Volcanic eruption tremor from particle impacts and turbulence using conduit flow models
DOI:
https://doi.org/10.26443/seismica.v4i1.1285Abstract
The intensity of explosive volcanic eruptions is correlated with the amplitude of eruption tremor, a ubiquitously observed seismic signal during eruptions. Here we expand upon a recently introduced theoretical model that attributes eruption tremor to particle impacts and dynamic pressure changes in the turbulent flow above fragmentation (Gestrich et al., 2020). We replace their point source model with Rayleigh wave Green's functions with full Green's functions and account for depth variation of input fields using conduit flow models. The latter self-consistently capture covariation of input fields like particle velocity, particle volume fraction, and density. Body wave contributions become significant above 2-3 Hz, bringing the power spectral density (PSD) closer to observations. Conditions at the vent are not representative of flow throughout the tremor source region and using these values overestimates tremor amplitude. Particle size and its depth distribution alter the PSD and where dominant source contributions arise within the conduit. Solutions with decreasing mass eruption rate, representing a waning eruption, reveal a shift in the dominant tremor contribution from turbulence to particle impacts. Our work demonstrates the ability to integrate conduit flow modeling with volcano seismology studies of eruption tremor, providing an opportunity to link observations to eruptive processes.
References
Bindeman, I. N. (2005). Fragmentation phenomena in populations of magmatic crystals. American Mineralogist, 90(11–12), 1801–1815. https://doi.org/10.2138/am.2005.1645 DOI: https://doi.org/10.2138/am.2005.1645
Boore, D. M., & Joyner, W. B. (1997). Site amplifications for generic rock sites. Bulletin of the Seismological Society of America, 87(2), 327–341. https://doi.org/10.1785/BSSA0870020327 DOI: https://doi.org/10.1785/BSSA0870020327
Caplan-Auerbach, J., Bellesiles, A., & Fernandes, J. K. (2010). Estimates of eruption velocity and plume height from infrasonic recordings of the 2006 eruption of Augustine Volcano, Alaska. Journal of Volcanology and Geothermal Research, 189(1–2), 12–18. https://doi.org/10.1016/j.jvolgeores.2009.10.002 DOI: https://doi.org/10.1016/j.jvolgeores.2009.10.002
Chouet, B. A., & Matoza, R. S. (2013). A multi-decadal view of seismic methods for detecting precursors of magma movement and eruption. Journal of Volcanology and Geothermal Research, 252, 108–175. https://doi.org/10.1016/j.jvolgeores.2012.11.013 DOI: https://doi.org/10.1016/j.jvolgeores.2012.11.013
Coppess, K. (2024). kcoppess/mPIT-tremor-model Release: publication [Software]. Zenodo. https://doi.org/10.5281/zenodo.13864093
Coppess, K., Lam, F. Y. K., & Dunham, E. M. (2024). Seismic signatures of fluctuating fragmentation in volcanic eruptions. ESSOAr. https://doi.org/10.22541/essoar.171052567.71856917/v1 DOI: https://doi.org/10.22541/essoar.171052567.71856917/v1
Coppess, K. R., Dunham, E. M., & Almquist, M. (2022). Ultra and very long period seismic signatures of unsteady eruptions predicted from conduit flow models. Journal of Geophysical Research: Solid Earth, e2022JB024313. https://doi.org/10.1029/2022JB024313 DOI: https://doi.org/10.1002/essoar.10510715.1
Costa, A. (2005). Viscosity of high crystal content melts: Dependence on solid fraction. Geophysical Research Letters, 32(22). https://doi.org/10.1029/2005GL024303 DOI: https://doi.org/10.1029/2005GL024303
Dufek, J., Manga, M., & Patel, A. (2012). Granular disruption during explosive volcanic eruptions. Nature Geoscience, 5(8), 561–564. https://doi.org/10.1038/ngeo1524 DOI: https://doi.org/10.1038/ngeo1524
Fee, D., Haney, M. M., Matoza, R. S., Van Eaton, A. R., Cervelli, P., Schneider, D. J., & Iezzi, A. M. (2017). Volcanic tremor and plume height hysteresis from Pavlof Volcano, Alaska. Science, 355(6320), 45–48. https://doi.org/10.1126/science.aah6108 DOI: https://doi.org/10.1126/science.aah6108
Gestrich, J. E., Fee, D., Tsai, V. C., Haney, M. M., & Van Eaton, A. R. (2020). A physical model for volcanic eruption tremor. Journal of Geophysical Research: Solid Earth, 125(10), e2019JB018980. https://doi.org/10.1029/2019JB018980 DOI: https://doi.org/10.1029/2019JB018980
Gimbert, F., Tsai, V. C., & Lamb, M. P. (2014). A physical model for seismic noise generation by turbulent flow in rivers. Journal of Geophysical Research: Earth Surface, 119(10), 2209–2238. https://doi.org/10.1002/2014JF003201 DOI: https://doi.org/10.1002/2014JF003201
Haney, M. M., Matoza, R. S., Fee, D., & Aldridge, D. F. (2018). Seismic equivalents of volcanic jet scaling laws and multipoles in acoustics. Geophysical Journal International, 213(1), 623–636. https://doi.org/10.1093/gji/ggx554 DOI: https://doi.org/10.1093/gji/ggx554
Hess, K., & Dingwell, D. B. (1996). Viscosities of hydrous leucogranitic melts: A non-Arrhenian model. American Mineralogist: Journal of Earth and Planetary Materials, 81(9–10), 1297–1300.
Ichihara, M. (2016). Seismic and infrasonic eruption tremors and their relation to magma discharge rate: A case study for sub-Plinian events in the 2011 eruption of Shinmoe-dake, Japan. Journal of Geophysical Research: Solid Earth, 121(10), 7101–7118. https://doi.org/10.1002/2016JB013246 DOI: https://doi.org/10.1002/2016JB013246
Lam, F. (2024). fredriclam/compressible-conduit-steady Release: mPIT/1.0 [Software]. Zenodo. https://doi.org/10.5281/zenodo.13774397
Lam, F. Y. K. (2024). Numerical simulation of subaerial and submarine volcanic eruptions and other compressible flow problems [Phdthesis]. Stanford University.
Lesage, P., Heap, M. J., & Kushnir, A. (2018). A generic model for the shallow velocity structure of volcanoes. Journal of Volcanology and Geothermal Research, 356, 114–126. https://doi.org/10.1016/j.jvolgeores.2018.03.003 DOI: https://doi.org/10.1016/j.jvolgeores.2018.03.003
Macedonio, G., Dobran, F., & Neri, A. (1994). Erosion processes in volcanic conduits and application to the AD 79 eruption of Vesuvius. Earth and Planetary Science Letters, 121(1–2), 137–152. https://doi.org/10.1016/0012-821X(94)90037-X DOI: https://doi.org/10.1016/0012-821X(94)90037-X
Matoza, R. S., & Roman, D. C. (2022). One hundred years of advances in volcano seismology and acoustics. Bulletin of Volcanology, 84(9), 86. https://doi.org/10.1007/s00445-022-01586-0 DOI: https://doi.org/10.1007/s00445-022-01586-0
McNutt, Stephen R, & Nishimura, T. (2008). Volcanic tremor during eruptions: Temporal characteristics, scaling and constraints on conduit size and processes. Journal of Volcanology and Geothermal Research, 178(1), 10–18. https://doi.org/10.1016/j.jvolgeores.2008.03.010 DOI: https://doi.org/10.1016/j.jvolgeores.2008.03.010
McNutt, Stephen R, & Roman, D. C. (2015). Volcanic Seismicity. In The Encyclopedia of Volcanoes (pp. 1011–1034). Elsevier. https://doi.org/10.1016/B978-0-12-385938-9.00059-6 DOI: https://doi.org/10.1016/B978-0-12-385938-9.00059-6
McNutt, Steven R. (1994). Volcanic tremor amplitude correlated with eruption explosivity and its potential use in determining ash hazards to aviation. Volcanic Ash and Aviation Safety: Proceedings of the First International Symposium on Volcanic Ash and Aviation Safety, 377–385.
Prejean, S. G., & Brodsky, E. E. (2011). Volcanic plume height measured by seismic waves based on a mechanical model. Journal of Geophysical Research: Solid Earth, 116(B1). https://doi.org/10.1029/2010JB007620 DOI: https://doi.org/10.1029/2010JB007620
Tsai, V. C., Minchew, B., Lamb, M. P., & Ampuero, J.-P. (2012). A physical model for seismic noise generation from sediment transport in rivers. Geophysical Research Letters, 39(2). https://doi.org/10.1029/2011GL050255 DOI: https://doi.org/10.1029/2011GL050255
Zhu, L., & Rivera, L. A. (2002). A note on the dynamic and static displacements from a point source in multilayered media. Geophysical Journal International, 148(3), 619–627. https://doi.org/10.1046/j.1365-246X.2002.01610.x DOI: https://doi.org/10.1046/j.1365-246X.2002.01610.x
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Katherine Coppess, Fredric Lam, Eric Dunham

This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
National Science Foundation
Grant numbers DGE-1656518;EAR-1930979;EAR-2231849