Site characterization of Sikkim Himalaya using HVSR
DOI:
https://doi.org/10.26443/seismica.v3i2.1282Keywords:
Himalaya, Sikkim Himalaya, HVSR method, site characterization, directional hvsrAbstract
The northeastern state of Sikkim lying in central segment of the Himalayan orogen is a seismically active region which was plagued by the recent 2011 Mw6.9 earthquake. Analysis of local earthquakes recorded at the recently deployed seismic network of 27 broadband seismic stations revealed seismogenic zone extending down to lower crustal depths with a predominant strike-slip faulting mechanism. Persistent seismicity in a region with complex tectonic setting makes it imperative to study the site characteristics crucial for determining the local site conditions. Here, we harness the noise and local earthquakes records from the Sikkim network to compute horizontal-to-vertical spectral ratio (HVSR) for site characterization. Local geology and topography are observed to incite distinctly intricate trends in the HVSR curves. The thick sedimentary deposit of the Himalayan foreland basin causes high amplification (∼7) at low resonant frequencies (<1 Hz). The HVSR curves in the western section of Main Central Thrust Zone exhibits distinct double amplification peaks (∼2.5 at 1 Hz and 5 Hz) under the influence of the parallely dipping sheets of the duplex structure. Whereas, the eastern section of Main Central Thrust zone exhibit a rather irregular trend owing to its proximity to the transitioning lithological unit. The central section prone to landslides has characteristic peaks at 2 Hz and 8 Hz, indicative of the geometry of the sliding surface. Effects of towering topography and high wind speeds at corresponding elevations are observed to result in anomalously high amplification (∼25) at low frequencies (< 1 Hz). Directional amplification along discrete azimuth signifies the pronounced effect of topography and geometry of lithotectonic units in site response. Locally varying site response with prevalent seismicity amplifies the seismic hazard risk potential of Sikkim Himalaya.
References
Acerra, C., Aguacil, G., Anastasiadis, A., Atakan, K., Azzara, R., Bard, P.-Y., Basili, R., Bertrand, E., Bettig, B., Blarel, F., & others. (2004). Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations measurements, processing and interpretation. European Commission–EVG1-CT-2000-00026 SESAME.
Aki, K., & Richards, P. G. (2002). Quantitative Seismology. University Science Books.
Alonso-Pandavenes, O., Bernal, D., Torrijo, F. J., & Garzón-Roca, J. (2023). A Comparative Analysis for Defining the Sliding Surface and Internal Structure in an Active Landslide Using the HVSR Passive Geophysical Technique in Pujilı́ (Cotopaxi), Ecuador. Land, 12(5), 961. https://doi.org/10.3390/land12050961 DOI: https://doi.org/10.3390/land12050961
Ávila-Barrientos, L., Yegres-Herrera, L. A., & Flores-Estrella, H. (2023). Characterization of landslides in Federal Highway 1D, Baja California, Mexico, using seismic noise records and the HVSR method. Natural Hazards, 118(2), 1281–1299. https://doi.org/10.1007/s11069-023-06053-3 DOI: https://doi.org/10.1007/s11069-023-06053-3
Bard, P.-Y., & Riepl-Thomas, J. (2000). Wave propagation in complex geological structures and their effects on strong ground motion. In Wave motion in earthquake engineering (pp. 37–95). WIT Press, Southampton, Great Britain.
Bhattacharyya, K., & Mitra, G. (2009). A new kinematic evolutionary model for the growth of a duplex—an example from the Rangit duplex, Sikkim Himalaya, India. Gondwana Research, 16(3–4), 697–715. https://doi.org/10.1016/j.gr.2009.07.006 DOI: https://doi.org/10.1016/j.gr.2009.07.006
Bhattacharyya, K., Mitra, G., & Kwon, S. (2015). Geometry and kinematics of the Darjeeling–Sikkim Himalaya, India: Implications for the evolution of the Himalayan fold-thrust belt. Journal of Asian Earth Sciences, 113, 778–796. https://doi.org/10.1016/j.jseaes.2015.09.008 DOI: https://doi.org/10.1016/j.jseaes.2015.09.008
Bland, H., & Gallant, E. (2002). Avoiding wind noise: How helpful is geophone-burying. CSEG Geophysics, 1–4.
Bonamassa, O., & Vidale, J. E. (1991). Directional site resonances observed from aftershocks of the 18 October 1989 Loma Prieta earthquake. Bull. Seismol. Soc. Am., 81(5), 1945–1957. https://doi.org/10.1785/BSSA0810051945
Bonilla, L. F., Steidl, J. H., Lindley, G. T., Tumarkin, A. G., & Archuleta, R. J. (1997). Site amplification in the San Fernando Valley, California: variability of site-effect estimation using the S-wave, coda, and H/V methods. Bulletin of the Seismological Society of America, 87(3), 710–730. https://doi.org/10.1785/bssa0870030710 DOI: https://doi.org/10.1785/BSSA0870030710
Bonnefoy-Claudet, S., Baize, S., Bonilla, L. F., Berge-Thierry, C., Pasten, C., Campos, J., Volant, P., & Verdugo, R. (2009). Site effect evaluation in the basin of Santiago de Chile using ambient noise measurements. Geophysical Journal International, 176(3), 925–937. https://doi.org/10.1111/j.1365-246x.2008.04020.x DOI: https://doi.org/10.1111/j.1365-246X.2008.04020.x
Bonnefoy-Claudet, S., Cornou, C., Bard, P.-Y., Cotton, F., Moczo, P., Kristek, J., & Fäh, D. (2006). H/V ratio: A tool for site effects evaluation. Results from 1-D noise simulations. Geophysical Journal International, 167(2), 827–837. https://doi.org/10.1111/j.1365-246x.2006.03154.x DOI: https://doi.org/10.1111/j.1365-246X.2006.03154.x
Burjánek, J., Edwards, B., & Fäh, D. (2014). Empirical evidence of local seismic effects at sites with pronounced topography: a systematic approach. Geophysical Journal International, 197(1), 608–619. https://doi.org/10.1093/gji/ggu014 DOI: https://doi.org/10.1093/gji/ggu014
Burjánek, J., Kleinbrod, U., & Fäh, D. (2019). Modeling the seismic response of unstable rock mass with deep compliant fractures. Journal of Geophysical Research: Solid Earth, 124(12), 13039–13059. https://doi.org/10.1029/2019jb018607 DOI: https://doi.org/10.1029/2019JB018607
Chávez-García, F. J., Sánchez, L. R., & Hatzfeld, D. (1996). Topographic site effects and HVSR. A comparison between observations and theory. Bulletin of the Seismological Society of America, 86(5), 1559–1573. https://doi.org/10.1785/bssa0860051559 DOI: https://doi.org/10.1785/BSSA0860051559
Dasgupta, S., Chakraborty, S., & Neogi, S. (2009). Petrology of an inverted Barrovian sequence of metapelites in Sikkim Himalaya, India: Constraints on the tectonics of inversion. American Journal of Science, 309(1), 43–84. https://doi.org/10.2475/01.2009.02 DOI: https://doi.org/10.2475/01.2009.02
DeCelles, P. G., & Mitra, G. (1995). History of the Sevier orogenic wedge in terms of critical taper models, northeast Utah and southwest Wyoming. Geol. Soc. Am. Bull., 107(4), 454–462. https://doi.org/10.1130/0016-7606(1995)107$<$0454:HOTSOW$>$2.3.CO;2 DOI: https://doi.org/10.1130/0016-7606(1995)107<0454:HOTSOW>2.3.CO;2
Del Gaudio, V., Coccia, S., Wasowski, J., Gallipoli, M. R., & Mucciarelli, M. (2008). Detection of directivity in seismic site response from microtremor spectral analysis. Natural Hazards and Earth System Sciences, 8(4), 751–762. https://doi.org/10.5194/nhess-8-751-2008 DOI: https://doi.org/10.5194/nhess-8-751-2008
Dietiker, B., Pugin, A. J.-M., Crow, H. L., Mallozzi, S., Brewer, K. D., Cartwright, T. J., & Hunter, J. A. (2018). HVSR measurements in complex sedimentary environment and highly structured resonator topography–comparisons with seismic reflection profiles and geophysical borehole logs. Symposium on the Application of Geophysics to Engineering and Environmental Problems 2018, 66, 324–330. https://doi.org/10.4133/sageep.31-025 DOI: https://doi.org/10.4133/sageep.31-025
Fäh, D., Kind, F., & Giardini, D. (2001). A theoretical investigation of average H/V ratios. Geophysical Journal International, 145(2), 535–549. https://doi.org/10.1046/j.0956-540x.2001.01406.x DOI: https://doi.org/10.1046/j.0956-540x.2001.01406.x
Field, E. H., & Jacob, K. H. (1995). A comparison and test of various site-response estimation techniques, including three that are not reference-site dependent. Bull. Seismol. Soc. Am., 85(4), 1127–1143.
Formisano, L. A., La Rocca, M., Del Pezzo, E., Galluzzo, D., Fischione, C., & Scarpa, R. (2012). Topography effects in the polarization of earthquake signals: a comparison between surface and deep recordings. Bollettino Di Geofisica Teorica Ed Applicata, 53(4). https://doi.org/10.4430/bgta0055
Galea, P., D’Amico, S., & Farrugia, D. (2014). Dynamic characteristics of an active coastal spreading area using ambient noise measurements—Anchor Bay, Malta. Geophysical Journal International, 199(2), 1166–1175. https://doi.org/10.1093/gji/ggu318 DOI: https://doi.org/10.1093/gji/ggu318
Gautam, P., & Rösler, W. (1999). Depositional chronology and fabric of Siwalik Group sediments in central Nepal from magnetostratigraphy and magnetic anisotropy. Journal of Asian Earth Sciences, 17(5–6), 659–682. https://doi.org/10.1016/s1367-9120(99)00021-8 DOI: https://doi.org/10.1016/S1367-9120(99)00021-8
Geli, L., Bard, P.-Y., & Jullien, B. (1988). The effect of topography on earthquake ground motion: A review and new results. Bulletin of the Seismological Society of America, 78(1), 42–63. https://doi.org/10.1785/bssa0780010042 DOI: https://doi.org/10.1785/BSSA0780010042
Gosar, A., Rošer, J., Šket Motnikar, B., & Zupančič, P. (2009). Microtremor study of site effects and soil-structure resonance in the city of Ljubljana (central Slovenia). Bulletin of Earthquake Engineering, 8(3), 571–592. https://doi.org/10.1007/s10518-009-9113-x DOI: https://doi.org/10.1007/s10518-009-9113-x
Guerriero, L., Revellino, P., Luongo, A., Focareta, M., Grelle, G., & Guadagno, F. M. (2016). The Mount Pizzuto Earth flow: Deformational pattern and recent thrusting evolution. Journal of Maps, 12(5), 1187–1194. https://doi.org/10.1080/17445647.2016.1145150 DOI: https://doi.org/10.1080/17445647.2016.1145150
Hussain, Y., Martinez-Carvajal, H., Condori, C., Uagoda, R., Cárdenas-Soto, M., Cavalcante, A. L. B., Cunha, L. S. da, & Martino, S. (2019). Ambient seismic noise: A continuous source for the dynamic monitoring of landslides. Terrae Didatica, 15, e019012. https://doi.org/10.20396/td.v15i1.8652455 DOI: https://doi.org/10.20396/td.v15i1.8652455
Imposa, S., Grassi, S., Fazio, F., Rannisi, G., & Cino, P. (2016). Geophysical surveys to study a landslide body (north-eastern Sicily). Natural Hazards, 86(S2), 327–343. https://doi.org/10.1007/s11069-016-2544-1 DOI: https://doi.org/10.1007/s11069-016-2544-1
Kaur, H., Gupta, S., Parkash, S., Thapa, R., Gupta, A., & Khanal, G. C. (2019). Evaluation of landslide susceptibility in a hill city of Sikkim Himalaya with the perspective of hybrid modelling techniques. Annals of GIS, 25(2), 113–132. https://doi.org/10.1080/19475683.2019.1575906 DOI: https://doi.org/10.1080/19475683.2019.1575906
Kawase, H., Sanchez-Sesma, F. J., & Matsushima, S. (2011). The Optimal Use of Horizontal-to-Vertical Spectral Ratios of Earthquake Motions for Velocity Inversions Based on Diffuse-Field Theory for Plane Waves. Bulletin of the Seismological Society of America, 101(5), 2001–2014. https://doi.org/10.1785/0120100263 DOI: https://doi.org/10.1785/0120100263
Konno, K., & Ohmachi, T. (1998). Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bulletin of the Seismological Society of America, 88(1), 228–241. https://doi.org/10.1785/bssa0880010228 DOI: https://doi.org/10.1785/BSSA0880010228
La Rocca, M., Chiappetta, G. D., Gervasi, A., & Festa, R. L. (2020). Non-stability of the noise HVSR at sites near or on topographic heights. Geophysical Journal International, 222(3), 2162–2171. https://doi.org/10.1093/gji/ggaa297 DOI: https://doi.org/10.1093/gji/ggaa297
Lermo, J., & Chávez-García, F. J. (1993). Site effect evaluation using spectral ratios with only one station. Bulletin of the Seismological Society of America, 83(5), 1574–1594. https://doi.org/10.1785/bssa0830051574 DOI: https://doi.org/10.1785/BSSA0830051574
Maresca, R., Guerriero, L., Ruzza, G., Mascellaro, N., Guadagno, F. M., & Revellino, P. (2022). Monitoring ambient vibrations in an active landslide: Insights into seasonal material consolidation and resonance directivity. Journal of Applied Geophysics, 203, 104705. https://doi.org/10.1016/j.jappgeo.2022.104705 DOI: https://doi.org/10.1016/j.jappgeo.2022.104705
Molnar, S., Cassidy, J. F., Castellaro, S., Cornou, C., Crow, H., Hunter, J. A., Matsushima, S., Sánchez-Sesma, F. J., & Yong, A. (2018). Application of microtremor horizontal-to-vertical spectral ratio (MHVSR) analysis for site characterization: State of the art. Surveys in Geophysics, 39(4), 613–631. https://doi.org/10.1007/s10712-018-9464-4 DOI: https://doi.org/10.1007/s10712-018-9464-4
Molnar, S., Sirohey, A., Assaf, J., Bard, P.-Y., Castellaro, S., Cornou, C., Cox, B., Guillier, B., Hassani, B., Kawase, H., Matsushima, S., Sánchez-Sesma, F. J., & Yong, A. (2022). A review of the microtremor horizontal-to-vertical spectral ratio (MHVSR) method. Journal of Seismology, 26(4), 653–685. https://doi.org/10.1007/s10950-021-10062-9 DOI: https://doi.org/10.1007/s10950-021-10062-9
Moore, J. R., Gischig, V., Burjanek, J., Loew, S., & Fah, D. (2011). Site effects in unstable rock slopes: Dynamic behavior of the Randa instability (Switzerland). Bulletin of the Seismological Society of America, 101(6), 3110–3116. https://doi.org/10.1785/0120110127 DOI: https://doi.org/10.1785/0120110127
Mucciarelli, M., Gallipoli, M. R., Di Giacomo, D., Di Nota, F., & Nino, E. (2005). The influence of wind on measurements of seismic noise. Geophysical Journal International, 161(2), 303–308. https://doi.org/10.1111/j.1365-246x.2004.02561.x DOI: https://doi.org/10.1111/j.1365-246X.2004.02561.x
Nakamura, Y. (1989). A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Q. Rep. Railw. Tech. Res. Inst., 30(1).
Pal, I., Nath, S. K., Shukla, K., Pal, D. K., Raj, A., Thingbaijam, K. K. S., & Bansal, B. K. (2007). Earthquake hazard zonation of Sikkim Himalaya using a GIS platform. Natural Hazards, 45(3), 333–377. https://doi.org/10.1007/s11069-007-9173-7 DOI: https://doi.org/10.1007/s11069-007-9173-7
Panzera, F., D’Amico, S., Lotteri, A., Galea, P., & Lombardo, G. (2012). Seismic site response of unstable steep slope using noise measurements: T he case study of Xemxija Bay area, Malta. Natural Hazards and Earth System Sciences, 12(11), 3421–3431. https://doi.org/10.5194/nhess-12-3421-2012 DOI: https://doi.org/10.5194/nhess-12-3421-2012
Panzera, F., Lombardo, G., Longo, E., Langer, H., Branca, S., Azzaro, R., Cicala, V., & Trimarchi, F. (2016). Exploratory seismic site response surveys in a complex geologic area: a case study from Mt. Etna volcano (southern Italy). Natural Hazards, 86(S2), 385–399. https://doi.org/10.1007/s11069-016-2517-4 DOI: https://doi.org/10.1007/s11069-016-2517-4
Pastén, C., Sáez, M., Ruiz, S., Leyton, F., Salomón, J., & Poli, P. (2016). Deep characterization of the Santiago Basin using HVSR and cross-correlation of ambient seismic noise. Engineering Geology, 201, 57–66. https://doi.org/10.1016/j.enggeo.2015.12.021 DOI: https://doi.org/10.1016/j.enggeo.2015.12.021
Paul, D., McNaughton, N., Chattopadhyay, S., & Ray, K. (1996). Geochronology and Geochemistry of the Lingtse Gneiss, Darjeeling-Sikkim Himalaya: Revisited. J. Geol. Soc. India, 48(5), 497–506. DOI: https://doi.org/10.17491/jgsi/1996/480502
Pavankumar, G., & Manglik, A. (2021). Complex tectonic setting and deep crustal seismicity of the Sikkim Himalaya: An electrical resistivity perspective. Physics and Chemistry of the Earth, Parts A/B/C, 124, 103077. https://doi.org/10.1016/j.pce.2021.103077 DOI: https://doi.org/10.1016/j.pce.2021.103077
Pazzi, V., Tanteri, L., Bicocchi, G., D’Ambrosio, M., Caselli, A., & Fanti, R. (2017). H/V measurements as an effective tool for the reliable detection of landslide slip surfaces: Case studies of Castagnola (La Spezia, Italy) and Roccalbegna (Grosseto, Italy). Physics and Chemistry of the Earth, Parts A/B/C, 98, 136–153. https://doi.org/10.1016/j.pce.2016.10.014 DOI: https://doi.org/10.1016/j.pce.2016.10.014
Pilz, M., Parolai, S., Leyton, F., Campos, J., & Zschau, J. (2009). A comparison of site response techniques using earthquake data and ambient seismic noise analysis in the large urban areas of Santiago de Chile. Geophysical Journal International, 178(2), 713–728. https://doi.org/10.1111/j.1365-246x.2009.04195.x DOI: https://doi.org/10.1111/j.1365-246X.2009.04195.x
Pischiutta, M., Cultrera, G., Caserta, A., Luzi, L., & Rovelli, A. (2010). Topographic effects on the hill of Nocera Umbra, central Italy. Geophysical Journal International, 182(2), 977–987. https://doi.org/10.1111/j.1365-246x.2010.04654.x DOI: https://doi.org/10.1111/j.1365-246X.2010.04654.x
Reiter, L. (1990). Earthquake Hazard Analysis: Issues and Insights. Columbia University Press, New York, USA.
Rigo, A., Sokos, E., Lefils, V., & Briole, P. (2021). Seasonal variations in amplitudes and resonance frequencies of the HVSR amplification peaks linked to groundwater. Geophysical Journal International, 226(1), 1–13. https://doi.org/10.1093/gji/ggab086 DOI: https://doi.org/10.1093/gji/ggab086
Rong, M., Fu, L., & Wang, J. (2020). On the differences between horizontal-to-vertical spectral ratios caused by earthquakes and ambient noise—A case study of vertical-array observations in Northern China. Journal of Applied Geophysics, 182, 104171. https://doi.org/10.1016/j.jappgeo.2020.104171 DOI: https://doi.org/10.1016/j.jappgeo.2020.104171
Shapiro, N. M., Campillo, M., Singh, S. K., & Pacheco, J. (1998). Seismic channel waves in the accretionary prism of the Middle America Trench. Geophysical Research Letters, 25(1), 101–104. https://doi.org/10.1029/97gl03492 DOI: https://doi.org/10.1029/97GL03492
Singh, A., Kumar, G., Singh, C., Kumar, M. R., Uthaman, M., Saikia, D., & Dubey, A. K. (2023). Seismic constraints on the nature and geometry of the downwelling Indian crust beneath Sikkim Himalaya. https://doi.org/10.5194/egusphere-egu23-2463 DOI: https://doi.org/10.5194/egusphere-egu23-2463
Singh, A. P., Kumar, M. R., Pandey, A., & Roy, K. S. (2019). Investigation of spatial and temporal variability of site response in the Arunachal Himalaya using ambient seismic noise and earthquake waveforms. Near Surface Geophysics, 17(4), 427–445. https://doi.org/10.1002/nsg.12053 DOI: https://doi.org/10.1002/nsg.12053
Sonker, I., Tripathi, J. N., & Swarnim. (2024). Landslide susceptibility mapping using morphological and hydrological parameters in Sikkim Himalaya: frequency ratio model and geospatial technologies. Nat. Hazards, 120(7), 6797–6832. DOI: https://doi.org/10.1007/s11069-024-06491-7
Souriau, A., Roulle, A., & Ponsolles, C. (2007). Site effects in the city of Lourdes, France, from H/V measurements: implications for seismic-risk evaluation. Bulletin of the Seismological Society of America, 97(6), 2118–2136. https://doi.org/10.1785/0120060224 DOI: https://doi.org/10.1785/0120060224
Stanko, D., Markušić, S., Strelec, S., & Gazdek, M. (2017). HVSR analysis of seismic site effects and soil-structure resonance in Varaždin city (North Croatia). Soil Dynamics and Earthquake Engineering, 92, 666–677. https://doi.org/10.1016/j.soildyn.2016.10.022 DOI: https://doi.org/10.1016/j.soildyn.2016.10.022
Tiwari, V. M., Vyghreswara Rao, M. B. S., Mishra, D. C., & Singh, B. (2006). Crustal structure across Sikkim, NE Himalaya from new gravity and magnetic data. Earth and Planetary Science Letters, 247(1–2), 61–69. https://doi.org/10.1016/j.epsl.2006.03.037 DOI: https://doi.org/10.1016/j.epsl.2006.03.037
Uthaman, M., Singh, A., Singh, C., Dubey, A., & Kumar, G. (2021). Discerning structure and seismic hazards in the Sikkim Himalayas. Eos, 102. https://doi.org/10.1029/2021eo156044 DOI: https://doi.org/10.1029/2021EO156044
Uthaman, M., Singh, A., Singh, C., Kumar, G., Dutta, A., and Jana, N., & Dubey, A. K. (2023). Shear wave velocity and radial anisotropy structure beneath Sikkim Himalaya. AGU Fall Meeting Conference Abstracts.
Uthaman, M., Singh, C., & Singh, A. (2024). Characterization of landslide prone zones in Sikkim Himalaya using HVSR. ESC General Assembly Abstracts.
Uthaman, M., Singh, C., Singh, A., Dutta, A., Kumar Dubey, A., & Kumar, G. (2023). Seismicity and active tectonics: New insights from Sikkim Himalaya. https://doi.org/10.5194/egusphere-egu23-343 DOI: https://doi.org/10.5194/egusphere-egu23-343
Uthaman, M., Singh, C., Singh, A., Dutta, A., Kumar, G., & Dubey, A. K. (2023). Focal Mechanisms and Seismicity of local earthquakes beneath the Sikkim Himalaya. https://doi.org/10.57757/IUGG23-2306
Uthaman, M., Singh, C., Singh, A., Hetényi, G., Dutta, A., Kumar, G., & Dubey, A. K. (2024). Complex multi-fault dynamics in Sikkim Himalaya: New insights from local earthquake analysis. Geochemistry, Geophysics, Geosystems, 25(6). https://doi.org/10.1029/2023gc011363 DOI: https://doi.org/10.1029/2023GC011363
Uthaman, M., Singh, C., Singh, A., Jana, N., Dubey, A. K., Sarkar, S., & Tiwari, A. K. (2022). Spatial and temporal variation of the ambient noise environment of the Sikkim Himalaya. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-021-04183-x DOI: https://doi.org/10.1038/s41598-021-04183-x
Wathelet, M., Chatelain, J.-L., Cornou, C., Giulio, G. D., Guillier, B., Ohrnberger, M., & Savvaidis, A. (2020). Geopsy: A user-friendly open-source tool set for ambient vibration processing. Seismological Research Letters, 91(3), 1878–1889. https://doi.org/10.1785/0220190360 DOI: https://doi.org/10.1785/0220190360
Wesnousky, S. G., Kumar, S., Mohindra, R., & Thakur, V. C. (1999). Uplift and convergence along the Himalayan Frontal Thrust of India. Tectonics, 18(6), 967–976. https://doi.org/10.1029/1999tc900026 DOI: https://doi.org/10.1029/1999TC900026
Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H. F., & Tian, D. (2019). The Generic Mapping Tools Version 6. Geochemistry, Geophysics, Geosystems, 20(11), 5556–5564. https://doi.org/10.1029/2019gc008515 DOI: https://doi.org/10.1029/2019GC008515
Withers, M., Aster, R., Young, C., Beiriger, J., Harris, M., Moore, S., & Trujillo, J. (1998). A comparison of select trigger algorithms for automated global seismic phase and event detection. Bulletin of the Seismological Society of America, 88(1), 95–106. https://doi.org/10.1785/bssa0880010095 DOI: https://doi.org/10.1785/BSSA0880010095
Yassminh, R., Gallegos, A., Sandvol, E., & Ni, J. (2019). Investigation of the regional site response in the Central and Eastern United States. Bulletin of the Seismological Society of America, 109(3). https://doi.org/10.1785/0120180230 DOI: https://doi.org/10.1785/0120180230
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Mita Uthaman, Chandrani Singh, Arun Singh
This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
Ministry of Earth Sciences
Grant numbers MoES/P.O.(Seismo)/1(318)/2017, SDH