Relative Moment Tensor Inversion for Microseismicity: Application to Clustered Earthquakes in the Cascadia Forearc
DOI:
https://doi.org/10.26443/seismica.v2i4.1311Keywords:
Moment Tensor, Microseismicity, Clustered Earthquakes, Cascadia ForearcAbstract
The relative abundance of small earthquakes affords significant opportunities for improved understanding of regional seismotectonics; however, determining moment tensors for such events recorded on regional networks is complicated by low signal-to-noise ratios, sparse station sampling and complex wave propagation at short periods. We build upon previous work in designing a multiple-event, simultaneous moment tensor inversion scheme for small earthquakes that employs constraints from P-wave polarities, relative amplitudes of P- and S-waves recorded at common stations, and local magnitude estimates. Our method does not require a priori knowledge of a reference moment tensor. High-fidelity polarity and relative amplitude data are recovered using principal component decomposition of clustered-event waveforms. These data are employed within a multi-stage iterative framework to invert for moment tensors and incorporate local magnitude information. Synthetic examples employing as few as four high-quality and spatially-distributed stations yield accurate moment tensor estimates. We demonstrate our approach on a cluster of seismicity near San Juan Island, Washington, USA, within the Cascadia forearc. Our results are consistent with previous characterization of the local stress regime, and support an interpretation of swarm behaviour resulting from migration of fluids originating from dehydration of the subducting Juan de Fuca plate.
References
Álvarez-Gómez, J. A. (2019). FMC—Earthquake focal mechanisms data management, cluster and classification. SoftwareX, 9, 299–307. https://doi.org/https://doi.org/10.1016/j.softx.2019.03.008
Armbruster, J. G., Kim, W.-Y., & Rubin, A. M. (2014). Accurate tremor locations from coherent S and P waves. Journal of Geophysical Research: Solid Earth, 119(6), 5000–5013. https://doi.org/https://doi.org/10.1002/2014JB011133
Audet, P., Bostock, M. G., Christensen, N. I., & Peacock, S. M. (2009). Seismic evidence for overpressured subducted oceanic crust and megathrust fault sealing. Nature, 457. https://doi.org/https://doi.org/10.1038/nature07650
Audet, P., & Bürgmann, R. (2014). Possible control of subduction zone slow-earthquake periodicity by silica enrichment. Nature, 510. https://doi.org/https://doi.org/10.1038/nature13391
Balfour, N. J., Cassidy, J. F., Dosso, S. E., & Mazzotti, S. (2011). Mapping crustal stress and strain in southwest British Columbia. Journal of Geophysical Research: Solid Earth, 116(B3). https://doi.org/https://doi.org/10.1029/2010JB008003
Balfour, Natalie J., Cassidy, J. F., & Dosso, S. E. (2012). Identifying Active Structures Using Double‐Difference Earthquake Relocations in Southwest British Columbia and the San Juan Islands, Washington. Bulletin of the Seismological Society of America, 102(2), 639–649. https://doi.org/10.1785/0120110056
Barrie, J. V., & Greene, H. G. (2018). The Devils Mountain Fault zone: An active Cascadia upper plate zone of deformation, Pacific Northwest of North America. Sedimentary Geology, 364, 228–241. https://doi.org/https://doi.org/10.1016/j.sedgeo.2017.12.018
Bloch, W., Bostock, M. G., & Audet, P. (2023). A Cascadia Slab Model From Receiver Functions. Geochemistry, Geophysics, Geosystems, 24(10), e2023GC011088. https://doi.org/https://doi.org/10.1029/2023GC011088
Bostock, M. G., Christensen, N. I., & Peacock, S. M. (2019). Seismicity in Cascadia. Lithos, 332–333, 55–66. https://doi.org/https://doi.org/10.1016/j.lithos.2019.02.019
Bostock, M., Plourde, A., Drolet, D., & Littel, G. (2021). Multichannel Alignment of S Waves. Bulletin of the Seismological Society of America, 112(1), 133–142. https://doi.org/10.1785/0120210076
Boyarko, D. C., & Brudzinski, M. R. (2010). Spatial and temporal patterns of nonvolcanic tremor along the southern Cascadia subduction zone. Journal of Geophysical Research: Solid Earth, 115(B8). https://doi.org/https://doi.org/10.1029/2008JB006064
Brandon, M. T., Cowan, D. S., & Feehan, J. G. (1994). Fault-zone structures and solution-mass-transfer cleavage in Late Cretaceous nappes, San Juan Islands, Washington (pp. 2L-1–19).
Brandon, M. T., Cowan, D. S., & Vance, J. A. (1988). The Late Cretaceous San Juan thrust system, San Juan Islands, Washington. In The Late Cretaceous San Juan thrust system, San Juan Islands, Washington. Geological Society of America. https://doi.org/10.1130/SPE221-p1
Brown, E. H. (2012). Obducted nappe sequence in the San Juan Islands – northwest Cascades thrust system, Washington and British Columbia. Canadian Journal of Earth Sciences, 49(7), 796–817. https://doi.org/10.1139/e2012-026
Cakir, R. (2016). Monitoring Active Faults for Tectonic Mapping Efforts in Washington State [Data set]. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/X4_2016
Calvert, A. J., Bostock, M. G., Savard, G., & Unsworth, M. J. (2020). Cascadia low frequency earthquakes at the base of an overpressured subduction shear zone. Nature Communications, 11(3874). https://doi.org/https://doi.org/10.1038/s41467-020-17609-3
Canadian National Seismograph Network [Data set]. International Federation of Digital Seismograph Networks. (1975). https://doi.org/10.7914/SN/CN
Cheng, Y., Allen, R. M., & Taira, T. (2023). A New Focal Mechanism Calculation Algorithm (REFOC) Using Inter-Event Relative Radiation Patterns: Application to the Earthquakes in the Parkfield Area. Journal of Geophysical Research: Solid Earth, 128(3), e2022JB025006. https://doi.org/https://doi.org/10.1029/2022JB025006
Choi, J., Byun, J., Seol, S. J., & Lee, S. K. (2023). Convolutional neural network-based moment tensor inversion using domain adaptation for microseismicity monitoring. Exploration Geophysics, 54(2), 133–143. https://doi.org/10.1080/08123985.2022.2086798
Creager, K., Vidale, J., & Malone, S. (2009). Cascadia Array of Arrays [Data set]. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/XG_2009
Crotwell, H. P., Owens, T. J., & Ritsema, J. (1999). The TauP Toolkit: Flexible Seismic Travel-time and Ray-path Utilities. Seismological Research Letters, 70(2), 154–160. https://doi.org/10.1785/gssrl.70.2.154
Dahm, T. (1993). Relative moment tensor inversion to determine the radiation pattern of seismic sources [Phdthesis]. Geophysikalisches Institut, Universitat Karlsruhe, Germany.
Dahm, T. (1996). Relative moment tensor inversion based on ray theory: theory and synthetic tests. Geophysical Journal International, 124(1), 245–257. https://doi.org/10.1111/j.1365-246X.1996.tb06368.x
D’Amico, S., Orecchio, B., Presti, D., Gervasi, A., Zhui, L., Guerra, I., Neri, G., & Herrmann, R. B. (2011). Testing the stability of moment tensor solutions for small earthquakes in the Calabro-Peloritan Arc region (southern Italy). Bollettino Di Geofisica Teorica Ed Applicata, 52(2), 283–298. https://doi.org/10.4430/bgta0009
Drolet, D., Bostock, M. G., Plourde, A. P., & Sammis, C. G. (2022). Aftershock distributions, moment tensors and stress evolution of the 2016 Iniskin and 2018 Anchorage Mw 7.1 Alaskan intraslab earthquakes. Geophysical Journal International, 231(1), 199–214. https://doi.org/10.1093/gji/ggac165
Earthquake Hazards Program. (2017). USGS. https://doi.org/https://doi.org/10.5066/F7MS3QZH
Egbert, G. D., Yang, B., Bedrosian, P. A., Key, K., Livelybrooks, D. W., Schultz, A., Kelbert, A., & Parris, B. (2022). Fluid transport and storage in the Cascadia forearc influenced by overriding plate lithology. Nature Geoscience, 15.
Ekström, G., Nettles, M., & Dziewoński, A. M. (2012). The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors, 200–201, 1–9. https://doi.org/https://doi.org/10.1016/j.pepi.2012.04.002
Finley, T., Morell, K., Leonard, L., Regalla, C., Johnston, S. T., & Zhang, W. (2019). Ongoing oroclinal bending in the Cascadia forearc and its relation to concave-outboard plate margin geometry. Geology, 47(2), 155–158. https://doi.org/10.1130/G45473.1
Fyfe, W. S., Kerrich, R., Hicock, S. R., & Colloza, F. C. (1987). LITHOPROBE: Faults and Fluids. Geoscience Canada, 14(2).
Greene, H. G., & Barrie, J. V. (2022). Faulting within the San Juan–southern Gulf Islands Archipelagos, upper plate deformation of the Cascadia subduction complex. In From Continental Shelf to Slope: Mapping the Oceanic Realm. Geological Society of London. https://doi.org/10.1144/SP505-2019-125
Greene, H. G., Barrie, J. V., & Todd, B. J. (2018). The Skipjack Island fault zone: An active transcurrent structure within the upper plate of the Cascadia subduction complex. Sedimentary Geology, 378, 61–79. https://doi.org/https://doi.org/10.1016/j.sedgeo.2018.05.005
Hanks, T. C., & Kanamori, H. (1979). A moment magnitude scale. Journal of Geophysical Research: Solid Earth, 84(B5), 2348–2350. https://doi.org/https://doi.org/10.1029/JB084iB05p02348
Hardebeck, J. L., & Shearer, P. M. (2003). Using S/P Amplitude Ratios to Constrain the Focal Mechanisms of Small Earthquakes. Bulletin of the Seismological Society of America, 93(6), 2434–2444. https://doi.org/10.1785/0120020236
Hayward, T. W., & Bostock, M. G. (2017). Slip Behavior of the Queen Charlotte Plate Boundary Before and After the 2012, MW 7.8 Haida Gwaii Earthquake: Evidence From Repeating Earthquakes. Journal of Geophysical Research: Solid Earth, 122(11), 8990–9011. https://doi.org/https://doi.org/10.1002/2017JB014248
Hill, D. P. (1977). A model for earthquake swarms. Journal of Geophysical Research (1896-1977), 82(8), 1347–1352. https://doi.org/https://doi.org/10.1029/JB082i008p01347
Hyndman, R. D., Mazzotti, S., Weichert, D., & Rogers, G. C. (2003). Frequency of large crustal earthquakes in Puget Sound–Southern Georgia Strait predicted from geodetic and geological deformation rates. Journal of Geophysical Research: Solid Earth, 108(B1). https://doi.org/https://doi.org/10.1029/2001JB001710
Johnson, H. P., Merle, S. G., Bjorklund, T. A., Hautala, S. L., Baumberger, T., Walker, S. L., Liu, J., Ward, N. D., & Wang, C. (2022). Methane Plume Emissions Associated With Puget Sound Faults in the Cascadia Forearc. Geochemistry, Geophysics, Geosystems, 23(1), e2021GC010211. https://doi.org/https://doi.org/10.1029/2021GC010211
Johnson, S., Dadisman, S., Mosher, D., Blakely, R., & Childs, J. (2001). Active Tectonics of the Devil’s Mountain Fault and Related Structures, Northern Puget Lowland and Eastern Strait of Juan de Fuca Region, Pacific Northwest [Techreport]. U.S. Geological Survey Professional Paper 1643.
Kagan, Y. Y. (1991). 3-D rotation of double-couple earthquake sources. Geophysical Journal International, 106(3), 709–716. https://doi.org/10.1111/j.1365-246X.1991.tb06343.x
Kao, H., Shan, S.-J., Dragert, H., & Rogers, G. (2009). Northern Cascadia episodic tremor and slip: A decade of tremor observations from 1997 to 2007. Journal of Geophysical Research: Solid Earth, 114(B11). https://doi.org/https://doi.org/10.1029/2008JB006046
Li, H., Chang, X., Xie, X.-B., & Wang, Y. (2021). Microseismic moment-tensor inversion and sensitivity analysis in vertically transverse isotropic media. Geophysics, 86(2), KS23–KS36. https://doi.org/10.1190/geo2020-0098.1
Linzer, L. M. (2005). A Relative Moment Tensor Inversion Technique Applied to Seismicity Induced by Mining. Rock Mechanics and Rock Engineering, 38(2). https://doi.org/10.1007/s00603-004-0041-4
Maekawa, H., & Brown, E. H. (1991). Kinematic analysis of the San Juan thrust system, Washington. GSA Bulletin, 103(8), 1007–1016. https://doi.org/10.1130/0016-7606(1991)103<1007:KAOTSJ>2.3.CO;2
Malone, S. (2004). Seismic Array Studies of Cascadia Deep Tremor [Data set]. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/XH_2004
Malone, S., Creager, K., Rondenay, S., Melbourne, T., & Abers, G. (2006). Collaborative Research: Earthscope integrated investigations of Cascadia subduction zone tremor, structure and process [Data set]. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/XU_2006
McCaffrey, R., Long, M. D., Goldfinger, C., Zwick, P. C., Nabelek, J. L., Johnson, C. K., & Smith, C. (2000). Rotation and plate locking at the Southern Cascadia Subduction Zone. Geophysical Research Letters, 27(19), 3117–3120. https://doi.org/https://doi.org/10.1029/2000GL011768
McCrory, P. A., Constantz, J. E., Hunt, A. G., & Blair, J. L. (2016). Helium as a tracer for fluids released from Juan de Fuca lithosphere beneath the Cascadia forearc. Geochemistry, Geophysics, Geosystems, 17(6), 2434–2449. https://doi.org/https://doi.org/10.1002/2015GC006198
Merrill, R., Bostock, M. G., Peacock, S. M., Calvert, A. J., & Christensen, N. I. (2020). A Double Difference Tomography Study of the Washington Forearc: Does Siletzia Control Crustal Seismicity? Journal of Geophysical Research: Solid Earth, 125(10), e2020JB019750. https://doi.org/https://doi.org/10.1029/2020JB019750
Merrill, R. J., Bostock, M. G., Peacock, S. M., Schaeffer, A. J., & Roecker, S. W. (2022). Complex Structure in the Nootka Fault Zone Revealed by Double-Difference Tomography and a New Earthquake Catalog. Geochemistry, Geophysics, Geosystems, 23(2), e2021GC010205. https://doi.org/https://doi.org/10.1029/2021GC010205
Morell, K. D., Regalla, C., Leonard, L. J., Amos, C., & Levson, V. (2017). Quaternary Rupture of a Crustal Fault beneath Victoria, British Columbia, Canada. GSA Today, 7. https://doi.org/10.1130/GSATG291A.1
Mosher, D., Cassidy, J. F., Lowe, Y., C; Mi, Hyndman, G. C., R. DO; Rogers, & Fisher, M. (2000). Neotectonics in the Strait of Georgia: First tentative correlation of seismicity with shallow geological structure in southwestern British Columbia. Geological Survey of Canada, Current Research (Online).
Nicholson, T., Bostock, M., & Cassidy, J. F. (2005). New constraints on subduction zone structure in northern Cascadia. Geophysical Journal International, 161(3), 849–859. https://doi.org/10.1111/j.1365-246X.2005.02605.x
Pacific Northwest Seismic Network - University of Washington [Data set]. International Federation of Digital Seismograph Networks. (1963). https://doi.org/10.7914/SN/UW
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., … Chintala, S. (2019). PyTorch: An Imperative Style, High-Performance Deep Learning Library. Neural Information Processing Systems. https://api.semanticscholar.org/CorpusID:202786778
Plourde, A. P., & Bostock, M. G. (2019). Relative moment tensors and deep Yakutat seismicity. Geophysical Journal International, 219(2), 1447–1462. https://doi.org/10.1093/gji/ggz375
Pondrelli, S., Salimbeni, S., Ekström, G., Morelli, A., Gasperini, P., & Vannucci, G. (2006). The Italian CMT dataset from 1977 to the present. Physics of the Earth and Planetary Interiors, 159(3), 286–303. https://doi.org/https://doi.org/10.1016/j.pepi.2006.07.008
Ramachandran, K., Hyndman, R. D., & Brocher, T. M. (2006). Regional P wave velocity structure of the Northern Cascadia Subduction Zone. Journal of Geophysical Research: Solid Earth, 111(B12). https://doi.org/https://doi.org/10.1029/2005JB004108
Rippe, D., Unsworth, M. J., & Currie, C. A. (2013). Magnetotelluric constraints on the fluid content in the upper mantle beneath the southern Canadian Cordillera: Implications for rheology. Journal of Geophysical Research: Solid Earth, 118(10), 5601–5624. https://doi.org/https://doi.org/10.1002/jgrb.50255
Ristau, J., Rogers, G. C., & Cassidy, J. F. (2003). Moment Magnitude–Local Magnitude Calibration for Earthquakes off Canada’s West Coast. Bulletin of the Seismological Society of America, 93(5), 2296–2300. https://doi.org/10.1785/0120030035
Rubinstein, J. L., Rocca, M. L., Vidale, J. E., Creager, K. C., & Aaron G. Wech. (2008). Tidal Modulation of Nonvolcanic Tremor. Science, 319(5860), 186–189. https://doi.org/10.1126/science.1150558
Savard, G., Bostock, M. G., & Christensen, N. I. (2018). Seismicity, Metamorphism, and Fluid Evolution Across the Northern Cascadia Fore Arc. Geochemistry, Geophysics, Geosystems, 19(6), 1881–1897. https://doi.org/https://doi.org/10.1029/2017GC007417
Shearer, P. M. (2009). Introduction to Seismology. Cambridge University Press. https://doi.org/https://doi.org/10.1017/CBO9780511841552
Shearer, P. M., Prieto, G. A., & Hauksson, E. (2006). Comprehensive analysis of earthquake source spectra in southern California. Journal of Geophysical Research: Solid Earth, 111(B6). https://doi.org/https://doi.org/10.1029/2005JB003979
Shelly, D. R., Skoumal, R. J., & Hardebeck, J. L. (2022). S/P Amplitude Ratios Derived from Single‐Component Seismograms and Their Potential Use in Constraining Focal Mechanisms for Microearthquake Sequences. The Seismic Record, 2(2), 118–126. https://doi.org/10.1785/0320220002
Silver, P. (2009). Active Seismic Study of Episodic Tremor and Slip, Detecting Structural changes During an ETS Event: Proof of Concept [Data set]. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/Z3_2009
Tremor Map. (2009-2021). Pacific Northwest Seismic Network. https://pnsn.org/tremor
United States National Strong-Motion Network [Data set]. International Federation of Digital Seismograph Networks. (1931). https://doi.org/10.7914/SN/NP
USArray Transportable Array [Data set]. International Federation of Digital Seismograph Networks. (2003). https://doi.org/10.7914/SN/TA
VanDecar, J. C., & Crosson, R. S. (1990). Determination of teleseismic relative phase arrival times using multi-channel cross-correlation and least squares. Bulletin of the Seismological Society of America, 80(1), 150–169. https://doi.org/10.1785/BSSA0800010150
Vavryčuk, V. (2014). Iterative joint inversion for stress and fault orientations from focal mechanisms. Geophysical Journal International, 199(1), 69–77. https://doi.org/10.1093/gji/ggu224
Vidale, J. E., & Shearer, P. M. (2006). A survey of 71 earthquake bursts across southern California: Exploring the role of pore fluid pressure fluctuations and aseismic slip as drivers. Journal of Geophysical Research: Solid Earth, 111(B5). https://doi.org/https://doi.org/10.1029/2005JB004034
Waldhauser, F., & Ellsworth, W. L. (2000). A Double-Difference Earthquake Location Algorithm: Method and Application to the Northern Hayward Fault, California. Bulletin of the Seismological Society of America, 90(6), 1353–1368. https://doi.org/10.1785/0120000006
Wannamaker, P. E., Evans, R. L., Bedrosian, P. A., Unsworth, M. J., Maris, V., & McGary, R. S. (2014). Segmentation of plate coupling, fate of subduction fluids, and modes of arc magmatism in Cascadia, inferred from magnetotelluric resistivity. Geochemistry, Geophysics, Geosystems, 15(11), 4230–4253. https://doi.org/https://doi.org/10.1002/2014GC005509
Zhang, M. (2023). FocMecDR: A Cross-Correlation-Based Double-Ratio Earthquake Focal Mechanism Inversion.
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Doriane Drolet, Michael Bostock, Simon Peacock

This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
Fonds de recherche du Québec – Nature et technologies
Grant numbers 286124 -
Natural Sciences and Engineering Research Council of Canada
Grant numbers RGPIN-2021-03039 -
Natural Sciences and Engineering Research Council of Canada
Grant numbers RGPIN-2020-07066