An unexplained tsunami: Was there megathrust slip during the 2020 Mw7.6 Sand Point, Alaska, earthquake?
DOI:
https://doi.org/10.26443/seismica.v4i1.1336Keywords:
tsunamigenic earthquakes, tsunamigenesis, tsunamis, InversionAbstract
On October 19, 2020, the Mw7.6 Sand Point earthquake struck south of the Shumagin Islands in Alaska. Moment tensors indicate the earthquake was primarily strike-slip, yet the event produced an enigmatic tsunami that was larger and more widespread than expected for an earthquake of that magnitude and mechanism. Using a suite of hydrodynamic, seismic, and geodetic modeling techniques, we explore plausible causes of the tsunami. We find that strike-slip models consistent with the moment tensor orientation cannot produce the observed tsunami. Hydrodynamic inversion of sea surface deformation from deep ocean and tide gauge data suggest seafloor deformation more closely matches a megathrust, rather than a strike-slip, source. Static slip inversions, using sea level and Global Navigation Satellite System data, allow for a portion of co-seismic megathrust slip that can explain tsunamigenesis. Combining all available geophysical datasets to model the kinematic rupture, we show that considerable, relatively slow, megathrust slip is allowable in the Shumagin segment, concurrent with strike-slip faulting. We hypothesize that the slow megathrust rupture does not contribute much seismic radiation allowing it to previously go unnoticed with traditional seismic monitoring.
References
Aster, R., Borchers, B., & Thurber, C. (2018). Parameter estimation and inverse problems. Elsevier. https://doi.org/10.1016/C2015-0-02458-3
Bécel, A., Shillington, D. J., Delescluse, M., Nedimović, M. R., Abers, G. A., Saffer, D. M., Webb, S. C., Keranen, K. M., Roche, P.-H., Li, J., & Kuehn, H. (2017). Tsunamigenic structures in a creeping section of the Alaska subduction zone. Nature Geoscience, 10(8), 609–613. https://doi.org/10.1038/ngeo2990
Bertiger, W., Bar-Sever, Y., Dorsey, A., Haines, B., Harvey, N., Hemberger, D., Heflin, M., Lu, W., Miller, M., Moore, A. W., Murphy, D., Ries, P., Romans, L., Sibois, A., Sibthorpe, A., Szilagyi, B., Vallisneri, M., & Willis, P. (2020). GipsyX/RTGx, a new tool set for space geodetic operations and research. Advances in Space Research, 66(3), 469–489. https://doi.org/10.1016/j.asr.2020.04.015
Crowell, B. W., & Melgar, D. (2020). Slipping the Shumagin Gap: A Kinematic Coseismic and Early Afterslip Model of the Mw 7.8 Simeonof Island, Alaska, Earthquake. Geophysical Research Letters, 47(19). https://doi.org/10.1029/2020GL090308
d’Amico, S., Orecchio, B., Presti, D., Gervasi, A., Zhu, L., Guerra, I., Neri, G., & Herrmann, R. B. (2011). Testing the Stability of Moment Tensor Solutions for Small Earthquakes in the Calabro-Peloritan Arc Region (Southern Italy). Bollettino Di Geofisica Teorica Ed Applicata. https://doi.org/10.4430/bgta0009
Davies, J., Sykes, L., House, L., & Jacob, K. (1981). Shumagin Seismic Gap, Alaska Peninsula: History of great earthquakes, tectonic setting, and evidence for high seismic potential. Journal of Geophysical Research, 86(B5), 3821. https://doi.org/10.1029/JB086iB05p03821
DeSanto, J. B., Webb, S. C., Nooner, S. L., Schmidt, D. A., Crowell, B. W., Brooks, B. A., Ericksen, T. L., & Chadwell, C. D. (2023). Limited Shallow Slip for the 2020 Simeonof Earthquake, Alaska, Constrained by GNSS-Acoustic. Geophysical Research Letters, 50(16), e2023GL105045. https://doi.org/10.1029/2023GL105045
for Environmental Information, N. N. C. (n.d.). National Geophysical Data Center / World Data Service: NCEI/WDS Global Historical Tsunami Database [Dataset]. NOAA National Centers for Environmental Information. https://doi.org/10.7289/V5PN93H7
Goldberg, D. E., Koch, P., Melgar, D., Riquelme, S., & Yeck, W. L. (2022). Beyond the Teleseism: Introducing Regional Seismic and Geodetic Data into Routine USGS Finite-Fault Modeling. Seismological Research Letters, 93(6), 3308–3323. https://doi.org/10.1785/0220220047
Hayes, G. P., Moore, G. L., Portner, D. E., Hearne, M., Flamme, H., Furtney, M., & Smoczyk, G. M. (2018). Slab2, a comprehensive subduction zone geometry model. Science, 362(6410), 58–61. https://doi.org/10.1126/science.aat4723
Herman, M. W., & Furlong, K. P. (2021). Triggering an unexpected earthquake in an uncoupled subduction zone. Science Advances, 7(13), eabf7590. https://doi.org/10.1126/sciadv.abf7590
Herring, T. A., Melbourne, T. I., Murray, M. H., Floyd, M. A., Szeliga, W. M., King, R. W., Phillips, D. A., Puskas, C. M., Santillan, M., & Wang, L. (2016). Plate Boundary Observatory and related networks: GPS data analysis methods and geodetic products. Reviews of Geophysics, 54(4), 759–808. https://doi.org/10.1002/2016RG000529
Ji, C., Wald, D. J., & Helmberger, D. V. (2002). Source Description of the 1999 Hector Mine, California, Earthquake, Part I: Wavelet Domain Inversion Theory and Resolution Analysis. Bulletin of the Seismological Society of America, 92(4), 1192–1207. https://doi.org/10.1785/0120000916
Jia, Z., Zhan, Z., & Kanamori, H. (2022). The 2021 South Sandwich Island M w 8.2 Earthquake: A Slow Event Sandwiched Between Regular Ruptures. Geophysical Research Letters, 49(3). https://doi.org/10.1029/2021GL097104
Koch, P., Bravo, F., Riquelme, S., & Crempien, J. G. F. (2019). Near-Real-Time Finite-Fault Inversions for Large Earthquakes in Chile Using Strong-Motion Data. Seismological Research Letters. https://doi.org/10.1785/0220180294
Koch, P., Goldberg, D. E., Hunsinger, H. E., Melgar, D., Riquelme, S., Yeck, W. L., & Haynie, K. L. (2024). Wavelet and simulated Annealing SliP inversion (WASP), U.S. Geological Survey software release. U.S. Geological Survey. https://doi.org/10.5066/P1EKKUNW
Larson, K. M., Lay, T., Yamazaki, Y., Cheung, K. F., Ye, L., Williams, S. D. P., & Davis, J. L. (2021). Dynamic Sea Level Variation From GNSS: 2020 Shumagin Earthquake Tsunami Resonance and Hurricane Laura. Geophysical Research Letters, 48(4). https://doi.org/10.1029/2020GL091378
LeVeque, R. J., George, D. L., & Berger, M. J. (2011). Tsunami modelling with adaptively refined finite volume methods. Acta Numerica, 20, 211–289. https://doi.org/10.1017/S0962492911000043
Li, S., & Freymueller, J. T. (2018). Spatial Variation of Slip Behavior Beneath the Alaska Peninsula Along Alaska-Aleutian Subduction Zone. Geophysical Research Letters, 45(8), 3453–3460. https://doi.org/10.1002/2017GL076761
Lin, J.-T., Aslam, K. S., Thomas, A. M., & Melgar, D. (2020). Overlapping regions of coseismic and transient slow slip on the Hawaiian décollement. Earth and Planetary Science Letters, 544, 116353. https://doi.org/10.1016/j.epsl.2020.116353
Liu, C., Lay, T., & Xiong, X. (2022). The 29 July 2021 M W 8.2 Chignik, Alaska Peninsula Earthquake Rupture Inferred From Seismic and Geodetic Observations: Re-Rupture of the Western 2/3 of the 1938 Rupture Zone. Geophysical Research Letters, 49(4). https://doi.org/10.1029/2021GL096004
Liu, C., Lay, T., Xiong, X., & Wen, Y. (2020). Rupture of the 2020 M W 7.8 Earthquake in the Shumagin Gap Inferred From Seismic and Geodetic Observations. Geophysical Research Letters, 47(22). https://doi.org/10.1029/2020GL090806
López, A. M., & Okal, E. A. (2006). A seismological reassessment of the source of the 1946 Aleutian `tsunami’ earthquake. Geophysical Journal International, 165(3), 835–849. https://doi.org/10.1111/j.1365-246X.2006.02899.x
Ma, S., & Nie, S. (2019). Dynamic Wedge Failure and Along-Arc Variations of Tsunamigenesis in the Japan Trench Margin. Geophysical Research Letters, 46(15), 8782–8790. https://doi.org/10.1029/2019GL083148
Melgar, D., & Bock, Y. (2013). Near-field tsunami models with rapid earthquake source inversions from land- and ocean-based observations: The potential for forecast and warning: TSUNAMI MODELS WITH RAPID INVERSIONS. Journal of Geophysical Research: Solid Earth, 118(11), 5939–5955. https://doi.org/10.1002/2013JB010506
Melgar, D., LeVeque, R. J., Dreger, D. S., & Allen, R. M. (2016). Kinematic rupture scenarios and synthetic displacement data: An example application to the Cascadia subduction zone. Journal of Geophysical Research: Solid Earth, 121(9), 6658–6674. https://doi.org/10.1002/2016JB013314
Melgar, D., Lin, T., Kong, Q., Christineruhl, & Marfito, B. (2021). dmelgarm/MudPy: v1.3. Zenodo. https://doi.org/10.5281/ZENODO.5397091
Newman, A. V., Hayes, G., Wei, Y., & Convers, J. (2011). The 25 October 2010 Mentawai tsunami earthquake, from real-time discriminants, finite-fault rupture, and tsunami excitation: THE 2010 MENTAWAI TSUNAMI EARTHQUAKE. Geophysical Research Letters, 38(5), n/a-n/a. https://doi.org/10.1029/2010GL046498
Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75(4), 1135–1154. https://doi.org/https://doi.org/10.1785/BSSA0750041135
Pasyanos, M. E., Masters, T. G., Laske, G., & Ma, Z. (2014). LITHO1.0: An updated crust and lithospheric model of the Earth. Journal of Geophysical Research: Solid Earth, 119(3), 2153–2173. https://doi.org/10.1002/2013JB010626
Riquelme, S., & Fuentes, M. (2021). Tsunami Efficiency Due to Very Slow Earthquakes. Seismological Research Letters, 92(5), 2998–3006. https://doi.org/10.1785/0220200198
Sahakian, V. J., Melgar, D., & Muzli, M. (2019). Weak Near-Field Behavior of a Tsunami Earthquake: Toward Real-Time Identification for Local Warning. Geophysical Research Letters, 46(16), 9519–9528. https://doi.org/10.1029/2019GL083989
Santellanes, S., Lin, J.-T., & Melgar, D. (2021). ssantellanes/water-level-inversion: First release. Zenodo. https://doi.org/10.5281/ZENODO.5498175
Santellanes, S. R., Goldberg, D. E., Koch, P., Melgar, D., Yeck, W. L., Crowell, B. W., & Lin, J.-T. (2025). 2025, Supporting Data and Models for An unexplained tsunami: Was there megathrust slip during the 2020 Mw7.6 Sand Point, Alaska, earthquake?: U.S. Geological Survey data release,. U.S. Geological Survey. https://doi.org/https://doi.org/10.5066/P9G8ODEH
Tanioka, Y., Ruff, L., & Satake, K. (1997). What controls the lateral variation of large earthquake occurrence along the Japan Trench? The Island Arc, 6(3), 261–266. https://doi.org/10.1111/j.1440-1738.1997.tb00176.x
Ten Brink, U. S., Geist, E. L., & Andrews, B. D. (2006). Size distribution of submarine landslides and its implication to tsunami hazard in Puerto Rico. Geophysical Research Letters, 33(11), 2006GL026125. https://doi.org/10.1029/2006GL026125
Titov, V. V., Gonzalez, F. I., Bernard, E. N., Eble, M. C., Mofjeld, H. O., Newman, J. C., & Venturato, A. J. (2005). Real-Time Tsunami Forecasting: Challenges and Solutions. Natural Hazards, 35(1), 35–41. https://doi.org/10.1007/s11069-004-2403-3
Tozer, B., Sandwell, D. T., Smith, W. H. F., Olson, C., Beale, J. R., & Wessel, P. (2019). Global Bathymetry and Topography at 15 Arc Sec: SRTM15+. Earth and Space Science, 6(10), 1847–1864. https://doi.org/10.1029/2019EA000658
Tsai, V. C., Ampuero, J.-P., Kanamori, H., & Stevenson, D. J. (2013). Estimating the effect of Earth elasticity and variable water density on tsunami speeds: ELASTIC COMPRESSIBLE TSUNAMI SPEED. Geophysical Research Letters, 40(3), 492–496. https://doi.org/10.1002/grl.50147
Tsushima, H., Hino, R., Fujimoto, H., Tanioka, Y., & Imamura, F. (2009). Near-field tsunami forecasting from cabled ocean bottom pressure data. Journal of Geophysical Research, 114(B6), B06309. https://doi.org/10.1029/2008JB005988
USGS Earthquake Hazards Program. (2017). Advanced National Seismic System (ANSS) Comprehensive Catalog. https://doi.org/10.5066/F7MS3QZH
Wessel, P., Luis, J. F., Uieda, L. al, Scharroo, R., Wobbe, F., Smith, W. H., & Tian, D. (2019). The generic mapping tools version 6. Geochemistry, Geophysics, Geosystems, 20(11), 5556–5564. https://doi.org/10.1029/2019GC008515
Williamson, A., Melgar, D., & Rim, D. (2019). The Effect of Earthquake Kinematics on Tsunami Propagation. Journal of Geophysical Research: Solid Earth, 124(11), 11639–11650. https://doi.org/10.1029/2019JB017522
Witter, R. C., Briggs, R. W., Engelhart, S. E., Gelfenbaum, G., Koehler, R. D., & Barnhart, W. D. (2014). Little late Holocene strain accumulation and release on the Aleutian megathrust below the Shumagin Islands, Alaska. Geophysical Research Letters, 41(7), 2359–2367. https://doi.org/10.1002/2014GL059393
Xiao, Z., Freymueller, J. T., Grapenthin, R., Elliott, J. L., Drooff, C., & Fusso, L. (2021). The deep Shumagin gap filled: Kinematic rupture model and slip budget analysis of the 2020 Mw 7.8 Simeonof earthquake constrained by GNSS, global seismic waveforms, and floating InSAR. Earth and Planetary Science Letters, 576, 117241. https://doi.org/10.1016/j.epsl.2021.117241
Yeck, W. L., Shelly, D. R., Materna, K. Z., Goldberg, D. E., & Earle, P. S. (2023). Dense geophysical observations reveal a triggered, concurrent multi-fault rupture at the Mendocino Triple Junction. Communications Earth & Environment, 4(1), 94. https://doi.org/10.1038/s43247-023-00752-2
Yue, H., Lay, T., Li, L., Yamazaki, Y., Cheung, K. F., Rivera, L., Hill, E. M., Sieh, K., Kongko, W., & Muhari, A. (2015). Validation of linearity assumptions for using tsunami waveforms in joint inversion of kinematic rupture models: Application to the 2010 Mentawai M w 7.8 tsunami earthquake. Journal of Geophysical Research: Solid Earth, 120(3), 1728–1747. https://doi.org/10.1002/2014JB011721
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Sean Santellanes, Dara Goldberg, Pablo Koch, Diego Melgar, William Yeck, Brendan Crowell, Tim

This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
National Science Foundation
Grant numbers 1835661 -
National Aeronautics and Space Administration
Grant numbers 80NSSC19K1104