Along-strike extent of earthquakes on multi-segment reverse faults; insights from the Nevis-Cardrona Fault, Aotearoa New Zealand
DOI:
https://doi.org/10.26443/seismica.v3i2.1310Keywords:
paleoseismology, earthquake hazard, OxCal, new zealand, Morphotectonic FeaturesAbstract
Evaluating fault segmentation is important for our understanding of seismic hazard assessment and fault growth. However, it is still unclear what controls if reverse fault earthquakes will rupture across segment boundaries. Here, we combine fault mapping and trench data from the low slip rate (0.04-0.15 mm/yr) multi-segment Nevis-Cardrona Fault (NCF) in the South Island of Aotearoa New Zealand to assess if it has ruptured in single or multi-segment earthquakes during the late Quaternary. Two new trenches on its Nevis segment provide stratigraphic evidence for two surface rupturing earthquakes, which through Optically Stimulated Luminscence dating and OxCal modelling, are constrained to have occurred at 28.9 +12.9 -9.1 ka and 12.8 ± 4.9 ka. The most recent timing is only weakly correlated to surface rupture timings from two trenches along the NCF's NW Cardrona segment. Furthermore, the 2 ± 1 m Nevis segment single event displacements we estimate would be unusually low for a ~85 km long NCF multi-segment rupture. We therefore surmise that late Quaternary NCF surface rupturing earthquakes did not rupture through ~30-50° bends that link these segments. Our trench data and fault mapping also indicate lower slip rates on the Nevis segment than previous studies (0.04-0.1 mm/yr vs 0.4 mm/yr).
References
Accardo, N. J., Shillington, D. J., Gaherty, J. B., Scholz, C. A., Nyblade, A. A., Chindandali, P. R. N., Kamihanda, G., McCartney, T., Wood, D., & Wambura Ferdinand, R. (2018). Constraints on Rift Basin Structure and Border Fault Growth in the Northern Malawi Rift From 3-D Seismic Refraction Imaging. Journal of Geophysical Research: Solid Earth, 123(11), 3-10,10,25. https://doi.org/10.1029/2018JB016504 DOI: https://doi.org/10.1029/2018JB016504
Amos, C. B., Burbank, D. W., & Read, S. A. L. (2010). Along-strike growth of the Ostler fault, New Zealand: Consequences for drainage deflection above active thrusts. Tectonics, 29(4). https://doi.org/10.1029/2009TC002613 DOI: https://doi.org/10.1029/2009TC002613
Angster, S., Wesnousky, S., Huang, W. L., Kent, G., Nakata, T., & Goto, H. (2016). Application of UAV photography to refining the slip rate on the Pyramid Lake fault zone, Nevada. Bulletin of the Seismological Society of America, 106(2), 785–798. https://doi.org/10.1785/0120150144 DOI: https://doi.org/10.1785/0120150144
Arrowsmith, R. J., Crosby, C. J., Korzhenkov, A. M., Mamyrov, E., Povolotskaya, I., Guralnik, B., & Landgraf, A. (2017). Surface rupture of the 1911 Kebin (Chon-Kemin) earthquake, Northern Tien Shan, Kyrgyzstan. Geological Society Special Publication, 432(1), 233–253. https://doi.org/10.1144/SP432.10 DOI: https://doi.org/10.1144/SP432.10
Barnes, P. M. (2009). Postglacial (after 20 ka) dextral slip rate of the offshore Alpine fault, New Zealand. Geology, 37(1), 3–6. https://doi.org/10.1130/G24764A.1 DOI: https://doi.org/10.1130/G24764A.1
Barrell, D. J. A. (2011). Quaternary Glaciers of New Zealand. In Developments in Quaternary Science (1st ed., Vol. 15, pp. 1047–1064). Elsevier Inc. https://doi.org/10.1016/B978-0-444-53447-7.00075-1 DOI: https://doi.org/10.1016/B978-0-444-53447-7.00075-1
Barrell, D. J. A. (2019). General distribution and characteristics of active faults and folds in the Queenstown Lakes and Central Otago districts, Otago. GNS Science, Consultancy Report 2018/207, 1–99. https://www.orc.govt.nz/media/6621/gns_cr2018-207_queenstown-lakes-and-central-otago_active-faults.pdf
Barrell, D. J. A., Litchfield, N. J., Van Dissen, R. J., Wang, N., Taylor-Silva, B. I., Hornblow, S., & Stirling, M. W. (2020). Investigation of past earthquakes on the Titri Fault, coastal Otago, New Zealand. GNS Science, Consultancy Report 2017/35, 1–66. https://doi.org/10.21420/G2TW6S
Barrow-Hurlbert, S. A. (1985). Geology and neotectonics of the Upper Nevis Basin, South Island, New Zealand. Oregon State University.
Barth, N. C., Kulhanek, D. K., Beu, A. G., Murray-Wallace, C. V., Hayward, B. W., Mildenhall, D. C., & Lee, D. E. (2014). New c. 270 kyr strike-slip and uplift rates for the southern Alpine Fault and implications for the New Zealand plate boundary. Journal of Structural Geology, 64, 39–52. DOI: https://doi.org/10.1016/j.jsg.2013.08.009
Beanland, S. A. (1984). Late Quaternary Faulting in the Cardrona Valley, Central Otago. New Zealand Geological Survey/EDS Immediate Report 84/017 (Unpublished File Report Located at GNS Science, Lower Hutt, NZ).
Beanland, S. A. (1985). Reassessment of late Quaternary fault history using new radiocarbon dates, Kawarau trace, Central Otago. New Zealand Geological Survey/EDS Immediate Report 85/007 (Unpublished File Report Located at GNS Science, Lower Hutt, NZ).
Beanland, S. A., & Barrow, S. A. (1984a). Geology of the Upper Nevis basin in relation to active tectonics. New Zealand Geological Survey/EDS Immediate Report 84/005 (Unpublished File Report Located at GNS Science, Lower Hutt, NZ).
Beanland, S. A., & Barrow, S. A. (1984b). Trenching investigations of active faulting in the Upper Nevis Basin, Central Otago. New Zealand Geological Survey/EDS Immediate Report 84/004 (Unpublished File Report Located at GNS Science, Lower Hutt, NZ).
Beanland, S. A., & Barrow-Hurlbert, S. A. (1988). The Nevis-Cardrona Fault System, Central Otago, New Zealand: Late Quaternary tectonics and structural development. New Zealand Journal of Geology and Geophysics, 31(3), 337–352. https://doi.org/10.1080/00288306.1988.10417780 DOI: https://doi.org/10.1080/00288306.1988.10417780
Beanland, S. A., & Berryman, K. R. (1989). Style and episodicity of late Quaternary activity on the Pisa-Grandview fault zone, Central Otago, New Zealand. New Zealand Journal of Geology and Geophysics, 32(4), 451–461. https://doi.org/10.1080/00288306.1989.10427553 DOI: https://doi.org/10.1080/00288306.1989.10427553
Beanland, S. A., Berryman, K. R., Hull, A. G., & Wood, P. R. (1986). Late Quaternary deformation at the Dunstan fault, Central Otago, New Zealand. Roy. Soc. New Zealand Bull., 24, 293–306.
Beanland, S. A., & Fellows, D. L. (1984). Late Quaternary tectonic deformation in the Kawarau River area, Central Otago. New Zealand Geological Survey/EDS Immediate Report 84/019 (Unpublished File Report Located at GNS Science, Lower Hutt, NZ).
Beanland, S. A., Fellows, D. L., & Barrow, S. A. (1984). Late Quaternary Faulting in the Lower Nevis Basin, Central Otago. New Zealand Geological Survey/EDS Immediate Report 84/018 (Unpublished File Report Located at GNS Science, Lower Hutt, NZ).
Beanland, S., & Barrow, S. A. (1984). Quaternary geology and late Quaternary tectonic deformation of the Upper Nevis Basin. New Zealand Geological Survey/EDS Immediate Report 84/006 (Unpublished File Report Located at GNS Science, Lower Hutt, NZ)., 21.
Beavan, J., Wallace, L. M., Palmer, N., Denys, P., Ellis, S., Fournier, N., Hreinsdottir, S., Pearson, C., & Denham, M. (2016). New Zealand GPS velocity field: 1995–2013. New Zealand Journal of Geology and Geophysics, 59(1), 5–14. https://doi.org/10.1080/00288306.2015.1112817 DOI: https://doi.org/10.1080/00288306.2015.1112817
Bell, D. H. (1992). Geomorphic evolution of a valley system: the Kawarau Valley, Central Otago. In Landforms of New Zealand Second Edition (pp. 456–481). Longman Paul Auckland.
Biasi, G. P., & Wesnousky, S. G. (2016). Steps and gaps in ground ruptures: Empirical bounds on rupture propagation. Bulletin of the Seismological Society of America, 106(3), 1110–1124. https://doi.org/10.1785/0120150175 DOI: https://doi.org/10.1785/0120150175
Biasi, G. P., & Wesnousky, S. G. (2017). Bends and Ends of Surface Ruptures. Bulletin of the Seismological Society of America, 107(6), 2543–2560. https://doi.org/10.1785/0120160292 DOI: https://doi.org/10.1785/0120160292
Boyce, Z. L. (2002). The Geology and Evolution of the Upper Nevis Basin. University of Otago.
Bronk Ramsey, C. (2009). Bayesian analysis of radiocarbon dates. Radiocarbon, 51(1), 337–360. https://doi.org/10.1017/s0033822200033865 DOI: https://doi.org/10.1017/S0033822200033865
Carretier, S., Ritz, J. F., Jackson, J., & Bayasgalan, A. (2002). Morphological dating of cumulative reverse fault scarps: Examples from the Gurvan Bogd fault system, Mongolia. Geophysical Journal International, 148(2), 256–277. https://doi.org/10.1046/j.1365-246X.2002.01599.x DOI: https://doi.org/10.1046/j.1365-246X.2002.01007.x
Cartwright, J. A., Trudgill, B. D., & Mansfield, C. S. (1995). Fault growth by segment linkage: an explanation for scatter in maximum displacement and trace length data from the Canyonlands Grabens of SE Utah. Journal of Structural Geology, 17(9), 1319–1326. https://doi.org/10.1016/0191-8141(95)00033-A DOI: https://doi.org/10.1016/0191-8141(95)00033-A
Chartier, T., Scotti, O., & Lyon-Caen, H. (2019). Sherifs: Open-source code for computing earthquake rates in fault systems and constructing hazard models. Seismological Research Letters, 90(4), 1678–1688. https://doi.org/10.1785/0220180332 DOI: https://doi.org/10.1785/0220180332
Chiama, K., Chauvin, B., Plesch, A., Moss, R., & Shaw, J. H. (2023). Geomechanical Modeling of Ground Surface Deformation Associated with Thrust and Reverse-Fault Earthquakes: A Distinct Element Approach. Bulletin of the Seismological Society of America, 113(4), 1702–1723. https://doi.org/10.1785/0120220264 DOI: https://doi.org/10.1785/0120220264
Craw, D. (2013). River drainage reorientation during placer gold accumulation, southern New Zealand. Mineralium Deposita, 48(7), 841–860. https://doi.org/10.1007/s00126-013-0464-5 DOI: https://doi.org/10.1007/s00126-013-0464-5
Craw, D., Upton, P., Walcott, R., Burridge, C., & Waters, J. (2012). Tectonic controls on the evolution of the Clutha River catchment, New Zealand. New Zealand Journal of Geology and Geophysics, 55(4), 345–359. https://doi.org/10.1080/00288306.2012.709184 DOI: https://doi.org/10.1080/00288306.2012.709184
Crone, A. J., & Haller, K. M. (1991). Segmentation and the coseismic behavior of Basin and Range normal faults: examples from east-central Idaho and southwestern Montana, U.S.A. Journal of Structural Geology, 13(2), 151–165. https://doi.org/https://doi.org/10.1016/0191-8141(91)90063-O DOI: https://doi.org/10.1016/0191-8141(91)90063-O
Dawers, N. H., & Anders, M. H. (1995). Displacement-length scaling and fault linkage. Journal of Structural Geology, 17(5), 607–614. https://doi.org/10.1016/0191-8141(94)00091-D DOI: https://doi.org/10.1016/0191-8141(94)00091-D
Denys, P., Pearson, C., Norris, R., & Denham, M. (2016). A geodetic study of Otago: results of the central Otago deformation network 2004–2014. New Zealand Journal of Geology and Geophysics, 59(1), 147–156. https://doi.org/10.1080/00288306.2015.1134592 DOI: https://doi.org/10.1080/00288306.2015.1134592
Douilly, R., Aochi, H., Calais, E., & Freed, A. M. (2015). Three-dimensional dynamic rupture simulations across interacting faults: The Mw 7.0, 2010, Haiti earthquake. Journal of Geophysical Research: Solid Earth, 120(2), 1108–1128. https://doi.org/10.1002/2014JB011595 DOI: https://doi.org/10.1002/2014JB011595
DuRoss, C. B., Personius, S. F., Crone, A. J., Olig, S. S., Hylland, M. D., Lund, W. R., & Schwartz, D. P. (2016). Fault segmentation: New concepts from the Wasatch Fault Zone, Utah, USA. Journal of Geophysical Research: Solid Earth, 121(2), 1131–1157. https://doi.org/10.1002/2015JB012519 DOI: https://doi.org/10.1002/2015JB012519
DuRoss, C. B., Personius, S. F., Crone, A. J., Olig, S. S., & Lund, W. R. (2011). Integration of paleoseismic data from multiple sites to develop an objective earthquake chronology: Application to the Weber segment of the Wasatch fault zone, Utah. Bulletin of the Seismological Society of America, 101(6), 2765–2781. https://doi.org/10.1785/0120110102 DOI: https://doi.org/10.1785/0120110102
Eberhart-Phillips, D., Upton, P., Reyners, M., Barrell, D. J. A., Fry, B., Bourguignon, S., & Warren-Smith, E. (2022). The Influence of Basement Terranes on Tectonic Deformation: Joint Earthquake Travel-Time and Ambient Noise Tomography of the Southern South Island, New Zealand. Tectonics, 41(4), e2021TC007006. https://doi.org/10.1029/2021TC007006 DOI: https://doi.org/10.1029/2021TC007006
Ellis, M. A., & Dunlap, W. J. (1988). Displacement variation along thrust faults: implications for the development of large faults. Journal of Structural Geology, 10(2), 183–192. https://doi.org/10.1016/0191-8141(88)90115-0 DOI: https://doi.org/10.1016/0191-8141(88)90115-0
Faure Walker, J., Boncio, P., Pace, B., Roberts, G., Benedetti, L., Scotti, O., Visini, F., & Peruzza, L. (2021). Fault2SHA Central Apennines database and structuring active fault data for seismic hazard assessment. Scientific Data, 8(1), 1–20. https://doi.org/10.1038/s41597-021-00868-0 DOI: https://doi.org/10.1038/s41597-021-00868-0
Field, E. H., Arrowsmith, R. J., Biasi, G. P., Bird, P., Dawson, T. E., Felzer, K. R., Jackson, D. D., Johnson, K. M., Jordan, T. H., Madden, C., Michael, A. J., Milner, K. R., Page, M. T., Parsons, T., Powers, P. M., Shaw, B. E., Thatcher, W. R., Weldon, R. J., & Zeng, Y. (2014). Uniform California Earthquake Rupture Forecast, version 3 (UCERF3) -The time-independent model. Bulletin of the Seismological Society of America, 104(3), 1122–1180. https://doi.org/10.1785/0120130164 DOI: https://doi.org/10.1785/0120130164
Font, M., Lagarde, J.-L., Amorese, D., Coutard, J.-P., Dubois, A., Guillemet, G., Ozouf, J.-C., & Vedie, E. (2006). Physical modelling of fault scarp degradation under freeze–thaw cycles. Earth Surface Processes and Landforms, 31(14), 1731–1745. https://doi.org/https://doi.org/10.1002/esp.1371 DOI: https://doi.org/10.1002/esp.1371
Gerstenberger, M. C., Van Dissen, R., Rollins, C., Dicaprio, C., Thingbaijim, K. K. S., Bora, S., Chamberlain, C., Christophersen, A., Coffey, G. L., Ellis, S. M., Iturrieta, P., Johnson, K. M., Litchfield, N. J., Nicol, A., Milner, K. R., Rastin, S. J., Rhoades, D., Seebeck, H., Shaw, B. E., … Williams, C. (2024). The Seismicity Rate Model for the 2022 Aotearoa New Zealand National Seismic Hazard Model. Bulletin of the Seismological Society of America, 114(1), 182–216. https://doi.org/10.1785/0120230165 DOI: https://doi.org/10.1785/0120230165
Griffin, J. D., Stirling, M. W., Barrell, D. J. A., van den Berg, E. J., Todd, E. K., Nicolls, R., & Wang, N. (2022). Paleoseismology of the Hyde Fault, Otago, New Zealand. New Zealand Journal of Geology and Geophysics, 65(4), 613–637. https://doi.org/10.1080/00288306.2021.1995007 DOI: https://doi.org/10.1080/00288306.2021.1995007
Griffin, J. D., Stirling, M. W., Wilcken, K. M., & Barrell, D. J. A. (2022). Late Quaternary slip rates for the Hyde and Dunstan faults, southern New Zealand: implications for strain migration in a slowly deforming continental plate margin. Tectonics, 41(9), e2022TC007250. https://doi.org/10.1029/2022TC007250 DOI: https://doi.org/10.1029/2022TC007250
Heron, D. W. (2014). NZL GNS 1:1M geology. 2nd edition [Data set] [Techreport]. GNS Science. https://doi.org/https://doi.org/10.21420/VRX8-CD71
Hogg, A. G., Heaton, T. J., Hua, Q., Palmer, J. G., Turney, C. S. M., Southon, J., Bayliss, A., Blackwell, P. G., Boswijk, G., Bronk Ramsey, C., Pearson, C., Petchey, F., Reimer, P., Reimer, R., & Wacker, L. (2020). SHCal20 Southern Hemisphere Calibration, 0-55,000 Years cal BP. Radiocarbon, 62(4), 759–778. https://doi.org/10.1017/RDC.2020.59 DOI: https://doi.org/10.1017/RDC.2020.59
Hubbard, J., Shaw, J. H., Dolan, J., Pratt, T. L., McAuliffe, L., & Rockwell, T. K. (2014). Structure and seismic hazard of the Ventura Avenue anticline and ventura fault, California: Prospect for large, multisegment ruptures in the western transverse ranges. Bulletin of the Seismological Society of America, 104(3), 1070–1087. https://doi.org/10.1785/0120130125 DOI: https://doi.org/10.1785/0120130125
Iezzi, F., Roberts, G., Faure Walker, J., Papanikolaou, I., Ganas, A., Deligiannakis, G., Beck, J., Wolfers, S., & Gheorghiu, D. (2021). Temporal and spatial earthquake clustering revealed through comparison of millennial strain-rates from 36Cl cosmogenic exposure dating and decadal GPS strain-rate. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-02131-3 DOI: https://doi.org/10.1038/s41598-021-02131-3
Jackson, J., Norris, R., & Youngson, J. (1996). The structural evolution of active fault and fold systems in central Otago, New Zealand: Evidence revealed by drainage patterns. Journal of Structural Geology, 18(2–3), 217–234. https://doi.org/10.1016/S0191-8141(96)80046-0 DOI: https://doi.org/10.1016/S0191-8141(96)80046-0
Johnson, K. M., Wallace, L. M., Maurer, J., Hamling, I., Williams, C., Rollins, C., Gerstenberger, M., & Van Dissen, R. (2024). Inverting Geodetic Strain Rates for Slip Deficit Rate in Complex Deforming Zones: An Application to the New Zealand Plate Boundary. Journal of Geophysical Research: Solid Earth, 129(3), e2023JB027565. https://doi.org/10.1029/2023JB027565 DOI: https://doi.org/10.1029/2023JB027565
Johnson, K., Nissen, E., Saripalli, S., Arrowsmith, J. R., McGarey, P., Scharer, K., Williams, P., & Blisniuk, K. (2014). Rapid mapping of ultrafine fault zone topography with structure from motion. Geosphere, 10(5), 969–986. https://doi.org/10.1130/GES01017.1 DOI: https://doi.org/10.1130/GES01017.1
Kalacska, M., Lucanus, O., Arroyo-Mora, J. P., Laliberté, É., Elmer, K., Leblanc, G., & Groves, A. (2020). Accuracy of 3d landscape reconstruction without ground control points using different uas platforms. Drones, 4(2), 1–26. https://doi.org/10.3390/drones4020013 DOI: https://doi.org/10.3390/drones4020013
Kerr, L. C., Craw, D., Norris, R. J., Youngson, J. H., & Wopereis, P. (2000). Structure, geomorphology, and gold concentration in the Nokomai valley, Southland, New Zealand. New Zealand Journal of Geology and Geophysics, 43(3), 425–433. https://doi.org/10.1080/00288306.2000.9514899 DOI: https://doi.org/10.1080/00288306.2000.9514899
King, G. C. P. (1986). Speculations on the geometry of the initiation and termination processes of earthquake rupture and its relation to morphology and geological structure. Pure and Applied Geophysics, 124(3), 567–585. https://doi.org/10.1007/BF00877216 DOI: https://doi.org/10.1007/BF00877216
Landis, C. A., Campbell, H. J., Begg, J. G., Mildenhall, D. C., Paterson, A. M., & Trewick, S. A. (2008). The Waipounamu Erosion Surface: Questioning the antiquity of the New Zealand land surface and terrestrial fauna and flora. Geological Magazine, 145(2), 173–197. https://doi.org/10.1017/S0016756807004268 DOI: https://doi.org/10.1017/S0016756807004268
Langridge, R. M., Ries, W. F., Litchfield, N. J., Villamor, P., Van Dissen, R. J., Barrell, D. J. A., Rattenbury, M. S., Heron, D. W., Haubrock, S., Townsend, D. B., Lee, J. M., Berryman, K. R., Nicol, A., Cox, S. C., & Stirling, M. W. (2016). The New Zealand Active Faults Database. New Zealand Journal of Geology and Geophysics, 59(1), 86–96. https://doi.org/10.1080/00288306.2015.1112818 DOI: https://doi.org/10.1080/00288306.2015.1112818
Lienkaemper, J. J., & Bronk Ramsey, C. (2009). OxCal: Versatile tool for developing paleoearthquake chronologies- A primer. Seismological Research Letters, 80(3), 431–434. https://doi.org/10.1785/gssrl.80.3.431 DOI: https://doi.org/10.1785/gssrl.80.3.431
Litchfield, N. J., Van Dissen, R., Sutherland, R., Barnes, P. M., Cox, S. C., Norris, R., Beavan, R. J., Langridge, R., Villamor, P., Berryman, K., Stirling, M., Nicol, A., Nodder, S., Lamarche, G., Barrell, D. J. A., Pettinga, J. R., Little, T., Pondard, N., Mountjoy, J. J., & Clark, K. (2014). A model of active faulting in New Zealand. New Zealand Journal of Geology and Geophysics, 57(1), 32–56. https://doi.org/10.1080/00288306.2013.854256 DOI: https://doi.org/10.1080/00288306.2013.854256
Macara, G. R. (2015). The climate and weather of Otago. NIWA Science and Technology Series, 67, 44.
Mackey, B. (2015). Seismic hazard in the Queenstown Lakes district (Techreport August). Otago Regional Council. https://www.orc.govt.nz/plans-policies-reports/reports-and-publications/natural-hazards
Mazzoli, S., Pierantoni, P. P., Borraccini, F., Paltrinieri, W., & Deiana, G. (2005). Geometry, segmentation pattern and displacement variations along a major Apennine thrust zone, central Italy. Journal of Structural Geology, 27(11), 1940–1953. https://doi.org/10.1016/j.jsg.2005.06.002 DOI: https://doi.org/10.1016/j.jsg.2005.06.002
McCalpin, J. P., & Carver, G. A. (2009). Paleoseismology of compressional tectonic environments. International Geophysics, 95, 315–419. https://doi.org/10.1016/S0074-6142(09)95005-7 315 DOI: https://doi.org/10.1016/S0074-6142(09)95005-7
McDonnell, M., & Craw, D. (2003). Stratigraphy and provenance of Pliocene greywacke-bearing conglomerate, Cardrona valley, Otago, New Zealand. New Zealand Journal of Geology and Geophysics, 46(3), 425–436. https://doi.org/10.1080/00288306.2003.9515018 DOI: https://doi.org/10.1080/00288306.2003.9515018
McKay, A. (1897). Report on the older auriferous drifts of Central Otago. J. Mackay, government printer.
McSaveney, M. J., & Stirling, M. W. (1992). Central Otago: Basin and Range country. Landforms of New Zealand, 482–504.
Murray, A. S., & Wintle, A. G. (2000). Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements, 32(1), 57–73. https://doi.org/10.1016/S1350-4487(99)00253-X DOI: https://doi.org/10.1016/S1350-4487(99)00253-X
Nicol, A, Van Dissen, R. J., Stirling, M. W., & Gerstenberger, M. C. (2016). Completeness of the Paleoseismic Active‐Fault Record in New Zealand. Seismological Research Letters, 87(6), 1299–1310. https://doi.org/10.1785/0220160088 DOI: https://doi.org/10.1785/0220160088
Nicol, Andrew, Walsh, J., Berryman, K., & Villamor, P. (2006). Interdependence of fault displacement rates and paleoearthquakes in an active rift. Geology, 34(10), 865–868. https://doi.org/10.1130/G22335.1 DOI: https://doi.org/10.1130/G22335.1
Norris, R. J. (2004). Strain localisation within ductile shear zones beneath active faults: The Alpine Fault contrasted with the adjacent Otago fault system, New Zealand. Earth, Planets and Space, 56(12), 1095–1101. https://doi.org/10.1186/BF03353328 DOI: https://doi.org/10.1186/BF03353328
Norris, R. J., & Cooper, A. F. (2001). Late Quaternary slip rates and slip-partitioning on the Alpine Fault, New Zealand. Journal of Structural Geology, 23(2000), 507–520. DOI: https://doi.org/10.1016/S0191-8141(00)00122-X
Pace, B., Stirling, M. W., Litchfield, N. J., & Rieser, U. (2005). New active fault data and seismic hazard estimates for west Otago, New Zealand. New Zealand Journal of Geology and Geophysics, 48(1), 75–83. https://doi.org/10.1080/00288306.2005.9515099 DOI: https://doi.org/10.1080/00288306.2005.9515099
Patyniak, M., Landgraf, A., Dzhumabaeva, A., Baikulov, S., Williams, A. M., Weiss, J. R., Hilley, G. E., Preusser, F., Abdrakhmatov, K. E., Arrowsmith, R. J., & Strecker, M. R. (2021). The Pamir Frontal Thrust Fault: Holocene Full-Segment Ruptures and Implications for Complex Segment Interactions in a Continental Collision Zone. Journal of Geophysical Research: Solid Earth, 126(12). https://doi.org/10.1029/2021JB022405 DOI: https://doi.org/10.1029/2021JB022405
Pérouse, E., & Wernicke, B. P. (2017). Spatiotemporal evolution of fault slip rates in deforming continents: The case of the Great Basin region, northern Basin and Range province. Geosphere, 13(1), 112–135. https://doi.org/10.1130/GES01295.1 DOI: https://doi.org/10.1130/GES01295.1
Philip, H., Rogozhin, E., Cisternas, A., Bousquet, J. C., Borisov, B., & Karakhanian, A. (1992). The Armenian earthquake of 1988 December 7: faulting and folding, neotectonics and palaeoseismicity. Geophysical Journal International, 110(1), 141–158. https://doi.org/10.1111/j.1365-246X.1992.tb00718.x DOI: https://doi.org/10.1111/j.1365-246X.1992.tb00718.x
Rollins, C., Thingbaijam, K. K. S., Hutson, R. J., Gerstenberger, M. C., Christopersen, A., Eberhart-Phillips, D., Rastin, S. J., & Van Dissen, R. J. (2022). An augmented New Zealand earthquake catalogue, event classifications, and models of the depth distribution of shallow earthquakes in the greater New Zealand region. GNS Science. GNS Science Report; 2021/58, 83. https://doi.org/10.21420/XT4Y-WY45.
Rotevatn, A., Jackson, C. A. L., Tvedt, A. B. M., Bell, R. E., & Blækkan, I. (2019). How do normal faults grow? Journal of Structural Geology, 125, 174–184. https://doi.org/10.1016/j.jsg.2018.08.005 DOI: https://doi.org/10.1016/j.jsg.2018.08.005
Rubin, C. M. (1996). Systematic underestimation of earthquake magnitudes from large intracontinental reverse faults: Historical ruptures break across segment boundaries. Geology, 24(11), 989–992. https://doi.org/10.1130/0091-7613(1996)024<0989:SUOEMF>2.3.CO;2 DOI: https://doi.org/10.1130/0091-7613(1996)024<0989:SUOEMF>2.3.CO;2
Schwanghart, W., & Scherler, D. (2014). Short Communication: TopoToolbox 2 - MATLAB-based software for topographic analysis and modeling in Earth surface sciences. Earth Surface Dynamics, 2(1), 1–7. https://doi.org/10.5194/esurf-2-1-2014 DOI: https://doi.org/10.5194/esurf-2-1-2014
Seebeck, H., Dissen, R. V., Litchfield, N., Barnes, P. M., Nicol, A., Langridge, R., Barrell, D. J. A., Villamor, P., Ellis, S., Rattenbury, M., Bannister, S., Gerstenberger, M., Ghisetti, F., Sutherland, R., Hirschberg, H., Fraser, J., Nodder, S. D., Stirling, M., Humphrey, J., … Lee, J. (2024). The New Zealand Community Fault Model–version 1.0: an improved geological foundation for seismic hazard modelling. New Zealand Journal of Geology and Geophysics, 67((2)), 209–229. https://doi.org/10.1080/00288306.2023.2181362 DOI: https://doi.org/10.1080/00288306.2023.2181362
Stahl, T., Quigley, M. C., & Bebbington, M. S. (2016). Tectonic geomorphology of the Fox Peak and Forest Creek Faults, South Canterbury, New Zealand: slip rates, segmentation and earthquake magnitudes. New Zealand Journal of Geology and Geophysics, 59(4), 568–591. https://doi.org/10.1080/00288306.2016.1212908 DOI: https://doi.org/10.1080/00288306.2016.1212908
Stirling, M. W. (1990). The Old Man Range and Garvie Mountains: Tectonic geomorphology of the Central Otago peneplain, New Zealand. New Zealand Journal of Geology and Geophysics, 33(2), 233–243. https://doi.org/10.1080/00288306.1990.10425681 DOI: https://doi.org/10.1080/00288306.1990.10425681
Styron, R. (2019). The impact of earthquake cycle variability on neotectonic and paleoseismic slip rate estimates. Solid Earth, 10(1), 15–25. https://doi.org/10.5194/se-10-15-2019 DOI: https://doi.org/10.5194/se-10-15-2019
Taylor-Silva, B. I., Stirling, M. W., Litchfield, N. J., Griffin, J. D., van den Berg, E. J., & Wang, N. (2020). Paleoseismology of the Akatore Fault, Otago, New Zealand. New Zealand Journal of Geology and Geophysics, 63(2), 151–167. https://doi.org/10.1080/00288306.2019.1645706 DOI: https://doi.org/10.1080/00288306.2019.1645706
Thingbaijam, K. K.S., Van Dissen, R. J., Shaw, B. E., & Gerstenberger, M. C. (2022). Average Coseismic Slip Profiles. GNS Science Report 2021/24, 1–33. https://doi.org/doi:10.21420/S6ED-JN06
Thingbaijam, Kiran Kumar S, Mai, P. M., & Goda, K. (2017). New empirical earthquake source-scaling laws. Bulletin of the Seismological Society of America, 107(5), 2225–2246. https://doi.org/10.1785/0120170017 DOI: https://doi.org/10.1785/0120170017
Todd, E. K., Stirling, M. W., Fry, B., Salichon, J., & Villamor, P. (2020). Characterising microseismicity in a low seismicity region: applications of short-term broadband seismic arrays in Dunedin, New Zealand. New Zealand Journal of Geology and Geophysics, 63(3), 331–341. https://doi.org/10.1080/00288306.2019.1707238 DOI: https://doi.org/10.1080/00288306.2019.1707238
Turnbull, I. M. (2000). Geology of the Wakatipu area. In Institute of Geological and Nuclear Sciences 1:250,000 Geological Map (pp. 1–72). Institute of Geological.
Valentini, A., DuRoss, C. B., Field, E. H., Gold, R. D., Briggs, R. W., Visini, F., & Pace, B. (2020). Relaxing Segmentation on the Wasatch Fault Zone: Impact on Seismic Hazard. Bulletin of the Seismological Society of America, 110(1), 83–109. https://doi.org/10.1785/0120190088 DOI: https://doi.org/10.1785/0120190088
Valentini, A., Visini, F., & Pace, B. (2017). Integrating faults and past earthquakes into a probabilistic seismic hazard model for peninsular Italy. Natural Hazards and Earth System Sciences, 17(11), 2017–2039. https://doi.org/10.5194/nhess-17-2017-2017 DOI: https://doi.org/10.5194/nhess-17-2017-2017
van den Berg, E. (2020). Paleoseismology of the NW Cardrona Fault, Central Otago. University of Otago.
van den Berg, E. J., Williams, J. N., Stirling, M. W., Barrell, D. J. A., Griffin, J. D., Litchfield, N. J., & Wang, N. (2023). Late Quaternary activity of the NW Cardrona Fault, Otago, New Zealand. New Zealand Journal of Geology and Geophysics, 1–21. https://doi.org/10.1080/00288306.2023.2297962 DOI: https://doi.org/10.1080/00288306.2023.2297962
Van Dissen, R., Barrell, D., Langridge, R., Litchfield, N., Villamor, P., & Tonkin, P. (2007). Reassessment of seismic hazard at the Clyde Dam, Central Otago: Earthquake geology field investigations and determination of Dunstan Fault rupture characteristics. Lower Hutt (NZ). GNS Science Consultancy Report 2006/147.
Visini, F., Valentini, A., Chartier, T., Scotti, O., & Pace, B. (2020). Computational Tools for Relaxing the Fault Segmentation in Probabilistic Seismic Hazard Modelling in Complex Fault Systems. Pure and Applied Geophysics, 177(5), 1855–1877. https://doi.org/10.1007/s00024-019-02114-6 DOI: https://doi.org/10.1007/s00024-019-02114-6
Walsh, J. J., Bailey, W. R., Childs, C., Nicol, A., & Bonson, C. G. (2003). Formation of segmented normal faults: A 3-D perspective. Journal of Structural Geology, 25(8), 1251–1262. https://doi.org/10.1016/S0191-8141(02)00161-X DOI: https://doi.org/10.1016/S0191-8141(02)00161-X
Warren-Smith, E., Lamb, S., Stern, T. A., & Smith, E. (2017). Microseismicity in Southern South Island, New Zealand: Implications for the Mechanism of Crustal Deformation Adjacent to a Major Continental Transform. Journal of Geophysical Research: Solid Earth, 122(11), 9208–9227. https://doi.org/10.1002/2017JB014732 DOI: https://doi.org/10.1002/2017JB014732
Waters, J. M., Craw, D., Youngson, J. H., & Wallis, G. P. (2001). Genes meet geology: Fish phylogeographic pattern reflects ancient, rather than modern, drainage connections. Evolution, 55(9), 1844–1851. https://doi.org/10.1111/j.0014-3820.2001.tb00833.x DOI: https://doi.org/10.1111/j.0014-3820.2001.tb00833.x
Williams, G. J. (1974). Cenozoic geology of the lower Nevis basin, with special reference to shale deposits. Department of Scientific and Industrial Research Bulletin: Wellington, New Zealand.
Williams, J. N., Werner, M. J., Goda, K., Wedmore, L. N. J., De Risi, R., Biggs, J., Mdala, H., Dulanya, Z., Fagereng, AA, Mphepo, F., & Chindandali, P. (2023). Fault-based probabilistic seismic hazard analysis in regions with low strain rates and a thick seismogenic layer: a case study from Malawi. Geophysical Journal International, 233(3), 2172–2206. https://doi.org/10.1093/gji/ggad060 DOI: https://doi.org/10.1093/gji/ggad060
Yang, H., Quigley, M., & King, T. (2021). Surface slip distributions and geometric complexity of intraplate reverse-faulting earthquakes. Bulletin of the Geological Society of America, 133(9–10), 1909–1929. https://doi.org/10.1130/B35809.1 DOI: https://doi.org/10.1130/B35809.1
Youngson, J. H., Craw, D., Landis, C. A., & Schmitt, K. R. (1998). Redefinition and interpretation of late Miocene-Pleistocene terrestrial stratigraphy, Central Otago, New Zealand. New Zealand Journal of Geology and Geophysics, 41(1), 51–68. https://doi.org/10.1080/00288306.1998.9514790 DOI: https://doi.org/10.1080/00288306.1998.9514790
Youngson, John H., Wopereis, P., Kerr, L. C., & Craw, D. (2002). Au-Ag-Hg and Au-Ag alloys in Nokomai and Nevis valley placers, northern Southland and Central Otago, New Zealand, and their implications for placer-source relationship. New Zealand Journal of Geology and Geophysics, 45(1), 53–69. https://doi.org/10.1080/00288306.2002.9514959 DOI: https://doi.org/10.1080/00288306.2002.9514959
Zielke, O., & Mai, P. M. (2023). MCQsim: A Multicycle Earthquake Simulator. Bulletin of the Seismological Society of America, 113(3), 889–908. https://doi.org/10.1785/0120220248 DOI: https://doi.org/10.1785/0120220248
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Jack Williams, Mark Stirling, Robert Langridge, Govinda Niroula, Ashleigh Vause, James Stewart, Andy Nicol, Ninghseng Wang
This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
Earthquake Commission
Grant numbers 1989 - 20URP807