Earthquake Moment Magnitudes from Peak Ground Displacements and Synthetic Green's Functions

Authors

  • Torsten Dahm Physics of Earthquakes and Volcanoes, GFZ German Research Centre for Geosciences, Potsdam, Germany | Institute for Earth and Environment, University of Potsdam, Potsdam, Germany https://orcid.org/0000-0001-6432-7422
  • Daniela Kühn Physics of Earthquakes and Volcanoes, GFZ German Research Centre for Geosciences, Potsdam, Germany | Applied Seismology, NORSAR, Kjeller, Norway https://orcid.org/0000-0002-2448-1510
  • Simone Cesca Physics of Earthquakes and Volcanoes, GFZ German Research Centre for Geosciences, Potsdam, Germany | Institute for Earth and Environment, University of Potsdam, Potsdam, Germany https://orcid.org/0000-0001-9419-3904
  • Marius Isken Physics of Earthquakes and Volcanoes, GFZ German Research Centre for Geosciences, Potsdam, Germany https://orcid.org/0000-0003-2464-1630
  • Sebastian Heimann Institute for Earth and Environment, University of Potsdam, Potsdam, Germany https://orcid.org/0000-0003-0096-7193

DOI:

https://doi.org/10.26443/seismica.v3i2.1205

Abstract

We suggest an approach employing full waveforms from synthetic seismograms to estimate moment magnitudes and their uncertainties from peak amplitudes. The new method is theoretically derived. It does not change the established routines of traditional procedures for magnitude determination, while overcoming some of the limitations such as saturation, scattering and source complexity. Attenuation functions are derived on-the-fly for each source-station combination from synthetic seismograms using Green's function databases representing various velocity models if required. In a bootstrap approach, source depth, geometry, dynamic and kinematic parameters are randomly selected within a realistic range. After calibration with observations, attenuation functions can be extrapolated to distances, depths, regions and magnitudes for which no observations exist. Additionally, individual frequency filters and sensor types can be mixed independently of any definition of traditional magnitude scales. Uncertainties of attenuation functions are estimated for every source-station geometry including the sensor characteristics and its potential frequency saturation. Therefore, realistic uncertainties of mean magnitudes can be estimated even in case of only few measurements. The method is especially useful to estimate local and moment magnitudes for temporary deployments or for monitoring induced seismicity in regions with only few tectonic events.

References

Aki, K. (1966). Generation and propagation of G waves from the Niigata earthquake of June 1964. Bull. Earthq. Res. Inst., Univ. Tokyo, 44, 23-88.

Aki, K., & Richards, P. (2002). Quantitative Seismology, 2nd edition. W. H. Freeman and Co., San Francisco.

Al-Ismail, F., Ellsworth, W., & Beroza, G. (2020). Empirical and Synthetic Approaches to the Calibration of the Local Magnitude Scale, ML, in Southern Kansas. Bulletin of the Seismological Society of America, 110(2), 689–697.

Al-Ismail, F., Ellsworth, W., & Beroza, G. (2023). A Time-Domain Approach for Accurate Spectral Source Estimation with Application to Ridgecrest, California, Earthquakes. Bulletin of the Seismological Society of America, 113(3), 1091–1101.

Bassin, C. (2000). The current limits of resolution for surface wave tomography in North America. EOS Trans. AGU. 81: Fall Meet. Suppl., Abstract.

Bendat, J., & Piersol, A. (2010). Random Data: Analysis and Measurement Procedures. Wiley.

Bindi, D., Spallarossa, D., Picozzi, M., Oth, A., Morasca, P., & Mayeda, K. (2023). The Community Stress‐Drop Validation Study—Part I: Source, Propagation, and Site Decomposition of Fourier Spectra.. Seismological Research Letters, 94((4)), 1980–1991.

Bindi, D., Spallarossa, D., Picozzi, M., Oth, A., Morasca, P., & Mayeda, K. (2023). The Community Stress‐Drop Validation Study—Part II: Uncertainties of the Source Parameters and Stress Drop Analysis.. Seismological Research Letters, 94((4)), 1992–2002.

Browitt, C. (1999). EMSC Newsletter No 15. European-Mediterranean Seismological Centre, 15, 1-12, https://www.emsc-csem.org/Files/docs/data/newsletters/newsletter_15.pdf.

Büyükakpınar, P., Isken, M., Heimann, S., Kühn, D., Starke, J., López Comino, J., Cesca, S., Doubravová, J., Gudnason, E., & Ágústsdóttir, T. (2024). Understanding the Seismic Signature of Transtensional Opening in the Reykjanes Peninsula Rift Zone, SW Iceland. Journal of Geophysical Research: Solid Earth, DOI: 10.1029/2024JB029566.

Bischoff, M., Cete, A., Fritschen, R., & Meier, T. (2009). Coal Mining Induced Seismicity in the Ruhr Area, Germany. Pure and Applied Geophysics, 167(1–2), 63–75.

Boore, D. (1989). The Richter scale: its development and use for determining earthquake source parameters. Tectonophysics, 166(1–3), 1–14.

Bormann, P., Wendt, S., & Di Giacomo, D. (2013). Seismic sources and source parameters. New Manual of Seismological Observatory Practice (NMSOP-2), 1-259.

Bourne, S., Oates, S., Elk, J., & Doornhof, D. (2014). A seismological model for earthquakes induced by fluid extraction from a subsurface reservoir. Journal of Geophysical Research: Solid Earth, 119(12), 8991–9015.

Brune, J. (1970). Tectonic stress and the spectra of seismic shear waves from earthquakes. Journal of Geophysical Research, 75(26), 4997–5009.

Butcher, A., Luckett, R., Kendall, J.M., & Baptie, B. (2020). Seismic Magnitudes, Corner Frequencies, and Microseismicity: Using Ambient Noise to Correct for High-Frequency Attenuation. Bulletin of the Seismological Society of America, 110(3), 1260–1275.

Castagna, J., Batzle, M., & Eastwood, R. (1985). Relationships between compressional‐wave and shear‐wave velocities in clastic silicate rocks. Geophysics, 50(4), 571–581.

Cesca, S., & Grigoli, F. (2015). Full Waveform Seismological Advances for Microseismic Monitoring. Advances in Geophysics, 169–228.

Dahm, T., & Kruger, F. (2012). Moment tensor inversion and moment tensor interpretation. New Manual of Seismological Observatory Practice (NMSOP-2), IASPEI, GFZ German Research Centre for Geosciences, Potsdam.

Daniel, G. (2014). Bias in magnitude for earthquakes with unknown focal mechanism. Geophysical Prospecting, 62(4), 848–861.

Deichmann, N. (2006). Local Magnitude, a Moment Revisited. Bulletin of the Seismological Society of America, 96(4A), 1267–1277.

Deichmann, N. (2017). Theoretical basis for the observed break in ML/MW scaling between small and large earthquakes. Bulletin of the Seismological Society of America, 107(2), 505–520.

Di Giacomo, D., & Storchak, D. (2022). One hundred plus years of recomputed surface wave magnitude of shallow global earthquakes. Earth System Science Data, 14(2), 393–409.

Dost, B., Stiphout, A., Kühn, D., Kortekaas, M., Ruigrok, E., & Heimann, S. (2020). Probabilistic Moment Tensor Inversion for Hydrocarbon-Induced Seismicity in the Groningen Gas Field, the Netherlands, Part 2: Application. Bulletin of the Seismological Society of America, 110(5), 2112–2123.

Dost, B., Ruigrok, E., & Spetzler, J. (2017). Development of seismicity and probabilistic hazard assessment for the Groningen gas field. Netherlands Journal of Geosciences, 96(5), s235–s245.

Dost, B., Edwards, B., & Bommer, J. (2016). Local and Moment magnitudes in the Groningen Field [White paper]. KNMI and NAM.

Duda, S., & Yanovskaya, T. (1993). Spectral amplitude-distance curves for P-waves: effects of velocity and Q-distribution. Tectonophysics, 217(3–4), 255–265.

Goertz-Allmann, B., Edwards, B., Bethmann, F., Deichmann, N., Clinton, J., Fäh, D., & Giardini, D. (2011). A new empirical magnitude scaling relation for Switzerland. BSSA, 3088-3095.

Grünthal, G., Wahlström, R., & Strohmeyer, D. (2009). The Unified Catalogue of Earthquakes in Central, Northern and Northwestern Europe (Cenec)-updated and expanded to the last millenium. JOSE, 517-541.

Grünthal, G., Wahlström, R., & Strohmeyer, D. (2013). The SHARE European earthquake catalogue (SHEEC) for the time period 1900-2006 and its comparison to the European-Mediterranean earthquake catalog (Emec). Journal of Seismology, 1339-1344.

Hanks, T., & Kanamori, H. (1979). A moment magnitude scale. Journal of Geophysical Research: Solid Earth, 84(B5), 2348–2350.

Havskov, J., Voss, P., & Ottemöller, L. (2020). Seismological Observatory Software: 30 Yr of SEISAN. Seismological Research Letters, 91(3), 1846–1852.

Heimann, S., Kriegerowski, M., Isken, M., Cesca, S., Daout, S., Grigoli, F., Juretzek, C., Megies, T., Nooshiri, N., Steinberg, A., Sudhaus, H., Vasyura-Bathke, H., Willey, T., & Dahm, T.. (2017). Pyrocko - An open-source seismology toolbox and library.

Heimann, S., Vasyura-Bathke, H., Sudhaus, H., Isken, M., Kriegerowski, M., Steinberg, A., & Dahm, T. (2019). A Python framework for efficient use of pre-computed Green’s functions in seismological and other physical forward and inverse source problems. Solid Earth, 10(6), 1921–1935.

Hofman, L., Ruigrok, E., Dost, B., & Paulssen, H. (2017). A Shallow Seismic Velocity Model for the Groningen Area in the Netherlands. Journal of Geophysical Research: Solid Earth, 122(10), 8035–8050.

Isken, M., & Heimann, S.. (2024). pyrocko/chimer: v0.1.1.

Isken, M., Dahm, T., Heimann, S., Münchmeyer, J., Cesca, S., & Niemz, P. (2024). Advancing Seismic Event Detection: Integrating Machine Learning with Waveform-Stacking Techniques. EGU General Assembly 2024, Vienna, Austria, EGU24-18706.

Jansky, J., Kvasnicka, M., & Duda, S. (1997). Discussion of the features of synthetic amplitude-distance curves of teleseismic P-waves for global Earth models. Studia et Geofisica, 41, 130-148.

Kanamori, H. (1977). The energy release in great earthquakes. Journal of Geophysical Research, 82(20), 2981–2987.

Kanamori, H. (1983). Magnitude scale and quantification of earthquakes. Tectonophysics, 93(3–4), 185–199.

KNMI. (2018). Induced seismicity catalogue.

KNMI. (1993). Netherlands Seismic and Acoustic Network.

Kraaijpoel, D., & Dost, B. (2012). Implications of salt-related propagation and mode conversion effects on the analysis of induced seismicity. Journal of Seismology, 17(1), 95–107.

Kühn, D., Heimann, S., Isken, M., Ruigrok, E., & Dost, B. (2020). Probabilistic Moment Tensor Inversion for Hydrocarbon-Induced Seismicity in the Groningen Gas Field, The Netherlands, Part 1: Testing. Bulletin of the Seismological Society of America, 110(5), 2095–2111.

Lomax, A. (2005). A Reanalysis of the Hypocentral Location and Related Observations for the Great 1906 California Earthquake. Bulletin of the Seismological Society of America, 95(3), 861–877.

Luckett, R., Ottemöller, L., Butcher, A., & Baptie, B. (2018). Extending local magnitude $rmM_L$ to short distances. Geophysical Journal International, 216(2), 1145–1156.

NAM (2013). Technical addendum to the winningsplan Groningen 2013: subsidence, induced earthquakes and seismic hazard analysis in the Groningen field [White paper]. Nederlandse Aardolie Maatschappij B.V..

NAM (2016). Study and data acquisition plan, induced seismicity in Groningen, update postwinningsplan 2016 [White paper]. Nederlandse Aardolie Maatschappij B.V..

Purcaru, G., & Berckhemer, H. (1978). A magnitude scale for very large earthquakes. Tectonophysics, 49(3–4), 189–198.

Richter, C. (1935). An instrumental earthquake magnitude scale. Bulletin of the Seismological Society of America, 25(1), 1–32.

Roy, C., Nowacki, A., Zhang, X., Curtis, A., & Baptie, B. (2021). Accounting for Natural Uncertainty Within Monitoring Systems for Induced Seismicity Based on Earthquake Magnitudes. Frontiers in Earth Science, 9.

Sato, T., & Hirasawa, T. (1973). Body wave spectra from propagating shear cracks.. Journal of Physics of the Earth, 21(4), 415–431.

Sen, A., Cesca, S., Bischoff, M., Meier, T., & Dahm, T. (2013). Automated full moment tensor inversion of coal mining-induced seismicity. Geophysical Journal International, 195(2), 1267–1281.

Spetzler, J., & Dost, B. (2017). Hypocenter Estimation of Induced Earthquakes in Groningen. Geophysical Journal International, ggx020.

Stork, A., Verdon, J., & Kendall, J. (2014). The robustness of seismic moment and magnitudes estimated using spectral analysis. Geophysical Prospecting, 62(4), 862–878.

Thienen-Visser, K., & Breunese, J. (2015). Induced seismicity of the Groningen gas field: History and recent developments. The Leading Edge, 34(6), 664–671.

Udías, A., Madariaga, R., & Buforn, E. (2014). Source Mechanisms of Earthquakes: Theory and Practice. Cambridge University Press.

Utsu, T. (2002). Relationships between magnitude scales. International Handbook of Earthquake and Engineering Seismology, 733–746.

Van Wees, J., Buijze, L., Thienen-Visser, K., Nepveu, M., Wassing, B., Orlic, B., & Fokker, P. (2014). Geomechanics response and induced seismicity during gas field depletion in the Netherlands. Geothermics, 52, 206–219.

Published

2024-12-19

How to Cite

Dahm, T., Kühn, D., Cesca, S., Isken, M., & Heimann, S. (2024). Earthquake Moment Magnitudes from Peak Ground Displacements and Synthetic Green’s Functions. Seismica, 3(2). https://doi.org/10.26443/seismica.v3i2.1205

Issue

Section

Articles