Qseek: A data-driven Framework for Automated Earthquake Detection, Localization and Characterization
DOI:
https://doi.org/10.26443/seismica.v4i1.1283Keywords:
Seismology, Earthquake detection, Machine learning, Earthquake Location, Large-N arraysAbstract
We introduce a data-driven method and software for detecting and locating earthquakes in large seismic datasets. By combining seismic phase arrival annotations, delivered by neural network phase pickers, and waveform stacking with an adaptive octree search, we can automatically detect and locate seismic events even in noise-dominant seismic data. The resolution of the search volume is iteratively refined toward the seismic source location; this strategy facilitates an efficient, fast, and accurate search. We present a user-friendly and high-performance open-source software framework based on established frameworks, featuring event detection in layered 1D and complex 3D velocity models and event feature extraction capabilities, such as moment and local magnitude calculation from peak ground motions. We incorporated station-specific corrections and source-specific station terms into the search to enhance the location accuracy. We demonstrate and validate our approach by extracting extensive earthquake catalogs from large seismic datasets in different regions and geological settings: (1) Reykjanes Peninsula, Iceland; (2) Eifel volcanic region, Germany; and (3) Utah FORGE, USA. We capture seismic events from tectonic activity, volcanic swarms, and induced microseismic activity with magnitudes ranging from -1 to 5. Such precise and complete earthquake catalogs contribute to the interpretation and understanding of otherwise hidden subsurface processes.
References
Allen, R. (1982). Automatic phase pickers: Their present use and future prospects. Bulletin of the Seismological Society of America, 72(6B), S225–S242. DOI: https://doi.org/10.1785/BSSA07206B0225
Bagagli, M. (2022). filterpicker: general purpose, broad-band, phase detector and picker (1.1.0) [Computer software]. Zenodo. https://doi.org/10.5281/zenodo.6511985
Beaucé, E., Frank, W. B., Seydoux, L., Poli, P., Groebner, N., van der Hilst, R. D., & Campillo, M. (2023). BPMF: A Backprojection and Matched‐Filtering Workflow for Automated Earthquake Detection and Location. Seismological Research Letters, 95(2A), 1030–1042. https://doi.org/10.1785/0220230230 DOI: https://doi.org/10.1785/0220230230
Billings, S. D., Sambridge, M. S., & Kennett, B. L. N. (1994). Errors in hypocenter location: Picking, model, and magnitude dependence. Bulletin of the Seismological Society of America, 84(6), 1978–1990. https://doi.org/10.1785/BSSA0840061978 DOI: https://doi.org/10.1785/BSSA0840061978
Bormann, P., & Dewey, J. W. (2012). The new IASPEI standards for determining magnitudes from digital data and their relation to classical magnitudes. In New manual of seismological observatory practice 2 (NMSOP-2) (pp. 1–44). Deutsches GeoForschungsZentrum GFZ. https://doi.org/10.2312/GFZ.NMSOP-2_IS_3.3
Büyükakpınar, P., Isken, M. P., Heimann, S., Dahm, T., Kühn, D., Starke, J., López Comino, J. Á., Cesca, S., Doubravová, J., Gudnason, E. Á., & Ágústsdóttir, T. (2024). Understanding the Seismic Signature of Transtensional Opening in the Reykjanes Peninsula Rift Zone, SW Iceland. Journal of Geophysical Research: Solid Earth. https://doi.org/10.1029/2024jb029566 DOI: https://doi.org/10.1029/2024JB029566
Cesca, S., & Grigoli, F. (2015). Chapter Two - Full Waveform Seismological Advances for Microseismic Monitoring (Vol. 56, pp. 169–228). Elsevier. https://doi.org/10.1016/bs.agph.2014.12.002 DOI: https://doi.org/10.1016/bs.agph.2014.12.002
Cesca, S., Letort, J., Razafindrakoto, H. N. T., Heimann, S., Rivalta, E., Isken, M. P., Nikkhoo, M., Passarelli, L., Petersen, G. M., Cotton, F., & Dahm, T. (2020). Drainage of a deep magma reservoir near Mayotte inferred from seismicity and deformation. Nature Geoscience, 13(1), 87–93. https://doi.org/10.1038/s41561-019-0505-5 DOI: https://doi.org/10.1038/s41561-019-0505-5
Dahm, T., Jousset, P., Heimann, S., Milkereit, C., Hersir, G. P., & Magnússon, R. (2020). MAGIC - Seismic network MAGma in ICeland. GFZ Data Services. https://doi.org/10.14470/4U7575229166
Dahm, T., Kühn, D., Cesca, S., Isken, M., & Heimann, S. (2024). Earthquake Moment Magnitudes from Peak Ground Displacements and Synthetic Green’s Functions. Seismica, 3(2). https://doi.org/10.26443/seismica.v3i2.1205 DOI: https://doi.org/10.26443/seismica.v3i2.1205
Dahm, T., Stiller, M., Mechie, J., Heimann, S., Hensch, M., Woith, H., Schmidt, B., Gabriel, G., & Weber, M. (2020). Seismological and Geophysical Signatures of the Deep Crustal Magma Systems of the Cenozoic Volcanic Fields Beneath the Eifel, Germany. Geochemistry, Geophysics, Geosystems, 21(9). https://doi.org/10.1029/2020GC009062 DOI: https://doi.org/10.1029/2020GC009062
Dahm, T., & The Eifel Large-N team. (2023). A large-N passive seismological experiment to unravel the structure and activity of the transcrustal magma system of the Eifel Volcanic Field. EGU General Assembly, Vienna, Austria. https://doi.org/10.5194/egusphere-egu23-2590 DOI: https://doi.org/10.5194/egusphere-egu23-2590
Defourny, A., Blard, P.-H., Zimmermann, L., Jobé, P., Collignon, A., Nguyen, F., & Dassargues, A. (2022). δ13C, CO₂,/,3He and 3He,/,4He ratios reveal the presence of mantle gas in the CO₂-rich groundwaters of the Ardennes massif (Spa, Belgium). Hydrology and Earth System Sciences, 26(10), 2637–2648. https://doi.org/10.5194/hess-26-2637-2022 DOI: https://doi.org/10.5194/hess-26-2637-2022
del Fresno, C., Cesca, S., Klügel, A., Domínguez Cerdeña, I., Díaz-Suárez, E. A., Dahm, T., García-Cañada, L., Meletlidis, S., Milkereit, C., Valenzuela-Malebrán, C., López-Díaz, R., & López, C. (2023). Magmatic plumbing and dynamic evolution of the 2021 La Palma eruption. Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-35953-y DOI: https://doi.org/10.1038/s41467-023-35953-y
Dimri, V. P., Srivastava, R. P., & Vedanti, N. (2003). Chapter 8 - Hamilton’s ray equations. In M. A. Slawinski (Ed.), Seismic Waves and Rays in Elastic Media (Vol. 34, pp. 173–195). Pergamon. https://doi.org/10.1016/S0950-1401(03)80057-5 DOI: https://doi.org/10.1016/S0950-1401(03)80057-5
Dougherty, S. L., Cochran, E. S., & Harrington, R. M. (2019). The LArge‐n Seismic Survey in Oklahoma (LASSO) Experiment. Seismological Research Letters, 90(5), 2051–2057. https://doi.org/10.1785/0220190094 DOI: https://doi.org/10.1785/0220190094
Drew, J., White, R. S., Tilmann, F., & Tarasewicz, J. (2013). Coalescence microseismic mapping. Geophysical Journal International, 195(3), 1773–1785. https://doi.org/10.1093/gji/ggt331 DOI: https://doi.org/10.1093/gji/ggt331
Ducrocq, C., Árnadóttir, T., Einarsson, P., Jónsson, S., Drouin, V., Geirsson, H., & Hjartardóttir, Á. R. (2024). Widespread fracture movements during a volcano-tectonic unrest: the Reykjanes Peninsula, Iceland, from 2019–2021 TerraSAR-X interferometry. Bull. Volcanol., 86(2). https://doi.org/10.1007/s00445-023-01699-0 DOI: https://doi.org/10.1007/s00445-023-01699-0
Ellsworth, W. L. (2013). Injection-Induced Earthquakes. Science, 341(6142), 1225942. https://doi.org/10.1126/science.1225942 DOI: https://doi.org/10.1126/science.1225942
Erdbebendienst Südwest Baden-Württemberg and Rheinland-Pfalz. (2009). Erdbebendienst Südwest. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/LE
Finger, C., Niemz, P., Ermert, L., & Lanza, F. (2024). A Composite 3D Velocity Model for Utah FORGE [Techreport]. Geothermal Data Repository. https://doi.org/10.15121/2305384
Flóvenz, Ó. G., Wang, R., Hersir, G. P., Dahm, T., Hainzl, S., Vassileva, M., Drouin, V., Heimann, S., Isken, M. P., Gudnason, E. Á., & others. (2022). Cyclical geothermal unrest as a precursor to Iceland’s 2021 Fagradalsfjall eruption. Nature Geoscience, 15(5), 397–404. https://doi.org/http://dx.doi.org/10.1038/s41561-022-00930-5 DOI: https://doi.org/10.1038/s41561-022-00930-5
Gal, F., Michel, B., Gilles, B., Frédéric, J., & Karine, M. (2011). CO2 escapes in the Laacher See region, East Eifel, Germany: Application of natural analogue onshore and offshore geochemical monitoring. International Journal of Greenhouse Gas Control, 5(4), 1099–1118. https://doi.org/10.1016/j.ijggc.2011.04.004 DOI: https://doi.org/10.1016/j.ijggc.2011.04.004
Gharti, H. N., Oye, V., Roth, M., & Kühn, D. (2010). Automated microearthquake location using envelope stacking and robust global optimization. Geophysics, 75(4), MA27–MA46. https://doi.org/10.1190/1.3432784 DOI: https://doi.org/10.1190/1.3432784
Greenfield, T., White, R. S., Winder, T., & Ágústsdóttir, T. (2020). Seismicity of the Askja and Bárðarbunga volcanic systems of Iceland, 2009–2015. Journal of Volcanology and Geothermal Research, 391, 106432. https://doi.org/10.1016/j.jvolgeores.2018.08.010 DOI: https://doi.org/10.1016/j.jvolgeores.2018.08.010
Greenfield, T., Winder, T., Rawlinson, N., Maclennan, J., White, R. S., Ágústsdóttir, T., Bacon, C. A., Brandsdóttir, B., Eibl, E. P. S., Glastonbury-Southern, E., Gudnason, E. A., Hersir, G. P., & Horálek, J. (2022). Deep long period seismicity preceding and during the 2021 Fagradalsfjall eruption, Iceland. Bulletin of Volcanology, 84(12). https://doi.org/10.1007/s00445-022-01603-2 DOI: https://doi.org/10.1007/s00445-022-01603-2
Grigoli, F., Cesca, S., Amoroso, O., Emolo, A., Zollo, A., & Dahm, T. (2014). Automated seismic event location by waveform coherence analysis. Geophysical Journal International, 196(3), 1742–1753. https://doi.org/10.1785/0220120191 DOI: https://doi.org/10.1093/gji/ggt477
Grigoli, F., Cesca, S., Krieger, L., Kriegerowski, M., Gammaldi, S., Horalek, J., Priolo, E., & Dahm, T. (2016). Automated microseismic event location using master-event waveform stacking. Scientific Reports, 6(1), 1–13. https://doi.org/10.1038/srep25744 DOI: https://doi.org/10.1038/srep25744
Grigoli, F., Cesca, S., Vassallo, M., & Dahm, T. (2013). Automated seismic event location by travel-time stacking: An application to mining induced seismicity. Seismological Research Letters, 84(4), 666–677. https://doi.org/10.1785/0220120191 DOI: https://doi.org/10.1785/0220120191
Hamilton, W. R. (1828). Theory of systems of rays. The Transactions of the Royal Irish Academy, 69–174.
Heimann, S., Vasyura-Bathke, H., Sudhaus, H., Isken, M. P., Kriegerowski, M., Steinberg, A., & Dahm, T. (2019). A Python framework for efficient use of pre-computed Green’s functions in seismological and other physical forward and inverse source problems. Solid Earth, 10(6), 1921–1935. https://doi.org/10.5194/se-10-1921-2019 DOI: https://doi.org/10.5194/se-10-1921-2019
Heimann, Sebastian, Kriegerowski, M., Isken, M., Cesca, S., Daout, S., Grigoli, F., Juretzek, C., Megies, T., Nooshiri, N., Steinberg, A., & others. (2017). Pyrocko-An open-source seismology toolbox and library. GFZ Data Services. https://doi.org/10.5880/GFZ.2.1.2017.001
Hensch, M., Dahm, T., Ritter, J., Heimann, S., Schmidt, B., Stange, S., & Lehmann, K. (2019). Deep low-frequency earthquakes reveal ongoing magmatic recharge beneath Laacher See Volcano (Eifel, Germany). Geophysical Journal International, 216(3), 2025–2036. https://doi.org/10.1093/gji/ggy532 DOI: https://doi.org/10.1093/gji/ggy532
Hinzen, K.-G. (2003). Stress field in the Northern Rhine area, Central Europe, from earthquake fault plane solutions. Tectonophysics, 377(3), 325–356. https://doi.org/10.1016/j.tecto.2003.10.004 DOI: https://doi.org/10.1016/j.tecto.2003.10.004
Horálek, J., Fischer, T., Boušková, A., & Jedlička, P. (2000). Western Bohemia/Vogtland in the light of the WEBNET network. Stud. Geophys. Geod., 44(2), 107–125. https://doi.org/10.1023/A:1022198406514 DOI: https://doi.org/10.1023/A:1022198406514
Hrubcová, P., & Vavryčuk, V. (2023). Tectonic stress changes related to plate spreading prior to the 2021 Fagradalsfjall eruption in SW Iceland. Tectonophysics, 851, 229761. https://doi.org/https://doi.org/10.1016/j.tecto.2023.229761 DOI: https://doi.org/10.1016/j.tecto.2023.229761
Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 9(3), 90–95. https://doi.org/10.1109/MCSE.2007.55 DOI: https://doi.org/10.1109/MCSE.2007.55
Hutton, L. K., & Boore, D. M. (1987). The ML scale in Southern California. Bulletin of the Seismological Society of America, 77(6), 2074–2094. DOI: https://doi.org/10.1785/BSSA0770062074
Icelandic Meteorological Office. (1992). Icelandic National Digital Seismograph Network. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/ZKJM-TJ71
Isken, M. (2025). Supplement to Qseek: A Data-Driven Framework for Automated Earthquake Detection, Localization and Characterization (1.0.0) [Computer software]. Zenodo. https://doi.org/10.5281/zenodo.14802237
Josef Horalek. (2013). Reykjanet. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/7E_2013
Kao, H., & Shan, S.-J. (2004). The source-scanning algorithm: Mapping the distribution of seismic sources in time and space. Geophysical Journal International, 157(2), 589–594. https://doi.org/10.1111/j.1365-246X.2004.02276.x DOI: https://doi.org/10.1111/j.1365-246X.2004.02276.x
Li, L., Tan, J., Schwarz, B., Staněk, F., Poiata, N., Shi, P., Diekmann, L., Eisner, L., & Gajewski, D. (2020). Recent Advances and Challenges of Waveform-Based Seismic Location Methods at Multiple Scales. Reviews of Geophysics, 58(1), e2019RG000667. https://doi.org/10.1029/2019RG000667 DOI: https://doi.org/10.1029/2019RG000667
Lin, G., & Shearer, P. (2005). Tests of relative earthquake location techniques using synthetic data. Journal of Geophysical Research: Solid Earth, 110(B4). https://doi.org/https://doi.org/10.1029/2004JB003380 DOI: https://doi.org/10.1029/2004JB003380
Lomax, A., Satriano, C., & Vassallo, M. (2012). Automatic Picker Developments and Optimization: FilterPicker—a Robust, Broadband Picker for Real-Time Seismic Monitoring and Earthquake Early Warning. Seismological Research Letters, 83(3), 531–540. https://doi.org/10.1785/gssrl.83.3.531 DOI: https://doi.org/10.1785/gssrl.83.3.531
Lomax, A., & Savvaidis, A. (2022). High-Precision Earthquake Location Using Source-Specific Station Terms and Inter-Event Waveform Similarity. Journal of Geophysical Research: Solid Earth, 127(1), e2021JB023190. https://doi.org/10.1029/2021JB023190 DOI: https://doi.org/10.1029/2021JB023190
Lomax, A., Virieux, J., Volant, P., & Berge-Thierry, C. (2000). Probabilistic Earthquake Location in 3D and Layered Models. In Modern Approaches in Geophysics (pp. 101–134). Springer Netherlands. https://doi.org/10.1007/978-94-015-9536 DOI: https://doi.org/10.1007/978-94-015-9536-0_5
McLennan, J., England, K., Rose, P., Moore, J., & Barker, B. (2023). Stimulation of a High-Temperature Granitic Reservoir at the Utah FORGE Site. Day 3 Thu, February 02, 2023, D031S008R001. https://doi.org/10.2118/212346-MS DOI: https://doi.org/10.2118/212346-MS
Meagher, D. (1982). Geometric modeling using octree encoding. Computer Graphics and Image Processing, 19(2), 129–147. https://doi.org/10.1016/0146-664X(82)90104-6 DOI: https://doi.org/10.1016/0146-664X(82)90104-6
Mertes, H. (1983). Aufbau und Genese des Westeifeler Vulkanfeldes. Institut für Geologie der Ruhr-Universität-Bochum.
Moore, J., McLENNAN, J., Allis, R., Pankow, K., Simmons, S., Podgorney, R., Wannamaker, P., & Rickard, W. (2019). The Utah Frontier Observatory for Research in Geothermal Energy (FORGE): An International Laboratory for Enhanced Geothermal System Technology Development. PROCEEDINGS, SGP-TR-214.
Moore, J., McLennan, J., Pankow, K., Finnila, A., Dyer, B., Karvounis, D., Bethmann, F., Podgorney, R., Rutledge, J., Meir, P., Xing, P., Jones, C., Barker, B., Simmons, S., & Damjanac, B. (2023). Current Activities at the Utah Frontier Observatory for Research in Geothermal Energy (FORGE): A Laboratory for Characterizing, Creating and Sustaining Enhanced Geothermal Systems. All Days, ARMA-2023-0749. https://doi.org/10.56952/ARMA-2023-0749 DOI: https://doi.org/10.56952/ARMA-2023-0749
Mousavi, S. M., Ellsworth, W. L., Zhu, W., Chuang, L. Y., & Beroza, G. C. (2020). Earthquake transformer—an attentive deep-learning model for simultaneous earthquake detection and phase picking. Nature Communications, 11(1), 1–12. https://doi.org/10.1038/s41467-020-17591-w DOI: https://doi.org/10.1038/s41467-020-17591-w
Münchmeyer, J. (2024). PyOcto: A high-throughput seismic phase associator. Seismica, 3(1). https://doi.org/10.26443/seismica.v3i1.1130 DOI: https://doi.org/10.26443/seismica.v3i1.1130
Münchmeyer, J., Woollam, J., Rietbrock, A., Tilmann, F., Lange, D., Bornstein, T., Diehl, T., Giunchi, C., Haslinger, F., Jozinović, D., Michelini, A., Saul, J., & Soto, H. (2022). Which Picker Fits My Data? A Quantitative Evaluation of Deep Learning Based Seismic Pickers. Journal of Geophysical Research: Solid Earth, 127(1), e2021JB023499. https://doi.org/10.1029/2021JB023499 DOI: https://doi.org/10.1029/2021JB023499
Niemz, P., McLennan, J., Pankow, K. L., Rutledge, J., & England, K. (2024). Circulation experiments at Utah FORGE: Near-surface seismic monitoring reveals fracture growth after shut-in. Geothermics, 119, 102947. https://doi.org/10.1016/j.geothermics.2024.102947 DOI: https://doi.org/10.1016/j.geothermics.2024.102947
Nooshiri, N., Saul, J., Heimann, S., Tilmann, F., & Dahm, T. (2016). Revision of earthquake hypocentre locations in global bulletin data sets using source-specific station terms. Geophysical Journal International, 208(2), 589–602. https://doi.org/10.1093/gji/ggw405 DOI: https://doi.org/10.1093/gji/ggw405
Obermann, A., Sánchez‐Pastor, P., Wu, S., Wollin, C., Baird, A. F., Isken, M. P., Clinton, J., Goertz‐Allmann, B. P., Dahm, T., Wuestefeld, A., Shi, P., Lanza, F., Gyger, L., Wetter, S., Hjörleifsdóttir, V., Langet, N., Brynjarsson, B., Jousset, P., & Wiemer, S. (2022). Combined Large‐N Seismic Arrays and DAS Fiber Optic Cables across the Hengill Geothermal Field, Iceland. Seismological Research Letters, 93(5), 2498–2514. https://doi.org/10.1785/0220220073 DOI: https://doi.org/10.1785/0220220073
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., & others. (2019). Pytorch: An imperative style, high-performance deep learning library. Advances in Neural Information Processing Systems, 32.
Petersen, G. M., & Pankow, K. L. (2023). Small-Magnitude Seismic Swarms in Central Utah (US): Interactions of Regional Tectonics, Local Structures and Hydrothermal Systems. Geochemistry, Geophysics, Geosystems, 24(7), e2023GC010867. https://doi.org/10.1029/2023GC010867 DOI: https://doi.org/10.1029/2023GC010867
Poiata, N., Satriano, C., Vilotte, J.-P., Bernard, P., & Obara, K. (2016). Multiband array detection and location of seismic sources recorded by dense seismic networks. Geophysical Journal International, 205(3), 1548–1573. https://doi.org/10.1093/gji/ggw071 DOI: https://doi.org/10.1093/gji/ggw071
Reinig, F., Wacker, L., Jöris, O., Oppenheimer, C., Guidobaldi, G., Nievergelt, D., Adolphi, F., Cherubini, P., Engels, S., Esper, J., & others. (2021). Precise date for the Laacher See eruption synchronizes the Younger Dryas. Nature, 595(7865), 66–69. https://doi.org/10.1038/s41586-021-03608-x DOI: https://doi.org/10.1038/s41586-021-03608-x
Richards-Dinger, K. B., & Shearer, P. M. (2000). Earthquake locations in southern California obtained using source-specific station terms. Journal of Geophysical Research: Solid Earth, 105(B5), 10939–10960. https://doi.org/https://doi.org/10.1029/2000JB900014 DOI: https://doi.org/10.1029/2000JB900014
Ross, Z. E., Meier, M., Hauksson, E., & Heaton, T. H. (2018). Generalized Seismic Phase Detection with Deep Learning. Bulletin of the Seismological Society of America, 108(5A), 2894–2901. https://doi.org/10.1785/0120180080 DOI: https://doi.org/10.1785/0120180080
Sethian, J. A. (1996). A fast marching level set method for monotonically advancing fronts. Proceedings of the National Academy of Sciences, 93(4), 1591–1595. https://doi.org/10.1073/pnas.93.4.1591 DOI: https://doi.org/10.1073/pnas.93.4.1591
Shi, P., Grigoli, F., Lanza, F., Beroza, G. C., Scarabello, L., & Wiemer, S. (2022). MALMI: An Automated Earthquake Detection and Location Workflow Based on Machine Learning and Waveform Migration. Seismological Research Letters, 93(5), 2467–2483. https://doi.org/10.1785/0220220071 DOI: https://doi.org/10.1785/0220220071
Sigmundsson, F., Parks, M., Geirsson, H., Hooper, A., Drouin, V., Vogfjörd, K. S., Ófeigsson, B. G., Greiner, S. H. M., Yang, Y., Lanzi, C., Pascale, G. P. D., Jónsdóttir, K., Hreinsdóttir, S., Tolpekin, V., Friðriksdóttir, H. M., Einarsson, P., & Barsotti, S. (2024). Fracturing and tectonic stress drives ultrarapid magma flow into dikes. Science, 1(1), eadn2838. https://doi.org/10.1126/science.adn2838 DOI: https://doi.org/10.1126/science.adn2838
Stange, S. (2006). ML Determination for Local and Regional Events Using a Sparse Network in Southwestern Germany. Journal of Seismology, 10(2), 247–257. https://doi.org/10.1007/s10950-006-9010-6 DOI: https://doi.org/10.1007/s10950-006-9010-6
Stein, S., & Wysession, M. (2002). An introduction to seismology, earthquakes, and earth structure. Blackwell Science.
Trugman, D. T., Chamberlain, C. J., Savvaidis, A., & Lomax, A. (2022). GrowClust3D.Jl: A Julia Package for the Relative Relocation of Earthquake Hypocenters Using 3D Velocity Models. Seismological Research Letters, 94(1), 443–456. https://doi.org/10.1785/0220220193 DOI: https://doi.org/10.1785/0220220193
Uhrhammer, R. A., & Collins, E. R. (1990). Synthesis of Wood-Anderson seismograms from broadband digital records. Bulletin of the Seismological Society of America, 80(3), 702–716. https://doi.org/10.1785/BSSA0800030702
University of Utah. (1962). University of Utah Regional Seismic Network. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/UU
Vasyura-Bathke, H., Dettmer, J., Biegel, K., Salvage, R. O., Eaton, D., Ackerley, N., Samsonov, S., & Dahm, T. (2023). Bayesian inference elucidates fault-system anatomy and resurgent earthquakes induced by continuing saltwater disposal. Communications Earth and Environment, 4(1). https://doi.org/10.1038/s43247-023-01064-1 DOI: https://doi.org/10.1038/s43247-023-01064-1
Wilding, J. D., Zhu, W., Ross, Z. E., & Jackson, J. M. (2023). The magmatic web beneath Hawai‘i. Science, 379(6631), 462–468. https://doi.org/10.1126/science.ade5755 DOI: https://doi.org/10.1126/science.ade5755
Winder, T., Bacon, C., Smith, J. D., Hudson, T. S., Drew, J., & White, R. S. (2021). QuakeMigrate v1.0.0 (v1.0.0) [Computer software]. Zenodo. https://doi.org/10.5281/zenodo.4442749
Woollam, J., Münchmeyer, J., Tilmann, F., Rietbrock, A., Lange, D., Bornstein, T., Diehl, T., Giunchi, C., Haslinger, F., Jozinović, D., & others. (2022). SeisBench—A toolbox for machine learning in seismology. Seismological Research Letters, 93(3), 1695–1709. DOI: https://doi.org/10.1785/0220210324
Zhu, W., & Beroza, G. C. (2018). PhaseNet: a deep-neural-network-based seismic arrival-time picking method. Geophysical Journal International, 216(1), 261–273. https://doi.org/10.1093/gji/ggy423 DOI: https://doi.org/10.1093/gji/ggy423
Zhu, W., McBrearty, I. W., Mousavi, S. M., Ellsworth, W. L., & Beroza, G. C. (2022). Earthquake Phase Association Using a Bayesian Gaussian Mixture Model. Journal of Geophysical Research: Solid Earth, 127(5). https://doi.org/10.1029/2021JB023249 DOI: https://doi.org/10.1029/2021JB023249
Zhu, W., Mousavi, S. M., & Beroza, G. C. (2019). Seismic signal denoising and decomposition using deep neural networks. IEEE Transactions on Geoscience and Remote Sensing, 57(11), 9476–9488. https://doi.org/10.1109/TGRS.2019.2926772 DOI: https://doi.org/10.1109/TGRS.2019.2926772
Zolitschka, B., Negendank, J. F., & Lottermoser, B. (1995). Sedimentological proof and dating of the early Holocene volcanic eruption of Ulmener Maar (Vulkaneifel, Germany). Geologische Rundschau, 84, 213–219. DOI: https://doi.org/10.1007/BF00192252
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Marius Paul Isken, Sebastian Heimann, Peter Niemz, Jannes Münchmeyer, Simone Cesca, Hannes Vasyura-Bathke, Torsten Dahm

This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
U.S. Department of Energy
Grant numbers DE-EE0007080 -
Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ
Grant numbers 202216