Evidence for Far-Field Wastewater Disposal Causing Recent Increases in Seismicity in Central and Northern Kansas

Authors

DOI:

https://doi.org/10.26443/seismica.v4i1.1214

Keywords:

Induced seismicity, Kansas, Wastewater Disposal

Abstract

The rate of felt earthquakes in Kansas increased dramatically in 2014, where most seismicity initially occurred in southern Kansas, and was attributed to large-volume wastewater disposal (WD) near the Oklahoma-Kansas border. Interestingly, 9 of 10 magnitude 4+ earthquakes from 2019-2022 occurred in northern and central Kansas, where the nature of seismicity has not been explored. We investigated seismicity near the recent M4+ earthquakes using waveform cross-correlation and carefully assembled injection and extraction volumes, well stimulations, and pressure measurements. Waveform cross-correlation reveals earthquakes occur via swarms with low b-values implying a stress state that is closer to failure. Relative volumes and temporal trends indicate seismicity was primarily induced by WD into the Arbuckle. However, the large coefficient of variation of interevent times suggests primarily far-field pressure influences. In particular, Jewell County seismicity provides strong evidence of far-field forcing as it occurs >50 km from any WD wells and ~100 km from large volume WD wells, one of the largest distances of WD-induced seismicity documented. The heterogenous locations of seismicity relative to WD wells is likely controlled by preexisting unknown structures and prestresses. These results imply a large spatial influence from proposed large volume carbon sequestration in the Arbuckle and similar formations.

References

Albuquerque Seismological Laboratory (ASL)/USGS. (1980). US Geological Survey Networks [Data set]. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/GS

Albuquerque Seismological Laboratory (ASL)/USGS. (1990). United States National Seismic Network [Data set]. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/US

Albuquerque Seismological Laboratory/USGS. (2013). Central and Eastern US Network [Data set]. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/N4

Ansari, E., Bidgoli, T. S., & Hollenbach, A. (2019). Accelerated Fill‐Up of the Arbuckle Group Aquifer and Links to U.S. Midcontinent Seismicity. Journal of Geophysical Research: Solid Earth, 124(3), 2670–2683. https://doi.org/10.1029/2018jb016926

Ansari, Esmail, & Bidgoli, T. S. (2021). Precambrian Crystalline Basement Properties From Pressure History Matching and Implications for Induced Seismicity in the US Midcontinent. Geochemistry, Geophysics, Geosystems, 22(8). https://doi.org/10.1029/2021gc009660

Armbruster, J. G., Steeples, D. W., & Seeber, L. (1989). The 1989 earthquake sequence near Palco. Kansas: A possible example of induced seismicity (abstract. Seismological Research Letters, 60(4), 141.

Bachmann, C. E., Wiemer, S., Goertz‐Allmann, B. P., & Woessner, J. (2012). Influence of pore‐pressure on the event‐size distribution of induced earthquakes. Geophysical Research Letters, 39(9). https://doi.org/10.1029/2012gl051480

Bender, B. (1983). Maximum likelihood estimation of b values for magnitude grouped data. Bulletin of the Seismological Society of America, 73(3), 831–851. https://doi.org/10.1785/bssa0730030831

Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., & Wassermann, J. (2010). ObsPy: A Python Toolbox for Seismology. Seismological Research Letters, 81(3), 530–533. https://doi.org/10.1785/gssrl.81.3.530

Buchanan, R. C., Hoffman, R., & Cochran, M. (2023). Induced seismicity in Kansas: Events and responses. In Recent Seismicity in the Southern Midcontinent, USA: Scientific, Regulatory, and Industry Responses (pp. 27–35). Geological Society of America. https://doi.org/10.1130/2023.2559(03)

Burridge, R., & Knopoff, L. (1967). Model and theoretical seismicity. Bulletin of the Seismological Society of America, 57(3), 341–371. https://doi.org/10.1785/bssa0570030341

Choy, G. L., Rubinstein, J. L., Yeck, W. L., McNamara, D. E., Mueller, C. S., & Boyd, O. S. (2016). A Rare Moderate‐Sized (Mw 4.9) Earthquake in Kansas: Rupture Process of the Milan, Kansas, Earthquake of 12 November 2014 and Its Relationship to Fluid Injection. Seismological Research Letters, 87(6), 1433–1441. https://doi.org/10.1785/0220160100

Cochran, E. S., Ross, Z. E., Harrington, R. M., Dougherty, S. L., & Rubinstein, J. L. (2018). Induced Earthquake Families Reveal Distinctive Evolutionary Patterns Near Disposal Wells. Journal of Geophysical Research: Solid Earth, 123(9), 8045–8055. https://doi.org/10.1029/2018jb016270

Currie, B. S., Free, J. C., Brudzinski, M. R., Leveridge, M., & Skoumal, R. J. (2018). Seismicity Induced by Wastewater Injection in Washington County, Ohio: Influence of Preexisting Structure, Regional Stress Regime, and Well Operations. Journal of Geophysical Research: Solid Earth, 123(5), 4123–4140. https://doi.org/10.1002/2017jb015297

Davis, S. D., & Frohlich, C. (1993). Did (Or Will) Fluid Injection Cause Earthquakes? - Criteria for a Rational Assessment. Seismological Research Letters, 64(3–4), 207–224. https://doi.org/10.1785/gssrl.64.3-4.207

Dempsey, D., & Riffault, J. (2019). Response of Induced Seismicity to Injection Rate Reduction: Models of Delay, Decay, Quiescence, Recovery, and Oklahoma. Water Resources Research, 55(1), 656–681. https://doi.org/10.1029/2018wr023587

Ellsworth, W. L. (2013). Injection-Induced Earthquakes. Science, 341(6142). https://doi.org/10.1126/science.1225942

Franseen, E. K., Byrnes, A. P., Cansler, J. R., Steinhauff, D. M., & Carr, T. R. (2004). The Geology of Kansas—Arbuckle Group. Current Research in Earth Sciences, 1–43. https://doi.org/10.17161/cres.v0i250.11789

Gan, W., & Frohlich, C. (2013). Gas injection may have triggered earthquakes in the Cogdell oil field, Texas. Proceedings of the National Academy of Sciences, 110(47), 18786–18791. https://doi.org/10.1073/pnas.1311316110

Goebel, Thomas H. W., & Brodsky, E. E. (2018). The spatial footprint of injection wells in a global compilation of induced earthquake sequences. Science, 361(6405), 899–904. https://doi.org/10.1126/science.aat5449

Goebel, T.H.W., Weingarten, M., Chen, X., Haffener, J., & Brodsky, E. E. (2017). The 2016 Mw5. 1 Fairview, Oklahoma earthquakes: Evidence for long-range poroelastic triggering at >40 km from fluid disposal wells. Earth and Planetary Science Letters, 472, 50–61. https://doi.org/10.1016/j.epsl.2017.05.011

Haddad, M., & Eichhubl, P. (2022). Fault Reactivation in Response to Saltwater Disposal and Hydrocarbon Production for the Venus, TX, Mw 4.0 Earthquake Sequence. Rock Mechanics and Rock Engineering, 56(3), 2103–2135. https://doi.org/10.1007/s00603-022-03083-4

Healy, J. H., Rubey, W. W., Griggs, D. T., & Raleigh, C. B. (1968). The Denver Earthquakes. Science, 161(3848), 1301–1310. https://doi.org/10.1126/science.161.3848.1301

Hearn, E. H., Koltermann, C., & Rubinstein, J. L. (2018). Numerical Models of Pore Pressure and Stress Changes Along Basement Faults Due to Wastewater Injection: Applications to the 2014 Milan, Kansas Earthquake. Geochemistry, Geophysics, Geosystems, 19(4), 1178–1198. https://doi.org/10.1002/2017gc007194

Hildebrand, G. M., Steeples, D. W., Knapp, R. W., Miller, R. D., & Bennett, B. C. (1988). Microearthquakes in Kansas and Nebraska 1977–87. Seismological Research Letters, 59(4), 159–163. https://doi.org/10.1785/gssrl.59.4.159

Holubnyak, Y., Williams, E., Watney, L., Bidgoli, T., Rush, J., FazelAlavi, M., & Gerlach, P. (2017). Calculation of CO2 Storage Capacity for Arbuckle Group in Southern Kansas: Implications for a Seismically Active Region. Energy Procedia, 114, 4679–4689. https://doi.org/10.1016/j.egypro.2017.03.1599

Kagan, Y. Y., & Jackson, D. D. (1991). Long-Term Earthquake Clustering. Geophysical Journal International, 104(1), 117–134. https://doi.org/10.1111/j.1365-246x.1991.tb02498.x

Keranen, K. M., Weingarten, M., Abers, G. A., Bekins, B. A., & Ge, S. (2014). Sharp increase in central Oklahoma seismicity since 2008 induced by massive wastewater injection. Science, 345(6195), 448–451. https://doi.org/10.1126/science.1255802

Keranen, Katie M., Savage, H. M., Abers, G. A., & Cochran, E. S. (2013). Potentially induced earthquakes in Oklahoma, USA: Links between wastewater injection and the 2011 Mw 5.7 earthquake sequence. Geology, 41(6), 699–702. https://doi.org/10.1130/g34045.1

Kozłowska, M., Brudzinski, M. R., Friberg, P., Skoumal, R. J., Baxter, N. D., & Currie, B. S. (2018). Maturity of nearby faults influences seismic hazard from hydraulic fracturing. Proceedings of the National Academy of Sciences, 115(8). https://doi.org/10.1073/pnas.1715284115

Langenbruch, C., Weingarten, M., & Zoback, M. D. (2018). Physics-based forecasting of man-made earthquake hazards in Oklahoma and Kansas. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-06167-4

Lei, X., Yu, G., Ma, S., Wen, X., & Wang, Q. (2008). Earthquakes induced by water injection at ∼3 km depth within the Rongchang gas field, Chongqing, China. Journal of Geophysical Research: Solid Earth, 113(B10). https://doi.org/10.1029/2008jb005604

McGarr, A., Simpson, D., & Seeber, L. (2002). 40 Case histories of induced and triggered seismicity. In International Handbook of Earthquake and Engineering Seismology (pp. 647–661). Elsevier. https://doi.org/10.1016/s0074-6142(02)80243-1

Mohammadi, S., Hollenbach, A. M., Goldstein, R. H., Möller, A., & Burberry, C. M. (2022). Controls on Timing of Hydrothermal Fluid Flow in South-Central Kansas, North-Central Oklahoma, and the Tri-State Mineral District. Midcontinent Geoscience, 3. https://doi.org/10.17161/mg.v3i.16812

Mousavi, S. M., Ogwari, P. O., Horton, S. P., & Langston, C. A. (2017). Spatio-temporal evolution of frequency-magnitude distribution and seismogenic index during initiation of induced seismicity at Guy-Greenbrier, Arkansas. Physics of the Earth and Planetary Interiors, 267, 53–66. https://doi.org/10.1016/j.pepi.2017.04.005

Peterie, S. L., Miller, R. D., Intfen, J. W., & Gonzales, J. B. (2018). Earthquakes in Kansas Induced by Extremely Far‐Field Pressure Diffusion. Geophysical Research Letters, 45(3), 1395–1401. https://doi.org/10.1002/2017gl076334

Peterie, S. L., Miller, R. D., Wilson, B. B., & Newell, K. D. (2020). Potential factors contributing to induced seismicity near Hutchinson, Kansas. SEG Technical Program Expanded Abstracts 2020, 1309–1313. https://doi.org/10.1190/segam2020-3424384.1

Petersen, M. D., Shumway, A. M., Powers, P. M., Field, E. H., Moschetti, M. P., Jaiswal, K. S., Milner, K. R., Rezaeian, S., Frankel, A. D., Llenos, A. L., Michael, A. J., Altekruse, J. M., Ahdi, S. K., Withers, K. B., Mueller, C. S., Zeng, Y., Chase, R. E., Salditch, L. M., Luco, N., … Witter, R. C. (2023). The 2023 US 50-State National Seismic Hazard Model: Overview and implications. Earthquake Spectra, 40(1), 5–88. https://doi.org/10.1177/87552930231215428

Rivière, J., Lv, Z., Johnson, P. A., & Marone, C. (2018). Evolution of b-value during the seismic cycle: Insights from laboratory experiments on simulated faults. Earth and Planetary Science Letters, 482, 407–413. https://doi.org/10.1016/j.epsl.2017.11.036

Rubinstein, J. L., Ellsworth, W. L., & Dougherty, S. L. (2018). The 2013–2016 Induced Earthquakes in Harper and Sumner Counties, Southern Kansas. Bulletin of the Seismological Society of America, 108(2), 674–689. https://doi.org/10.1785/0120170209

Rubinstein, J. L., & Mahani, A. B. (2015). Myths and Facts on Wastewater Injection, Hydraulic Fracturing, Enhanced Oil Recovery, and Induced Seismicity. Seismological Research Letters, 86(4), 1060–1067. https://doi.org/10.1785/0220150067

Schaff, D. P., & Richards, P. G. (2014). Improvements in magnitude precision, using the statistics of relative amplitudes measured by cross correlation. Geophysical Journal International, 197(1), 335–350. https://doi.org/10.1093/gji/ggt433

Schoenball, M., & Ellsworth, W. L. (2017a). Waveform‐Relocated Earthquake Catalog for Oklahoma and Southern Kansas Illuminates the Regional Fault Network. Seismological Research Letters, 88(5), 1252–1258. https://doi.org/10.1785/0220170083

Schoenball, M., & Ellsworth, W. L. (2017b). A Systematic Assessment of the Spatiotemporal Evolution of Fault Activation Through Induced Seismicity in Oklahoma and Southern Kansas. Journal of Geophysical Research: Solid Earth, 122(12). https://doi.org/10.1002/2017jb014850

Schoenball, M., Walsh, F. R., Weingarten, M., & Ellsworth, W. L. (2018). How faults wake up: The Guthrie-Langston, Oklahoma earthquakes. The Leading Edge, 37(2), 100–106. https://doi.org/10.1190/tle37020100.1

Scholz, C. H. (1968). The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes. Bulletin of the Seismological Society of America, 58(1), 399–415. https://doi.org/10.1785/bssa0580010399

Schultz, R., Beroza, G. C., & Ellsworth, W. L. (2021). A Strategy for Choosing Red‐Light Thresholds to Manage Hydraulic Fracturing Induced Seismicity in North America. Journal of Geophysical Research: Solid Earth, 126(12). https://doi.org/10.1029/2021jb022340

Schultz, R., Skoumal, R. J., Brudzinski, M. R., Eaton, D., Baptie, B., & Ellsworth, W. (2020). Hydraulic Fracturing‐Induced Seismicity. Reviews of Geophysics, 58(3). https://doi.org/10.1029/2019rg000695

Schwab, D. R., Bidgoli, T. S., & Taylor, M. H. (2017). Characterizing the Potential for Injection‐Induced Fault Reactivation Through Subsurface Structural Mapping and Stress Field Analysis, Wellington Field, Sumner County, Kansas. Journal of Geophysical Research: Solid Earth, 122(12). https://doi.org/10.1002/2017jb014071

Segall, P. (1989). Earthquakes triggered by fluid extraction. Geology, 17(10), 942. https://doi.org/10.1130/0091-7613(1989)017<0942:etbfe>2.3.co;2

Segall, P., & Lu, S. (2015). Injection‐induced seismicity: Poroelastic and earthquake nucleation effects. Journal of Geophysical Research: Solid Earth, 120(7), 5082–5103. https://doi.org/10.1002/2015jb012060

Skoumal, R. J., Barbour, A. J., Brudzinski, M. R., Langenkamp, T., & Kaven, J. O. (2020). Induced Seismicity in the Delaware Basin, Texas. Journal of Geophysical Research: Solid Earth, 125(1). https://doi.org/10.1029/2019jb018558

Skoumal, R. J., Brudzinski, M. R., & Currie, B. S. (2015a). Microseismicity Induced by Deep Wastewater Injection in Southern Trumbull County, Ohio. Seismological Research Letters, 86(5), 1326–1334. https://doi.org/10.1785/0220150055

Skoumal, R. J., Brudzinski, M. R., & Currie, B. S. (2015b). Distinguishing induced seismicity from natural seismicity in Ohio: Demonstrating the utility of waveform template matching. Journal of Geophysical Research: Solid Earth, 120(9), 6284–6296. https://doi.org/10.1002/2015jb012265

Skoumal, R. J., Brudzinski, M. R., Currie, B. S., & Ries, R. (2019). Temporal patterns of induced seismicity in Oklahoma revealed from multi-station template matching. Journal of Seismology, 24(5), 921–935. https://doi.org/10.1007/s10950-019-09864-9

Skoumal, R. J., Ries, R., Brudzinski, M. R., Barbour, A. J., & Currie, B. S. (2018). Earthquakes Induced by Hydraulic Fracturing Are Pervasive in Oklahoma. Journal of Geophysical Research: Solid Earth, 123(12). https://doi.org/10.1029/2018jb016790

van der Elst, N. J. (2021). B‐Positive: A Robust Estimator of Aftershock Magnitude Distribution in Transiently Incomplete Catalogs. Journal of Geophysical Research: Solid Earth, 126(2). https://doi.org/10.1029/2020jb021027

Verdecchia, A., Cochran, E. S., & Harrington, R. M. (2021). Fluid‐Earthquake and Earthquake‐Earthquake Interactions in Southern Kansas, USA. Journal of Geophysical Research: Solid Earth, 126(3). https://doi.org/10.1029/2020jb020384

Vidale, J. E., & Shearer, P. M. (2006). A survey of 71 earthquake bursts across southern California: Exploring the role of pore fluid pressure fluctuations and aseismic slip as drivers. Journal of Geophysical Research: Solid Earth, 111(B5). https://doi.org/10.1029/2005jb004034

Wiemer, S. (2000). Minimum Magnitude of Completeness in Earthquake Catalogs: Examples from Alaska, the Western United States, and Japan. Bulletin of the Seismological Society of America, 90(4), 859–869. https://doi.org/10.1785/0119990114

Yeck, W. L., Hayes, G. P., McNamara, D. E., Rubinstein, J. L., Barnhart, W. D., Earle, P. S., & Benz, H. M. (2017). Oklahoma experiences largest earthquake during ongoing regional wastewater injection hazard mitigation efforts. Geophysical Research Letters, 44(2), 711–717. https://doi.org/10.1002/2016gl071685

Yeck, W. L., Weingarten, M., Benz, H. M., McNamara, D. E., Bergman, E. A., Herrmann, R. B., Rubinstein, J. L., & Earle, P. S. (2016). Far‐field pressurization likely caused one of the largest injection induced earthquakes by reactivating a large preexisting basement fault structure. Geophysical Research Letters, 43(19). https://doi.org/10.1002/2016gl070861

Zhai, G., Shirzaei, M., & Manga, M. (2020). Elevated Seismic Hazard in Kansas Due to High‐Volume Injections in Oklahoma. Geophysical Research Letters, 47(5). https://doi.org/10.1029/2019gl085705

Zhai, G., Shirzaei, M., Manga, M., & Chen, X. (2019). Pore-pressure diffusion, enhanced by poroelastic stresses, controls induced seismicity in Oklahoma. Proceedings of the National Academy of Sciences, 116(33), 16228–16233. https://doi.org/10.1073/pnas.1819225116

Downloads

Published

2025-05-06

How to Cite

Fasola, S., Brudzinski, M., & Jackson, N. (2025). Evidence for Far-Field Wastewater Disposal Causing Recent Increases in Seismicity in Central and Northern Kansas. Seismica, 4(1). https://doi.org/10.26443/seismica.v4i1.1214

Issue

Section

Articles