710. https://doi.org/10.1093/gji/ggab309
The Pandas Development Team. (2020). Pandas-Dev/Pandas: Pandas (latest) [Computer software]. Zenodo. https://doi.org/10.5281/zenodo.3509134
Thouvenot, F., Fréchet, J., Tapponnier, P., Thomas, J.-C., Le Brun, B., Ménard, G., Lacassin, R., Jenatton, L., Grasso, J.-R., Coutant, O., Paul, A., & Hatzfeld, D. (1998). The ML 5.3 Epagny (French Alps) Earthquake of 1996 July 15: A Long-Awaited Event on the Vuache Fault. Geophysical Journal International, 135(3), 876–892. https://doi.org/10.1046/j.1365-246X.1998.00662.x
Trabattoni, A., Biagioli, F., Strumia, C., van den Ende, M., Scotto di Uccio, F., Festa, G., Rivet, D., Sladen, A., Ampuero, J. P., Métaxian, J.-P., & Stutzmann, É. (2023). From Strain to Displacement: Using Deformation to Enhance Distributed Acoustic Sensing Applications. Geophysical Journal International, 235(3), 2372–2384. https://doi.org/10.1093/gji/ggad365
Vallage, A., Bollinger, L., Champenois, J., Duverger, C., Trilla, A. G., Hernandez, B., Pichon, A. L., Listowski, C., Mazet-Roux, G., Menager, M., Pinel-Puysségur, B., & Vergoz, J. (2021). Multitechnology Characterization of an Unusual Surface Rupturing Intraplate Earthquake: The M L 5.4 2019 Le Teil Event in France. Geophysical Journal International, 226(2), 803–813. https://doi.org/10.1093/gji/ggab136
van den Ende, M., Ferrari, A., Sladen, A., & Richard, C. (2023). Deep Deconvolution for Traffic Analysis With Distributed Acoustic Sensing Data. IEEE Transactions on Intelligent Transportation Systems, 24(3), 2947–2962. https://doi.org/10.1109/TITS.2022.3223084
van den Ende, M. P. A., & Ampuero, J.-P. (2021). Evaluating Seismic Beamforming Capabilities of Distributed Acoustic Sensing Arrays. Solid Earth, 12(4), 915–934. https://doi.org/10.5194/se-12-915-2021
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., … SciPy-1.0 Contributors. (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17(3), 261–272. https://doi.org/10.1038/s41592-019-0686-2
Waldhauser, F., & Ellsworth, W. L. (2000). A Double-Difference Earthquake Location Algorithm: Method and Application to the Northern Hayward Fault, California. Bulletin of the Seismological Society of America, 90(6), 1353–1368. https://doi.org/10.1785/0120000006
Wang, R., & Tao, D. (2018). Training Very Deep CNNs for General Non-Blind Deconvolution. IEEE Transactions on Image Processing, 27(6), 2897–2910. https://doi.org/10.1109/TIP.2018.2815084
Welch, P. (1967). The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging over Short, Modified Periodograms. IEEE Transactions on Audio and Electroacoustics, 15(2), 70–73. https://doi.org/10.1109/TAU.1967.1161901
Wu, M., Li, C., Fan, X., Liao, C., & He, Z. (2020). Large-Scale Multiplexed Weak Reflector Array Fabricated with a Femtosecond Laser for a Fiber-Optic Quasi-Distributed Acoustic Sensing System. Optics Letters, 45(13), 3685–3688. https://doi.org/10.1364/OL.395725
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Martijn van den Ende, Jean-Paul Ampuero, Françoise Courboulex, Bertrand Delouis, Maxime Godano, Christophe Larroque, Anthony Sladen

This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
Horizon 2020
Grant numbers 101041092 -
Agence Nationale de la Recherche
Grant numbers ANR-15-IDEX-01