Statistical distribution of static stress resolved onto geometrically-rough faults
DOI:
https://doi.org/10.26443/seismica.v3i2.1206Abstract
The in-situ stress state within fault zones is technically challenging to characterize, requiring the use of indirect methods to estimate. Most work to date has focused on understanding average properties of resolved stress on faults, but fault non-planarity should induce spatial variations in resolved static stress on a single fault. Assuming a particular stochastic model for fault geometry (band-limited fractal) gives an approximate analytic solution for the probability density function (PDF) on fault stress that depends on the mean fault orientation, mean stress ratio, and roughness level. The mean stress is shown to be equal to the planar fault value, while deviations are described by substituting a second-order polynomial expansion of the stress ratio into the inverse distribution on fault slope. The result is an analytical expression for the PDF of shear-to-normal stress ratio on 2-D rough faults in a uniform background stress field. Two end-member distributions exist, one approximately Gaussian when all points on the fault are well away from failure, and one reverse exponential, which occurs when the mean stress ratio approaches the peak. For the range of roughness values expected to apply to crustal faults, stress deviations due to geometry can reach nearly 100% of the background stress level. Consideration of such a distribution of stress on faults suggests that geometric roughness and the resulting stress deviations may play a key role in controlling earthquake behavior.
References
Allam, A. A., Kroll, K. A., Milliner, C. W. D., & Richards-Dinger, K. B. (2019). Effects of Fault Roughness on Coseismic Slip and Earthquake Locations. Journal of Geophysical Research: Solid Earth, 124(11), 11336–11349. https://doi.org/https://doi.org/10.1029/2018JB016216
Ando, R., & Kaneko, Y. (2018). Dynamic Rupture Simulation Reproduces Spontaneous Multifault Rupture and Arrest During the 2016 Mw 7.9 Kaikoura Earthquake. Geophysical Research Letters, 45(23), 12, 812–875, 883. https://doi.org/https://doi.org/10.1029/2018GL080550
Andrews, D. J. (1980). A stochastic fault model: 1. Static case. Journal of Geophysical Research: Solid Earth, 85(B7), 3867–3877. https://doi.org/10.1029/JB085iB07p03867
Bhat, H. S., Dmowska, R., Rice, J. R., & Kame, N. (2004). Dynamic Slip Transfer from the Denali to Totschunda Faults, Alaska: Testing Theory for Fault Branching. Bulletin of the Seismological Society of America, 94(6B), S202–S213. https://doi.org/10.1785/0120040601
Brodsky, E. E., Kirkpatrick, J. D., & Candela, T. (2016). Constraints from fault roughness on the scale-dependent strength of rocks. Geology. https://doi.org/10.1130/G37206.1
Bruhat, L., Fang, Z., & Dunham, E. M. (2016). Rupture complexity and the supershear transition on rough faults. Journal of Geophysical Research: Solid Earth, 121(1), 210–224. https://doi.org/10.1002/2015JB012512
Candela, T., Renard, F., Bouchon, M., Brouste, A., Marsan, D., Schmittbuhl, J., & Voisin, C. (2009). Characterization of fault roughness at various scales: Implications of three-dimensional high resolution topography measurements. Pure and Applied Geophysics, 166(10–11), 1817–1851. https://doi.org/10.1007/s00024-009-0521-2
Candela, T., Renard, F., Klinger, Y., Mair, K., Schmittbuhl, J., & Brodsky, E. E. (2012). Roughness of fault surfaces over nine decades of length scales. Journal of Geophysical Research: Solid Earth, 117(B8). https://doi.org/10.1029/2011JB009041
Cattania, C., & Segall, P. (2021). Precursory Slow Slip and Foreshocks on Rough Faults. Journal of Geophysical Research: Solid Earth, 126(4). https://doi.org/10.1029/2020JB020430
Day, S. M. (1982). Three-dimensional simulation of spontaneous rupture: The effect of nonuniform prestress. Bulletin of the Seismological Society of America, 72(6A), 1881–1902. https://doi.org/10.1785/BSSA07206A1881
Dempsey, D., & Suckale, J. (2016). Collective properties of injection-induced earthquake sequences: 1. Model description and directivity bias. Journal of Geophysical Research: Solid Earth, 121(5), 3609–3637. https://doi.org/10.1002/2015JB012550
Dempsey, D., Suckale, J., & Huang, Y. (2016). Collective properties of injection-induced earthquake sequences: 2. Spatiotemporal evolution and magnitude frequency distributions. Journal of Geophysical Research: Solid Earth, 121(5), 3638–3665. https://doi.org/10.1002/2015JB012551
Dieterich, J. H., Richards-Dinger, K. B., & Kroll, K. A. (2015). Modeling Injection-Induced Seismicity with the Physics-Based Earthquake Simulator RSQSim. Seismological Research Letters, 86(4), 1102–1109. https://doi.org/10.1785/0220150057
Duan, B., & Oglesby, D. D. (2007). Nonuniform prestress from prior earthquakes and the effect on dynamics of branched fault systems. Journal of Geophysical Research: Solid Earth, 112(B5). https://doi.org/https://doi.org/10.1029/2006JB004443
Dunham, E. M., Belanger, D., Cong, L., & Kozdon, J. E. (2011). Earthquake ruptures with strongly rate-weakening friction and off-fault plasticity, part 2: Nonplanar faults. Bulletin of the Seismological Society of America, 101(5), 2308–2322. https://doi.org/10.1785/0120100076
Fang, Z., & Dunham, E. M. (2013). Additional shear resistance from fault roughness and stress levels on geometrically complex faults. Journal of Geophysical Research: Solid Earth, 118(7), 3642–3654. https://doi.org/10.1002/jgrb.50262
Fletcher, J. M., Oskin, M. E., & Teran, O. J. (2016). The role of a keystone fault in triggering the complex El Mayor-Cucapah earthquake rupture. Nature Geosci, 9(4), 303–307. https://doi.org/10.1038/NGEO2660
Goebel, T. H. W., Kwiatek, G., Becker, T. W., Brodsky, E. E., & Dresen, G. (2017). What allows seismic events to grow big?: Insights from b-value and fault roughness analysis in laboratory stick-slip experiments. Geology, 45(9), 815–818. https://doi.org/10.1130/G39147.1
Heimisson, E. R. (2020). Crack to pulse transition and magnitude statistics during earthquake cycles on a self-similar rough fault. Earth and Planetary Science Letters, 537, 116202. https://doi.org/https://doi.org/10.1016/j.epsl.2020.116202
Jaeger, J. C., Cook, N. G. W., & Zimmerman, R. W. (2007). Fundamentals of rock mechanics - Fourth edition. In Tectonophysics. https://doi.org/10.1016/0040-1951(77)90223-2 King, G., & Nábělek, J. (1985). Role of Fault Bends in the Initiation and Termination of Earthquake Rupture. Science, 228(4702), 984–987. https://doi.org/10.1126/science.228.4702.984
Kirkpatrick, J. D., Edwards, J. H., Verdecchia, A., Kluesner, J. W., Harrington, R. M., & Silver, E. A. (2020). Subduction megathrust heterogeneity characterized from 3D seismic data. Nature Geoscience, 13(5), 369–374. https://doi.org/10.1038/s41561-020-0562-9
Kroll, K. A., & Cochran, E. S. (2021). Stress Controls Rupture Extent and Maximum Magnitude of Induced Earthquakes. Geophysical Research Letters, 48(11), e2020GL092148. https://doi.org/https://doi.org/10.1029/2020GL092148
Lambert, V., Lapusta, N., & Faulkner, D. (2021). Scale Dependence of Earthquake Rupture Prestress in Models With Enhanced Weakening: Implications for Event Statistics and Inferences of Fault Stress. Journal of Geophysical Research: Solid Earth, 126(10), e2021JB021886. https://doi.org/https://doi.org/10.1029/2021JB021886
Lund-Snee, J.-E., & Zoback, M. D. (2022). State of stress in areas of active unconventional oil and gas development in North America. AAPG Bulletin, 106(2), 355–385. https://doi.org/10.1306/08102120151
Maurer, J. (2022). Stress on Rough Faults. https://doi.org/https://doi.org/10.17605/OSF.IO/Z7YF2
Maurer, J., Dunham, E. M., & Segall, P. (2020). Role of Fluid Injection on Earthquake Size in Dynamic Rupture Simulations on Rough Faults. Geophysical Research Letters, 47(13), e2020GL088377. https://doi.org/https://doi.org/10.1029/2020GL088377
Oglesby, D. D. (2005). The Dynamics of Strike-Slip Step-Overs with Linking Dip-Slip Faults. Bulletin of the Seismological Society of America, 95(5), 1604–1622. https://doi.org/10.1785/0120050058
Power, W. L., Tullis, T. E., Brown, S. R., Boitnott, G. N., & Scholz, C. H. (1987). Roughness of natural fault surfaces. Geophysical Research Letters, 14(1), 29–32. https://doi.org/https://doi.org/10.1029/GL014i001p00029
Romanet, P., Sato, D. S. K., & Ando, R. (2020). Curvature, a mechanical link between the geometrical complexities of a fault: application to bends, kinks and rough faults. Geophysical Journal International, 223(1), 211–232. https://doi.org/10.1093/gji/ggaa308
Sagy, A., & Brodsky, E. E. (2009). Geometric and rheological asperities in an exposed fault zone. Journal of Geophysical Research: Solid Earth, 114(B2). https://doi.org/10.1029/2008JB005701
Sagy, A., Brodsky, E. E., & Axen, G. J. (2007). Evolution of fault-surface roughness with slip. Geology, 35(3), 283–286. https://doi.org/10.1130/G23235A.1
Schoenball, M., & Ellsworth, W. L. (2017). Waveform-Relocated Earthquake Catalog for Oklahoma and Southern Kansas Illuminates the Regional Fault Network. Seismological Research Letters, 88(5), 1252–1258. http://dx.doi.org/10.1785/0220170083
Shi, Z., & Day, S. M. (2013). Rupture dynamics and ground motion from 3-D rough-fault simulations. Journal of Geophysical Research: Solid Earth, 118(3), 1122–1141. https://doi.org/10.1002/jgrb.50094
Skoumal, R. J., Kaven, J. O., & Walter, J. I. (2019). Characterizing Seismogenic Fault Structures in Oklahoma Using a Relocated Template‐Matched Catalog. Seismological Research Letters, 90(4), 1535–1543. https://doi.org/10.1785/0220190045
Tal, Y., Goebel, T., & Avouac, J.-P. (2020). Experimental and modeling study of the effect of fault roughness on dynamic frictional sliding. Earth and Planetary Science Letters, 536, 116133. https://doi.org/https://doi.org/10.1016/j.epsl.2020.116133
Tal, Y., Hager, B. H., & Ampuero, J. P. (2018). The Effects of Fault Roughness on the Earthquake Nucleation Process. Journal of Geophysical Research: Solid Earth. https://doi.org/10.1002/2017JB014746
Tarnowski, J. M., Kyriakopoulos, C., Oglesby, D. D., Cooke, M. L., & Stern, A. (2022). The effects of pre-stress assumptions on dynamic rupture with complex fault geometry in the San Gorgonio Pass, California, region. Geosphere, 18(6), 1710–1725. https://doi.org/10.1130/GES02511.1
Thom, C. A., Brodsky, E. E., Carpick, R. W., Pharr, G. M., Oliver, W. C., & Goldsby, D. L. (2017). Nanoscale Roughness of Natural Fault Surfaces Controlled by Scale-Dependent Yield Strength. Geophysical Research Letters. https://doi.org/10.1002/2017GL074663
Zielke, O., Galis, M., & Mai, P. M. (2017). Fault roughness and strength heterogeneity control earthquake size and stress drop. Geophysical Research Letters, 44(2), 777–783. https://doi.org/10.1002/2016GL071700
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Jeremy Maurer
This work is licensed under a Creative Commons Attribution 4.0 International License.