Real-Time Loss Tools: Open-Source Software for Time- and State-Dependent Seismic Damage and Loss Calculations – Features and Application to the 2023 Türkiye-Syria Sequence
DOI:
https://doi.org/10.26443/seismica.v4i1.1238Keywords:
earthquake sequences, damage accumulation, updating building occupants, rapid loss assessment, operational earthquake loss forecasting, real-time loss, state-dependent fragilityAbstract
During a seismic sequence, the action of each earthquake has the potential to damage and weaken exposed structures, causing their fragility to change, and increasing their likelihood of being further damaged by subsequent earthquakes. At the same time, building occupants that need to be hospitalised after an earthquake will not be present in the buildings whose damage led to their hospitalisation during any subsequent events, for as long as they remain in hospital. These changes in the fragility of buildings and the location of building occupants during a seismic sequence have an impact on the estimation of damage and losses throughout the sequence, but are often not accounted for in rapid loss assessments or when estimating future damage associated with time-dependent short-term seismicity forecasts. While knowledge and modelling capabilities for individual components have advanced in this direction in recent years, there has been, up to this point, no publicly available open-source software able to account for damage accumulation and the displacement of building occupants during seismic sequences. Building upon OpenQuake, we have developed the Real-Time Loss Tools software to address this limitation and present its main features herein, together with a case-study application focused on the 2023 Türkiye-Syria earthquakes.
References
Astorga, A., & Guéguen, P. (2020). Structural health building response induced by earthquakes: Material softening and recovery. Engineering Reports, 2(9), e12228. https://doi.org/10.1002/eng2.12228
Bazzurro, P., Cornell, C. A., Menun, C., & Motahari, M. (2004). Guidelines for seismic assessment of damaged buildings. 1–15.
Blagojević, N., Didier, M., & Stojadinović, B. (2022). Quantifying component importance for disaster resilience of communities with interdependent civil infrastructure systems. Reliability Engineering & System Safety, 228, 108747. https://doi.org/10.1016/j.ress.2022.108747
Brzev, S., Scawthorn, C., Charleson, A. W., Allen, L., Greene, M., Jaiswal, K., & Silva, V. (2013). GEM building taxonomy version 2.0 (pp. 0–163) [GEM Technical Report 2013-02 V1.0.0]. GEM Foundation.
Burton, H., Kang, H., Miles, S., Nejat, A., & Yi, Z. (2019). A framework and case study for integrating household decision-making into post-earthquake recovery models. International Journal of Disaster Risk Reduction, 37, 101167. https://doi.org/10.1016/j.ijdrr.2019.101167
Ceferino, L., Mitrani-Reiser, J., Kiremidjian, A., Deierlein, G., & Bambarén, C. (2020). Effective plans for hospital system response to earthquake emergencies. Nature Communications, 11, 4325. https://doi.org/10.1038/s41467-020-18072-w
Chang, S., Pasion, C., Tatebe, K., & Ahmad, R. (2008). Linking lifeline infrastructure performance and community disaster resilience: models and multi-stakeholder processes [Technical Report MCEER-08-0004].
Chioccarelli, E., Pacifico, A., & Iervolino, I. (2022). Operational earthquake loss forecasting for Europe [RISE Project Deliverable 4.3]. http://static.seismo.ethz.ch/rise/deliverables/Deliverable_4.3.pdf
Costa, R., Haukaas, T., & Chang, S. E. (2022). Predicting population displacements after earthquakes. Sustainable and Resilient Infrastructure, 7(4), 253–271. https://doi.org/10.1080/23789689.2020.1746047
Crowley, H., Dabbeek, J., Despotaki, V., Rodrigues, D., Martins, L., Silva, V., Romão, X., Pereira, N., Weatherill, G., & Danciu, L. (2021). European Seismic Risk Model (ESRM20) (p. 84) [EFEHR Technical Report 002, V1.0.1]. https://doi.org/10.7414/EUC-EFEHR-TR002-ESRM20
Crowley, Helen, & Bommer, J. J. (2006). Modelling Seismic Hazard in Earthquake Loss Models with Spatially Distributed Exposure. Bulletin of Earthquake Engineering, 4(3), 249–273. https://doi.org/10.1007/s10518-006-9009-y
Crowley, Helen, Despotaki, V., Rodrigues, D., Silva, V., Toma-Danila, D., Riga, E., Karatzetzou, A., Fotopoulou, S., Zugic, Z., Sousa, L., Ozcebe, S., & Gamba, P. (2020). Exposure model for European seismic risk assessment. Earthquake Spectra, 36, 252–273. https://doi.org/10.1177/8755293020919429
Danciu, L., Nandan, S., Reyes, C., Basili, R., Weatherill, G., Beauval, C., Rovida, A., Vilanova, S., Sesetyan, K., Bard, P.-Y., Cotton, F., Wiemer, S., & Giardini, D. (2021). The 2020 update of the European Seismic Hazard Model - ESHM20: Model Overview [EFEHR Technical Report 001 v1.0.0]. EFEHR European Facilities of Earthquake Hazard. https://doi.org/10.12686/A15
Didier, M., Broccardo, M., Esposito, S., & Stojadinovic, B. (2017). A compositional demand/supply framework to quantify the resilience of civil infrastructure systems (Re-CoDeS). Sustainable and Resilient Infrastructure, 3(2), 86–102. https://doi.org/10.1080/23789689.2017.1364560
Dilsiz, A., Gunay, S., Mosalam, K., Miranda, E., Arteta, C., Sezen, H., Fischer, E., Hakhamaneshi, M., Hassan, W., Alhawamdeh, B., Andrus, S., Archbold, J., Arslanturkoglu, S., Bektas, N., Ceferino, L., Cohen, J., Duran, B., Erazo, K., Faraone, G., … Safiey, A. (2023). StEER: 2023 Mw 7.8 Kahramanmaras, Türkiye Earthquake Sequence Preliminary Virtual Reconnaissance Report (PVRR) [Techreport]. Designsafe-CI. https://doi.org/10.17603/DS2-7RY2-GV66
Dolce, M., & Di Bucci, D. (2018). The 2016–2017 Central Apennines Seismic Sequence: Analogies and Differences with Recent Italian Earthquakes. 603–638. https://doi.org/10.1007/978-3-319-75741-4_26
Earle, P. S., Wald, D. J., Jaiswal, K. S., Allen, T. I., Hearne, M. G., Marano, K. D., Hotovec, A. J., & Fee, J. (2009). Prompt Assessment of Global Earthquakes for Response (PAGER): A System for Rapidly Determining the Impact of Earthquakes Worldwide [U.S. Geological Survey Open-File Report, no. 2009–1131]. US Geological Survey. https://doi.org/10.3133/ofr20091131
Federal Emergency Management Agency. (2003). HAZUS-MH Technical Manual.
GEER-EERI. (2023). February 6, 2023 Türkiye Earthquakes: Report on Geoscience and Engineering Impacts [GEER Association Report 082]. https://doi.org/https://doi.org/10.18118/G6PM34
Gerstenberger, M., McVerry, G., Rhoades, D., & Stirling, M. (2014). Seismic Hazard Modeling for the Recovery of Christchurch. Earthquake Spectra, 30(1), 17–29. https://doi.org/10.1193/021913eqs037m
Guéguen, P., & Tiganescu, A. (2018). Consideration of the Effects of Air Temperature on Structural Health Monitoring through Traffic Light‐Based Decision‐Making Tools. Shock and Vibration, 2018(1), 9258675. https://doi.org/10.1155/2018/9258675
Hacettepe University Department of Civil Engineering. (2023). Kahramanmaraş Pazarcık (Mw=7.7) and Kahramanmaraş Elbistan (Mw=7.6) Earthquakes Investigation Report. https://fs.hacettepe.edu.tr/etkinlik/2023/03-Mart/rapor.pdf
Iacoletti, S., Cremen, G., & Galasso, C. (2023). Modeling damage accumulation during ground-motion sequences for portfolio seismic loss assessments. Soil Dynamics and Earthquake Engineering, 168, 107821. https://doi.org/10.1016/j.soildyn.2023.107821
Iacoletti, S., Cremen, G., & Galasso, C. (2024). Investigating the sensitivity of losses to time-dependent components of seismic risk modeling. Earthquake Spectra, 40(2), 1376–1395. https://doi.org/10.1177/87552930231226230
Iervolino, I., Chioccarelli, E., Giorgio, M., Marzocchi, W., Zuccaro, G., Dolce, M., & Manfredi, G. (2015). Operational (Short‐Term) Earthquake Loss Forecasting in Italy. Bulletin of the Seismological Society of America, 105(4), 2286–2298. https://doi.org/10.1785/0120140344
Jaiswal, K. S., & Wald, D. J. (2010, July). Development of a semi-empirical loss model within the USGS Prompt Assessment of Global Earthquakes for Response (PAGER). .
Kohrangi, M., Kotha, S. R., & Bazzurro, P. (2017). Ground-motion models for average spectral acceleration in a period range: direct and indirect methods. Bulletin of Earthquake Engineering, 16(1), 45–65. https://doi.org/10.1007/s10518-017-0216-5
Kotha, S. R., Weatherill, G., Bindi, D., & Cotton, F. (2020). A regionally-adaptable ground-motion model for shallow crustal earthquakes in Europe. Bulletin of Earthquake Engineering, 18(9), 4091–4125. https://doi.org/10.1007/s10518-020-00869-1
Leonard, M. (2014). Self-Consistent Earthquake Fault-Scaling Relations: Update and Extension to Stable Continental Strike-Slip Faults. Bulletin of the Seismological Society of America, 104(6), 2953–2965. https://doi.org/10.1785/0120140087
Lilienkamp, H., Bossu, R., Cotton, F., Finazzi, F., Landès, M., Weatherill, G., & von Specht, S. (2023). Utilization of crowdsourced felt reports to distinguish high-impact from low-impact earthquakes globally within minutes of an event. The Seismic Record, 3(1), 29–36. https://doi.org/10.1785/0320220039
Martins, L., & Silva, V. (2020). Development of a fragility and vulnerability model for global seismic risk analyses. Bulletin of Earthquake Engineering, 19(15), 6719–6745. https://doi.org/10.1007/s10518-020-00885-1
Marzocchi, W., Lombardi, A. M., & Casarotti, E. (2014). The Establishment of an Operational Earthquake Forecasting System in Italy. Seismological Research Letters, 85(5), 961–969. https://doi.org/10.1785/0220130219
Michael, A. J., McBride, S. K., Hardebeck, J. L., Barall, M., Martinez, E., Page, M. T., van der Elst, N., Field, E. H., Milner, K. R., & Wein, A. M. (2019). Statistical Seismology and Communication of the USGS Operational Aftershock Forecasts for the 30 November 2018 Mw 7.1 Anchorage, Alaska, Earthquake. Seismological Research Letters, 91(1), 153–173. https://doi.org/10.1785/0220190196
Moon, L., Dizhur, D., Senaldi, I., Derakhshan, H., Griffith, M., Magenes, G., & Ingham, J. (2014). The Demise of the URM Building Stock in Christchurch during the 2010–2011 Canterbury Earthquake Sequence. Earthquake Spectra, 30(1), 253–276. https://doi.org/10.1193/022113eqs044m
Mouyiannou, A., Penna, A., Rota, M., Graziotti, F., & Magenes, G. (2014). Implications of cumulated seismic damage on the seismic performance of unreinforced masonry buildings. Bulletin of the New Zealand Society for Earthquake Engineering, 47(2), 157–170. https://doi.org/10.5459/bnzsee.47.2.157-170
Nievas, C. I., Crowley, H., Reuland, Y., Weatherill, G., Baltzopoulos, G., Bayliss, K., Chatzi, E., Chioccarelli, E., Guéguen, P., Iervolino, I., Marzochhi, W., Naylor, M., Orlacchio, M., Pejovic, J., Popovic, N., Serafini, F., & Serdar, N. (2023). Integration of RISE Innovations in the Fields of OELF, RLA and SHM [RISE Project Deliverable 6.1]. http://static.seismo.ethz.ch/rise/deliverables/Deliverable_6.1.pdf
Nievas, C. I., Crowley, H., & Weatherill, G. (2023). Real-Time Loss Tools. Zenodo. https://doi.org/10.5281/ZENODO.7948699
Nievas, C. I., Crowley, Y., H. and Reuland, G. Weatherill, G., Baltzopoulos, G., Bayliss, K., Chatzi, E., Chioccarelli, E., Guéguen, P., Iervolino, I., Marzocchi, W., Naylor, M., Orlacchio, M., Pejovic, J., Popovic, N., Serafini, F., & Serdar, N. (2023). Integration of RISE innovations in the fields of OELF, RLA and SHM: input and output datasets (Version 1.0). Zenodo. https://doi.org/10.5281/ZENODO.7784841
Nievas, C., Kriegerowski, M., Delattre, F., Garcia Ospina, N., Prehn, K., & Cotton, F. (2023). The European High-Resolution Exposure (EHRE) Model [Scientific Technical Report STR 23/05]. GFZ German Research Centre for Geosciences. https://doi.org/10.48440/GFZ.B103-23055
OECD. (2023). Length of hospital stay (indicator). Organisation for Economic Cooperation. https://doi.org/10.1787/8dda6b7a-en
Orlacchio, M. (2022). The effects of seismic sequences on seismic hazard and structural vulnerability [PhD Thesis, University of Naples Federico II]. http://wpage.unina.it/iuniervo/papers/Tesi_Orlacchio.pdf
Pagani, M., Monelli, D., Weatherill, G., Danciu, L., Crowley, H., Silva, V., Henshaw, P., Butler, L., Nastasi, M., Panzeri, L., Simionato, M., & Vigano, D. (2014). OpenQuake Engine: An Open Hazard (and Risk) Software for the Global Earthquake Model. Seismological Research Letters, 85(3), 692–702. https://doi.org/10.1785/0220130087
Papadopoulos, A. N., & Bazzurro, P. (2020). Exploring probabilistic seismic risk assessment accounting for seismicity clustering and damage accumulation: Part II. Risk analysis. Earthquake Spectra, 37(1), 386–408. https://doi.org/10.1177/8755293020938816
Park, J., Bazzurro, P., & Baker, J. W. (2007). Modeling spatial correlation of ground motion intensity measures for regional seismic hazard and portfolio loss estimation. In T. Kanada & Furuta (Eds.), Applications of statistics and probability in civil engineering. Taylor.
Paul, N., Galasso, C., & Baker, J. (2024). Household Displacement and Return in Disasters: A Review. Natural Hazards Review, 25(1), 03123006. https://doi.org/10.1061/nhrefo.nheng-1930
Polese, M., Di Ludovico, M., Prota, A., & Manfredi, G. (2013). Damage-dependent vulnerability curves for existing buildings. Earthquake Engineering & Structural Dynamics, 42(6), 853–870. https://doi.org/https://doi.org/10.1002/eqe.2249
Reuland, Y., Bodenmann, L., Blagojevic, N., & Stojadinovic, B. (2022). Development of RRE forecasting services in OpenQuake [RISE Project Deliverable 4.4]. http://static.seismo.ethz.ch/rise/deliverables/Deliverable_4.4.pdf
Reuland, Yves, Martakis, P., & Chatzi, E. (2023). A Comparative Study of Damage-Sensitive Features for Rapid Data-Driven Seismic Structural Health Monitoring. Applied Sciences, 13(4), 2708. https://doi.org/10.3390/app13042708
Rossi, A., Tertulliani, A., Azzaro, R., Graziani, L., Rovida, A., Maramai, A., Pessina, V., Hailemikael, S., Buffarini, G., Bernardini, F., Camassi, R., Del Mese, S., Ercolani, E., Fodarella, A., Locati, M., Martini, G., Paciello, A., Paolini, S., Arcoraci, L., … Stucchi, M. (2019). The 2016–2017 earthquake sequence in Central Italy: macroseismic survey and damage scenario through the EMS-98 intensity assessment. Bulletin of Earthquake Engineering, 17(5), 2407–2431. https://doi.org/10.1007/s10518-019-00556-w
Savran, W. H., Werner, M. J., Marzocchi, W., Rhoades, D. A., Jackson, D. D., Milner, K., Field, E., & Michael, A. (2020). Pseudoprospective Evaluation of UCERF3-ETAS Forecasts during the 2019 Ridgecrest Sequence. Bulletin of the Seismological Society of America, 110(4), 1799–1817. https://doi.org/10.1785/0120200026
Schorlemmer, D., Cotton, F., Delattre, F., Evaz Zadeh, T., Kriegerowski, M., Lingner, L., Oostwegel, L., Prehn, K., & Shinde, S. (2023). An open, dynamic, high-resolution dynamic exposure model for Europe [RISE Project Deliverable 2.13]. http://rise-eu.org/export/sites/rise/.galleries/Deliverables/Deliverable_2.13.pdf
Schorlemmer, Danijel, Beutin, T., Cotton, F., Garcia Ospina, N., Hirata, N., Ma, K.-F., Nievas, C., Prehn, K., & Wyss, M. (2020, May). Global Dynamic Exposure and the OpenBuildingMap - A Big-Data and Crowd-Sourcing Approach to Exposure Modeling. https://doi.org/10.5194/egusphere-egu2020-18920
Silva, V., Brzev, S., Scawthorn, C., Yepes, C., Dabbeek, J., & Crowley, H. (2022). A Building Classification System for Multi-hazard Risk Assessment. International Journal of Disaster Risk Science, 13(2), 161–177. https://doi.org/10.1007/s13753-022-00400-x
Silva, V., Crowley, H., Pagani, M., Monelli, D., & Pinho, R. (2013). Development of the OpenQuake engine, the Global Earthquake Model’s open-source software for seismic risk assessment. Natural Hazards, 72(3), 1409–1427. https://doi.org/10.1007/s11069-013-0618-x
Sorrentino, L., Liberatore, L., Decanini, L. D., & Liberatore, D. (2013). The performance of churches in the 2012 Emilia earthquakes. Bulletin of Earthquake Engineering, 12(5), 2299–2331. https://doi.org/10.1007/s10518-013-9519-3
Spence, R. (2007). Earthquake Disaster Scenario Predictions and Loss Modelling for Urban Areas (R. Spence, Ed.) [LESSLOSS Report No.2007/07]. Instituto Universitario di Studi Superiori di Pavia.
Trevlopoulos, K., Guéguen, P., Helmstetter, A., & Cotton, F. (2020). Earthquake risk in reinforced concrete buildings during aftershock sequences based on period elongation and operational earthquake forecasting. Structural Safety, 84, 101922. https://doi.org/10.1016/j.strusafe.2020.101922
UNDP PDNA. (2023). Türkiye Earthquakes Recovery and Reconstruction Assessment. In Report. https://www.sbb.gov.tr/wp-content/uploads/2023/03/Turkiye-Recovery-and-Reconstruction-Assessment.pdf
U.S. Geological Survey. (2023a). Event page for the M 7.8 - Pazarcik earthquake, Kahramanmaras earthquake sequence. https://earthquake.usgs.gov/earthquakes/eventpage/us6000jllz/executive
U.S. Geological Survey. (2023b). M 7.5 - Elbistan earthquake, Kahramanmaras earthquake sequence. https://earthquake.usgs.gov/earthquakes/eventpage/us6000jlqa/executive
U.S. Geological Survey. (2023c). USGS National Earthquake Information Center. https://earthquake.usgs.gov
Weatherill, G. A., Silva, V., Crowley, H., & Bazzurro, P. (2015). Exploring the impact of spatial correlations and uncertainties for portfolio analysis in probabilistic seismic loss estimation. Bulletin of Earthquake Engineering, 13(4), 957–981. https://doi.org/10.1007/s10518-015-9730-5
Weatherill, G., Crowley, H., Roullé, A., Tourlière, B., Lemoine, A., Gracianne, C., Kotha, S. R., & Cotton, F. (2023). Modelling site response at regional scale for the 2020 European Seismic Risk Model (ESRM20). Bulletin of Earthquake Engineering, 21(2), 665–714. https://doi.org/10.1007/s10518-022-01526-5
Weatherill, G., Kotha, S. R., & Cotton, F. (2020). A regionally-adaptable “scaled backbone” ground motion logic tree for shallow seismicity in Europe: application to the 2020 European seismic hazard model. Bulletin of Earthquake Engineering, 18(11), 5087–5117. https://doi.org/10.1007/s10518-020-00899-9
Woo, G., & Marzocchi, W. (2014). Operational Earthquake Forecasting and Decision-Making. In F. Wenzel & J. Zschau (Eds.), Early Warning for Geological Disasters: Scientific Methods and Current Practice (pp. 353–367). Springer. https://doi.org/10.1007/978-3-642-12233-0_18
Yeo, G. L., & Cornell, C. A. (2005). Stochastic characterization and decision bases under time-dependent aftershock risk in performance-based earthquake engineering [PEER Report 2005/13]. Department of Civil.
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Cecilia I. Nievas, Helen Crowley, Graeme Weatherill, Fabrice Cotton

This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
Horizon 2020
Grant numbers 821115